1
|
Liu J, Wei F, Liu J, Sun W, Liu S, Chen S, Zhang D, Xu B, Ma S. Protective effects and mechanisms of HuDiChangRong capsule on TNBS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118879. [PMID: 39369923 DOI: 10.1016/j.jep.2024.118879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE UC, characterized by chronic inflammation primarily affecting the colon and rectum, follows a protracted relapsing course marked by inflammation and an abundance of free radicals at the onset. Hudichangrong Capsule (HDCRC), a traditional Chinese medicinal formula, has long been employed in the treatment of UC and chronic bacillary dysentery, exhibiting positive therapeutic outcomes and a high rate of cure in clinical practice. AIM OF THE STUDY The precise mechanism underlying its efficacy for UC remains elusive. Our objective was to investigate the anti-inflammatory effect and underlying mechanisms of HDCRC on TNBS-induced UC. MATERIALS AND METHODS Here, we introduced HDCRC and induced UC using TNBS. SPF BALB/c mice were divided into 6 groups as follows: control group, colitis model group, colitis treated with sulfasalazine (400 mg/kg) group, and colitis treated with HDCRC (156, 312, and 624 mg/kg) groups. To assess the effects of HDCRC on colitis, we measured body weight loss, disease activity index (DAI), colon length, tissue damage, degree of inflammation, immune capacity, and oxidative stress. Additionally, we evaluated the TLR-4/MyD88 pathway and its downstream signaling using immunohistochemistry, real-time qPCR, and Western blot. Network pharmacology was used for main target prediction. 16s rRNA was employed for gut microbiota detechtion and UPLC-QTOF-MS was used for its and its metabonomics. RESULTS HDCRC significantly slowed weight loss, ameliorated DAI, restored colon length, alleviated TNBS-induced tissue damage. It exerted the therapeutic effects via reducing oxidative stress, restoring immune balance, normalizing the inflammatory mediator levels and restoring intestinal barrier integrity. Furthermore, HDCRC mainly alleviate UC via suppressing the TLR-4/MyD88 pathway and its downstream signaling. The key components of the downstream pathway, including TLR-4, MyD88, NF-κB p65, ERK, p-JNK, p38, p-JAK1, JAK1, p-STAT3, and STAT3, were improved, thereby ameliorating the TNBS-induced injury. In addition, HDCRC could regulate gut microbiota (eg. Erysipelaloclostridium,etc.) and its metabonomics (eg. Vitamin B6 metabolism) in UC mice. CONCLUSIONS In conclusion, HDCRC exerts a protective effect against TNBS-induced UC in mice by inhibiting the TLR-4/MyD88 pathway and its downstream signaling, and partially JAK1/STAT3, suppressing oxidative stress, regulating immunity, restoring intestinal barrier integrity, and regulating gut microbiota and its metabonomics.
Collapse
Affiliation(s)
- Jingjing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenbin Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shusen Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shengnan Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Dongqi Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Beilei Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, 150076, China; Engineering Research Center of Chinese Medicine Production and New Drug Development, Beijing, 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing, 100061, China.
| |
Collapse
|
2
|
Iqbal MW, Shahab M, Ullah Z, Zheng G, Anjum I, Shazly GA, Mengistie AA, Sun X, Yuan Q. Integrating machine learning and structure-based approaches for repurposing potent tyrosine protein kinase Src inhibitors to treat inflammatory disorders. Sci Rep 2025; 15:1836. [PMID: 39805859 PMCID: PMC11730308 DOI: 10.1038/s41598-024-83767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Tyrosine-protein kinase Src plays a key role in cell proliferation and growth under favorable conditions, but its overexpression and genetic mutations can lead to the progression of various inflammatory diseases. Due to the specificity and selectivity problems of previously discovered inhibitors like dasatinib and bosutinib, we employed an integrated machine learning and structure-based drug repurposing strategy to find novel, targeted, and non-toxic Src kinase inhibitors. Different machine learning models including random forest (RF), k-nearest neighbors (K-NN), decision tree, and support vector machine (SVM), were trained using already available bioactivity data of Src kinase targeting compounds. The performance evaluation of these models demonstrated SVM as the best model, which was further utilized to shortlist 51 highly potent compounds by screening an FDA-approved library of 1040 drugs. Molecular docking and molecular dynamic simulation were subsequently employed to evaluate the binding affinity and stability of the proposed compounds. Orlistat, acarbose and afatinib were identified as the potent leads, demonstrating stable conformations and stronger interactions, validated by root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (RoG), and hydrogen bond analyses. Molecular Mechanics/Generalized Born Surface Area (MMGBSA) analysis validated their binding affinities by providing comparably lower binding free energies for orlistat (- 33.4743 ± 3.8908), acarbose (- 19.5455 ± 5.4702), and afatinib (- 36.4944 ± 5.4929) than the control, dasatinib (- 13.7785 ± 5.8058). Finally, toxicity analysis revealed orlistat and acarbose as the possible safer therapeutics by eliminating afatinib as it showed significant toxicity concerns. Our investigation supports the advance computational methods utilization in the field of drug discovery and suggest further experimental validation of proposed inhibitors of Src kinase for their safer use against inflammatory diseases. The ultimate aim of this study is to advance the development of effective treatments for inflammatory diseases, linked with Src overexpression.
Collapse
Affiliation(s)
- Muhammad Waleed Iqbal
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Muhammad Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zakir Ullah
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, 44000, Pakistan
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Xinxiao Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
3
|
Hu Y, Zhou L, Yang J, Bai R, Marchioni E, Zhao M, Zhou L. Anti-inflammatory mechanism of Houttuynia cordata polysaccharides against ulcerative colitis based on multi-omics conjoint analysis. Int J Biol Macromol 2024; 283:137311. [PMID: 39521219 DOI: 10.1016/j.ijbiomac.2024.137311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The Houttuynia cordata polysaccharide (HCP) was extracted from the traditional Chinese medicine, Houttuynia cordata, known for its anti-inflammatory properties. It has an acidic heteropolysaccharide with a molecular weight of approximately 13.38 kDa, consisting of 7 monosaccharides such as galactose, galacturonic acid, and glucose. Mouse ulcerative colitis (UC) model experiments demonstrated its effective anti-inflammatory activity at concentrations of 100 mg/kg and 300 mg/kg respectively. The objective of this study was to investigate the mechanism of action underlying the therapeutic effects of HCP in UC through omics analysis method. A total of 724 different metabolites and 246 differential lipids were identified. Through metabolomic analysis, six metabolic pathways including the linoleic acid metabolic pathway, caffeine metabolic pathway, mannose and fructose metabolic pathways, methyl histidine metabolic pathway and fatty acid biosynthesis, which were significantly associated with colon-related diseases. Subsequently, lipidomics analysis revealed that the metabolic pathways of α-linolenic and linoleic acid, fatty acid biosynthesis, and glycerolipid metabolism exhibited significant associations with serum lipid metabolism. These findings suggested that HCP had potential therapeutic effects in treating UC.
Collapse
Affiliation(s)
- Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ruibin Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Yang Y, Qiao Y, Liu G, Yi G, Liu H, Zhang T, Tong M. Protective effect of a newly probiotic Lactobacillus reuteri LY2-2 on DSS-induced colitis. Eur J Nutr 2024; 64:5. [PMID: 39546032 DOI: 10.1007/s00394-024-03535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE This study aimed to investigate the role of a newly isolated strain L.reuteri LY2-2 in colitis in mice and explored the underlying mechanisms. METHODS L. REUTERI LY2-2 was orally administered to mice with dextran sulfate sodium (DSS)-induced colitis. 5-Aminosalicylic acid (5-ASA) treatment was used as the drug control. RESULTS The results showed that the disease severity of colitis mice was significantly alleviated. The intestinal inflammation was restricted by synergistically reducing pro-inflammatory cytokines, inhibiting TLR4-NF-κB signaling, restoring the abnormal immune response, and enhancing intestinal barrier function. Of note, L.reuteri LY2-2 showed great potential in modulating macrophages polarization in colonic tissues. Moreover, the gut dysbiosis was improved. The potentially pro-inflammatory pathogenic bacteria such as Helicobacter and Romboutsia decreased and the probiotics including L.rhamnosus and L.plantarum increased. Interestingly, the above pathological indexes in the L.reuteri LY2-2 group were better than those in the 5-ASA group. CONCLUSION L.reuteri LY2-2 had a better protective effect on DSS-induced colitis via its anti-inflammatory and microbiota-balancing properties, which supports the potential value of this probiotic against colitis. These results contribute to product development of functional probiotics for colitis and provide valuable insights for their mechanisms of biological function to affect human health status.
Collapse
Affiliation(s)
- Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Yuyu Qiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Ge Liu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Gaoqin Yi
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China
| | - Hongli Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Ting Zhang
- Department of Ruminant Nutrition, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Pedrycz A, Kozakiewicz M, Rahnama M, Kos M, Grywalska E, Bracha M, Grzywacz A, Bojar I. Hyperbaric Treatment Stimulates Chaperone-Mediated Macroautophagy and Autophagy in the Liver Cells of Healthy Female Rats. Int J Mol Sci 2024; 25:10476. [PMID: 39408803 PMCID: PMC11476916 DOI: 10.3390/ijms251910476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The role of autophagy goes far beyond the elimination of damaged cellular components and the quality control of proteins. It also cleanses cells from inclusions, including pathogenic viruses, and provides energy-forming components. The liver, which is an organ with increased metabolism, is made up of cells that are particularly vulnerable to damage. Therefore, detoxification of liver cells in the process of autophagy has become a very important issue clinically. The aim of this study was an immunohistochemical evaluation of proteins activated in rat liver cells at different stages of hyperbaric autophagy. The rats used for the study were randomly divided into six equivalent groups-three control groups and three experimental groups. Animals from the experimental groups were subjected to hyperbaric treatment in a hyperbaric chamber, with a pressure of 1.6 ATA for 120 min. They breathed atmospheric air. Rats were decapitated within 5 or 10 days after removal from the chamber. Immunohistochemical reactions with beclin 1, LC3B, RAB7, and HSC73 proteins were carried out on preparations made from liver slices. A three-step labeled streptavidin-biotin detection method of paraffin blocks (LSAB three-step) was used for immunohistochemical research. The results were evaluated using computer programs for morphometric analysis of microscopic images by calculating the mean surface areas occupied by a positive immunohistochemical reaction in individual groups for all antibodies tested. Increased closure of substrates in the autophagosome (beclin 1) induced late endosome transport and accelerated autophagosome maturation process (RAB7). Furthermore, a larger number of autophagosomes (LC3B) was observed in liver cells immediately after the cessation of hyperbaric activity; however, this decreased after 5 days. During this time, chaperone-mediated autophagy (HSC73) was observed on a larger scale. This means that increased macroautophagy induced by hyperbaric treatment weakens with time that has elapsed since the cessation of high pressure, whereas similarly induced chaperone-mediated autophagy intensifies over time.
