1
|
Hassanein EHM, Alotaibi MF, Alruhaimi RS, Sabry M, Sayed GA, Atwa AM, Mahmoud AM. Targeting TLR4/NF-κB signaling, oxidative stress, and apoptosis by farnesol mitigates cadmium-induced testicular toxicity in rats. Tissue Cell 2025; 94:102813. [PMID: 40020518 DOI: 10.1016/j.tice.2025.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Cadmium (Cd) is a highly toxic heavy metal, and its detrimental effects on reproductive health pose a significant risk to the general population. Farnesol (FAR), a sesquiterpene alcohol, exhibits anti-inflammatory, antioxidant, and anticancer properties. This study investigated the protective effects of FAR against Cd-induced testicular toxicity, focusing on its antioxidant and anti-inflammatory mechanisms. Rats were randomly divided into four experimental groups: control, FAR (10 mg/kg), Cd (1.2 mg/kg), and Cd + FAR. Cd administration caused testicular tissue damage, altered hormone levels, oxidative stress and apoptosis, upregulated TLR4/NF-κB signaling and diminished antioxidants. FAR ameliorated gonadotropins and testosterone, prevented tissue damage, and attenuated oxidative stress. Additionally, FAR significantly attenuated the inflammatory response triggered by Cd, as evidenced by reduced levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and suppression of the TLR4/NF-κB signaling pathway. FAR inhibited testicular apoptosis by upregulating the anti-apoptotic protein Bcl-2 and downregulating the pro-apoptotic markers Bax and caspase-3. These results suggest that FAR mitigates Cd-induced testicular toxicity through upregulation of antioxidants, suppression of TLR4/NF-κB signaling, and inhibition of apoptotic pathways. Thus, FAR represents a promising therapeutic agent for protecting against Cd-induced reproductive damage.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt.
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mostafa Sabry
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
| |
Collapse
|
2
|
Yuan S, Guo J, Yang B, Huang AX, Hu S, Li Y, Chen J, Yuan B, Yang J. Liquiritigenin protects against cadmium-induced testis damage in mice by inhibiting apoptosis and activating androgen receptor. Biochem Biophys Res Commun 2025; 759:151642. [PMID: 40138758 DOI: 10.1016/j.bbrc.2025.151642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/23/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Cadmium (Cd) is a prevalent contaminant in both dietary and drinking water sources, posing harm to multiple tissues and disrupting reproductive function. Recent evidence indicates that natural products derived from plants may offer a mitigating Cd-induced tissue damage. However, the protective role of Liquiritigenin (LQ) and its underlying mechanism remain unclear. The present study was to investigate the protective effect of LQ against short-term, low-dose Cd-induced multi-organ damage. Notably, Cd exposure had no significant impact on body or tissue weight but did induce damage to the heart, liver, lungs, kidneys and testes of mice, while also reducing sperm quality. These adverse effects were reversed by LQ treatment, suggesting that LQ alleviates Cd toxicity. Mechanistically, LQ inhibited testicular apoptosis by modulating the protein levels of Bad, Caspase-3, Bax, Bcl-2, and NF-κB. Furthermore, molecular docking and molecular dynamics simulations provided insights into the interaction between LQ and the androgen receptor (AR). Further studies indicate that LQ increases AR level and further prevent testicular damage. Collectively, these findings support the potential of LQ in preventing Cd-induced tissue damage, particularly in the context of reproductive toxicity.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Bijun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Aolin Xiao Huang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Shuqi Hu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yingcan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Jingxuan Chen
- The Xiyuan Campus of Hefei No. 50 East Middle School, Hefei, Anhui, 230031, People's Republic of China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
3
|
Alam M, Mustari A, Rashid S, Shimu SA, Akter T, Akter A, Miah MA, Chowdhury EH. The salutary action of vitamin E on reproductive performance and renal functions in cadmium-exposed male mice. J Adv Vet Anim Res 2024; 11:1057-1065. [PMID: 40013280 PMCID: PMC11855441 DOI: 10.5455/javar.2024.k857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 02/28/2025] Open
Abstract
Objectives The research is based on the assessment of the beneficial role of vitamin E (vit-E) supplementation on the reproductive and renal functions in Cadmium (Cd)-exposed male mice. Materials and Method Mice (n = 15 in each group) were kept untreated (Group A) or fed with cadmium chloride (CdCl2) (3.5 mg/kg, Group B) per day or both CdCl2 (3.5 mg/kg) with vit-E supplementation (200 mg/kg, Group C) daily for 60 days. Mice were euthanized, blood samples were collected, and serum was prepared for biochemical and hormonal analysis. Sperm motility, sperm concentration, testis weight, and diameter were taken. Tissues from the kidneys and testicles were collected in 10% neutral buffered formalin for histotexture study. Results Cd treatment reduced the serum thyroxine (T4) and testosterone levels, but vit-E supplementation increased both T4 and testosterone levels in the Cd-treated mice. Cd treatment decreased sperm motility and concentration, testicular weight, and diameter, and induced degenerative changes in the seminiferous tubules, which significantly improved upon vit-E supplementation. Increased serum urea, uric acid, and creatinine concentrations, along with cellular infiltration in the renal tubular epithelium and glomerular hyperplasia, were found in the Cd-treated mice, which were not found in the vit-E-supplemented mice. Conclusion The study points to the harmful consequences of Cd on reproductive performance and renal functions that could potentially be mitigated upon vit-E supplementation in the diet.
Collapse
Affiliation(s)
- Mahabub Alam
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Afrina Mustari
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Samia Rashid
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shaima Alam Shimu
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tazmim Akter
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Airin Akter
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Alam Miah
- Department of Physiology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Hauqe Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
4
|
Ezim OE, Kidi L, Ndufeiya-Kumasi LC, Abarikwu SO. Iron Administration Partially Ameliorates Cadmium-Induced Oxidative Damage in the Liver and Kidney of Rats. J Toxicol 2024; 2024:6197553. [PMID: 39564542 PMCID: PMC11576088 DOI: 10.1155/2024/6197553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The protective effect of Fe against Cd-induced toxicity in the liver and kidney of rats during concurrent administration of both metals was investigated in this study. Fifty female rats (130-150 g) were distributed into five groups of 10 rats each (n = 10): Group I (control), received normal saline solution; Group II (1.2 mg CdCl2/kg b.w.); Group III (1.2 mg CdCl2 + 0.25 mg FeCl2/kg b.w.); Group IV (1.2 mg CdCl2 + 0.75 mg FeCl2/kg b.w.); and Group V (1.2 mg CdCl2 + 1.5 mg FeCl2/kg b.w.). Administration of both tested substances lasted for 47 days. Cd was injected intraperitoneally once a week, while Fe was administered to the Cd-exposed animals by oral gavage thrice weekly. The animals were killed at the end of the study, their blood was collected, and their liver and kidneys were harvested for biochemical and histological analysis. Following Cd administration, the kidney and liver showed a significant increase in Cd concentration, while Fe concentration in the kidney decreased. However, cotreatment with Fe decreased Cd concentration in the kidney and liver and increased Fe concentration in the kidney but not the liver, and the effect was more pronounced in the higher than lower doses. In the kidney, cotreatment with Fe especially at higher doses inhibited Cd-induced lipid peroxidation and plasma uric acid concentration. In the liver, lipid peroxidation which Cd did not alter was found to be elevated after cotreatment with the highest dose Fe. Inflammatory cell infiltrations of the central vein and renal tubular and glomeruli injury induced by Cd were not obviated by Fe cotreatment. It seems that both tissues respond differently to the concurrent administration of these metals and that Fe protected the kidney against oxidative injury-induced by Cd but not histopathological changes in both tissues.
Collapse
Affiliation(s)
- Ogechukwu E Ezim
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Lilian Kidi
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
5
|
Fulke AB, Ratanpal S, Sonker S. Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. MARINE POLLUTION BULLETIN 2024; 206:116707. [PMID: 39018825 DOI: 10.1016/j.marpolbul.2024.116707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Heavy metals are constituents of the natural environment and are of great importance to both natural and artificial processes. But in recent times the indiscriminate use of heavy metals especially for human purposes has caused an imbalance in natural geochemical cycles. This imbalance has caused contamination of heavy metals into natural resources and such as soil and a marine ecosystem. Long exposure and higher accumulation of given heavy metals are known to impose detrimental and even lethal effects on humans. Conventional remediation techniques of heavy metals provide good results but have negative side effects on surrounding environment. The role played by microbes in bioremediation of heavy metals is well reported in the literature and understanding the role of molecules in the process of metal accumulation its reduction and transformation into less hazardous state, has myriads of biotechnological implications for bioremediation of metal-contaminated sites. The current review presents the implications of heavy metals on human health and marine ecosystems, conventional methods of heavy metal removal and their side effects on the environment. Bioremediation approaches have been discussed as well in this review, proving to be a more sustainable and eco-friendly approach towards remediation of heavy metals.
Collapse
Affiliation(s)
- Abhay B Fulke
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Siddant Ratanpal
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Swati Sonker
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
El-Aziz GSA, Hindi EA, Aggad WS, Alturkistani HA, Halawani MM, Alyazidi AS. Evaluation of the Potential Protectivity of Both Allium sativum and Zingiber officinale on the Cadmium-Induced Testicular Damage in Rats. J Microsc Ultrastruct 2024; 12:62-70. [PMID: 39006047 PMCID: PMC11245131 DOI: 10.4103/jmau.jmau_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/11/2022] Open
Abstract
Background Cadmium (Cd) is a widely spread environmental pollutant, listed among the unsafe metals due to known toxic effects on multiple organs, including the testes. In this study, we aim to evaluate the potential protectivity of garlic and ginger extracts on Cd-induced damage of the testis in rats. Materials and Methods Fifty-six adult male albino rats were alienated into seven groups; control group, garlic-treated group, and ginger-treated group were given garlic and ginger extracts at doses of 250 mg and 120 mg/kg b.wt/day, Cd-treated group received 8.8 mg/Kg b.wt/day of Cd chloride, and the protected groups were given Cd and co-treated with garlic, ginger, or both extracts. The testes were subjected to different procedures to assess the oxidative status and histopathological changes. Results Cd-treated rats showed a significant reduction in the testis weight and morphometric measurements of the seminiferous tubules compared to the control group. Cd administration resulted in a marked drop in the testosterone level and activities of antioxidative enzymes. Moreover, Cd induced histopathological changes in the seminiferous tubules. Co-administration of garlic and ginger extracts with the Cd showed partial improvement in the investigated parameters toward the control figures and improvement in the morphological changes. Co-treating both extracts together and the Cd resulted in complete normalization of these adverse effects of Cd. Conclusion These findings indicated that garlic and ginger extracts could ameliorate the harmful effects of Cd on the testis. This effect was more prominent when garlic and ginger extracts were co-administered together with Cd.
