1
|
Interleukin 6 and interferon gamma haplotypes are related to cytokine serum levels in dogs in an endemic Leishmania infantum region. Infect Dis Poverty 2023; 12:9. [PMID: 36759910 PMCID: PMC9911338 DOI: 10.1186/s40249-023-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The Ibizan Hound is a canine breed native to the Mediterranean region, where leishmaniasis is an endemic zoonosis. Several studies indicate a low prevalence of this disease in Ibizan Hound dogs, whereas other canine breeds present a high prevalence. However, the underlying molecular mechanisms still remain unknown. The aim of this work is to analyse the relationship between serum levels of cytokines and the genomic profiles in two canine breeds, Ibizan Hound (resistant canine breed model) and Boxer (susceptible canine breed model). METHODS In this study, we analyse the haplotypes of genes encoding cytokines related to immune response of Leishmania infantum infection in twenty-four Boxers and twenty-eight Ibizan Hounds apparently healthy using CanineHD DNA Analysis BeadChip including 165,480 mapped positions. The haplo.glm extension of haplo.score was used to perform a General Linear Model (GLM) regression to estimate the magnitude of individual haplotype effects within each cytokine. RESULTS Mean levels of interferon gamma (IFN-γ), interleukin 2 (IL-2) and IL-18 in Boxer dogs were 0.19 ± 0.05 ng/ml, 46.70 ± 4.54 ng/ml, and 36.37 ± 30.59 pg/ml, whereas Ibizan Hound dogs present 0.49 ± 0.05 ng/ml, 64.55 ± 4.54 ng/ml, and 492.10 ± 31.18 pg/ml, respectively. The GLM regression shows fifteen haplotypes with statistically significant effect on the cytokine serum levels (P < 0.05). The more relevant are IL6-CGAAG and IFNG-GCA haplotypes, which increase and decrease the IL-2, IL-8 and IFN-γ serum levels, respectively. CONCLUSIONS Haplotypes in the IFNG and IL6 genes have been correlated to serum levels of IFN-γ, IL-2 and IL-18, and a moderate effect has been found on IL8 haplotype correlated to IL-8 and IL-18 serum levels. The results indicate that the resistance to L. infantum infection could be a consequence of certain haplotypes with a high frequency in the Ibizan Hound dog breed, while susceptibility to the disease would be related to other specific haplotypes, with high frequency in Boxer. Future studies are needed to elucidate whether these differences and haplotypes are related to different phenotypes in immune response and expression gene regulation to L. infantum infections in dogs and their possible application in new treatments and vaccines.
Collapse
|
2
|
Detection of Leptomonas seymouri narna-like virus in serum samples of visceral leishmaniasis patients and its possible role in disease pathogenesis. Sci Rep 2022; 12:14436. [PMID: 36002553 PMCID: PMC9402534 DOI: 10.1038/s41598-022-18526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Kala-azar/Visceral Leishmaniasis (VL) caused by Leishmania donovani (LD) is often associated with Leptomonas seymouri (LS) co-infection in India. Leptomonas seymouri narna-like virus 1 (Lepsey NLV1) has been reported in multi-passaged laboratory isolates of VL samples which showed LD-LS co-infection. A pertinent question was whether this virus of LS is detectable in direct clinical samples. DNA from the serum of twenty-eight LD diagnosed patients was subjected to LD-specific and LS-specific PCR to reconfirm the presence of LD parasites and to detect LD-LS co-infections. RNA extracted from same samples was subjected to RT-PCR, qRT-PCR and sequencing using virus-specific primers to detect/identify and quantify the virus. The presence of the virus was confirmed in thirteen of eighteen (72%) recently collected VL and PKDL samples. Cytokine profiling showed significantly elevated IL-18 in only LD infected patients compared to the virus-positive LD and control samples. IL-18 is crucial for Th1 and macrophage activation which eventually clears the parasite. The Lepsey NLV1 interaction with the immune system results in reduced IL-18 which favors LD survival and increased parasitic burden. The study emphasizes the need to revisit LD pathogenesis in the light of the association and persistence of a protozoan virus in kala-azar and PKDL patients.