Collapse
Affiliation(s)
- Agnieszka Pedrycz
- Faculty of Medicine and Health Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland;
| | - Mariusz Kozakiewicz
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jagiellońska 13/15, 85-067 Bydgoszcz, Poland;
| | - Mansur Rahnama
- Departament of Dental Surgery, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | - Marek Kos
- Department of Public Health, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Marietta Bracha
- Department of Geriatrics, Faculty of Health Sciences, Nicolaus Copernicus University in Toruń, Jagiellońska 15, 85-067 Bydgoszcz, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Behaviour Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Rybacka 1, 70-204 Szczecin, Poland;
| | - Iwona Bojar
- Department of Women’s Health, Institute of Rural Health, 20-093 Lublin, Poland;
| |
Collapse
|
6
|
Fan L, Shi J, Yang X. Prunetin alleviates dextran sulfate sodium-induced colitis via the regulation of inflammatory response based on network pharmacology and experimental evidence. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2164359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Ludi Fan
- Department of Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jinglong Shi
- Department of General Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou, People’s Republic of China
| | - Xiaobo Yang
- Department of Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Ye Z, Yang X, Deng B, Liao Z, Fang X, Wang J. Prevention of DSS-induced colitis in mice with water kefir microbiota via anti-inflammatory and microbiota-balancing activity. Food Funct 2023. [PMID: 37449473 DOI: 10.1039/d3fo00354j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Water kefir, a natural and stable functional microbiota system consisting of a symbiotic mixture of probiotics, shows multiple bioactivities but little is known about the effect of water kefir microbiota on the prevention of inflammatory bowel disease (IBD), which is one of the most common intestinal problems and has become a worldwide public health concern. Here, the main objectives of the present study were to investigate the preventative effects of water kefir microbiota, a probiotic consortium mainly consisting of bacteria belonging to Acetobacter, Lactobacillus, and Komagataeibacter and fungi belonging to Saccharomyces and Talaromyces, in a dextran sodium sulfate (DSS)-induced colitis mouse model and unveil the underlying mechanism of the action. Water kefir microbiota effectively improved the disease severity of DSS-induced colitis, including decreased body weight and colon length, increased spleen index and DAI score, and colonic tissue damage. Moreover, water kefir microbiota restored the abnormal expression of tight junction proteins (such as occludin, ZO-1, and claudin-1) and pro-inflammatory and anti-inflammatory cytokines (such as IL-1β, IL-6, TNF-α, COX-2, iNOS, and IL-10) and inactivated TLR4-MyD88-NF-κB pathway induced by DSS. Water kefir microbiota also improved the composition and metabolism of intestinal microbiota. These findings demonstrated that water kefir microbiota could exert protective roles in the DSS-induced colitis mouse model by reducing inflammation and regulating microbial dysbiosis, which will be helpful for the development of water kefir microbiota-based microbial products as an alternative preventative strategy for IBD.
Collapse
Affiliation(s)
- Zhimin Ye
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Ximiao Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Boxiong Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Liu M, Wang Z, Liu X, Xiao H, Liu Y, Wang J, Chen C, Wang X, Liu W, Xiang Z, Yue D. Therapeutic effect of Yiyi Fuzi Baijiang formula on TNBS-induced ulcerative colitis via metabolism and Th17/Treg cell balance. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116301. [PMID: 36842724 DOI: 10.1016/j.jep.2023.116301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiyi Fuzi Baijiang formula (YFB) is a traditional Chinese medicine prescription composed of Coix seed, Radix Aconiti Lateralis and Patrinia villosa, which has been used to treat ulcerative colitis (UC) for thousands of years. AIM OF THE STUDY To investigate the therapeutic effect and metabolic analysis of YFB formula on UC in rats induced by 2,4,6-trinitro-benzene sulfonic acid (TNBS). MATERIALS AND METHODS Six main alkaloids in the YFB formula were determined by UPLC‒MS/MS. The rat UC model was induced by TNBS, and the therapeutic effect of YFB formula on UC was evaluated by disease activity index (DAI) score and hematoxylin-eosin (HE) staining. UPLC-QTRAP-MS metabolomics technology was used to screen potential biomarkers for YFB treatment of UC in combination with multivariate data statistics and further analyze related metabolic pathways. Western blotting was used to detect the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in rat liver tissues. ELISA and immunohistochemistry were used to detect the contents of interleukin (IL)-17A, IL-21, IL-22, IL-6, TNF-α, IL-1β and IL-18 in rat serum and liver tissues. RESULTS The DAI scores of the YFB groups were significantly reduced, and colon tissue injury was significantly improved (p < 0.01). The results of metabolomics analysis revealed 29 potential biomarkers in serum and 27 potential biomarkers in liver. YFB formula can treat UC by affecting glycerophospholipid metabolism, primary bile acid biosynthesis, glyoxylic acid and dicarboxylic acid metabolism, and arginine and proline metabolism. Compared with the model group, the contents of IL-17A, IL-21, IL-22, IL-6, TNF-α, IL-1β and IL-18 in the YFB groups were decreased in a dose-dependent manner (p < 0.01). Compared with those in the model group, the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in the YFB groups were significantly decreased in a dose-dependent manner (p < 0.01). CONCLUSIONS The therapeutic effect of YFB formula on UC rats was dose dependent, and the effect of the YFB (2.046 g/kg) group was close to that of the positive group. YFB formula has an anti-inflammatory effect on UC by regulating the balance of Th17/Treg cells in rats.
Collapse
Affiliation(s)
- Meihua Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Zhonghua Wang
- Rongtong Agricultural Development (Shenyang) Co., Ltd., China
| | - Xuan Liu
- Dezhou Xiangxuan Pharmaceutical Technology Co., Ltd., China
| | - Hang Xiao
- Basic Medical College, Shenyang Medical College, China
| | - Yangcheng Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Liaoning University, China
| | - Changlan Chen
- School of Pharmaceutical Science, Liaoning University, China
| | - Xin Wang
- School of Pharmaceutical Science, Liaoning University, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, China.
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
9
|
Reiss Z, Rob F, Kolar M, Schierova D, Kreisinger J, Jackova Z, Roubalova R, Coufal S, Mihula M, Thon T, Bajer L, Novakova M, Vasatko M, Kostovcikova K, Galanova N, Lukas M, Kverka M, Tresnak Hercogova J, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Skin microbiota signature distinguishes IBD patients and reflects skin adverse events during anti-TNF therapy. Front Cell Infect Microbiol 2023; 12:1064537. [PMID: 36704107 PMCID: PMC9872723 DOI: 10.3389/fcimb.2022.1064537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are two forms of inflammatory bowel disease (IBD), where the role of gut but not skin dysbiosis is well recognized. Inhibitors of TNF have been successful in IBD treatment, but up to a quarter of patients suffer from unpredictable skin adverse events (SkAE). For this purpose, we analyzed temporal dynamics of skin microbiota and serum markers of inflammation and epithelial barrier integrity during anti-TNF therapy and SkAE manifestation in IBD patients. We observed that the skin microbiota signature of IBD patients differs markedly from healthy subjects. In particular, the skin microbiota of CD patients differs significantly from that of UC patients and healthy subjects, mainly in the retroauricular crease. In addition, we showed that anti-TNF-related SkAE are associated with specific shifts in skin microbiota profile and with a decrease in serum levels of L-FABP and I-FABP in IBD patients. For the first time, we showed that shifts in microbial composition in IBD patients are not limited to the gut and that skin microbiota and serum markers of the epithelium barrier may be suitable markers of SkAE during anti-TNF therapy.
Collapse
Affiliation(s)
- Zuzana Reiss
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Filip Rob
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Kolar
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Dagmar Schierova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Jackova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Mihula
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Bajer
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,Department of Gastroenterology and Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Michaela Novakova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Vasatko
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Klara Kostovcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Natalie Galanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Lukas
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia,Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czechia
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Tresnak Hercogova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia,Prof. Hercogova Dermatology, Prague, Czechia
| | | | - Zuzana Jiraskova Zakostelska
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Zuzana Jiraskova Zakostelska,
| |
Collapse
|
10
|
Ribeiro BE, Breves J, de Souza HSP. Pathogenesis: Crohn’s disease and ulcerative colitis. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:9-46. [DOI: 10.1016/b978-0-323-99111-7.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Ulcerative Colitis in Response to Fecal Microbiota Transplantation via Modulation of Gut Microbiota and Th17/Treg Cell Balance. Cells 2022; 11:cells11111851. [PMID: 35681546 PMCID: PMC9180439 DOI: 10.3390/cells11111851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Fecal microbiota transplantation (FMT) may contribute to disease remission in ulcerative colitis (UC). We studied the microbiota change and its regulation on T cells after FMT. Methods: Patients with mild to moderately active UC were included to receive FMT. The intestinal histopathological changes and barrier function were evaluated. The fecal samples of donors and patients were analyzed by 16S rRNA gene-based microbiota analysis, and the colon Th17 and Treg cells were assessed. Results: Fifteen patients completed the 8-week-follow-up. A total of 10 patients (66.7%) were in the responders (RE) group and five in the non-responders (NR) group. The Nancy histological index and fecal calprotectin decreased (p < 0.001, p = 0.06, respectively) and Occludin and Claudin1 increased in the RE group. The abundance of Faecalibaterium increased significantly by 2.3-fold in the RE group at week 8 (p = 0.043), but it was suppressed in the NR group. Fecal calprotectin (r = −0.382, p = 0.003) and Nancy index (r = −0.497, p = 0.006) were correlated inversely with the abundance of Faecalibacterium, respectively. In the RE group the relative mRNA expression of RORγt decreased and Foxp3 increased. Significantly decreased CD4+ RORγt+ Th17 and increased CD4+ Foxp3+ Treg were also observed in the RE group. The relative abundance of Faecalibacterium correlated with CD4+ RORγt+ Th17 (r = −0.430, p = 0.018) and CD4+ Foxp3+ Treg (r = 0.571, p = 0.001). Conclusions: The long-term Faecalibaterium colonization following FMT plays a crucial role in UC remission by alleviating intestinal inflammation. This anti-inflammatory effect of Faecalibacterium may be achieved by regulating the imbalance of Th17/Treg levels in UC.