Collapse
Affiliation(s)
- Gamal Said Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad A Hindi
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hani A Alturkistani
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mervat M Halawani
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
7
|
Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium-induced lung injury is associated with oxidative stress, apoptosis, and altered SIRT1 and Nrf2/HO-1 signaling; protective role of the melatonin agonist agomelatine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2335-2345. [PMID: 37819390 DOI: 10.1007/s00210-023-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Cadmium (Cd) is a hazardous heavy metal extensively employed in manufacturing polyvinyl chloride, batteries, and other industries. Acute lung injury has been directly connected to Cd exposure. Agomelatine (AGM), a melatonin analog, is a drug licensed for treating severe depression. This study evaluated the effect of AGM against Cd-induced lung injury in rats. AGM was administered in a dose of 25 mg/kg/day orally, while cadmium chloride (CdCl2) was injected intraperitoneally in a dose of 1.2 mg/kg to induce lung injury. Pre-treatment with AGM remarkably ameliorated Cd-induced lung histopathological abrasions. AGM decreased reactive oxygen species (ROS) production, lipid peroxidation, suppressed NDAPH oxidase, and boosted the antioxidants. AGM increased Nrf2, GCLC, HO-1, and TNXRD1 mRNA, as well as HO-1 activity and downregulated Keap1. AGM downregulated Bax and caspase-3 and upregulated Bcl-2, SIRT1, and FOXO3 expression levels in the lung. In conclusion, AGM has a protective effect against Cd-induced lung injury via its antioxidant and anti-apoptotic effects mediated via regulating Nrf2/HO-1 and SIRT1/FOXO3 signaling.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71562, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
8
|
Khan MB, Rathi BJ, Thakur SK. Evaluation of Spermatogenic Activity of Polyherbal Compound Musalyadi Churna and its Protective Effect Against Nicotine-Induced Testicular Degeneration in Sprague-Dawley Rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:8-15. [PMID: 38694963 PMCID: PMC11060621 DOI: 10.4103/jpbs.jpbs_825_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 05/04/2024] Open
Abstract
Background The ancient science of life known as Ayurveda uses a variety of formulations or herbal compounds to treat a wide range of illnesses. Male infertility accounts for half of all infertility worldwide, and numerous etiological variables play a role. A pharmacologically active tobacco component called nicotine has a negative impact on male fertility and the reproductive system. Musalyadi Churna (MSC) is one of the polyherbal compound formulations mentioned in Ayurveda Classics for aphrodisiac therapy and recommended for the treatment of male infertility. Objective The current study aims to evaluate the spermatogenic potential of MSC along with its protective effect against testicular degeneration induced by nicotine in rat models. Materials and Methods Sixty adult Sprague-Dawley male rats were used in the experiment, which were divided into ten groups of six rats each. Nicotine was administered orally as disease control. The standard and vehicle control were also included along with study drug groups in which MSC was administered orally to the rats. The study was conducted for 70 days for each group with assessment of body weight and food consumption. After treatment, rats were weighed and sacrificed for evaluation of parameters like organ weight, epididymal sperm count, and sperm morphology along with histological assessment. The data were statistically evaluated using analysis of variance test and Bonferroni multiple-comparison range test to compare different treatment groups. Results and Conclusion In the present study, MSC possesses substantial spermatogenic efficacy, and the result indicates that the study drug possesses a protective effect against nicotine-induced impaired testicular functions in rats, but further research to elucidate its exact mechanism of action is essential.
Collapse
Affiliation(s)
- Mujahid B. Khan
- Department of Rasashastra and Bhaishajya Kalpana, Mahatma Gandhi Ayurved College Hospital and Research Centre, Datta Meghe Institute of Higher Education and Research, (DU), Wardha, Maharashtra, India
| | - Bharat J. Rathi
- Department of Rasashastra and Bhaishajya Kalpana, Mahatma Gandhi Ayurved College Hospital and Research Centre, Datta Meghe Institute of Higher Education and Research, (DU), Wardha, Maharashtra, India
| | - Sudarshan K. Thakur
- Rasashastra and Bhaishajya Kalpana, Coer Medical College of Ayurveda and Hospital, COER University, Vardhman Puram, Roorkee, Uttarakhand, India
| |
Collapse
|
9
|
Uchewa OO, Chukwuemelie CE, Ovioson AI, Ibegbu AO. Alleviating Effects of Clove Essential Oil Disolved in Dimethyl Sulfoxide (Dmso) Against Cadmium-Induced Testicular and Epididymal Damages in Male Wistar Rats. ARCHIVES OF RAZI INSTITUTE 2023; 78:1728-1737. [PMID: 38828169 PMCID: PMC11139401 DOI: 10.32592/ari.2023.78.6.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/06/2023] [Indexed: 06/05/2024]
Abstract
Cloves possess antimicrobial and antioxidant activities, among other roles, they can play. This study investigated the effect of clove oil (CLO) on testicular and epididymal changes induced by cadmium chloride (CdCl). A total of 25 rats were randomly assigned to five groups of five rats. Group A was allowed feed and water ad libitum. Group B was given 20mg/kg of CdCl, group C was given 20mg/kg of CdCl and 10mg/kg of CLO, group D was given 20mg/kg of CdCl and 20mg/kg of CLO, and group E was given 20mg/kg of CdCl and 20mg/kg of Di Methyl Sulphur Oxide. After the experiment, the animals were sacrificed by cervical dislocation after 24 hours of fasting. The testes and epididymis were harvested, while the right epididymis was homogenized for sperm analysis. The results revealed a significant decrease in progressive motility in group B, while a significant increase was observed in CLO-treated groups (P<0.05). In addition, group B showed a significant reduction in percentage progressive, an increase in percentage non-motile, and a decrease in sperm count. The histological studies showed that the control group displayed normal testicular and epididymal histo-architecture, while the Cadmium group (B) showed a progressive degeneration of the cells and tissues, alleviated by the high dose of CLO in both the testes and epididymis. In conclusion, the current research demonstrated that testicular and epididymal damage induced by Cadmium could decrease fertility, and CLO may be used in alleviating the deleterious effects of CdCl.
Collapse
Affiliation(s)
- O O Uchewa
- Department of Anatomy, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-AlikeIkwo, Ebonyi State, Nigeria
| | - C E Chukwuemelie
- Department of Anatomy, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-AlikeIkwo, Ebonyi State, Nigeria
| | - A I Ovioson
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Edo University, Uzaze, Edo State
| | - A O Ibegbu
- Department of Anatomy, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-AlikeIkwo, Ebonyi State, Nigeria
| |
Collapse
|
10
|
Habiba ES, Harby SA, El-Sayed NS, Omar EM, Bakr BA, Augustyniak M, El-Samad LM, Hassan MA. Sericin and melatonin mitigate diethylnitrosamine-instigated testicular impairment in mice: Implications of oxidative stress, spermatogenesis, steroidogenesis, and modulation of Nrf2/WT1/SF-1 signaling pathways. Life Sci 2023; 334:122220. [PMID: 37898455 DOI: 10.1016/j.lfs.2023.122220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
AIMS This study aimed to investigate the therapeutic influence of combination therapy with sericin and melatonin on attenuating diethylnitrosamine (DEN)-instigated testicular dysfunction in mice and defining the molecular mechanisms involved in orchestrating redox signaling pathways and restoring spermatogenesis and steroidogenesis. MATERIALS AND METHODS Different groups of male Swiss albino mice were established and injected with respective drugs intraperitoneally. Semen analysis, hormonal assays, and oxidative stress biomarkers were evaluated. Additionally, melatonin and its receptors, WT1, SF-1, vimentin, Nrf2, and ANXA1 expressions were assessed. Histopathological and ultrastructural features of the testes were investigated by semithin, SEM, and TEM analyses. KEY FINDINGS Exposure to DEN exhibited pathophysiological consequences, including a remarkable increase in lipid peroxidation associated with substantial diminutions in SOD, CAT, GPx, GSH, GSH:GSSG, and GST. Furthermore, it disrupted spermatozoa integrity, testosterone, FSH, LH, melatonin, and its receptors (MT1 and MT2) levels, implying spermatogenesis dysfunction. By contrast, treatment with sericin and melatonin significantly restored these disturbances. Interestingly, the combination therapy of sericin and melatonin noticeably augmented the Nrf2, WT1, and SF-1 expressions compared to DEN-treated mice, deciphering the amelioration perceived in antioxidant defense and spermatogenesis inside cells. Furthermore, immunohistochemical detection of ANXA1 alongside histopathological and ultrastructural analyses revealed evident maintenance of testicular structures without discernible inflammation or anomalies in mice administered with sericin and melatonin compared to the DEN-treated group. SIGNIFICANCE Our findings highlighted that treatment with sericin and melatonin alleviated the testicular tissues in mice from oxidative stress and dysregulated spermatogenesis and steroidogenesis engendered by DEN.
Collapse
Affiliation(s)
- Esraa S Habiba
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Sahar A Harby
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Eman M Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
11
|
Basal WT, Issa AM, Abdelalem O, Omar AR. Salvia officinalis restores semen quality and testicular functionality in cadmium-intoxicated male rats. Sci Rep 2023; 13:20808. [PMID: 38012170 PMCID: PMC10682483 DOI: 10.1038/s41598-023-45193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
The present study investigated the potential ability of Salvia officinalis, one of the oldest medicinal plants, to protect male rats against cadmium reproductive toxicity. Twenty-eight healthy male rats were randomly allocated into four groups (n = 7); control, Salvia-extract treated group, cadmium treated group and a group treated with both Cd and Salvia. Administration of cadmium reduced the relative testis to body weight and significantly affected sperm parameters by decreasing motility, viability, count and increasing morphological aberrations. Comet assay was used to detect DNA fragmentation in sperms of the rats exposed to Cd. Serum levels of testosterone T, follicle stimulating hormone FSH, and luteinizing hormone LH were significantly decreased. The biochemical analysis of testicular tissue showed a significant rise in Malondialdehyde MDA level coupled with a decrease in the activity of antioxidant enzymes (superoxide dismutase SOD, glutathione peroxidase GPx and catalase CAT). The histological examination of testis sections after Cd administration revealed severe degeneration of spermatogenic cells. Seminiferous tubules were filled with homogenous eosinophilic fluid associated with atrophy of other seminiferous tubules. Co-treatment with the Salvia officinalis extract restored the oxidative enzymes activities and decreased the formation of lipid peroxidation byproduct, which in turn ameliorated the effect of Cd on sperm parameters, DNA damage and testis histopathology. Taken together, it can be concluded that the synergistic antioxidant and radical savaging activities of Salvia officinalis prevented the effect of Cd on semen quality, sperm DNA damage, along with the oxidative stress and histological abnormalities in the testis tissues.