Collapse
|
3
|
Abstract
Cytokines play crucial roles in commencing and coordinating the organized recruitment and activation of immune cells during infection. These molecular regulators play an important part in deciding the fate of disease outcomes in leishmaniasis, a parasitic disease of tropical and subtropical countries. T helper 1 (Th1) cell-mediated inflammatory cytokines usually play a host-protective role, while T helper 2 (Th2) cell activation produces an anti-inflammatory milieu necessary for parasite survival. It is noteworthy that in such a multifaceted disease, the role played by any particular cytokine cannot be generalized as either beneficial or detrimental. For example, a "host-favorable" cytokine in one form of the disease has been found to be "pathogen friendly" in another form of leishmaniasis. On the other hand, the complex signaling network regulating the production of cytokines is further complicated by the nature of the host as well as the presence of other cytokines in the milieu. The present review focuses on the differential roles played by cytokines and the intricate signaling network responsible for the regulation of such cytokines during infection by different species of Leishmania. While many more studies are required in the future to better understand the role of these molecules in both animal models and patient samples, current studies indicate that these molecules are potential candidates to be targeted for therapy against this deadly disease.
Collapse
|
4
|
Hartley MA, Eren RO, Rossi M, Prevel F, Castiglioni P, Isorce N, Desponds C, Lye LF, Beverley SM, Drexler SK, Fasel N. Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β. MICROBIAL CELL 2018; 5:137-149. [PMID: 29487860 PMCID: PMC5826701 DOI: 10.15698/mic2018.03.619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses. Presence of the cytoplasmic Leishmania RNA virus-1 (LRV1) within Leishmania guyanensis, worsens lesional inflammation and parasite burden, as the viral dsRNA genome acts as a potent innate immunogen stimulating Toll-Like-Receptor-3 (TLR3). Here we investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. We included the cytoplasmic dsRNA sensors, namely, the RIG-like receptors (RLRs) and the inflammasome-dependent and -independent Nod-like-receptors (NLRs). Our study found no role for RLRs or inflammasome-dependent NLRs in the pathology of L. guyanensis infection irrespective of its LRV1-status. Further, neither LRV1-bearing L. guyanensis (LgyLRV1+) nor LRV1-negative L. guyanensis (LgyLRV1-) activated the inflammasome in vitro. Interestingly, similarly to L. donovani, L. guyanensis infection induced the up-regulation of the A20 protein, known to be involved in the evasion of inflammasome activation. Moreover, we observed that LgyLRV1+ promoted the transcription of inflammasome-independent NLRC2 (also called NOD2) and NLRC5. However, only NLRC2 showed some contribution to LRV1-dependent pathology. These data confirmed that the endosomal TLR3 pathway is the dominant route of LRV1-dependent signalling, thus excluding the cytosolic and inflammasome pathways. We postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi O Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Patrik Castiglioni
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefan K Drexler
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
5
|
Yang X, Jiao J, Han G, Gong W, Wang P, Xiong X, Wen B. Enhanced Expression of T-Cell Immunoglobulin and Mucin Domain Protein 3 in Endothelial Cells Facilitates Intracellular Killing of Rickettsia heilongjiangensis. J Infect Dis 2015; 213:71-9. [PMID: 26401029 DOI: 10.1093/infdis/jiv463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/11/2015] [Indexed: 11/13/2022] Open
Abstract
Rickettsia heilongjiangensis is the pathogen of Far eastern spotted fever, and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) is expressed in human vascular endothelial cells, the major target cells of rickettsiae. In the present study, we investigated the effects of altered Tim-3 expression in vivo in mice and in vitro in human endothelial cells, on day 3 after R. heilongjiangensis infection. Compared with corresponding controls, rickettsial burdens both in vivo and in vitro were significantly higher with blocked Tim-3 signaling or silenced Tim-3 and significantly lower with overexpressed Tim-3. Additionally, the expression of inducible nitric oxide synthase and interferon γ in endothelial cells with blocked Tim-3 signaling or silenced Tim-3 was significantly lower, while the expression of inducible nitric oxide synthase, interferon γ, and tumor necrosis factor α in transgenic mice with Tim-3 overexpression was significantly higher. These results reveal that enhanced Tim-3 expression facilitates intracellular rickettsial killing in a nitric oxide-dependent manner in endothelial cells during the early phase of rickettsial infection.