Collapse
|
12
|
Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HSP. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:3464. [PMID: 35408838 PMCID: PMC8998182 DOI: 10.3390/ijms23073464] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbe-host communication is essential to maintain vital functions of a healthy host, and its disruption has been associated with several diseases, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD). Although individual members of the intestinal microbiota have been associated with experimental IBD, identifying microorganisms that affect disease susceptibility and phenotypes in humans remains a considerable challenge. Currently, the lack of a definition between what is healthy and what is a dysbiotic gut microbiome limits research. Nevertheless, although clear proof-of-concept of causality is still lacking, there is an increasingly evident need to understand the microbial basis of IBD at the microbial strain, genomic, epigenomic, and functional levels and in specific clinical contexts. Recent information on the role of diet and novel environmental risk factors affecting the gut microbiome has direct implications for the immune response that impacts the development of IBD. The complexity of IBD pathogenesis, involving multiple distinct elements, suggests the need for an integrative approach, likely utilizing computational modeling of molecular datasets to identify more specific therapeutic targets.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Siane Lopes Bittencourt Rosas
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Beatriz Elias Ribeiro
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Ygor Marinho
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Heitor S. P. de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
13
|
Kopper JJ, Iennarella-Servantez C, Jergens AE, Sahoo DK, Guillot E, Bourgois-Mochel A, Martinez MN, Allenspach K, Mochel JP. Harnessing the Biology of Canine Intestinal Organoids to Heighten Understanding of Inflammatory Bowel Disease Pathogenesis and Accelerate Drug Discovery: A One Health Approach. FRONTIERS IN TOXICOLOGY 2022; 3:773953. [PMID: 35295115 PMCID: PMC8915821 DOI: 10.3389/ftox.2021.773953] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
In a recent issue of the Lancet, the prevalence of Inflammatory Bowel Disease (IBD) was estimated at 7 million worldwide. Overall, the burden of IBD is rising globally, with direct and indirect healthcare costs ranging between $14.6 and $31.6 billion in the U.S. alone in 2014. There is currently no cure for IBD, and up to 40% of patients do not respond to medical therapy. Although the exact determinants of the disease pathophysiology remain unknown, the prevailing hypothesis involves complex interplay among host genetics, the intestinal microenvironment (primarily bacteria and dietary constituents), and the mucosal immune system. Importantly, multiple chronic diseases leading to high morbidity and mortality in modern western societies, including type II diabetes, IBD and colorectal cancer, have epidemiologically been linked to the consumption of high-calorie, low-fiber, high monosaccharide, and high-fat diets (HFD). More specifically, data from our laboratory and others have shown that repeated consumption of HFD triggers dysbiotic changes of the gut microbiome concomitant with a state of chronic intestinal inflammation and increased intestinal permeability. However, progress in our understanding of the effect of dietary interventions on IBD pathogenesis has been hampered by a lack of relevant animal models. Additionally, current in vitro cell culture systems are unable to emulate the in vivo interplay between the gut microbiome and the intestinal epithelium in a realistic and translatable way. There remains, therefore, a critical need to develop translatable in vitro and in vivo models that faithfully recapitulate human gut-specific physiological functions to facilitate detailed mechanistic studies on the impact of dietary interventions on gut homeostasis. While the study of murine models has been pivotal in advancing genetic and cellular discoveries, these animal systems often lack key clinical signs and temporal pathological changes representative of IBD. Specifically, some limitations of the mouse model are associated with the use of genetic knockouts to induce immune deficiency and disease. This is vastly different from the natural course of IBD developing in immunologically competent hosts, as is the case in humans and dogs. Noteworthily, abundant literature suggests that canine and human IBD share common clinical and molecular features, such that preclinical studies in dogs with naturally occurring IBD present an opportunity to further our understanding on disease pathogenesis and streamline the development of new therapeutic strategies. Using a stepwise approach, in vitro mechanistic studies investigating the contribution of dietary interventions to chronic intestinal inflammation and "gut leakiness" could be performed in intestinal organoids and organoid derived monolayers. The biologic potential of organoids stems from the method's ability to harness hard-wired cellular programming such that the complexity of the disease background can be reflected more accurately. Likewise, the effect of therapeutic drug candidates could be evaluated in organoids prior to longitudinal studies in dog and human patients with IBD. In this review, we will discuss the value (and limitations) of intestinal organoids derived from a spontaneous animal disease model of IBD (i.e., the dog), and how it can heighten understanding of the interplay between dietary interventions, the gut microbiota and intestinal inflammation. We will also review how intestinal organoids could be used to streamline the preclinical development of therapeutic drug candidates for IBD patients and their best four-legged friends.
Collapse
Affiliation(s)
- Jamie J Kopper
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Chelsea Iennarella-Servantez
- SMART Pharmacology, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Albert E Jergens
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Dipak K Sahoo
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Emilie Guillot
- 3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| | - Agnes Bourgois-Mochel
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, United States
| | - Karin Allenspach
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| | - Jonathan P Mochel
- SMART Pharmacology, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| |
Collapse
|
14
|
Olivier S, Diounou H, Pochard C, Frechin L, Durieu E, Foretz M, Neunlist M, Rolli-Derkinderen M, Viollet B. Intestinal Epithelial AMPK Deficiency Causes Delayed Colonic Epithelial Repair in DSS-Induced Colitis. Cells 2022; 11:cells11040590. [PMID: 35203241 PMCID: PMC8869996 DOI: 10.3390/cells11040590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Dysfunctions in the intestinal barrier, associated with an altered paracellular pathway, are commonly observed in inflammatory bowel disease (IBD). The AMP-activated protein kinase (AMPK), principally known as a cellular energy sensor, has also been shown to play a key role in the stabilization and assembly of tight junctions. Here, we aimed to investigate the contribution of intestinal epithelial AMPK to the initiation, progression and resolution of acute colitis. We also tested the hypothesis that protection mediated by metformin administration on intestinal epithelium damage required AMPK activation. A dextran sodium sulfate (DSS)-induced colitis model was used to assess disease progression in WT and intestinal epithelial cell (IEC)-specific AMPK KO mice. Barrier integrity was analyzed by measuring paracellular permeability following dextran-4kDa gavage and pro-inflammatory cytokines and tight junction protein expression. The deletion of intestinal epithelial AMPK delayed intestinal injury repair after DSS exposure and was associated with a slower re-epithelization of the intestinal mucosa coupled with severe ulceration and inflammation, and altered barrier function. Following intestinal injury, IEC AMPK KO mice displayed a lower goblet cell counts with concomitant decreased Muc2 gene expression, unveiling an impaired restitution of goblet cells and contribution to wound healing process. Metformin administration during the recovery phase attenuated the severity of DSS-induced colitis through improvement in intestinal repair capacity in both WT and IEC AMPK KO mice. Taken together, these findings demonstrate a critical role for IEC-expressed AMPK in regulating mucosal repair and epithelial regenerative capacity following acute colonic injury. Our studies further underscore the therapeutic potential of metformin to support repair of the injured intestinal epithelium, but this effect is conferred independently of intestinal epithelial AMPK.
Collapse
Affiliation(s)
- Séverine Olivier
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Hanna Diounou
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Camille Pochard
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Lisa Frechin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Emilie Durieu
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Michel Neunlist
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Malvyne Rolli-Derkinderen
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
- Correspondence: ; Tel.: +33-1-4441-2401
| |
Collapse
|
15
|
Fehily SR, Basnayake C, Wright EK, Kamm MA. Fecal microbiota transplantation therapy in Crohn's disease: Systematic review. J Gastroenterol Hepatol 2021; 36:2672-2686. [PMID: 34169565 DOI: 10.1111/jgh.15598] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gastrointestinal microbiota is the key antigenic drive in the inflammatory bowel diseases. Randomized controlled trials (RCTs) in ulcerative colitis have established fecal microbiota transplantation (FMT) as an effective therapy. We have conducted a systematic review to evaluate the efficacy of FMT in Crohn's disease. METHODS A systematic literature search was performed through to August 2020 (MEDLINE; Embase). Studies were included if they reported FMT administration in patients with Crohn's disease, and reported on clinical outcomes. RESULTS Fifteen studies published between 2014 and 2020, comprising 13 cohort studies and two RCTs, were included in the analysis. The majority of trials evaluated FMT for induction of remission, with follow-up duration varying from 4 to 52 weeks. One RCT in 21 patients, of single-dose FMT versus placebo, following steroid-induced remission, showed a higher rate of steroid-free clinical remission in the FMT group compared to the control group: 87.5% vs 44.4% at week 10 (P = 0.23). Another RCT, two-dose FMT in 31 patients, showed an overall clinical remission rate of 36% at week 8, however, with no difference in clinical or endoscopic endpoints between FMT administered by gastroscopy and colonoscopy. Considering all studies, the clinical response rates in early follow up were higher following multiple FMT than with single FMT. FMT dose did not appear to influence clinical outcomes, nor did whether FMT was fresh or frozen. FMT delivered via upper gastrointestinal route demonstrated higher early efficacy rates of 75 to 100% compared with lower delivery route rates of 30% to 58%, but on follow up beyond 8 weeks, this difference was not maintained. Whether pre-FMT antibiotic administration was beneficial was not able to be determined due to the limited number of patients receiving antibiotics and varying antibiotic regimens. No serious adverse events were reported. CONCLUSIONS Preliminary studies suggest that FMT may be an effective therapy in Crohn's disease. However large controlled trials are needed. No serious safety concerns have been identified.