Collapse
Affiliation(s)
- Wesam T Basal
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Aliaa M Issa
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Omnia Abdelalem
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel R Omar
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
12
|
Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium cardiotoxicity is associated with oxidative stress and upregulated TLR-4/NF-kB pathway in rats; protective role of agomelatine. Food Chem Toxicol 2023; 180:114055. [PMID: 37739054 DOI: 10.1016/j.fct.2023.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Cardiotoxicity is one of the hazardous effects of the exposure to the heavy metal cadmium (Cd). Inflammation and oxidative injury are implicated in the cardiotoxic mechanism of Cd. The melatonin receptor agonist agomelatine (AGM) showed promising effects against oxidative and inflammatory responses. This study evaluated the effect of AGM on Cd-induced cardiotoxicity in rats, pointing to its modulatory effect on TLR-4/NF-kB pathway and HSP70. Rats received AGM for 14 days and a single dose of Cd on day 7 and blood and heart samples were collected for analyses. Cd increased serum CK-MB, AST and LDH and caused cardiac tissue injury. Cardiac malondialdehyde (MDA), nitric oxide (NO) and MPO were elevated and GSH, SOD and GST decreased in Cd-administered rats. AGM ameliorated serum CK-MB, AST and LDH and cardiac MDA, NO and MPO, prevented tissue injury and enhanced antioxidants. AGM downregulated serum CRP and cardiac TLR-4, NF-kB, iNOS, IL-6, TNF-α and COX-2 in Cd-administered rats. HSP70 was upregulated in the heart of Cd-challenged rats treated with AGM. In silico findings revealed the binding affinity of AGM with TLR-4 and NF-kB. In conclusion, AGM protected against Cd cardiotoxicity by preventing myocardial injury and oxidative stress and modulating HSP70 and TLR-4/NF-kB pathway.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71562, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
13
|
Ullah S, Ennab W, Wei Q, Wang C, Quddus A, Mustafa S, Hadi T, Mao D, Shi F. Impact of Cadmium and Lead Exposure on Camel Testicular Function: Environmental Contamination and Reproductive Health. Animals (Basel) 2023; 13:2302. [PMID: 37508079 PMCID: PMC10375966 DOI: 10.3390/ani13142302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The free grazing habits of camels from various sources may cause heavy metals to bioaccumulate in their tissues and organs, possibly resulting in higher amounts of these toxic substances in their bodies over time. The aim of this study was to assess the exposure impact of lead (Pb) and cadmium (Cd) on bull camels of the Lassi breed, aged 7 to 8 years, at a site near the industrial area and another two non-industrial sites, to analyze the presence of heavy metals. Samples from three sites were collected from thirty camels (n = 10/each), soil and water (n = 30), and five different plants (n = 15/each) for analysis. Testes were collected for atomic absorption spectrometry (AAS), and hematoxylin-eosin (HE) staining. Serum samples were obtained to measure testosterone levels by radioimmunoassay (RIA). Samples were obtained from plants, soil, water, blood, serum and urine for AAS. According to the results, the testes' weight, length, width, and volume significantly decreased at the industrial site compared with the other two sites as a result of exposure to Cd and Pb. Additionally, blood testosterone concentrations were considerably lower at the industrial site, indicating a detrimental impact on testicular steroidogenesis. The histological investigation of the industrial site indicated structural disturbances, including seminiferous tubule degeneration and shedding, cellular debris in seminiferous tubules, lining epithelium depletion, and vacuolation. Elevated amounts of Cd and Pb were found at the industrial site when analyzed using water, soil, plants, testes, serum, and urine. These findings demonstrate the adverse effects of Pb and Cd exposure on camel testicular function, including decreased weight and altered steroidogenesis. These findings are essential for understanding the impact of exposure to Pb and Cd on camel reproductive function and for developing successful prevention and management plans for these exposures in this species.
Collapse
Affiliation(s)
- Saif Ullah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wael Ennab
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency, Breeding and Ecological Feeding, College of Agronomy, Liaocheng 252000, China
| | - Abdul Quddus
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Pakistan
| | - Sheeraz Mustafa
- Faculty of Veterinary and Animal Sciences, Ziaddin University, Karachi 75000, Pakistan
| | - Tavakolikazerooni Hadi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Freus M, Kabat-Koperska J, Frulenko I, Wiszniewska B, Kolasa A. Morphology of the male rat gonad after in Utero exposure to immunosuppressants. Reprod Biol 2023; 23:100757. [PMID: 37011422 DOI: 10.1016/j.repbio.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
The protocol for immunosuppression of pregnant women is based on immunosuppressant panels. The aim of the study was to determine the influence of commonly applied combinations of immunosuppressants to pregnant rats on the morphology of the offspring' testes. Pregnant rats were treated with cyclosporin A (CsA), mycophenolate mofetil (MMF) and prednisone (Pred) (CMG); tacrolimus (Tc), MMF and Pred (TMG); CsA, everolimus (Ev) and Pred (CEG). Testes of mature offspring underwent morphological analysis. Mainly in the testes of CMG and TMG rats the morphological and functional changes were observed: immature germ cells (GCs) in the seminiferous tubule (ST) lumen, invaginations of the basement membrane, infolding to the seminiferous epithelium (SE), the ST wall thickening, increased acidophilia of Sertoli cells' (SCs) cytoplasm, large residual bodies near the lumen, dystrophic ST and tubules look like the Sertoli cell-only syndrome, Leydig cells with abnormal cell nucleus, hypertrophy of the interstitium, blurring of the boundary between ST wall and interstitium, a reduced number of GCs in the SE, vacuolation of the SE. In the CEG there were only a reduced number of GCs in some tubules and vacuolization of SCs. The safest combination of drugs was CEG, while the TMG and CMG were gonadotoxic.
Collapse
|
15
|
Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Hassanein EHM, Ali FEM. Candesartan Protects Against Cadmium-Induced Hepatorenal Syndrome by Affecting Nrf2, NF-κB, Bax/Bcl-2/Cyt-C, and Ang II/Ang 1-7 Signals. Biol Trace Elem Res 2023; 201:1846-1863. [PMID: 35590119 PMCID: PMC9931870 DOI: 10.1007/s12011-022-03286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a serious pollutant in the environment. Candesartan is an angiotensin II (Ang II) receptor antagonist with promising diverse health benefits. The current study is planned to investigate the hepatorenal protective effects of candesartan against Cd-induced hepatic and renal intoxication. Our results demonstrated that candesartan effectively attenuated Cd-induced hepatorenal intoxication, as evidenced by improving hepatic and renal function biomarkers. Besides, candesartan reversed hepatic and renal histopathological abrasions induced by Cd toxicity. Candesartan antioxidant effect was mediated by Nrf2 activation. Also, candesartan suppressed hepatorenal inflammation by modulating NF-κB/IκB. Moreover, candesartan attenuated Cd hepatorenal apoptosis by upregulating Bcl-2 and downregulating Bax and Cyt-C proteins. Interestingly, these effects are suggested to be an outcome of modulating of Ang II/Ang 1-7 signal. Overall, our findings revealed that candesartan could attenuate Cd-induced hepatorenal intoxication through modulation of Nrf2, NF-κB/IκB, Bax/Bcl-2/Cyt-c, and Ang II/Ang 1-7 signaling pathways.
Collapse
Affiliation(s)
- Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Department of Human Anatomy & Embryology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed A Ahmed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
16
|
Sun W, Tian F, Pan H, Chang X, Xia M, Hu J, Wang Y, Li R, Li W, Yang M, Zhou Z. Flurochloridone induced abnormal spermatogenesis by damaging testicular Sertoli cells in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114163. [PMID: 36240522 DOI: 10.1016/j.ecoenv.2022.114163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity whose evidence is limited, but its mechanism remains unclear. The present study was conducted to systematically explore the male reproductive toxicity of FLC, including sperm quality, spermatogenesis, toxicity targets, and potential mechanisms. METHODS Male C57BL/6 mice aged 6-7 weeks received gavage administration of FLC (365/730 mg/kg/day) for 28 consecutive days. Then, the tissue and sperm of mice were collected for analysis. We measured the gonadosomatic index and analyzed sperm concentration, motility, malformation rate, and mitochondrial membrane potential (MMP). Spermatocyte immunofluorescence staining was performed to analyze meiosis. We also performed pathological staining on the testis and epididymis tissue and TUNEL staining, immunohistochemical analysis, and ultrastructural observation on the testicular tissue. RESULTS Results showed that FLC caused testicular weight reduction, dysfunction, and architectural damage in mice, but no significant adverse effect was found in the epididymis. The exposure interfered with spermatogonial proliferation and meiosis, affecting sperm concentration, motility, kinematic parameters, morphology, and MMP, decreasing sperm quality. Furthermore, mitochondrial damage and apoptosis of testicular Sertoli cells were observed in mice treated with FLC. CONCLUSION We found that FLC has significant adverse effects on spermatogonial proliferation and meiosis. Meanwhile, apoptosis and mitochondrial damage may be the potential mechanism of Sertoli cell damage. Our study demonstrated that FLC could induce testicular Sertoli cell damage, leading to abnormal spermatogenesis, which decreased sperm quality. The data provided references for the toxicity risk and research methods of FLC application in the environment.
Collapse
Affiliation(s)
- Weiqi Sun
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China; Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Hongjie Pan
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Runsheng Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Motawee ME, Damanhory AA, Sakr H, Khalifa MM, Atia T, Elfiky MM, Maher M, Sakr HI. An electron microscopic and biochemical study of the potential protective effect of ginger against Cadmium-induced testicular pathology in rats. Front Physiol 2022; 13:996020. [PMID: 36262262 PMCID: PMC9574188 DOI: 10.3389/fphys.2022.996020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Cadmium (Cd) is a toxic heavy metal used in many industries. Since the second half of the 20th century, legislation on Cd use was put to limit the exponential rise in its environmental levels. This study aimed to investigate Cd's functional and ultrastructural changes on rats' reproductive systems and the role of Zingiber officinale (Ginger) in protecting against Cd-induced toxicity. Methods: Thirty adult male albino rats were randomly assigned into three equal groups (n = 10); control, Cd-exposed/untreated, and Cd-exposed/Gin-treated. Rat testes were weighed, and testicular tissue sections were examined under the electron microscope. Semen analysis, morphological examination of spermatozoa, and serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone were measured. In addition, testicular tissue homogenates were analyzed for malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) levels. Results: Cd-induced significant reduction in the mean testicular weight and GSH levels and plasma testosterone, LH and FSH levels with a concomitant increase in testicular MDA and NO levels. There was also a deterioration in semen analysis parameters and spermatozoa morphology, with testicular structural damage in the form of architecture distortion and necrosis of seminiferous tubules and testicular interstitial cells. Daily administration of ginger for 4 weeks protected against CD-induced toxicity, preserving tissue architecture, improved plasma levels of testosterone, LH and FSH and testicular levels of GSH, and reduced testicular levels of MDA, NO. Conclusion: Ginger has a protective effect on Cd-induced deterioration of testicular tissue's structural and functional integrity by improving testicular tissue antioxidant capacity and steroid production, which ameliorates sex hormone levels in the blood.