Collapse
Affiliation(s)
- Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Gencheng Han
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Department of Clinical Laboratory, 105th Hospital of the People's Liberation Army, Anhui, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| |
Collapse
|
6
|
Shen JQ, Yang QL, Xue Y, Cheng XB, Jiang ZH, Yang YC, Chen YD, Zhou XN. Inducible nitric oxide synthase response and associated cytokine gene expression in the spleen of mice infected with Clonorchis sinensis. Parasitol Res 2015; 114:1661-70. [PMID: 25687522 PMCID: PMC4412385 DOI: 10.1007/s00436-015-4347-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/22/2015] [Indexed: 12/26/2022]
Abstract
Clonorchis sinensis is a food-borne parasite that induces a permanent increase of nitrosation in the body upon infection. The spleen is an important secondary lymphoid organ for the regulation of immune responses locally and in the whole body. However, the functions and mechanisms of the spleen in nitric oxide (NO) responses after C. sinensis infection remain unknown. In this study, BALB/c mice were infected with 20, 40, and 80 C. sinensis metacercariae to simulate mild, moderate, and severe infections, respectively. We examined the expression of inducible nitric oxide synthase (iNOS) in the spleen and the relevant cytokine transcription in splenocytes from the mice infected with different amounts of metacercariae. The iNOS of the mice infected with 80 metacercariae was expressed in the spleen as early as 10 days post-infection (dpi) and gradually increased until 90 dpi. The iNOS expression in the mice infected with 40 metacercariae was detected only at 45 and 90 dpi, but not in the mice infected with 20 metacercariae. The level of interferon (IFN)-γ messenger RNA (mRNA) transcription in splenocytes significantly increased at 10 and 20 dpi (P < 0.05) in response to mild/moderate infection but gradually decreased to normal levels after 45 dpi. The level of IL-12p35 mRNA transcription did not change at 10 and 20 dpi but significantly decreased after 45 dpi under moderate/severe infection (P < 0.05/0.01/0.001). The level of IL-18 mRNA transcription significantly increased at 10 dpi (P < 0.05/0.01) but significantly decreased after 20 dpi (P < 0.05/0.01/0.001). These results suggest that spleen is an important organ for iNOS/NO responses, which correspond to the severity of C. sinensis infection, but cannot be attributed to the expression of the Th1 cytokines.
Collapse
Affiliation(s)
- Ji-Qing Shen
- Department of Parasitology, Guangxi Medical University, Nanning, 530021 People’s Republic of China
| | - Qing-Li Yang
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025 People’s Republic of China
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, 530028 People’s Republic of China
| | - Yan Xue
- Department of Parasitology, Guangxi Medical University, Nanning, 530021 People’s Republic of China
| | - Xiao-Bing Cheng
- Department of Parasitology, Guangxi Medical University, Nanning, 530021 People’s Republic of China
| | - Zhi-Hua Jiang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, 530028 People’s Republic of China
| | - Yi-Chao Yang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, 530028 People’s Republic of China
| | - Ying-Dan Chen
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025 People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
7
|
Zamboni DS, Lima-Junior DS. Inflammasomes in host response to protozoan parasites. Immunol Rev 2015; 265:156-71. [DOI: 10.1111/imr.12291] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dario S. Zamboni
- Department of Cell Biology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Djalma S. Lima-Junior
- Department of Cell Biology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
8
|
Keyel PA. How is inflammation initiated? Individual influences of IL-1, IL-18 and HMGB1. Cytokine 2014; 69:136-45. [PMID: 24746243 DOI: 10.1016/j.cyto.2014.03.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 12/17/2022]
Abstract
Pro-inflammatory cytokines are crucial for fighting infection and establishing immunity. Recently, other proteins, such as danger-associated molecular patterns (DAMPs), have also been appreciated for their role in inflammation and immunity. Following the formation and activation of multiprotein complexes, termed inflammasomes, two cytokines, IL-1β and IL-18, along with the DAMP High Mobility Group Box 1 (HMGB1), are released from cells. Although these proteins all lack classical secretion signals and are released by inflammasome activation, they each lead to different downstream consequences. This review examines how various inflammasomes promote the release of IL-1β, IL-18 and HMGB1 to combat pathogenic situations. Each of these effector molecules plays distinct roles during sterile inflammation, responding to viral, bacterial and parasite infection, and tailoring the innate immune response to specific threats.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Biology Rm 108, Box 43131, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
9
|