Collapse
Affiliation(s)
- Sasha R Fehily
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chamara Basnayake
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily K Wright
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Jergens AE, Parvinroo S, Kopper J, Wannemuehler MJ. Rules of Engagement: Epithelial-Microbe Interactions and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:669913. [PMID: 34513862 PMCID: PMC8432614 DOI: 10.3389/fmed.2021.669913] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal inflammation. The exact etiology remains unknown, however multiple factors including the environment, genetic, dietary, mucosal immunity, and altered microbiome structure and function play important roles in disease onset and progression. Supporting this notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in gnotobiotic mice have shown that mouse models of intestinal inflammation require a microbial community to develop colitis. Additionally, antimicrobial therapy in some IBD patients will temporarily induce remission further demonstrating an association between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal epithelium serves as a barrier between the luminal environment and the mucosal immune system and guards against harmful molecules and microorganisms while being permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote mucosal health by strengthening barrier integrity, increasing local defenses (mucin and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts suppress expression and localization of tight junction proteins, cause dysregulation of apoptosis/proliferation and increase pro-inflammatory signaling that directly damages the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells (IECs) and the luminal environment acting as mediators of barrier function in IBD. We will also share some of our translational observations of interactions between IECs, immune cells, and environmental factors contributing to maintenance of mucosal homeostasis, as it relates to GI inflammation and IBD in different animal models.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Shadi Parvinroo
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Wang Y, Ye H, Qiao L, Du C, Wei Z, Wang T, Wang J, Liu R, Wang P. Intestinal Anti-Inflammatory Effects of Selenized Ulva pertusa Polysaccharides in a Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease Model. J Med Food 2021; 24:236-247. [PMID: 33739884 DOI: 10.1089/jmf.2020.4787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study was to examine the alleviative effects of selenized polysaccharides from Ulva pertusa (ulvan-Se) on inflammatory bowel disease (IBD) in mice. The dextran sulfate sodium (DSS)-induced IBD mouse model was used to explore the protective effects of ulvan-Se on the intestinal mechanical and immune barrier. At doses less than 1208 mg/kg·bw ulvan-Se showed no significant damage to Institute of Cancer Research (ICR) mice in an acute toxicity test. The results showed that DSS destroyed the mechanical barrier, which includes epithelial cells, while ulvan-Se promoted mRNA expression of tight junction proteins (zonula occludens protein 1, occludin, and claudin-1) and inhibited the infiltration of white blood cells into the intestines. At 100 mg/kg·bw, ulvan-Se enhanced the antioxidant capacity of mice more effectively than the 50 mg/kg·bw ulvan-Se. Furthermore, ulvan-Se improved the intestinal immune barrier by increasing immunoglobulin A and immunoglobulin M, while regulating the levels of interleukin (IL)-1β, interferon-γ, and IL-4. Oral administration of ulvan-Se also suppressed tumor necrosis factor-α, IL-1β, IL-6, and cyclooxygenase-2 mRNA expression mediated by the nuclear factor kappa B pathway. Taken together, our findings reveal that ulvan-Se could be used as a potential alternative supplement for reducing intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, China
| | - Han Ye
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Leke Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Ting Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ruizhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
18
|
Li Y, Sun Y, Diao F, Ruan Y, Chen G, Tang T, Liu Y, Zhou H, Lin W, Dong M, Liu T, Mei Q, Cai D. Jiaolong capsule protects SD rats against 2,4,6-trinitrobenzene sulfonic acid induced colitis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113716. [PMID: 33352238 DOI: 10.1016/j.jep.2020.113716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiaolong capsule (JLC) was approved for the therapy of gastrointestinal diseases by the State Food and Drug Administration (SFDA) of China. It has a satisfactory curative effect in the treatment of patients with inflammatory bowel disease, however, the mechanism remains to be elucidated. AIM OF THE STUDY In current study, the effects and possible mechanisms of JLC on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated. MATERIALS AND METHODS Sulfasalazine and JLC were administrated orally and initialized 6 h after TNBS enema, once a day for seven consecutive days. The effect of JLC on intestinal microbial populations and LPS/TLR-4/NF-κB pathway was observed and assessed. Thirty female SD rats were distributed into six groups randomly and equally, namely, control, TNBS, TNBS + sulfasalazine (625 mg/kg), and TNBS + three different doses of JLC (25, 50, and 100 mg/kg) groups. RESULTS The effect of JLC on restoring normal structures of colorectum and repairing colonic damage were superior to that of sulfasalazine. JLC showed a positive effect in re-balancing intestinal bacteria population of colitis, and suppressed the activation of LPS/TLR-4/NF-κB pathway. CONCLUSION The results suggest that JLC demonstrated a beneficial effect on treating colitis in a rat model. The possible mechanisms may be through the regulatory effect of intestinal commensal bacteria and down-regulation of LPS/TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, PR China; Laboratory of Oncological Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - Fanrong Diao
- Department of Cardiology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, PR China.
| | - Yiming Ruan
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Gui'e Chen
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Tianle Tang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - Yongsheng Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - Huiping Zhou
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Wenming Lin
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Mingzhi Dong
- Xi'an Zhengda Pharmaceutical Co., Ltd., Xi'an, 710072, Shaanxi, PR China.
| | - Tieming Liu
- Xi'an Zhengda Pharmaceutical Co., Ltd., Xi'an, 710072, Shaanxi, PR China.
| | - Qibing Mei
- Laboratory of Oncological Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - De Cai
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, PR China.
| |
Collapse
|
19
|
Ji L, Chen Y, Xie L, Liu Z. The role of Dock2 on macrophage migration and functions during Citrobacter rodentium infection. Clin Exp Immunol 2021; 204:361-372. [PMID: 33662140 DOI: 10.1111/cei.13590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Dedicator of cytokinesis 2 (Dock2), an atypical guanine exchange factor, is specifically expressed on immune cells and mediates cell adhesion and migration by activating Rac and regulates actin cytoskeleton remodeling. It plays a crucial role in the migration, formation of immune synapses, cell proliferation, activation of T and B lymphocytes and chemotaxis of pDCs and neutrophils. However, in-vivo physiological functions of Dock2 have been relatively seldom studied. Our previous studies showed that Dock2-/- mice were highly susceptible to colitis induced by Citrobacter rodentium infection, and in early infection, Dock2-/- mice had defects in macrophage migration. However, the specific roles of Dock2 in the migration and functions of macrophages are not clear. In this study, we found that the expression of chemokines such as chemokine (C-C motif) ligand (CCL)4 and CCL5 and chemokine receptors such as chemokine (C-C motif) receptor (CCR)4 and CCR5 in bone marrow-derived macrophages (BMDM) of Dock2-/- mice decreased after infection, which were supported by the in-vivo infection experimental results; the Transwell experiment results showed that Dock2-/- BMDM had a defect in chemotaxis. The bacterial phagocytic and bactericidal experiment results also showed that Dock2-/- BMDM had the defects of bacterial phagocytosis and killing. Furthermore, the adoptive transfer of wild-type BMDM alleviated the susceptibility of Dock2-/- mice to C. rodentium infection. Our results show that Dock2 affects migration and phagocytic and bactericidal ability of macrophages by regulating the expression of chemokines, chemokine receptors and their responses to chemokine stimulation, thus playing an essential role in the host defense against enteric bacterial infection.
Collapse
Affiliation(s)
- L Ji
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Y Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - L Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Z Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.,Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Xie Y, Meijer AH, Schaaf MJM. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol 2021; 8:620984. [PMID: 33520995 PMCID: PMC7843790 DOI: 10.3389/fcell.2020.620984] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.
Collapse
|
21
|
Protective Role of a New Polysaccharide Extracted from Lonicera japonica Thunb in Mice with Ulcerative Colitis Induced by Dextran Sulphate Sodium. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8878633. [PMID: 33490281 PMCID: PMC7801063 DOI: 10.1155/2021/8878633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Lonicera japonica Thunb is a traditional Chinese herbal medicine for treating intestinal inflammation. The extraction method of Lonicera japonica Thunb polysaccharide (LJP) has been developed previously by our research group. In this study, a Fourier transform infrared spectrometer (FT-IR) was used to perform a qualitative analysis of LJP and a precolumn derivatization high-performance liquid chromatography (HPLC) ((Palo Alto, CA, USA) method was used to explore the monosaccharide composition of LJP. Then, we studied the effect of LJP on the intestinal flora and immune functions of dextran sulfate sodium- (DSS-) induced colitis ulcerative mouse models. The results showed that LJP was consisted of 6 types of monosaccharides and had the characteristic absorption of typical polysaccharides. LJP can increase significantly the weight, organ index, serum cytokines (interleukin, tumor necrosis factor, and interferon-γ), secretory immunoglobulin A (SIgA) concentration, and natural killer (NK) cell and cytotoxic lymphocyte (CTL) activities in DSS-treated mice. The results of intestinal flora showed that a high dose (150 mg kg−1) of LJP had the best effects on improving the intestinal probiotics (Bifidobacterium and Lactobacilli) and antagonizing the pathogenic bacteria (Escherichia coli and Enterococcus). In addition, the measurement results of the spleen lymphocyte apoptosis confirmed from another perspective that LJP had protective effects of immune cells for DSS-treated mice.
Collapse
|
22
|
The Association of Gut Microbiota and Treg Dysfunction in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:191-203. [PMID: 33523449 PMCID: PMC9290759 DOI: 10.1007/978-981-15-6407-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune conditions affect 23 million Americans or 7% of the US population. There are more than 100 autoimmune disorders, affecting every major organ system in humans. This chapter aims to further explain Treg dysfunction autoimmune disorders, including monogenic primary immune deficiency such as immune dysregulation polyendocrinopathy, enteropathy, X-linked inheritance (IPEX) syndrome, and polygenic autoimmune diseases with Treg dysfunction such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and food allergy. These conditions are associated with an abnormal small intestinal and colonic microbiome. Some disorders clearly improve with therapies aimed at microbial modification, including probiotics and fecal microbiota transplantation (FMT). Approaches to prevent and treat these disorders will need to focus on the acquisition and maintenance of a healthy colonic microbiota, in addition to more focused approaches at immune suppression during acute disease exacerbations.
Collapse
|
23
|
Wang Y, Ding Y, Deng Y, Zheng Y, Wang S. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer 2020; 8:jitc-2020-000609. [PMID: 33051339 PMCID: PMC7555106 DOI: 10.1136/jitc-2020-000609] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colitis-associated cancer (CAC) is a specific type of colorectal cancer that develops from inflammatory bowel disease (IBD). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are essential for the pathological processes of inflammation and cancer. Accumulating evidence indicates that MDSCs play different but vital roles during IBD and CAC development and impede CAC immunotherapy. New insights into the regulatory network of MDSCs in the CAC pathogenesis are opening new avenues for developing strategies to enhance the effectiveness of CAC treatment. In this review, we explore the role of MDSCs in chronic inflammation, dysplasia and CAC and summarize the potential CAC therapeutic strategies based on MDSC blockade.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yijun Deng
- Department of Critical Care Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yu Zheng
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Zittan E, Gralnek IM, Berns MS. The New Proactive Approach and Precision Medicine in Crohn's Disease. Biomedicines 2020; 8:biomedicines8070193. [PMID: 32635316 PMCID: PMC7400127 DOI: 10.3390/biomedicines8070193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The proactive approach to Crohn's disease (CD) management advocates moving toward algorithmic tight-control scenarios that are designed for each CD phenotype to guide remission induction, maintenance therapy, active monitoring, and multidisciplinary care to manage the complexities of each inflammatory bowel disease (IBD) patient. This requires accurate initial clinical, laboratory, radiological, endoscopic, and/or tissue diagnosis for proper phenotypic stratification of each CD patient. A substantial proportion of patients in symptomatic remission have been reported to demonstrate evidence of active disease, with elevated fecal calprotectin(FC) and C-reactive protein (CRP) levels as a hallmark for mucosal inflammation. Active mucosal inflammation, and elevated CRP and fecal calprotectin (FC) have been shown to be good predictors of clinical relapse, disease progression, and complications in IBD patients. The next frontier of treatment is personalized medicine or precision medicine to help solve the problem of IBD heterogeneity and variable responses to treatment. Personalized medicine has the potential to increase the efficacy and/or reduce potential adverse effects of treatment for each CD phenotype. However, there is currently an unmet need for better elucidation of the inflammatory biopathways and genetic signatures of each IBD phenotype, so personalized medicine can specifically target the underlying cause of the disease and provide maximal efficacy to each patient.