Collapse
Affiliation(s)
- Moustafa E. Motawee
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed A. Damanhory
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hany Sakr
- Department of Pathology and Laboratory Medicine, VAMC, Northeast Ohio Health Care System, Louis Stokes, Cleveland, OH, United States
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tarek Atia
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed M. Elfiky
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Muhammad Maher
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Yadav A, Yadav K, Rajpoot A, Lal B, Mishra RK. Sub-chronic restraint stress exposure in adult rats: An insight into possible inhibitory mechanism on testicular function in relation to germ cell dynamics. Andrologia 2022; 54:e14575. [PMID: 36056817 DOI: 10.1111/and.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
Psychological stress is now widely recognized as one of the major risk factors for male fertility. Its impact on the dynamics of testicular germ cells, however, has yet to be fully investigated. Therefore, we used the rat restraint stress (RS) model as a psychological stressor to assess the impact of psychological stress on testicular germ cell dynamics. Adult male SD rats were exposed to sub-chronic RS for 1.5 and 3 h per day for 30 days. The quality of cauda epididymis spermatozoa was adversely affected by RS exposure, and the frequency of spermatozoa with tail abnormalities was higher than that of spermatozoa with head abnormalities. RS exposure adversely affected testicular daily sperm production by disturbing the meiotic and post meiotic germ cell kinetics in the testis. The histomorphology of the testis was altered by loosening and vacuolization in the seminiferous epithelium, germ cell exfoliation and the presence of giant cells. Seminiferous tubules of stage I-VI and VII-VIII were severely affected in rats exposed to RS for 3 h. By interfering with steroidogenic enzymes, RS exposure disrupts testosterone biosynthesis. The testicular oxidative balance was also disturbed by RS exposure, which disrupted the levels/activities of lipid peroxidation, Nrf-2, superoxide dismutase and catalase. There was also an increase in caspase-3 activity and a decrease in the Bax-Bcl2 ratio. In conclusion, our findings suggest that psychological stressors like RS impair testicular functions in rats by disrupting germ cell dynamics, downregulating testicular androgenesis and increasing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Anupam Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Kiran Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arti Rajpoot
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bechan Lal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Bartolini D, Arato I, Mancuso F, Giustarini D, Bellucci C, Vacca C, Aglietti MC, Stabile AM, Rossi R, Cruciani G, Rende M, Calafiore R, Luca G, Galli F. Melatonin modulates Nrf2 activity to protect porcine pre-pubertal Sertoli cells from the abnormal H 2 O 2 generation and reductive stress effects of cadmium. J Pineal Res 2022; 73:e12806. [PMID: 35524288 PMCID: PMC9539639 DOI: 10.1111/jpi.12806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Melatonin (MLT) is a cytoprotective agent holding potential to prevent cadmium (Cd) toxicity and its impact in testicular function and fertility. In this study, we explored such potential in porcine pre-pubertal Sertoli cells (SCs). Cd toxicity resulted in impaired SC viability and function, abnormal cellular H2 O2 generation and efflux, and induction of reductive stress by the upregulation of Nrf2 expression and activity, cystine uptake and glutathione biosynthesis, glutathione-S-transferase P (GSTP) expression, and protein glutathionylation inhibition. Cd toxicity also stimulated the activity of cellular kinases (MAPK-ERK1/2 and Akt) and NFkB transcription factor, and cJun expression was increased. MLT produced a potent cytoprotective effect when co-administered with Cd to SCs; its efficacy and the molecular mechanism behind its cytoprotective function varied according to Cd concentrations. However, a significant restoration of cell viability and function, and of H2 O2 levels, was observed both at 5 and 10 μM Cd. Mechanistically, these effects of MLT were associated with a significant reduction of the Cd-induced activation of Nrf2 and GSTP expression at all Cd concentrations. CAT and MAPK-ERK1/2 activity upregulation was associated with these effects at 5 μM Cd, whereas glutathione biosynthesis and efflux were involved at 10 μM Cd together with an increased expression of the cystine transporter xCT, of cJun and Akt and NFkB activity. MLT protects SCs from Cd toxicity reducing its H2 O2 generation and reductive stress effects. A reduced activity of Nrf2 and the modulation of other molecular players of MLT signaling, provide a mechanistic rational for the cytoprotective effect of this molecule in SCs.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical SciencesUniversity of PerugiaPerugiaItaly
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic AnatomyUniversity of PerugiaPerugiaItaly
| | - Iva Arato
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Daniela Giustarini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
| | - Catia Bellucci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Carmine Vacca
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | | | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic AnatomyUniversity of PerugiaPerugiaItaly
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
| | - Gabriele Cruciani
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic AnatomyUniversity of PerugiaPerugiaItaly
| | - Riccardo Calafiore
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Department of Medicine and Surgery, International Biotechnological Center for Endocrine, Metabolic and Embryo‐Reproductive Translational Research (CIRTEMER)University of PerugiaPerugiaItaly
| | - Giovanni Luca
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Division of Medical Andrology and Endocrinology of ReproductionSaint Mary HospitalTerniItaly
- Department of Medicine and Surgery, International Biotechnological Center for Endocrine, Metabolic and Embryo‐Reproductive Translational Research (CIRTEMER)University of PerugiaPerugiaItaly
| | - Francesco Galli
- Department of Pharmaceutical SciencesUniversity of PerugiaPerugiaItaly
| |
Collapse
|
20
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
21
|
Espinosa-Ahedo BA, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Morales-González JA, Madrigal-Santillán EO, Álvarez-González I. Potential protective effect of beta-caryophyllene against cadmium chloride-induced damage to the male reproductive system in mouse. Reprod Toxicol 2022; 110:19-30. [PMID: 35318111 DOI: 10.1016/j.reprotox.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Cadmium is a metal that can affect the male reproductive process, possibly leading to infertility. In contrast, beta-caryophyllene (BC) is a sesquiterpene that has shown antigenotoxic, anticancer, and antioxidant properties. Therefore, the aim of the present study was to determine the protective effect of BC against the deleterious effects of cadmium chloride (CC) on various mouse testicular and sperm parameters. We tested three doses of BC (20, 200, and 400 mg/kg) given before and during exposure to 3 mg/kg CC (six days after a single administration). Our results show significant alleviation of the damage induced by CC after the three doses of BC. Regarding the sperm concentration and morphology, the protection with the high dose was complete, and regarding sperm mobility and viability, the protection was more than 74%. In the comet assay, the highest dose showed a reduction of 92.5% in the damage induced by CC, and regarding the number of micronuclei in the spermatids, the reduction was 83.3%. In the oxidative evaluation, regarding sperm lipoperoxidation, the improvement was complete with the high dose, and in the ABTS.+ test, the improvement in the response to the BC high dose was 26.3%. Regarding testicular lipoperoxidation and protein oxidation, the protective effects of the high BC dose were 87.6% and 89.9%, respectively. We also found that BC protected against the histological and morphometric alterations induced by CC. Therefore, our study clearly demonstrates the beneficial, chemopreventive effect of BC against the mouse sperm and testicular alterations induced by CC.
Collapse
Affiliation(s)
- Beatriz A Espinosa-Ahedo
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuatla, Pachuca de Soto 42080, Mexico
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuatla, Pachuca de Soto 42080, Mexico
| | - José A Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Eduardo O Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico.
| |
Collapse
|
22
|
Komili K, Söyler G, Toros P, Çalış İ, Kükner A. Effects of Corchorus Olitorius and Protocatechuic Acid on Cadmium-Induced Rat Testicular Tissue Degeneration. CYPRUS JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4274/cjms.2020.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Marini HR, Micali A, Squadrito G, Puzzolo D, Freni J, Antonuccio P, Minutoli L. Nutraceuticals: A New Challenge against Cadmium-Induced Testicular Injury. Nutrients 2022; 14:663. [PMID: 35277022 PMCID: PMC8838120 DOI: 10.3390/nu14030663] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Cadmium (Cd) is a widespread heavy metal and a ubiquitous environmental toxicant. For the general population, the principal causes of Cd exposure are cigarette smoking, air pollution and contaminated water and food consumption, whereas occupational exposure usually involves humans working in mines or manufacturing batteries and pigments that utilize Cd. The aim of the present review is to evaluate recent data regarding the mechanisms of Cd-induced testicular structural and functional damages and the state of the art of the therapeutic approaches. Additionally, as the current literature demonstrates convincing associations between diet, food components and men's sexual health, a coherent nutraceutical supplementation may be a new valid therapeutic strategy for both the prevention and alleviation of Cd-induced testicular injury. The toxic effects on testes induced by Cd include many specific mechanisms, such as oxidative stress, inflammation and apoptosis. As no specific therapy for the prevention or treatment of the morbidity and mortality associated with Cd exposure is available, the development of new therapeutic agents is requested. Dietary strategies and the use of nutraceuticals, particularly abundant in fresh fruits, beans, vegetables and grains, typical of the Mediterranean diet, are recommended against Cd-induced testicular injury.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (A.M.); (P.A.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Pietro Antonuccio
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (A.M.); (P.A.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| |
Collapse
|
24
|
Mouro VGS, Ladeira LCM, Lozi AA, de Medeiros TS, Silva MR, de Oliveira EL, de Melo FCSA, da Matta SLP. Different Routes of Administration Lead to Different Oxidative Damage and Tissue Disorganization Levels on the Subacute Cadmium Toxicity in the Liver. Biol Trace Elem Res 2021; 199:4624-4634. [PMID: 33400155 DOI: 10.1007/s12011-020-02570-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
The toxic effects of cadmium (Cd) on hepatic parameters are widely described in the literature. Experimental models often make use of the intraperitoneal route (i.p.) because it is easier to apply, while in the oral route, Cd poisoning in humans is best represented by allowing the metal to pass through the digestive system and be absorbed into the bloodstream. Thus, this study investigated the Cd exposure impact on the liver, by comparing both i.p. and oral routes, both in single dose, in addition to the oral route in fractional doses. Swiss adult male mice received CdCl2 1.5 mg/kg i.p., 30 mg/kg oral single dose, and 4.28 mg/kg oral route in fractional doses for 7 consecutive days. Cd bioaccumulation was observed in all animals exposed to Cd. Hepatic concentrations of Ca and Fe increased only in the fractionated oral route. Liver activities of SOD and CAT increased only by oral single dose. GST decreased in all forms of oral administration, while MDA decreased only in i.p. route. Liver weight and HSI increased in the i.p. route, while organ volume increased in all forms of oral administration, and liver density increased in all animals exposed to Cd. In hepatic histomorphometry, the changes were more evident in oral administration, mainly in exposure to metal in a single dose. Thus, the subacute administration of Cd in different routes of administration leads to different changes in liver poisoning.