Moravej A, Rasouli M, Asaei S, Kalani M, Mansoori Y. Association of interleukin-18 gene variants with susceptibility to visceral leishmaniasis in Iranian population. Mol Biol Rep 2012; 40:4009-14. [PMID: 23269628 DOI: 10.1007/s11033-012-2479-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/18/2012] [Indexed: 01/20/2023]
Affiliation(s)
- Ali Moravej
- Department of Immunology, Fasa University of Medical Sciences, Fasa, Fars, Iran
| | | | | | | | | |
Collapse
|
10
|
Fakiola M, Mishra A, Rai M, Singh SP, O'Leary RA, Ball S, Francis RW, Firth MJ, Radford BT, Miller EN, Sundar S, Blackwell JM. Classification and regression tree and spatial analyses reveal geographic heterogeneity in genome wide linkage study of Indian visceral leishmaniasis. PLoS One 2010; 5:e15807. [PMID: 21209823 PMCID: PMC3013125 DOI: 10.1371/journal.pone.0015807] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/24/2010] [Indexed: 11/18/2022] Open
Abstract
Background Genome wide linkage studies (GWLS) have provided evidence for loci controlling visceral leishmaniasis on Chromosomes 1p22, 6q27, 22q12 in Sudan and 6q27, 9p21, 17q11-q21 in Brazil. Genome wide studies from the major focus of disease in India have not previously been reported. Methods and Findings We undertook a GWLS in India in which a primary ∼10 cM (515 microsatellites) scan was carried out in 58 multicase pedigrees (74 nuclear families; 176 affected, 353 total individuals) and replication sought in 79 pedigrees (102 nuclear families; 218 affected, 473 total individuals). The primary scan provided evidence (≥2 adjacent markers allele-sharing LOD≥0.59; nominal P≤0.05) for linkage on Chromosomes 2, 5, 6, 7, 8, 10, 11, 20 and X, with peaks at 6p25.3-p24.3 and 8p23.1-p21.3 contributed to largely by 31 Hindu families and at Xq21.1-q26.1 by 27 Muslim families. Refined mapping confirmed linkage across all primary scan families at 2q12.2-q14.1 and 11q13.2-q23.3, but only 11q13.2-q23.3 replicated (combined LOD = 1.59; P = 0.0034). Linkage at 6p25.3-p24.3 and 8p23.1-p21.3, and at Xq21.1-q26.1, was confirmed by refined mapping for primary Hindu and Muslim families, respectively, but only Xq21.1-q26.1 replicated across all Muslim families (combined LOD 1.49; P = 0.0045). STRUCTURE and SMARTPCA did not identify population genetic substructure related to religious group. Classification and regression tree, and spatial interpolation, analyses confirm geographical heterogeneity for linkages at 6p25.3-p24.3, 8p23.1-p21.3 and Xq21.1-q26.1, with specific clusters of families contributing LOD scores of 2.13 (P = 0.0009), 1.75 (P = 0.002) and 1.84 (P = 0.001), respectively. Conclusions GWLS has identified novel loci that show geographical heterogeneity in their influence on susceptibility to VL in India.
Collapse
Affiliation(s)
- Michaela Fakiola
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Anshuman Mishra
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Madhukar Rai
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shri Prakash Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rebecca A. O'Leary
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Subiaco, Australia
| | - Stephen Ball
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Subiaco, Australia
| | - Richard W. Francis
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Subiaco, Australia
| | - Martin J. Firth
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Subiaco, Australia
| | - Ben T. Radford
- Australian Institute of Marine Science, The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - E. Nancy Miller
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jenefer M. Blackwell
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Interleukin-18 enhances a Th2 biased response and susceptibility to Leishmania mexicana in BALB/c mice. Microbes Infect 2008; 10:834-9. [DOI: 10.1016/j.micinf.2008.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 11/23/2022]
|
12
|
Lello J, Hussell T. Functional group/guild modelling of inter-specific pathogen interactions: a potential tool for predicting the consequences of co-infection. Parasitology 2008; 135:825-39. [PMID: 18477416 DOI: 10.1017/s0031182008000383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although co-infection is the norm in most human and animal populations, clinicians currently have no practical tool to assist them in choosing the best treatment strategy for such patients. Given the vast range of potential pathogens which may co-infect the host, obtaining such a practical tool may seem an intractable problem. In ecology the joint concepts of functional groups and guilds have been used to conceptually simplify complex ecosystems, in order to understand how their component parts interact and may be manipulated. Here we propose a mechanism by which to apply these concepts to pathogen co-infection systems. Further, we describe how these groups could be incorporated into a mathematical modelling framework which, after validation, could be used as a clinical tool to predict the outcome of any particular combination of pathogens co-infecting a host.
Collapse
Affiliation(s)
- J Lello
- School of Biosciences, Cardiff University, Biomedical Sciences Building, Museum Avenue, Cardiff, CF10 3US.
| | | |
Collapse
|