Collapse
Affiliation(s)
- Eran Zittan
- Ellen and Pinchas Mamber Institute of Gastroenterology and Liver Diseases, IBD unit, Emek Medical Center, Afula 1834111, Israel;
- Correspondence:
| | - Ian M. Gralnek
- Ellen and Pinchas Mamber Institute of Gastroenterology and Liver Diseases, IBD unit, Emek Medical Center, Afula 1834111, Israel;
- Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa 31096, Israel;
| | - Marc S. Berns
- Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa 31096, Israel;
| |
Collapse
|
25
|
Zhang H, Gu H, Jia Q, Zhao Y, Li H, Shen S, Liu X, Wang G, Shi Q. Syringin protects against colitis by ameliorating inflammation. Arch Biochem Biophys 2020; 680:108242. [DOI: 10.1016/j.abb.2019.108242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
|
26
|
Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103641] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Atherly T, Rossi G, White R, Seo YJ, Wang C, Ackermann M, Breuer M, Allenspach K, Mochel JP, Jergens AE. Glucocorticoid and dietary effects on mucosal microbiota in canine inflammatory bowel disease. PLoS One 2019; 14:e0226780. [PMID: 31887117 PMCID: PMC6936794 DOI: 10.1371/journal.pone.0226780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/03/2019] [Indexed: 01/14/2023] Open
Abstract
The pathogenesis of canine inflammatory bowel disease (IBD) involves complex interactions between mucosal immunity and the intestinal microbiota. Glucocorticoids are commonly administered to reduce mucosal inflammation and gastrointestinal signs. The study objective was to evaluate the effects of diet and oral prednisone on the spatial distribution of mucosal bacteria in IBD dogs. Eight dogs diagnosed with IBD were treated with immunosuppressive doses of prednisone. The mucosal microbiota from endoscopic biopsies of IBD dogs and healthy controls (HC; n = 15 dogs) was evaluated by fluorescence in situ hybridization (FISH) targeting the 16S rRNA genes of total bacteria and bacterial species relevant in canine/human IBD. Apicaljunction protein (AJP) expression using immunohistochemistry investigated the effect of medical therapy on intestinal barrier integrity. All IBD dogs had a reduction in GI signs following diet and prednisone therapy compared with baseline CIBDAI scores (P < 0.05). The mucosal microbiota of HC and diseased dogs was most abundant in free and adherent mucus. Only Lactobacilli were increased (P < 0.05) in the adherent mucus of IBD dogs compared to HC. The spatial distribution of mucosal bacteria was significantly different (P < 0.05) in IBD dogs following prednisone therapy, with higher numbers of Bifidobacteria and Streptococci detected across all mucosal compartments and increased numbers of Bifidobacterium spp., Faecalibacterium spp., and Streptococcus spp. present within adherent mucus. Differences in intestinal AJPs were detected with expression of occludin increased (P < 0.05) in IBD dogs versus HC. The expressions of occludin and E-cadherin were increased but zonulin decreased (P < 0.05 for each) in IBD dogs following prednisone therapy. In conclusion, the spatial distribution of mucosal bacteria differs between IBD and HC dogs, and in response to diet and glucocorticoid administration. Medical therapy was associated with beneficial changes in microbial community structure and enhanced mucosal epithelial AJP expression.
Collapse
Affiliation(s)
- Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Robin White
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yeon-Jung Seo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mark Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Akinshina AI, Smirnova DV, Zagainova AV, Makarov VV, Yudin SM. Prospects of Using Microbiota Correction Methods in the Treatment of Inflammatory Bowel Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2019; 29:12-22. [DOI: 10.22416/1382-4376-2019-29-2-12-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim. The present article examines key methods of microbiota correction (antibiotic therapy; pro-, pre- and metabiotic therapy; faecal microbiota transplantation) used in treating inflammatory bowel disease, as well as compares the clinical trial results of these methods.Key findings. Inflammatory bowel disease (IBD) is an umbrella term used to describe a group of chronic diseases of unknown aetiology. In the past, bacteriological methods based on the isolation of a pure bacterial culture were used to determine the microbiota composition. However, such methods did not provide complete information on the microbiota composition. In recent years, preference has been given to more accurate and faster molecular genetic methods allowing a more detailed study of the key mechanisms by which microbiota affects the intestine in Crohn’s disease (CD) and ulcerative colitis (UC), as well as of the effect of microbial metabolites on their pathogenesis. The article provides an overview of main microbiota metabolites and their role in regulating the intestinal barrier function. One of the current issues consists in the development of personalised approaches to therapy and remission maintenance in IBD, including via methods for correcting the microbial composition: probiotic, prebiotic and metabiotic therapy, as well as faecal microbiota transplantation.Conclusion. The use of probiotics, prebiotics, and metabiotics can enhance the effectiveness of therapeutic regimens and significantly improve the quality of life of patients with chronic IBD. The use of antibiotics and faecal microbiota transplantation in treating IBD is the subject of extensive discussion and debate. The safety of these methods has not been confirmed so far; therefore, it is vital to continue studying their influence on the clinical condition of patients.
Collapse
Affiliation(s)
- A. I. Akinshina
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - D. V. Smirnova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - A. V. Zagainova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - V. V. Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - S. M. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks
| |
Collapse
|
29
|
Rudinsky AJ, Rowe JC, Parker VJ. Nutritional management of chronic enteropathies in dogs and cats. J Am Vet Med Assoc 2019; 253:570-578. [PMID: 30110216 DOI: 10.2460/javma.253.5.570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Kelly D, Kotliar M, Woo V, Jagannathan S, Whitt J, Moncivaiz J, Aronow BJ, Dubinsky MC, Hyams JS, Markowitz JF, Baldassano RN, Stephens MC, Walters TD, Kugathasan S, Haberman Y, Sundaram N, Rosen MJ, Helmrath M, Karns R, Barski A, Denson LA, Alenghat T. Microbiota-sensitive epigenetic signature predicts inflammation in Crohn's disease. JCI Insight 2018; 3:122104. [PMID: 30232290 PMCID: PMC6237229 DOI: 10.1172/jci.insight.122104] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Altered response to the intestinal microbiota strongly associates with inflammatory bowel disease (IBD); however, how commensal microbial cues are integrated by the host during the pathogenesis of IBD is not understood. Epigenetics represents a potential mechanism that could enable intestinal microbes to modulate transcriptional output during the development of IBD. Here, we reveal a histone methylation signature of intestinal epithelial cells isolated from the terminal ilea of newly diagnosed pediatric IBD patients. Genes characterized by significant alterations in histone H3-lysine 4 trimethylation (H3K4me3) showed differential enrichment in pathways involving immunoregulation, cell survival and signaling, and metabolism. Interestingly, a large subset of these genes was epigenetically regulated by microbiota in mice and several microbiota-sensitive epigenetic targets demonstrated altered expression in IBD patients. Remarkably though, a substantial proportion of these genes exhibited H3K4me3 levels that correlated with the severity of intestinal inflammation in IBD, despite lacking significant differential expression. Collectively, these data uncover a previously unrecognized epigenetic profile of IBD that can be primed by commensal microbes and indicate sensitive targets in the epithelium that may underlie how microbiota predispose to subsequent intestinal inflammation and disease.
Collapse
Affiliation(s)
- Daniel Kelly
- Division of Immunobiology, Center for Inflammation and Tolerance
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | - Vivienne Woo
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Jordan Whitt
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marla C. Dubinsky
- Department of Pediatrics, Mount Sinai Hospital, New York, New York, USA
| | - Jeffrey S. Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, Connecticut, USA
| | | | - Robert N. Baldassano
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C. Stephens
- Department of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas D. Walters
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yael Haberman
- Division of Gastroenterology, Hepatology, and Nutrition
- Sheba Medical Center, Tel Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Michael Helmrath
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Artem Barski
- Divisions of Allergy and Immunology and Human Genetics, and
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Theresa Alenghat
- Division of Immunobiology, Center for Inflammation and Tolerance
| |
Collapse
|
31
|
Sun MC, Zhang FC, Yin X, Cheng BJ, Zhao CH, Wang YL, Zhang ZZ, Hao HW, Zhang TH, Ye HQ. Lactobacillus reuteri F-9-35 Prevents DSS-Induced Colitis by Inhibiting Proinflammatory Gene Expression and Restoring the Gut Microbiota in Mice. J Food Sci 2018; 83:2645-2652. [PMID: 30216448 DOI: 10.1111/1750-3841.14326] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022]
Abstract
Probiotics are considered to be a potential treatment for ulcerative colitis (UC). The aim of this study was to compare the preventive effect of a space flight-induced mutant L. reuteri F-9-35 and its wild type on UC in vivo. Female mice were randomly assigned to five groups: one normal and four colitic. Mice from colitis groups were daily gavaged with 0.2 mL 12% (w/v) skim milk containing the mutant or wild type (1 × 1011 CFU/mL), skim milk alone or distilled water for the whole experiment period, starting 7 days before colitis induction. UC was induced by administrating mice with 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for 7 days, after which DSS was removed and maintained for 3 days as a recovery phase. The results showed that the mice fed with L. reuteri F-9-35 had less inflammatory phenotype according to macroscopic and histological analysis, reduced myeloperoxidase activity, and lower expression of proinflammatory genes (Tumor necrosis factor-α, cyclooxygenase-2 and interleukin-6) in colonic tissue compared with control. Furthermore, L. reuteri F-9-35 protected the mice from gut microbiota dysbiosis from DDS induced colitis. Neither wild type nor the milk alone had such beneficial effects. From above we conclude that L. reuteri F-9-35 has great potential in the prevention of UC as a dietary supplement. PRACTICAL APPLICATION Ulcerative colitis (UC) is the most common inflammatory bowel diseases and there is still a lack of safe and effective treatments. Consumption of L. reuteri F-9-35 may effective in preventing human UC.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Food Science and Engineering, Jilin Univ., Changchun, China.,School of Public Health, Jilin Medical Univ., Jilin City, China
| | - Fu-Cheng Zhang
- College of Food Science and Engineering, Jilin Univ., Changchun, China
| | - Xue Yin
- College of Food Science and Engineering, Jilin Univ., Changchun, China
| | - Bi-Jun Cheng
- College of Food Science and Engineering, Jilin Univ., Changchun, China
| | - Chang-Hui Zhao
- College of Food Science and Engineering, Jilin Univ., Changchun, China
| | - Yan-Ling Wang
- School of Pharmaceutical Sciences, Jilin Univ., Changchun, China
| | - Zheng-Zhe Zhang
- College of Food Science and Engineering, Jilin Univ., Changchun, China
| | - Hong-Wei Hao
- Fullarton Bioengineering Technology Co., Ltd, Beijing, China
| | - Tie-Hua Zhang
- College of Food Science and Engineering, Jilin Univ., Changchun, China
| | - Hai-Qing Ye
- College of Food Science and Engineering, Jilin Univ., Changchun, China
| |
Collapse
|
32
|
Tao JH, Duan JA, Zhang W, Jiang S, Guo JM, Wei DD. Polysaccharides From Chrysanthemum morifolium Ramat Ameliorate Colitis Rats via Regulation of the Metabolic Profiling and NF-κ B/TLR4 and IL-6/JAK2/STAT3 Signaling Pathways. Front Pharmacol 2018; 9:746. [PMID: 30042683 PMCID: PMC6049019 DOI: 10.3389/fphar.2018.00746] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Studies have indicated that Chrysanthemum polysaccharides (CP) could prominently ameliorate colitis rats, but its possible mechanism remains unclear. In this study, the underlying mechanism of CP was explored by the metabolic profiling analysis and correlated signaling pathways. TNBS/ethanol induced colitis was used to investigate the intervention efficacy following oral administration of CP. The levels of cytokines such as TNF-α, IL-6, IFN-γ and IL-1β, and the activities of SOD, MPO, and MDA were determined. We also performed western-blot for p65, TLR4, p-JAK2, and STAT3 protein expression in the colon tissue to probe their mechanisms of correlated signaling pathways. What’s more, the metabolic changes in plasma and urine from colitis rats were investigated based on UPLC-Q-TOF/MS combined with MetabolynxTM software. The potential biomarkers and metabolic pathways were also tentatively confirmed. The metabolic profiles of plasma and urine were clearly improved in model rats after oral administration of CP. Thirty-two (17 in serum and 15 in urine) potential biomarkers were identified. The endogenous metabolites were mainly involved in linoleic acid, retinol, arachidonic acid, glycerophospholipid and primary bile acid metabolism in plasma, and nicotinate and nicotinamide, ascorbate and aldarate, histidine and β-alanine metabolism in urine. After polysaccharides intervention, these markers turned back to normal level at some extent. Meanwhile, the elevated expression levels of pp65, TLR4, p-STAT3, and p-JAK2 were significantly decreased after treatment. Results suggested that CP would be a potential prebiotics for alleviation of TNBS-induced colitis. The study paved the way for the further exploration of the pathogenesis, early diagnosis and curative drug development of the colitis.