Collapse
Affiliation(s)
- Viviane Gorete Silveira Mouro
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
- Department of Pharmacy, Faculty Univertix, Matipó, MG, 35367-000, Brazil.
| | | | - Amanda Alves Lozi
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | | | | | - Sérgio Luis Pinto da Matta
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
25
|
Different fixatives influence morphology, antigen preservation, and TUNEL staining in chicken (Gallus gallus) testis. Acta Histochem 2021; 123:151822. [PMID: 34861475 DOI: 10.1016/j.acthis.2021.151822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
The optimized fixative for testis is still controversial. This study investigated the effects of Modified Davidson's Fluid (mDF), 4% Paraformaldehyde (4% PFA), and Bouin's Fluid (BF) fixatives on chicken testes in normal/cadmium (Cd) feeding groups using hematoxylin and eosin (HE), immunohistochemistry (IHC), and Terminal Transferase dUTP Nick End Labeling (TUNEL) staining. Compared to the mDF, we established that the testes fixed with 4% PFA and BF in the normal group had severe shrinkage in tubular and interstitial compartments. Moreover, compared with 4% PFA, the number of GATA4-positive Sertoli cells/mm2 reduced by 67.61% in mDF and 80.57% in BF for one seminiferous tubule. The TUNEL assay illustrated that more positive cells/mm2 in mDF group (28.47 ± 11.38) than in 4% PFA (10.49 ± 7.89). In Cd-treated testes, mDF showed more morphological details than 4% PFA and BF. In contrast, the number of GATA4-positive Sertoli cells/mm2 of 4% PFA was higher than that of mDF by 65.78% and BF by 64.80% in a seminiferous tubule. The number of TUNEL positive cells/mm2 in mDF (272.60 ± 34.41) were higher than in 4% PFA (175.91 ± 19.87). These results suggest that mDF fixative is suitable for normal and Cd-treated testis fixation for HE and TUNEL staining in chicken, whereas 4% PFA fixative is better for IHC examination.
Collapse
|
26
|
Menkem B, Vemo BN, Tsambou MMA, Fonou TL, Dongmo NAB, Boufack JL, Chongsi MMM, Kenfack A. Therapeutic Effects of Ethanolic Extract of Polygonum limbatum meism Against Reproductive Toxicity Induced by Cadmium in Male Guinea Pigs ( Cavia porcellus). Front Vet Sci 2021; 8:736836. [PMID: 34712722 PMCID: PMC8546102 DOI: 10.3389/fvets.2021.736836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed at evaluating the therapeutic effects of ethanolic extract of Polygonum limbatum meism (EEPLM) on the reproductive parameters of male Guinea pigs exposed to cadmium chloride. Thirty-six male guinea pigs were randomly assigned to six treatment groups (with six animals per group). Group 1 (DW) received distilled water orally; group 2 (Cd), negative control, was treated with cadmium chloride at a dose of 26.25 mg/kg body weight (bw); while group 3 (VitC), positive control, was given 26.25 mg of cadmium chloride/kg bw and 100 mg of vitamin C, and groups 4, 5, and 6 were treated, respectively, with EEPLM at doses of 50, 100, and 200 mg/kg bw in addition to cadmium chloride (26.25 mg/kg bw). After 90 days, all animals were sacrificed, and data related to reproduction, toxicity, and oxidative stress were collected. Results revealed a significant decrease (p < 0.05) of serum levels of creatinine, urea, alanine, and aspartate amino transferases in guinea pigs treated with cadmium chloride and EEPLM compared to the negative control group (Cd). The weight of the bulbo-urethral gland was significantly (p < 0.05) decreased in animals exposed to cadmium chloride and treated with vitamin C or EEPLM compared to the negative control (Cd). Guinea pigs orally receiving cadmium chloride and EEPLM showed significantly (p < 0.05) increased motility, sperm count, spermatozoa with entire plasma membrane, and percentage of normal spermatozoa with reference to the negative control (Cd). The serum level of testosterone increased insignificantly (p > 0.05) in animals given cadmium and EEPLM compared to the negative control (Cd). Animals co-administered cadmium chloride and EEPLM recorded a significantly (p < 0.05) reduced level of MDA, activities of SOD, and total peroxidases compared to the group that received cadmium chloride (Cd) only. In conclusion, cadmium chloride induced reproductive impairments by generating oxidative stress. However, the administration of EEPLM can mitigate these adverse effects due to its antioxidant properties.
Collapse
Affiliation(s)
- Brice Menkem
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Bertin Narcisse Vemo
- Department of Animal Science, Faculty of Agriculture and Veterinary Medicine, University of Buea, Buea, Cameroon
| | | | - Tadiesse Lavoisier Fonou
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Nguedia Arius Baulland Dongmo
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Judith Laure Boufack
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Margaret Mary Momo Chongsi
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Augustave Kenfack
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| |
Collapse
|
27
|
Physiological Roles of Red Carrot Methanolic Extract and Vitamin E to Abrogate Cadmium-Induced Oxidative Challenge and Apoptosis in Rat Testes: Involvement of the Bax/Bcl-2 Ratio. Antioxidants (Basel) 2021; 10:antiox10111653. [PMID: 34829524 PMCID: PMC8615202 DOI: 10.3390/antiox10111653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The precise analysis of the contents of the red carrot is still ambiguous and its role in the maintenance of male fertility needs to be further reconnoitered. Hence, this study targets the physiological impacts of either red carrot methanolic extract (RCME) or vitamin E (Vit. E), co-administrated with cadmium chloride (CdCl2) on rat testes, specifically those concerned with apoptosis and oxidative challenge. Four groups of adult male rats (n = 12) are used; control, CdCl2, CdCl2 + Vit. E and CdCl2 + RCME. LC-MS analysis of RCME reveals the presence of 20 different phytochemical compounds. Our data clarify the deleterious effects of CdCl2 on testicular weights, semen quality, serum hormonal profile, oxidative markers and Bax/Bcl-2 ratio. Histopathological changes in testicular, prostatic and semen vesicle glandular tissues are also observed. Interestingly, our data clearly demonstrate that co-administration of either RCME or Vit. E with CdCl2 significantly succeeded in the modulation (p < 0.05) of all of these negative effects. The most striking is that they were potent enough to modulate the Bax/Bcl-2 ratio as well as having the ability to correct the impaired semen picture, oxidant status and hormonal profile. Thus, RCME and Vit. E could be used as effective prophylactic treatments to protect the male reproductive physiology against CdCl2 insult.
Collapse
|
28
|
Minas A, Talebi H, Taravat Ray M, Yari Eisalou M, Alves MG, Razi M. Insulin treatment to type 1 male diabetic rats protects fertility by avoiding testicular apoptosis and cell cycle arrest. Gene 2021; 799:145847. [PMID: 34274473 DOI: 10.1016/j.gene.2021.145847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Uncontrolled type 1 diabetes mellitus (T1D) impairs reproductive potential of males. Insulin treatment restores metabolic parameters but it is unclear how it protects male reproductive health. Herein, we hypothesized that insulin treatment to T1D rats protects testicular physiology by mediating mechanisms associated with apoptosis and cell cycle. METHODS Mature male Wistar rats (n = 24) were divided into 3 groups: control, T1D-induced (received 40 mg kg-1 streptozotocin) and insulin-treated T1D (Ins T1D; received 40 mg kg-1 streptozotocin and then treated 0.9 IU/100 gr of insulin for 56 days) (N = 8/group). Expression levels of intrinsic apoptosis pathways regulators (Bcl-2, Bax, Caspase-3 and p53) and core regulators of cell cycle machinery (Cyclin D1, Cdk-4 and p21) were determined in testicular tissue by immunohistochemistry (IHC) and RT-PCR techniques. The percentage of testicular apoptotic cells was evaluated by TUNEL staining. RESULTS Our data shows that insulin treatment to T1D rats restored (P < 0.05) T1D-induced increased of caspase-3 and p53 expression in testis. Moreover, the testis of T1D rats treated with insulin exhibited increased expression of Cyclin D1 and cdk-4, and a reduced expression of p21 when compared with the expression in testis of T1D rats. Finally, insulin treatment could fairly control T1D-induced apoptosis. Accordingly, treatment of T1D rats with insulin led to a remarkable reduction (p < 0.05) in the percentage of apoptotic cells in the testis. CONCLUSIONS Insulin treatment is able to restore the network expression of apoptosis and proliferation-related genes caused by T1D in the testis and via this mechanism, preserve the fertility of males.
Collapse
Affiliation(s)
- Aram Minas
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Hatef Talebi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Morteza Taravat Ray
- Department of Basic Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Mohammad Yari Eisalou
- Department of Basic Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, P.O.BOX: 1177, Urmia, Iran.
| |
Collapse
|
29
|
Ezim OE, Abarikwu SO. Therapeutic effects of fluted pumpkin seeds on cadmium-induced testicular injury. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1965623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ogechukwu E. Ezim
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Sunny O. Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
30
|
Iqbal T, Jahan S, Ain QU, Ullah H, Li C, Chen L, Zhou X. Ameliorative effects of morel mushroom (Morchella esculenta) against Cadmium-induced reproductive toxicity in adult male rats. BRAZ J BIOL 2021; 82:e250865. [PMID: 34378681 DOI: 10.1590/1519-6984.250865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) is one of the major toxicants, which affects human health through occupational and environmental exposure. In the current study, we evaluated the protective effects of morel mushrooms against Cd-induced reproductive damages in rats. For this purpose, 30 male rats were divided into 6 groups (n=5/group), the first group served as the control group, second group was treated with an intraperitoneal (i.p) injection of 1 mg/kg/day of Cd. Third and fourth groups were co-treated with 1 mg/kg/day of Cd (i.p) and 10 and 20 mg/kg/day of morel mushroom extract (orally) respectively. The final 2 groups received oral gavage of 10 and 20 mg/kg/day of morel mushroom extract alone. After treatment for 17 days, the animals were euthanized, and testes and epididymis were dissected out. One testis and epididymis of each animal were processed for histology, while the other testis and epididymis were used for daily sperm production (DSP) and comet assay. Our results showed that Cd and morel mushrooms have no effect on animal weight, but Cd significantly decreases the DSP count and damages the heritable DNA which is reversed in co-treatment groups. Similarly, the histopathological results of testes and epididymis show that morel mushrooms control the damage to these tissues. Whereas the morel mushroom extract alone could enhance the production of testosterone. These results conclude that morel mushrooms not only control the damage done by Cd, but it could also be used as a protection mechanism for heritable DNA damage.
Collapse
Affiliation(s)
- T Iqbal
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China.,Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - S Jahan
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - Q Ul Ain
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - H Ullah
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - C Li
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| | - L Chen
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| | - X Zhou
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| |
Collapse
|
31
|
Rocha NR, Braz JKFDS, de Souza SRG, Fracaro L, de Melo FCSA, Zanoni JN, Clebis NK, Morais DB, de Moura CEB. Testicular morphometry of rats with Walker 256 tumor supplemented with L-glutamine. Anim Reprod 2021; 18:e20200051. [PMID: 34306213 PMCID: PMC8291777 DOI: 10.1590/1984-3143-ar2020-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Glutamine is often used to treat metabolic changes associated with anorexia-cachexia syndrome in patients with malignant neoplasms. Walker 256 tumor is an excellent model for studying these changes associated with cancer in different organs, including injuries in testicular functions. However, the effects of supplementing glutamine on testicular morphometry in this model have not yet been investigated. Thus, the objective of this study was to evaluate the effect of L-glutamine supplementation on testicular morphometry in rats transplanted with Walker 256 tumor cells. Forty puberty Wistar rats were divided into four groups: control without L-glutamine (C); control supplemented with L-glutamine (CG); inoculated with Walker 256 tumor cells (WT) and inoculated with Walker 256 tumor cells and supplemented with L-glutamine (WTG). The testicles were removed, weighed, fixed in Bouin, and included in paraffin for histomorphometric analysis. Walker 256 tumor caused quantitative changes in the tubular and intertubular compartments and tunica albuginea, with reductions in the percentages of lumen and tunica albuginea, number of Sertoli cells per gram of testis; number of Leydig cells; percentage of blood vessels and connective tissue in intertubule. However, glutamine supplementation prevented part of these changes caused by the tumor, presenting mainly a protective effect on the tunica albuginea and percentage of blood and lymph vessels in the intertubule. These results indicate the potential of L-glutamine was able to recover for testicular dysfunction associated with cancer.
Collapse
Affiliation(s)
- Nayara Rodrigues Rocha
- Departamento de Morfologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | | | - Luciane Fracaro
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | | - Naianne Kelly Clebis
- Departamento de Morfologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | | |
Collapse
|
32
|
da Silva J, Gonçalves RV, de Melo FCSA, Sarandy MM, da Matta SLP. Cadmium Exposure and Testis Susceptibility: a Systematic Review in Murine Models. Biol Trace Elem Res 2021; 199:2663-2676. [PMID: 32951117 DOI: 10.1007/s12011-020-02389-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
It is known that cadmium induces damage to the testis. However, the significant cadmium impact on the testicular architecture and the mechanisms involved in this process are not clear. Besides, the relationship between dose, route, and time of exposure and injuries remains poorly understood. Thus, we aimed to assess whether cadmium exposure in any dose, route, and time of exposure causes significant alteration in the testicular tissue of murine models, as well as the main mechanisms involved. We performed a structured search on the Medline/PubMed and Scopus databases to retrieve studies published until September 2018. The results were organized into an Adverse Outcome Pathway (AOP) framework. Also, a bias analysis of included studies was performed. We included 37 studies, and most of them identified significant histopathologies in both tubule and intertubule regarding routes, in a dose- and time-dependent manner. The damages were observed after the first hours of exposure, mainly vascular damages suggesting that vasculature failure is the primary mechanism. The AOP showed that potential molecular initiating events may mimic and interfere with essential elements disrupting proteins (structural and antioxidants), change in the oxidative phosphorylation enzyme activities, and gene expression alteration, which lead to reproductive failure (adverse outcome). Analysis of methodological quality showed that the current evidence is at high risk of bias. Despite the high risk of bias, cadmium triggers significant lesions in the testis of murine models, regarding routes, in a dose- and time-dependent manner, mainly due to vascular changes. Therefore, cadmium is a risk factor for male reproductive health.
Collapse
Affiliation(s)
- Janaina da Silva
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Sérgio Luis Pinto da Matta
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- Department of Animal Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Raj S, Singh SS, Singh SP, Singh P. Evaluation of Triclosan-induced reproductive impairments in the accessory reproductive organs and sperm indices in the mice. Acta Histochem 2021; 123:151744. [PMID: 34166923 DOI: 10.1016/j.acthis.2021.151744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/23/2023]
Abstract
Highly effective antimicrobial properties of triclosan (TCS) make its use as a widely used preservative in different types of consumer products. TCS is reported as an emerging endocrine disruptor causing reproductive impairments in the males as well as in the females. The present study describes the adverse effects of various doses of TCS (40, 80, 160 and 320 mg/kg BW/day, for 42 consecutive days) on the weights and histopathology of the epididymis and seminal vesicle, sperm indices (motility, viability, count and morphology), concentrations of epididymal sialic acid and seminal vesicular fructose, along with TCS accumulated in these accessory reproductive organs of the laboratory mouse. TCS induced significant reductions in the weights of the epididymis and seminal vesicle along with noticeable histopathological alterations in these organs. TCS caused significant reductions in the count, percentage of motile and viable spermatozoa while a significant increase in the percentage of abnormal spermatozoa in the epididymis. Concentrations of epididymal sialic acid and seminal vesicular fructose declined significantly in the treated mice. A significant increase was noticed in the concentration of TCS, accumulated in the epididymis and seminal vesicle following TCS exposure at a high dose (320 mg/kg BW/day). The results thus suggest that the accessory sex organs are also affected deleteriously following TCS exposure, leading to impairment in the male reproductive health.
Collapse
|
34
|
Iqbal T, Cao M, Zhao Z, Zhao Y, Chen L, Chen T, Li C, Zhou X. Damage to the Testicular Structure of Rats by Acute Oral Exposure of Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116038. [PMID: 34199704 PMCID: PMC8200047 DOI: 10.3390/ijerph18116038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is one of the most important heavy metal toxicants, used throughout the world at the industrial level. It affects humans through environmental and occupational exposure and animals through the environment. The most severe effects of oral exposure to Cd on the male reproductive system, particularly spermatogenesis, have not been discussed. In this study, we observed the damage to the testes and heritable DNA caused by oral exposure to Cd. Adult male Sprague–Dawley rats were divided into four groups: a control group and three groups treated with 5, 10, and 15 mg Cd/kg/day for 17 days by oral gavage. Our results revealed that Cd significantly decreases weight gain in 10 and 15 mg/kg groups, whereas the 5 mg/kg groups showed no difference in weight gain. The histopathology showed adverse structural effects on the rat testis by significantly reducing the thickness of the tunica albuginea, the diameter of the tubular lumen, and the interstitial space among seminiferous tubules and increasing the height of the epithelium and the diameter of the seminiferous tubules in Cd treated groups. Comet assay in epididymal sperms demonstrated a significant difference in the lengths of the head and comet in all the 3 Cd treated groups, indicating damage in heritable DNA, although variations in daily sperm production were not significant. Only a slight decrease in sperm count was reported in Cd-treated groups as compared to the control group, whereas the tail length, percentage of DNA in head, and tail showed no significant difference in control and all the experimental groups. Overall, our findings indicate that Cd toxicity must be controlled using natural sources, such as herbal medicine or bioremediation, with non-edible plants, because it could considerably affect heritable DNA and induce damage to the reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xu Zhou
- Correspondence: (C.L.); (X.Z.)
| |
Collapse
|
35
|
Bhardwaj JK, Paliwal A, Saraf P. Effects of heavy metals on reproduction owing to infertility. J Biochem Mol Toxicol 2021; 35:e22823. [PMID: 34051019 DOI: 10.1002/jbt.22823] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
The reproductive performance of most of the species is adversely affected by hazardous heavy metals like lead, cadmium, mercury, arsenic, zinc, and copper. Heavy metals are liberated in the environment by natural sources like rock weathering, volcanic eruption, and other human activities like industrial discharge, mineral mining, automobile exhaust, and so forth. Heavy metals alter several reproductive functions in both males and females like a decrease in sperm count, motility, viability, spermatogenesis, hormonal imbalance, follicular atresia, and delay in oocyte maturation, and so forth, and thus, forms an important aspect of reproductive toxicology. The present review compiles toxicity aspects of various heavy metals and their efficacy and mechanism of action in mammals.
Collapse
Affiliation(s)
- Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Aakansha Paliwal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
36
|
Dong W, Zhang K, Liu G, Tan Y, Zou H, Yuan Y, Gu J, Song R, Zhu J, Liu Z. Puerarin prevents cadmium-induced disorder of testicular lactic acid metabolism in rats by activating 5' AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:945-957. [PMID: 33404196 DOI: 10.1002/tox.23096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) interferes with the function of the male reproductive system; however, the molecular mechanism is poorly understood. This study aimed to evaluate the effect of puerarin (PU) on Cd-induced testicular lactic acid metabolism disorder. Weaning male Sprague-Dawley rats were pre-fed for 7 days, weighed, and randomly divided into four groups: Control group, CdAc2 group, CdAc2 + PU group, PU group. The results showed that Cd accumulated in the testis, the testicles became congested and shrank, and the testis index decreased in the rats treated in the CdAc2 group. Cadmium exposure reduced the serum concentration of testosterone, and the concentration of lactic acid and pyruvate in the testis. Cd decreased testicular superoxide dismutase activity and total antioxidant capacity, and increased testicular malondialdehyde levels. Cd reduced the level of ATP, glycolytic gene expression, and lactate production-related proteins in the testis. Cd also decreased the expression of 5' AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway-related proteins in the testis. However, these negative effects were attenuated by PU administration. In summary, Cd reduces the production of lactic acid in the testis of rats, while PU administration restores the production of lactic acid and reduces the toxicity of Cd to the testis of rats.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yun Tan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
The endocrine disrupting effects of sodium arsenite in the rat testis is not mediated through macrophage activation. Reprod Toxicol 2021; 102:1-9. [PMID: 33766721 DOI: 10.1016/j.reprotox.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Arsenic (As) is an endocrine disrupting chemical that can disturb the male reproductive system. In a previous study, it was suggested that testicular macrophages could display a role in endocrine disruption induced by As exposure. This work aimed to evaluate the effects of chronic As exposure in the testis function of Wistar rats and examine the participation of macrophage activation and inflammatory response in these processes. We examined gene expression of steroidogenic machinery and immunological markers by RT-QPCR, plasma testosterone concentrations, sperm count and morphology, and histomorphometrical parameters after 60-days exposure to 1 or 5 mg.kg-1.day-1 of sodium arsenite, combined or not with 50 μg.kg-1 of LPS administered one day before euthanasia. We have demonstrated that As exposure reduced the weight of androgen-dependent organs and induced changes in spermatogenesis, in particular at the highest dose. LPS and As co-exposure promoted a decrease in testosterone synthesis, but did not increase the overexpression of markers of macrophage activation seen in LPS-only rats. Our results suggest that As does not alter the testicular macrophage function, but under immunological challenges LPS and As can display a complex interaction, which could lead to endocrine disruption.
Collapse
|
38
|
Lv B, Yang HL, Peng YD, Wang J, Zeng Z, Li N, Tang YE, Wang Z, Song QS. Cadmium exposure alters expression of protective enzymes and protein processing genes in venom glands of the wolf spider Pardosa pseudoannulata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115847. [PMID: 33130443 DOI: 10.1016/j.envpol.2020.115847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) pollution is currently the most serious type of heavy metal pollution throughout the world. Previous studies have shown that Cd elevates the mortality of paddy field spiders, but the lethal mechanism remains to be explored profoundly. In the present study, we measured the activities of protective enzymes (acetylcholinesterase, glutathione peroxidase, phenol oxidase) and a heavy metal chelating protein (metallothionein) in the pond wolf spider Pardosa pseudoannulata after Cd exposure. The results indicated that Cd initially increased the enzyme activities and protein concentration of the spider after 10- and 20-day exposure before inhibiting them at 30-day exposure. Further analysis showed that the enzyme activities in the cephalothorax were inhibited to some extent. Since the cephalothorax region contains important venom glands, we performed transcriptome sequencing (RNA-seq) analysis of the venom glands collected from the spiders after long-term Cd exposure. RNA-seq yielded a total of 2826 differentially expressed genes (DEGs), and most of the DEGs were annotated into the process of protein synthesis, processing and degradation. Furthermore, a mass of genes involved in protein recognition and endoplasmic reticulum (ER) -associated protein degradation were down-regulated. The reduction of protease activities supports the view that protein synthesis and degradation in organelles and cytoplasm were dramatically inhibited. Collectively, our outcomes illustrate that Cd poses adverse effects on the expression of protective enzymes and protein, which potentially down-regulates the immune function in the venom glands of the spiders via the alteration of protein processing and degradation in the ER.