Collapse
Affiliation(s)
- Jin-Hua Tao
- School of Pharmacy, Nantong University, Nantong, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
The Role of Autophagy and Related MicroRNAs in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7565076. [PMID: 30046303 PMCID: PMC6038472 DOI: 10.1155/2018/7565076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA- (miR-) mediated posttranscriptional regulation plays an important role in autophagy in inflammatory bowel disease (IBD), a disease that is difficult to manage clinically because of the associated chronic recurrent nonspecific inflammation. Research indicates that microRNAs regulate autophagy via different pathways, playing an important role in the IBD process and providing a new perspective for IBD research. Related studies have shown that miR-142-3p, miR-320, miR-192, and miR-122 target NOD2, an IBD-relevant autophagy gene, to modulate autophagy in IBD. miR-142-3p, miR-93, miR-106B, miR-30C, miR-130a, miR-346, and miR-20a regulate autophagy by targeting ATG16L1 through several different pathways. miR-196 can downregulate IRGM and suppress autophagy by inhibiting the accumulation of LC3II. During the endoplasmic reticulum stress response, miR-665, miR-375, and miR-150 modulate autophagy by regulating the unfolded protein response, which may play an important role in IBD intestinal fibrosis. Regarding autophagy-related pathways, miR-146b, miR-221-5p, miR-132, miR-223, miR-155, and miR-21 regulate NF-κB or mTOR signaling to induce or inhibit autophagy in intestinal cells by releasing anti- or proinflammatory factors, respectively.
Collapse
|
34
|
Otoni CC, Heilmann RM, García-Sancho M, Sainz A, Ackermann MR, Suchodolski JS, Steiner JM, Jergens AE. Serologic and fecal markers to predict response to induction therapy in dogs with idiopathic inflammatory bowel disease. J Vet Intern Med 2018; 32:999-1008. [PMID: 29624721 PMCID: PMC5980281 DOI: 10.1111/jvim.15123] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/26/2017] [Accepted: 02/24/2018] [Indexed: 12/14/2022] Open
Abstract
Background Little information is available of markers that assess the disease course in dogs with idiopathic inflammatory bowel disease (IBD). Objectives Evaluate relationship between disease severity and serum and fecal biomarkers in dogs with idiopathic IBD before and after treatment. Animals Sixteen dogs with idioptahic IBD and 13 healthy dogs. Methods Prospective case control study. Canine IBD activity index (CIBDAI) clinical score, serum concentrations of C‐reactive protein (CRP), perinuclear antineutrophil cytoplasmic antibodies (pANCA), and serum and fecal canine calprotectin (cCP) were measured before and after 21 days of treatment. Results Serum CRP (median 3.5 mg/L; range: 0.1‐52.4 mg/L), fecal cCP (median 92.3 μg/g; range: 0.03‐637.5 μg/g), and CIBDAI scores significantly increased in dogs with IBD before treatment compared with serum CRP (median 0.2 mg/L; range: 0.1‐11.8 mg/L; P < .001), fecal cCP (median 0.67 μg/g; range: 0.03‐27.9 μg/g; P < .001) and CIBDAI (P < .001) after treatment. No significant associations between CIBDAI scores and before or after treatment serum biomarkers. There was a significant association between fecal cCP and CIBDAI scores before treatment (rho = 0.60, P = .01). CRP and fecal cCP significantly decreased after treatment (median 3.5 mg/L v. 0.2 mg/L; P < .001 and 92.3 μg/g v. 0.67 μg/g; P = .001, respectively). Conclusions and Clinical Importance Our data indicate that measurement of fecal cCP concentration is a useful biomarker for noninvasive evaluation of intestinal inflammation. Dogs with severe signs of GI disease more often have abnormal markers than dogs having less severe disease.
Collapse
Affiliation(s)
- Cristiane C Otoni
- Internal Medicine Department, VCA Arboretum View Animal Hospital, 2551 Warrenville Road, Downers Grove, Illinois
| | - Romy M Heilmann
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas.,Department of Small Animal Medicine, Small Animal Clinic, College of Veterinary Medicine, University of Leipzig, Leipzig, Saxony, Germany
| | - Mercedes García-Sancho
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Angel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mark R Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas
| | - Jörg M Steiner
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas
| | - Albert E Jergens
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
35
|
Eom T, Kim YS, Choi CH, Sadowsky MJ, Unno T. Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. J Microbiol 2018; 56:189-198. [PMID: 29492876 DOI: 10.1007/s12275-018-8049-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a result of chronic inflammation caused, in some part, by dysbiosis of intestinal microbiota, mainly commensal bacteria. Gut dysbiosis can be caused by multiple factors, including abnormal immune responses which might be related to genetic susceptibility, infection, western dietary habits, and administration of antibiotics. Consequently, the disease itself is characterized as having multiple causes, etiologies, and severities. Recent studies have identified >200 IBD risk loci in the host. It has been postulated that gut microbiota interact with these risk loci resulting in dysbiosis, and this subsequently leads to the development of IBD. Typical gut microbiota in IBD patients are characterized with decrease in species richness and many of the commensal, and beneficial, fecal bacteria such as Firmicutes and Bacteroidetes and an increase or bloom of Proteobacteria. However, at this time, cause and effect relationships have not been rigorously established. While treatments of IBD usually includes medications such as corticosteroids, 5-aminosalicylates, antibiotics, immunomodulators, and anti-TNF agents, restoration of gut dysbiosis seems to be a safer and more sustainable approach. Bacteriotherapies (now called microbiota therapies) and dietary interventions are effective way to modulate gut microbiota. In this review, we summarize factors involved in IBD and studies attempted to treat IBD with probiotics. We also discuss the potential use of microbiota therapies as one promising approach in treating IBD. As therapies based on the modulation of gut microbiota becomes more common, future studies should include individual gut microbiota differences to develop personalized therapy for IBD.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yong Sung Kim
- Department of Gastroenterology, Wonkwang Digestive Disease Research Institute, Wonkwang University Sanbon Hospital, Gunpo, 15865, Republic of Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Tatsuya Unno
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Faculty of Biotechnology, School of life sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
36
|
Tao JH, Duan JA, Jiang S, Feng NN, Qiu WQ, Ling Y. Polysaccharides from Chrysanthemum morifolium Ramat ameliorate colitis rats by modulating the intestinal microbiota community. Oncotarget 2017; 8:80790-80803. [PMID: 29113344 PMCID: PMC5655239 DOI: 10.18632/oncotarget.20477] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
The gut microflora dysbiosis has been closely related with the inflammatory bowel disease (IBD). In this study, the effect of polysaccharides from Chrysanthemum morifolium Ramat on the gut microbiota was evaluated by ulcerative colitis (UC) rat model. Physiological and pathological analyses suggested that Chrysanthemum polysaccharides possessed notably protective effects on UC in vivo. Based on the Illumina MiSeq platform, 16S rRNA sequencing of the rat colonic contents indicated that the intestinal flora structure remarkably changed in the model rats and the tendency was alleviated to a certain degree by treatment with different dosages of Chrysanthemum polysaccharides. In normal groups, there were more Firmicutes than Bacteroidetes, but this change lost at the pathological state. Following Chrysanthemum polysaccharides, rising Firmicutes/Bacteroidetes ratio was validated. Besides the microbial diversity and the community richness of the UC rats were improved by Chrysanthemum polysaccharides, the composition of intestinal microflora in the model group were also restored after oral administration of Chrysanthemum polysaccharides. The abundance of opportunistic pathogens was decreased (Escherichia, Enterococcus and Prevotella), while the levels of protective bacteria such as Butyricicoccus and Clostridium (butyrate-producing bacteria), Lactobacillus and Bifidobacterium (probiotics), Lachnospiraceae and Rikenellaceae elevated in various degrees. Correlation analysis between intestinal flora and biochemical factors suggested that the relative abundance of protective bacteria was positively correlated with the levels of anti-inflammatory cytokines such as IL-4, IL-10 and IL-11, while aggressive bacteria were positively correlated with proinflammatory cytokine such as IL-23、IL-6、 IF-17、TNF-α、IL-1β and IFN-γ. The above results showed that the intestinal flora were closely related to the secretion and expression of cytokines in the body, and they interacted with each other to regulate immune function. Thus, Chrysanthemum polysaccharides could ameliorate ulcerative colitis by fostering beneficial intestinal flora growth, modulating the balance of intestinal microecology and restoring the immune system.