Collapse
Affiliation(s)
- Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Hui-Lin Yang
- College of Resources and Environment, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Yuan-de Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Zeng
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Na Li
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
39
|
Wang J, Zhu H, Lin S, Wang K, Wang H, Liu Z. Protective effect of naringenin against cadmium-induced testicular toxicity in male SD rats. J Inorg Biochem 2020; 214:111310. [PMID: 33221601 DOI: 10.1016/j.jinorgbio.2020.111310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
This study aimed to investigate the effect of naringenin (Nar) on cadmium (Cd)-induced testicular toxicity. Twenty-four male Sprague-Dawley (SD) rats aged 5 weeks were used. Rats were administered with 0.9% NaCl (control group), CdCl2 (2 mg/kg b.w. intraperitoneally), Nar (50 mg/kg b.w, orally), and CdCl2 + Nar (2 mg/kg b.w intraperitoneally and 50 mg/kg b.w. orally, respectively) for 4 weeks. Results showed that body weight, relative testis weights, and sperm quality decreased in the Cd-treated group, and Cd accumulated in serum and testes. Pathological examination showed that Cd can cause testicular damage. Cd decreased the serum concentrations of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. It also decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Moreover, exposure to Cd resulted in decreased content of reduced glutathione (GSH) and total antioxidant capacity (T-AOC) concentrations, as well as increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Cd also provoked testis autophagy by upregulating the expression of the autophagy-related proteins P62 and LC3 II. However, the combined administration of Nar and Cd significantly attenuated the Cd-induced negative effects by increasing the body weight, relative testis weights, and sperm quality and by decreasing testicular damage. Simultaneous supplementation of Nar and Cd markedly restored the decreased levels of GnRH, FSH, LH, testosterone, GSH, and T-AOC and the activities of SOD, CAT, and GPx caused by Cd treatment. Nar further suppressed MDA and H2O2 production and protected the testes from Cd-induced autophagy by downregulating P62 and LC3 II expression. Therefore, Nar protected the testes from Cd-induced toxicity.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China.
| | - Huali Zhu
- Law hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Shu Lin
- Law hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009 Yangzhou, PR China
| |
Collapse
|
40
|
The Effect of Low Dose of Cadmium on Growth, Reproduction and Chicken Viability. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cadmium (Cd) is considered to be a highly polluting heavy metal with toxic effects on health and reproduction. In this study, the effects of low dose cadmium on growth, reproductive properties, and egg properties were studied. Cadmium as cadmium chloride (CdCl2) at a dose of 3 mg Cd.kg−1 was added as a feed supplement. The following parameters were evaluated: body weight, egg production, fertility, hatching, embryo and chick mortality, and egg quality characteristics. After 2 months of exposure to low doses of cadmium, the body weight increased in the cocks and did not change in the laying hens. Egg production was not affected, while fertility increased. The values of egg weight and hardness, thickness and shell weight were significantly higher (P < 0.05). The embryo mortality in the experimental group was lower (6.5 % vs. 12.8 %) compared to the control group. The hatching was significantly higher (P < 0.05) and the loss in 7 day old chickens was similar to that in the control group. Although the toxic effects of cadmium on reproduction and accumulation in poultry bodies have been generally described, low-doses of cadmium given to adult hens and cocks has improved the reproductive parameters and qualitative properties of laying hen eggs. The results related to the reproduction and quality of eggs obtained in this study have the characteristics of the hormetic effects of low cadmium uptake.
Collapse
|
41
|
Mouro VGS, de Melo FCSA, Martins ALP, de Lucca Moreira Gomes M, de Oliveira JM, de Freitas MBD, Demuner AJ, Leite JPV, da Matta SLP. Euterpe oleracea (Martius) Oil Reverses Testicular Alterations Caused after Cadmium Administration. Biol Trace Elem Res 2020; 197:555-570. [PMID: 31898307 DOI: 10.1007/s12011-019-02004-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that induces reproductive toxicity by generating reactive oxygen species, which leads to oxidative stress. Euterpe oleracea fruits are known for being rich in oils containing triacylglycerol and phenolic compounds. They are considered as potent antioxidants to be used to counteract Cd effects within the testis. In the present study, adult males Swiss mice were treated with CdCl2 aqueous solution (4.28 mg/kg) by gavage for 7 days. The experimental groups were treated with Euterpe oleracea oil at the doses of 50, 100, and 150 mg/kg, for 42 days. The results showed that Cd intoxication led to increased tubular pathologies, such as reduction in epithelium height and area thus increasing both luminal diameter and tubule-epithelium ratio. Besides, Leydig cell's morphometry indicated reduction in nucleus and cytoplasm volumes of this cell type, which were recovered after E. oleracea oil intake. In addition, serum testosterone levels, testicular Mn and Zn concentrations, SOD and CAT activity, and germ cell viability increased after oil intake. Therefore, E. oleracea oil showed a regenerative effect in the testicular parenchyma negatively affected by Cd, mainly in the animals that received the highest oil concentration (150 mg/kg).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sérgio Luis Pinto da Matta
- Departament of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Departament of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
42
|
Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: A Review. J Appl Toxicol 2020; 41:105-117. [DOI: 10.1002/jat.4055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| |
Collapse
|
43
|
Abdel Latif H, Abdel Khalek R, AbdelGalil W, AbdAllah H, Fawzy A, AbdelFattah S. Nanocurcumin versus mesenchymal stem cells in ameliorating the deleterious effects in the cadmium-induced testicular injury: A crosstalk between oxidative and apoptotic markers. Andrologia 2020; 52:e13760. [PMID: 32692431 DOI: 10.1111/and.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd), a grave occupational pollutant, can result in; testicular damage. This study was designed to distinguish the potential effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) versus that of curcumin nanoemulsion on Cd-induced testicular damage. Fifty adult male Sprague Dawley rats were distributed into five groups; control, sham control, Cd-treated, stem cell-treated and nanocurcumin-treated groups. Histological, immune histochemical; caspase 3 and proliferating cell nuclear antigen (PCNA) and CD 68, testosterone levels, nitric oxide, malondialdehyde (MDA)/glutathione (GSH) superoxide, dismutase (SOD), Western blot; B-cell lymphoma (Bcl-2), BCL2-Associated X Protein (BAX), BAX/Bcl-2 ratio and morphometry were done. Cadmium-treated group showed degenerated, detached seminiferous tubules, vacuolations and wide interstitial spaces containing fluid exudates. The same group revealed increased expression of BAX, BAX/Bcl-2 ratio, caspase 3, CD 68 and increased mean values of MDA, NO. Concomitantly, Cd has significant reduction in PCNA, Bcl-2 and sperm cell count when compared to control group. BM-MSCs- and nanocurcumin-treated groups revealed well-structured tubules and were perceived to expressively enhance the deleterious changes induced by Cd. The injurious changes on the testis induced by Cd were obviously improved when treated with either MSCs or nano-curcumin. BM-MSCs exerted more ameliorative changes.
Collapse
Affiliation(s)
- Hany Abdel Latif
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Abdel Khalek
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walid AbdelGalil
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend AbdAllah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Fawzy
- Medical Physiology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen AbdelFattah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
Benvenga S, Micali A, Pallio G, Vita R, Malta C, Puzzolo D, Irrera N, Squadrito F, Altavilla D, Minutoli L. Effects of Myo-inositol Alone and in Combination with Seleno-Lmethionine on Cadmium-Induced Testicular Damage in Mice. Curr Mol Pharmacol 2020; 12:311-323. [PMID: 31250768 DOI: 10.2174/1874467212666190620143303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cadmium (Cd) impairs gametogenesis and damages the blood-testis barrier. OBJECTIVE As the primary mechanism of Cd-induced damage is oxidative stress, the effects of two natural antioxidants, myo-inositol (MI) and seleno-L-methionine (Se), were evaluated in mice testes. METHODS Eighty-four male C57 BL/6J mice were divided into twelve groups: 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); Se (0.2 mg/kg/day per os); Se (0.4 mg/kg/day per os); MI (360 mg/kg/day per os); MI plus Se (0.2 mg/kg/day); MI plus Se (0.4 mg/kg/day); CdCl2 (2 mg/kg/day i.p.) plus vehicle; CdCl2 plus MI; CdCl2 plus Se (0.2 mg/kg/day); CdCl2 plus Se (0.4 mg/kg/day); CdCl2 plus MI plus Se (0.2 mg/kg/day); and CdCl2 plus MI plus Se (0.4 mg/kg/day). After 14 days, testes were processed for biochemical, structural and immunohistochemical analyses. RESULTS CdCl2 increased iNOS and TNF-α expression and Malondialdehyde (MDA) levels, lowered glutathione (GSH) and testosterone, induced testicular lesions, and almost eliminated claudin-11 immunoreactivity. Se administration at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression, maintained GSH, MDA and testosterone levels, structural changes and low claudin-11 immunoreactivity. MI alone or associated with Se at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression and MDA levels, increased GSH and testosterone levels, ameliorated structural organization and increased claudin-11 patches number. CONCLUSION We demonstrated a protective effect of MI, a minor role of Se and an evident positive role of the association between MI and Se on Cd-induced damages of the testis. MI alone or associated with Se might protect testes in subjects exposed to toxicants, at least to those with behavior similar to Cd.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Roberto Vita
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Consuelo Malta
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| |
Collapse
|
45
|
Güner Ö, Güner A, Yavaşoğlu A, Karabay Yavaşoğlu NÜ, Kavlak O. Ameliorative effect of edible Halopteris scoparia against cadmium-induced reproductive toxicity in male mice: A biochemical and histopathologic study. Andrologia 2020; 52:e13591. [PMID: 32320493 DOI: 10.1111/and.13591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a toxic metal affecting the reproductive system. Halopteris scoparia (brown algae) is generally consumed as a salad in the Far East countries. This study was conducted to compare and determine the possible protective effects of H. scoparia and vitamin E and C combination (VEC) against cadmium chloride (CdCl2 )-induced reproductive toxicity. A total of 36 male mice were equally divided into as control, CdCl2 (2 mg/kg), CdCl2 + H. scoparia (900 mg/kg), CdCl2 + VEC (200 mg/kg), H. scoparia alone and VEC alone groups. Blood and testis samples were taken for biochemical, histochemical and immunohistochemical analyses. H. scoparia was also examined for antioxidant activity (by DPPH assay) and mineral/trace element content (by ICP-MS method). CdCl2 exposure caused a significant deterioration in body weight, sperm parameters (count, motility, viability and morphology) (p < .001), histopathology, immunoreactivity and testosterone levels. However, H. scoparia improved CdCl2 -induced deterioration effects more successfully than VEC-treated group. The present study suggests that edible H. scoparia can be used as a natural protective agent against Cd-induced testicular damage by possibly enhancing essential element levels or increasing antioxidant defence system.
Collapse
Affiliation(s)
- Özlem Güner
- Department of Nursing, Sinop University School of Health, Sinop, Turkey
| | - Adem Güner
- Department of Biology, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
| | - Altuğ Yavaşoğlu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
| | | | - Oya Kavlak
- Department of Gynecologic and Obstetric Nursing, Faculty of Nursing, Ege University, Izmir, Turkey
| |
Collapse
|
46
|
Anyanwu BO, Ezejiofor AN, Nwaogazie IL, Akaranta O, Orisakwe OE. Low-dose heavy metal mixture (lead, cadmium and mercury)-induced testicular injury and protective effect of zinc and Costus afer in wistar albino rats. Andrologia 2020; 52:e13697. [PMID: 32542821 DOI: 10.1111/and.13697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
The study evaluated the protective effect of Costus afer on low-dose heavy metal mixture (LDHMM)-mediated effects in the testis of albino rats. The weight-matched animals were divided into six groups: normal control, metal mixture of (PbCl2 + CdCl2 + HgCl2 ), combination of metal mixture + Costus afer at 750 mg/kg, combination of metal mixture + Costus afer at 1,500 mg/kg, combination of metal mixture + Costus afer at 2,250 mg/kg and combination of metal mixture + (ZnCl2 ). LDHMM reduced (p < .05) the antioxidant biomarkers (superoxide dismutase, SOD; catalase, CAT; and glutathione, GSH) and increased (p < .05) the lipid peroxidation marker (malondialdehyde, MDA) and lead, cadmium and mercury concentrations in the testis. Treatment with LDHMM increased (p < .05) abnormal sperm morphology and plasma prolactin (PRL) level and decreased epididymal sperm count, viability, follicle-stimulating hormone (FSH), luteinising hormone (LH) and testosterone. LDHMM exposure caused deleterious changes in the testis. Treatment of rats with Costus afer (750, 1,500 and 2,250 mg/kg) dose-dependently reduced (p < .05) the LDHMM-mediated toxicity. Treatment with Costus afer also reversed the testicular weight and LDHMM decrease in antioxidant biomarkers. Costus afer may be a defensive modulator of LDHMM-mediated testicular lesions.
Collapse
Affiliation(s)
- Brilliance O Anyanwu
- African Centre of Excellence for Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Ify L Nwaogazie
- African Centre of Excellence for Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Onyewuchi Akaranta
- African Centre of Excellence for Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
| |
Collapse
|
47
|
Lv B, Wang J, Peng Y, Wang Z, Song Q. Long-term cadmium exposure affects cell adhesion and expression of cadherin in the male genital organ of Pardosa pseudoannulata (Bösenberg & Strand, 1906). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17770-17778. [PMID: 32162219 DOI: 10.1007/s11356-020-07968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Pardosa pseudoannulata (Araneae: Lycosidae), as an important predator of crop pests, has served as a strong driver for ecological regulation of pests. Cadmium (Cd) is a toxic heavy metal widely distributed in the soil in China, which not only seriously pollutes the ecological environment, but also poses a great threat to the survival of organisms. Palpal bulbs are the genital organs of male spiders, playing an important role in reproductive physiology. However, the effects of long-term Cd stress on the genital organ of the primary pest predator were poorly understood. Therefore, we investigated the Cd effect on the male palpal organ of P. pseudoannulata at morphological and gene expression levels. The results showed that no obvious difference in the morphology between the Cd-treated and control groups was observed, but cell adhesion was affected at molecular level. Transcriptome sequencing analysis revealed that under long-term Cd stress, the biological processes including cell-cell adhesion via plasma-membrane adhesion molecules, cell-cell adhesion, and homophilic cell adhesion via plasma membrane adhesion molecules were the top three differentially expressed terms (p-adj < 0.001), and 51 unigenes were annotated into cadherin-related proteins, such as protocadherin, cadherin-87A, and cadherin-96Ca, among which, 18 unigenes were significantly upregulated under the Cd stress. Our outcomes indicate that the differentially expressed genes involved in cell adhesion may explain the negative effects of Cd stress on the spider genital organ, and the comprehensive transcriptome dataset will also provide a profound molecular information of the genital organ of P. pseudoannulata.
Collapse
Affiliation(s)
- Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
48
|
de Lima EC, de Moura CFG, Silva MJD, Vilegas W, Santamarina AB, Pisani LP, de Oliveira F, Ribeiro DA. Therapeutical properties of Mimosa caesalpiniifolia in rat liver intoxicated with cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10981-10989. [PMID: 31953755 DOI: 10.1007/s11356-019-07455-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate the therapeutic properties of Mimosa caesalpiniifolia in liver of rats exposed to cadmium under morphological, oxidative, inflammatory, and mutagenic parameters. A total of 40 Wistar rats (90 days, ~ 250 g) were distributed into eight groups (n = 5) as follows: (i) control; (ii) cadmium: cadmium chloride injection at 1.2 mg/kg; (iii) Mimosa extract: treatment with Mimosa extract at 250 mg/kg; (iv) Mimosa fraction: treatment with Mimosa acetate fraction at 62.5 mg/kg; (v) cadmium and Mimosa extract 62.5: submitted to cadmium chloride at 1.2 mg/kg injection and treatment with Mimosa extract at 62.5 mg/kg; (vi) cadmium and Mimosa extract 125: subjected to cadmium chloride at 1.2 mg/kg injection and treatment with Mimosa extract at 125 mg/kg; (vii) cadmium and Mimosa 250 extract: submitted to cadmium chloride 1.2 mg/kg injection and treatment with Mimosa extract at 250 mg/kg; (viii) cadmium treated with fraction of Mimosa acetate: submitted to cadmium chloride 1.2 mg/kg injection and treatment with acetate fraction of Mimosa extract at 62.5 mg/kg. In the animals intoxicated with cadmium and treated with fraction [62.5], increased expression of SOD-Mn reduced frequency of binucleated hepatocytes, karyolysis, and karyorrhexis, besides the antimutagenic and antioxidant action. The extract [62.5] was cytoprotective, antimutagenic, and reduced karyolysis. The extract [125] was cytoprotective, antioxidant, antifibrotic, anti-inflammatory, and reduced frequency of binucleated hepatocytes, while extract [250] was cytotoxic and mutagenic. In summary, the extract of Mimosa exerts some therapeutic properties in hepatic tissue after Cd intoxication, but only when it is administrated at intermediate doses. Probably, a high content of polyphenols in the EHM [250] and Fr-EtOAc groups exert pro-oxidant activities in the liver particularly when associated with Cd.
Collapse
Affiliation(s)
- Eliene Cezario de Lima
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP, 11050-020, Brazil
| | - Carolina Foot Gomes de Moura
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP, 11050-020, Brazil
| | | | - Wagner Vilegas
- UNESP, São Paulo State University, Coastal Campus, São Vicente, Brazil
| | - Aline Boveto Santamarina
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP, 11050-020, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP, 11050-020, Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
49
|
Fang Y, Zhang L, Dong X, Wang H, He L, Zhong S. Downregulation of vdac2 inhibits spermatogenesis via JNK and P53 signalling in mice exposed to cadmium. Toxicol Lett 2020; 326:114-122. [PMID: 32199951 DOI: 10.1016/j.toxlet.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Previous studies have reported the reproductive toxicity of cadmium (Cd); however, the effect of Cd on spermatogenesis and the underlying mechanism remain to be elucidated. In this study, mouse Leydig TM3 cells were treated with CdCl2 (0, 5, 10 and 50 μM) for 24 h to evaluate cytotoxicity, and C57BL/6 mice were treated intragastrically with 0.4 mL CdCl2 (0, 0.01, 0.05 and 0.1 g/L) for 2 months to investigate changes in spermatogenesis. The results showed that Cd aggravated apoptosis and proliferation in a dose-dependent manner, concomitant with deteriorated spermatogenesis and testosterone synthesis. For mechanism exploration, RNA-seq was used to profile alterations in gene expression in response to Cd, and the results indicated focus on P53/JNK signalling pathways and membrane proteins. We found that P53/JNK signalling pathways were activated upon Cd treatment, with the Cd-triggered downregulation of the vdac2 gene. P53/JNK pathway blockade ameliorated the Cd-induced inhibition of steroidogenic acute regulatory protein (STAR) expression and testosterone synthesis. Additionally, vdac2 knockdown in TM3 cells contributed to the phosphorylation of JNK/P53 and reduced the testosterone content. Vdac2 overexpression rescued the aforementioned Cd-induced events. Collectively, our study identified an innovative biomarker of Cd exposure in mice. The results demonstrated that vdac2 downregulation inhibits spermatogenesis via the JNK/P53 cascade. This finding may contribute to our understanding of the regulatory mechanism of Cd reproductive toxicity and provide a candidate list for sperm abnormality factors and pathways.
Collapse
Affiliation(s)
- Yu Fang
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lang Zhang
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xin Dong
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
50
|
Gungor H, Kara H. Effects of selenium, zinc, insulin and metallothionein on cadmium-induced oxidative stress and metallothionein gene expression levels in diabetic rats. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0198/jbcpp-2019-0198.xml. [PMID: 32114524 DOI: 10.1515/jbcpp-2019-0198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
Background The aim of this study was to investigate the effects of selenium, zinc, insulin, and metallothionein on oxidative damage and metallothionein (MT) gene expression levels in streptozotocin (STZ)-induced type 1 diabetic rats exposed to Cd. Methods Rats were categorized under eight groups (control, STZ, Cd, STZ + Cd, Group 5, Group 6, Group 7, and STZ + Cd + MT [n:8/group]) were used. After diabetes was induced by STZ (55 mg/kg, i.p.), Cd was administered (1 mg/kg CdCl, orally) for 4 weeks. In cadmium-treated groups selenium (Na2SeO3 1.5 mg/kg, i.p.), zinc (ZnSO4 10 mg/kg via oral gavage), insulin (insulin glargine, 2U/day, s.c.), and MT (1mg/kg, every other 10 days, s.c.) were administered. MT gene expression levels, MDA levels, GPx, SOD, and CAT activity levels were determined in liver and kidney tissues. Results MT gene expression and MDA levels increased (p < 0.05) while GPx and SOD activity levels decreased (p < 0.05) in STZ, Cd, and STZ + Cd groups. In Group 5, Group 6, Group 7, and Group 8 groups MT gene expression and MDA levels were decreased while GPx and SOD activity levels were increased (p < 0.05). CAT activity significantly increased (p < 0.05) in STZ + Cd group while there were no significance in other groups (p > 0.05). Compared to the control, Group 5, Group 6, Group 7, and Group 8 groups provided no difference for alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and creatinine levels (p > 0.05). Conclusions Our results suggest that Se, insulin, Zn and MT may have protective effects against hepatotoxicity and nephrotoxicity caused by Cd exposure in diabetic rats by reducing oxidative stress and MT gene expression levels.
Collapse
Affiliation(s)
- Huseyin Gungor
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Haki Kara
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|