Collapse
Affiliation(s)
- Jin-Hua Tao
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Nan-Nan Feng
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Wen-Qian Qiu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| |
Collapse
|
37
|
Liu DY, Gao L, Zhang J, Huo XW, Ni H, Cao L. Anti-inflammatory and Anti-oxidant Effects of Licorice Flavonoids on Ulcerative Colitis in Mouse Model. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60116-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
38
|
Hu LH, Fan YJ, Li Q, Guan JM, Qu B, Pei FH, Liu BR. Bortezomib protects against dextran sulfate sodium‑induced ulcerative colitis in mice. Mol Med Rep 2017; 15:4093-4099. [PMID: 28487944 PMCID: PMC5436237 DOI: 10.3892/mmr.2017.6524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Bortezomib, a first-in-class proteasome inhibitor, is a standard method of treatment in multiple myeloma. In the present study, the therapeutic effect of bortezomib was evaluated in an ulcerative colitis model induced by dextran sulfate sodium (DSS) in mice, and the mechanism of action was also investigated. Mice were administered with 3% DSS drinking water for 7 consecutive days and then they were intraperitoneally treated with bortezomib (0.2, 0.6 or 1 mg/kg) for 1, 3 or 7 days. Mice in the control group and the DSS group were provided the same volume of PBS, respectively. Body weight, stool characteristics and hematochezia were observed. Serum levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), albumin (ALB) and colonic activity of superoxide dismutase (SOD) were evaluated using specific kits. The expression of the transcription factor nuclear factor-κB (NF-κB) p65 gene and the DNA-binding activity of NF-κB protein were also evaluated. Administration of bortezomib attenuates colonic inflammation in mice. After 3 or 7 days of treatment, Disease Activity Index (DAI) as well as histological scores and NF-κB p65 protein expression were significantly reduced in mice treated with bortezomib at a dose of 0.6 or 1 mg/kg/day. Furthermore, it was also revealed that bortezomib was able to reduce serum levels of CRP and TNF-α caused by DSS and increase the level of ALB in serum and the activity of SOD in colonic tissues. These results demonstrated that bortezomib exerts a protective effect on DSS-induced colitis, and its underlying mechanisms are associated with the NF-κB gene inhibition that mitigates colon inflammatory responses in intestinal epithelial cells.
Collapse
Affiliation(s)
- Li-Hong Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yu-Jing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qing Li
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing-Ming Guan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Feng-Hua Pei
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bing-Rong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
39
|
The effect of sodium valproate on acetic acid-induced colitis in rats. Inflammopharmacology 2016; 25:137-145. [DOI: 10.1007/s10787-016-0304-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/10/2016] [Indexed: 01/22/2023]
|
40
|
McLean LP, Cross RK. Integrin antagonists as potential therapeutic options for the treatment of Crohn's disease. Expert Opin Investig Drugs 2016; 25:263-73. [PMID: 26822204 DOI: 10.1517/13543784.2016.1148137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Anti-integrin therapy for the treatment of patients with Crohn's disease is rapidly evolving. Two agents, natalizumab and vedolizumab, are approved by the United States Food and Drug Administration for the treatment of Crohn's disease, with vedolizumab the primary anti-integrin used due to a more favorable safety profile. Several other anti-integrins are in various stages of development. AREAS COVERED This review discusses the current state of anti-integrin therapy as well as suggestions for positioning of these agents in clinical practice. Emerging anti-integrin therapies, their underlying mechanisms of action, and available safety and clinical data are also reviewed. EXPERT OPINION Anti-integrins are effective for the treatment of Crohn's disease, even in patients refractory to other therapies. Their use should be considered in patients with Crohn's disease who do not respond to, develop non-response to, or have contraindications to anti-TNF therapy. Anti-integrin therapies can be offered as a first biologic therapy, in particular for older patients, patients with concurrent multiple sclerosis (natalizumab only), and in patients with contraindications to anti-TNF therapy. In patients with more severe symptoms, providers should consider co-induction with corticosteroids if possible to hasten remission.
Collapse
Affiliation(s)
- Leon P McLean
- a Department of Medicine, Division of Gastroenterology and Hepatology , University of Maryland, Baltimore , Baltimore , MD , USA
| | - Raymond K Cross
- a Department of Medicine, Division of Gastroenterology and Hepatology , University of Maryland, Baltimore , Baltimore , MD , USA
| |
Collapse
|
41
|
Trabelsi I, Ktari N, Ben Slima S, Hamden K, Ben Salah R. Effect of a probiotic Lactobacillus plantarum TN8 strain on trinitrobenzene sulphonic acid-induced colitis in rats. J Anim Physiol Anim Nutr (Berl) 2016; 101:311-319. [PMID: 27435031 DOI: 10.1111/jpn.12536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the potential effects of an oral treatment by a newly isolated probiotic Lactobacillus plantarum TN8 strain on trinitrobenzene sulphonic acid (TNBS)-induced colitis in Wistar rats. Thus, 18 rats were divided into three groups (n = 6 per group): group 1 (control) - rats not receiving TNBS application; group 2 - rats receiving an intrarectal TNBS infusion (100 mg/kg TNBS dissolved in ethanol); and group 3 - rats treated with intragastrical TN8 strain once per day (for 5 days before TNBS induction). The performance and the effects of the probiotic treatment were evaluated using a series of histological, biophysical and biochemical analyses. The results have shown that the treatment with the L. plantarum TN8 strain improves the body weight and reduces the diarrhoea, colonic mucosal inflammation and colon shortening. TN8-treated rats showed a significant decrease in the total cholesterol content from 1.86 (for group 2) to 1.32 mmol/l and in triglyceride (TG) content from 2.09 (for group 2) to 1.23 mmol/l. Furthermore, the findings revealed that the high-density lipoprotein (HDL) cholesterol contents increased from 0.95 to 1.02 mmol/l. The histological studies have confirmed that the architecture of the liver and kidney tissues of the TN8-treated rats were found to be improved. Overall, the results suggest that the L. plantarum TN8 presents promising perspectives for the development of safe and cost-effective agents for the prevention or alleviation of several intestinal pathologies.
Collapse
Affiliation(s)
- I Trabelsi
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - N Ktari
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - S Ben Slima
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - K Hamden
- Biotechnology Research Unit, Higher Institute of Biotechnology of Sfax, Sfax, Tunisia
| | - R Ben Salah
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
42
|
Cassmann E, White R, Atherly T, Wang C, Sun Y, Khoda S, Mosher C, Ackermann M, Jergens A. Alterations of the Ileal and Colonic Mucosal Microbiota in Canine Chronic Enteropathies. PLoS One 2016; 11:e0147321. [PMID: 26840462 PMCID: PMC4740465 DOI: 10.1371/journal.pone.0147321] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
Abstract
Background The intestinal microbiota is increasingly linked to the pathogenesis of chronic enteropathies (CE) in dogs. While imbalances in duodenal and fecal microbial communities have been associated with mucosal inflammation, relatively little is known about alterations in mucosal bacteria seen with CE involving the ileum and colon. Aim To investigate the composition and spatial organization of mucosal microbiota in dogs with CE and controls. Methods Tissue sections from endoscopic biopsies of the ileum and colon from 19 dogs with inflammatory bowel disease (IBD), 6 dogs with granulomatous colitis (GC), 12 dogs with intestinal neoplasia, and 15 controls were studied by fluorescence in situ hybridization (FISH) on a quantifiable basis. Results The ileal and colonic mucosa of healthy dogs and dogs with CE is predominantly colonized by bacteria localized to free and adherent mucus compartments. CE dogs harbored more (P < 0.05) mucosal bacteria belonging to the Clostridium-coccoides/Eubacterium rectale group, Bacteroides, Enterobacteriaceae, and Escherichia coli versus controls. Within the CE group, IBD dogs had increased (P < 0.05) Enterobacteriaceae and E. coli bacteria attached onto surface epithelia or invading within the intestinal mucosa. Bacterial invasion with E. coli was observed in the ileal and colonic mucosa of dogs with GC (P < 0.05). Dogs with intestinal neoplasia had increased (P < 0.05) adherent (total bacteria, Enterobacteriaceae, E. coli) and invasive (Enterobacteriaceae, E. coli, and Bacteroides) bacteria in biopsy specimens. Increased numbers of total bacteria adherent to the colonic mucosa were associated with clinical disease severity in IBD dogs (P < 0.05). Conclusion Pathogenic events in canine CE are associated with different populations of the ileal and colonic mucosal microbiota.
Collapse
Affiliation(s)
- Eric Cassmann
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Robin White
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | | | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yaxuan Sun
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Samir Khoda
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Curtis Mosher
- Department of Genetics, Development & Cell Biology, College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Mark Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Albert Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
43
|
Randell RL, Gulati AS, Cook SF, Martin CF, Chen W, Jaeger EL, Schoenborn AA, Basta PV, Dejong H, Luo J, Gallant M, Sandler RS, Long MD, Kappelman MD. Collecting Biospecimens From an Internet-Based Prospective Cohort Study of Inflammatory Bowel Disease (CCFA Partners): A Feasibility Study. JMIR Res Protoc 2016; 5:e3. [PMID: 26732016 PMCID: PMC4719077 DOI: 10.2196/resprot.5171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022] Open
Abstract
Background The Internet has successfully been used for patient-oriented survey research. Internet-based translational research may also be possible. Objective Our aim was to study the feasibility of collecting biospecimens from CCFA Partners, an Internet-based inflammatory bowel disease (IBD) cohort. Methods From August 20, 2013, to January 4, 2014, we randomly sampled 412 participants, plus 179 from a prior validation study, and invited them to contribute a biospecimen. Participants were randomized to type (blood, saliva), incentive (none, US $20, or US $50), and collection method for blood. The first 82 contributors were also invited to contribute stool. We used descriptive statistics and t tests for comparisons. Results Of the 591 participants, 239 (40.4%) indicated interest and 171 (28.9%) contributed a biospecimen. Validation study participants were more likely to contribute than randomly selected participants (44% versus 23%, P<.001). The return rate for saliva was higher than blood collected by mobile phlebotomist and at doctors’ offices (38%, 31%, and 17% respectively, P<.001). For saliva, incentives were associated with higher return rates (43-44% versus 26%, P=.04); 61% contributed stool. Fourteen IBD-associated single nucleotide polymorphisms were genotyped, and risk allele frequencies were comparable to other large IBD populations. Bacterial DNA was successfully extracted from stool samples and was of sufficient quality to permit quantitative polymerase chain reaction for total bacteria. Conclusions Participants are willing to contribute and it is feasible to collect biospecimens from an Internet-based IBD cohort. Home saliva kits yielded the highest return rate, though mobile phlebotomy was also effective. All samples were sufficient for genetic testing. These data support the feasibility of developing a centralized collection of biospecimens from this cohort to facilitate IBD translational studies.
Collapse
Affiliation(s)
- Rachel L Randell
- Department of Pediatrics, Duke University School of Medicine, Duke University, Durham, NC, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pan M, Wan C, Xie Q, Huang R, Tao X, Shah NP, Wei H. Changes in gastric microbiota induced by Helicobacter pylori infection and preventive effects of Lactobacillus plantarum ZDY 2013 against such infection. J Dairy Sci 2015; 99:970-981. [PMID: 26709179 DOI: 10.3168/jds.2015-10510] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori is a gram-negative pathogen linked to gastric ulcers and stomach cancer. Gastric microbiota might play an essential role in the pathogenesis of these stomach diseases. In this study, we investigated the preventive effect of a probiotic candidate Lactobacillus plantarum ZDY 2013 as a protective agent against the gastric mucosal inflammation and alteration of gastric microbiota induced by H. pylori infection in a mouse model. Prior to infection, mice were pretreated with or without 400 µL of L. plantarum ZDY 2013 at a concentration of 10(9) cfu/mL per mouse. At 6 wk postinfection, gastric mucosal immune response and alteration in gastric microbiota mice were examined by quantitative real-time PCR and high-throughput 16S rRNA gene amplicon sequencing, respectively. The results showed that L. plantarum ZDY 2013 pretreatment prevented increase in inflammatory cytokines (e.g., IL-1β and IFN-γ) and inflammatory cell infiltration in gastric lamina propria induced by H. pylori infection. Weighted UniFrac principal coordinate analysis showed that L. plantarum ZDY 2013 pretreatment prevented the alteration in gastric microbiota post-H. pylori infection. Linear discriminant analysis coupled with effect size identified 22 bacterial taxa (e.g., Pasteurellaceae, Erysipelotrichaceae, Halomonadaceae, Helicobacteraceae, and Spirochaetaceae) that overgrew in the gastric microbiota of H. pylori-infected mice, and most of them belonged to the Proteobacteria phylum. Lactobacillus plantarum ZDY 2013 pretreatment prevented this alteration; only 6 taxa (e.g., Lachnospiraceae, Ruminococcaceae, and Clostridiaceae), mainly from the taxa of Firmicutes and Bacteroidetes, were dominant in the gastric microbiota of the L. plantarum ZDY 2013 pretreated mice. Administration of L. plantarum ZDY 2013 for 3 wk led to increase in several bacterial taxa (e.g., Rikenella, Staphylococcus, Bifidobacterium), although a nonsignificant alteration was found in the gastric microbiota. Overall, this study demonstrated that L. plantarum ZDY 2013 pretreatment played an important role in preventing gastric mucosal inflammation and gastric microbiota alteration induced by H. pylori infection, and the selective modulation in gastric microbiota posed by this intervention suggested that targeting gastric microbiota through oral administration of probiotics might be an alternative strategy to prevent H. pylori infection.
Collapse
Affiliation(s)
- Mingfang Pan
- College of Life Science, Nanchang University, Nanchang 330031, P. R. China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Qiong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Renhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Nagendra P Shah
- College of Life Science, Nanchang University, Nanchang 330031, P. R. China; Food and Nutritional Science, School of Biological Sciences, University of Hong Kong, Hong Kong.
| | - Hua Wei
- College of Life Science, Nanchang University, Nanchang 330031, P. R. China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China.
| |
Collapse
|
45
|
Haarberg KMK, Wymore Brand MJ, Overstreet AMC, Hauck CC, Murphy PA, Hostetter JM, Ramer-Tait AE, Wannemuehler MJ. Orally administered extract from Prunella vulgaris attenuates spontaneous colitis in mdr1a -/- mice. World J Gastrointest Pharmacol Ther 2015; 6:223-237. [PMID: 26558156 PMCID: PMC4635162 DOI: 10.4292/wjgpt.v6.i4.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ability of a Prunella vulgaris (P. vulgaris) ethanolic extract to attenuate spontaneous typhlocolitis in mdr1a-/- mice.
METHODS: Vehicle (5% ethanol) or P. vulgaris ethanolic extract (2.4 mg/d) were administered daily by oral gavage to mdr1a-/- or wild type FVBWT mice from 6 wk of age up to 20 wk of age. Clinical signs of disease were noted by monitoring weight loss. Mice experiencing weight loss in excess of 15% were removed from the study. At the time mice were removed from the study, blood and colon tissue were collected for analyses that included histological evaluation of lesions, inflammatory cytokine levels, and myeloperoxidase activity.
RESULTS: Administration of P. vulgaris extracts to mdr1a-/- mice delayed onset of colitis and reduced severity of mucosal inflammation when compared to vehicle-treated mdr1a-/- mice. Oral administration of the P. vulgaris extract resulted in reduced (P < 0.05) serum levels of IL-10 (4.6 ± 2 vs 19.4 ± 4), CXCL9 (1319.0 ± 277 vs 3901.0 ± 858), and TNFα (9.9 ± 3 vs 14.8 ± 1) as well as reduced gene expression by more than two-fold for Ccl2, Ccl20, Cxcl1, Cxcl9, IL-1α, Mmp10, VCAM-1, ICAM, IL-2, and TNFα in the colonic mucosa of mdr1a-/- mice compared to vehicle-treated mdr1a-/- mice. Histologically, several microscopic parameters were reduced (P < 0.05) in P. vulgaris-treated mdr1a-/- mice, as was myeloperoxidase activity in the colon (2.49 ± 0.16 vs 3.36 ± 0.06, P < 0.05). The numbers of CD4+ T cells (2031.9 ± 412.1 vs 5054.5 ± 809.5) and germinal center B cells (2749.6 ± 473.7 vs 4934.0 ± 645.9) observed in the cecal tonsils of P. vulgaris-treated mdr1a-/- were significantly reduced (P < 0.05) from vehicle-treated mdr1a-/- mice. Vehicle-treated mdr1a-/- mice were found to produce serum antibodies to antigens derived from members of the intestinal microbiota, indicative of severe colitis and a loss of adaptive tolerance to the members of the microbiota. These serum antibodies were greatly reduced or absent in P. vulgaris-treated mdr1a-/- mice.
CONCLUSION: The anti-inflammatory activity of P. vulgaris ethanolic extract effectively attenuated the severity of intestinal inflammation in mdr1a-/- mice.
Collapse
|
46
|
Affiliation(s)
- A. T. Blikslager
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) has long been known to have genetic risk factors because of increased prevalence in the relatives of affected individuals. However, genome-wide association studies have only explained limited heritability in IBD. The observed globally rising incidence of IBD has implicated the role of environmental factors. The hidden unexplained heritability remains to be explored. RECENT FINDINGS Recent aggregate evidence has highlighted the extent and nature of host genome-microbiome associations, a key next step in understanding the mechanisms of pathogenesis in IBD. An individual's gut microbiota is shaped not only by genetic but also by environmental factors like diet. Minimizing exposure of the intestinal lumen to selected food items has shown to prolong the remission state of IBD. Among a genetically susceptible host, the shift of gut microbiota (or 'dysbiosis') can lead to increasing the susceptibility to IBD. With the advances in high-throughput large-scale 'omics' technologies in combination with creative data mining and system biology-based network analyses, the complexity of biological functional networks behind the cause of IBD has become more approachable. Therefore, the hidden heritability in IBD has become more explainable, and can be attributable to the changing environmental factors, epigenetic modifications, and gene-host microbial ('in-vironmental') or gene-extrinsic environmental interactions. SUMMARY This review discusses the perspectives of relevance to clinical translation with emphasis on gene-environment interactions. No doubt, the use of system-based approaches will lead to the development of alternative, and hopefully better, diagnostic, prognostic, and monitoring tools in the management of IBD.
Collapse
|
48
|
Niu X, Zhang H, Li W, Wang Y, Mu Q, Wang X, He Z, Yao H. Protective effect of cavidine on acetic acid-induced murine colitis via regulating antioxidant, cytokine profile and NF-κB signal transduction pathways. Chem Biol Interact 2015; 239:34-45. [PMID: 26102009 DOI: 10.1016/j.cbi.2015.06.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis is an inflammatory disorder characterized by neutrophils infiltration, oxidative stress, upregulation of pro-inflammatory mediators and cytokines. Cavidine possesses anti-inflammatory activity and has been used to treat various inflammatory diseases but its effect on ulcerative colitis has not been previously explored. The present study aims to evaluate the effect of cavidine on acetic acid-induced ulcerative colitis in mice. Colitis mice induced by intra-rectal acetic acid (5%, v/v) administration received cavidine (1, 5 and 10mg/kg, i.g) or sulfasalazine (500mg/kg, i.g) for seven consecutive days. After euthanized by cervical dislocation, colonic segments of mice were excised for clinical, macroscopic, biochemical and histopathological examinations. Results suggested treatment with cavidine significantly decreased mortality rate, body weight loss, disease activity index (DAI), wet colon weight, macroscopic and histological score when compared with that of acetic acid-induced controls. In addition, administration of cavidine effectively modulated expressions of MPO, GSH, SOD and MDA. Furthermore cavidine inhibited the level of TNF-α and IL-6 in the serum and colon tissue in response to the regulation of p65 NF-κB protein expression. All these results indicated cavidine exerts marked protective effect in experimental colitis, possibly by regulating the expression of oxygen metabolites, NF-κB and subsequent pro-inflammatory cytokines production.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Hailin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Yu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qingli Mu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huan Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
49
|
Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc Natl Acad Sci U S A 2015; 112:7803-8. [PMID: 26056274 DOI: 10.1073/pnas.1501897112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet(-/-) Rag2(-/-) mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631's beneficial effect in the T-bet(-/-) Rag2(-/-) model. Similar effects were obtained in two additional colonic inflammation models, Il10(-/-) mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2 (-)) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA's extracytoplasmic O2 (-) scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA's bioaccessibility.
Collapse
|
50
|
Tang MS, Poles J, Leung JM, Wolff MJ, Davenport M, Lee SC, Lim YA, Chua KH, Loke P, Cho I. Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation. Gut Microbes 2015; 6:48-56. [PMID: 25559083 PMCID: PMC4615154 DOI: 10.1080/19490976.2014.1000080] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal microbiota lives in close proximity with the intestinal epithelium and may interact more directly with the host immune system than the luminal/fecal bacteria. The availability of nutrients in the mucus layer of the epithelium is also very different from the gut lumen environment. Inferred metagenomic analysis for microbial function of the mucosal microbiota is possible by PICRUSt. We recently found that by using this approach, actively inflamed tissue of ulcerative colitis (UC) patients have mucosal communities enriched for genes involved in lipid and amino acid metabolism, and reduced for carbohydrate and nucleotide metabolism. Here, we find that the same bacterial taxa (e.g. Acinetobacter) and predicted microbial pathways enriched in actively inflamed colitis tissue are also enriched in the mucosa of subjects undergoing routine screening colonoscopies, when compared with paired samples of luminal/fecal bacteria. These results suggest that the mucosa of healthy individuals may be a reservoir of aerotolerant microbial communities expanded during colitis.
Collapse
Affiliation(s)
- Mei San Tang
- Department of Microbiology; New York University School of Medicine; New York, NY USA
| | - Jordan Poles
- Department of Microbiology; New York University School of Medicine; New York, NY USA
| | - Jacqueline M Leung
- Department of Microbiology; New York University School of Medicine; New York, NY USA
| | - Martin J Wolff
- Department of Medicine; New York University School of Medicine; New York, NY USA
| | - Michael Davenport
- Department of Medicine; New York University School of Medicine; New York, NY USA
| | - Soo Ching Lee
- Department of Parasitology; University of Malaya; Kuala Lumpur, Malaysia
| | - Yvonne Al Lim
- Department of Parasitology; University of Malaya; Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science; University of Malaya; Kuala Lumpur, Malaysia
| | - P'ng Loke
- Department of Microbiology; New York University School of Medicine; New York, NY USA,Corresponding authors: P’ng Loke;
| | - Ilseung Cho
- Department of Medicine; New York University School of Medicine; New York, NY USA,VA New York Harbor Healthcare System; New York, NY USA
| |
Collapse
|