1
|
Sajjad M, Ali S, Baig S, Sharafat S, Khan BA, Khan S, Mughal N, Abidi SH. HBV S antigen evolution in the backdrop of HDV infection affects epitope processing and presentation. J Med Virol 2021; 93:3714-3729. [PMID: 33289144 DOI: 10.1002/jmv.26711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION HBV can evolve under selection pressure exerted by drugs and/or host immunity, resulting in accumulation of escape mutations that can affect the drug or the immune activity. Hepatitis delta virus (HDV) coinfection is also known to exert selection pressure on HBV, which leads to selective amplification of certain mutations, especially in genes that are required for HDV pathogenesis, such as HBsAg. However, little is known about the function of these mutations on HBV or HDV life cycle. The purpose of this study is to determine mutations selectively amplified in the backdrop of HDV, and how these mutations affect processing of CD4- and CD8-T cell epitopes. METHODS HBsAg was successfully amplified from 49/50 HBV mono- and 36/50 coinfected samples. The sequences were used to identify mutations specific to each study group, followed by an in silico analysis to determine the effect of these mutations on (1) proteasomal degradation, (2) MHC-I and MHC-II biding, and (3) processing of T-cell epitopes. RESULTS HBV-HDV coinfected sequences exhibited certain unique mutations in HBsAg genes. Some of these mutations affected the generation of proteasomal sites, binding of HBsAg epitopes to MHC-I and -II ligands, and subsequent generation of T- cell epitopes. CONCLUSION These observations suggest that HBV selectively amplifies certain mutations in the backdrop of HDV coinfection. Selective amplification of these mutations at certain strategic locations might not only enable HBV to counteract the inhibitory effects of HDV on HBV replication but also facilitate its survival by escaping the immune response.
Collapse
Affiliation(s)
- Mehwish Sajjad
- Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Ali
- Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | - Samina Baig
- Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan
| | - Shaheen Sharafat
- Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan
| | - Bilal Ahmed Khan
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Saeed Khan
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Nouman Mughal
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
2
|
Methods for monitoring gene gun-induced HBV- and HCV-specific immune responses in mouse models. Methods Mol Biol 2013; 940:239-67. [PMID: 23104348 DOI: 10.1007/978-1-62703-110-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The hepatitis B and C viruses (HBV/HCV) are major causes for chronic liver disease globally. For HBV new antiviral compounds can suppress the viral replication for years, but off-therapy responses are rare. Current therapies based on interferon and ribavirin can cure 45-85% of the treated HCV-infected patients largely depending on the viral genotype. New regimens including protease inhibitors will be introduced during 2011 and these will increase the cure rates for the hardest to treat HCV genotype 1 from 45 to 65%. Here a major need is to replace the immunomodulatory effects of interferon and/or ribavirin. Thus, therapeutic vaccines have a place in both chronic HBV and HCV infection. Unfortunately, none of these viruses can infect mice whereby substitute models are needed. We have used several types of murine models to predict the clinical efficacy of therapeutic vaccines for chronic HBV and HCV infections. In this chapter we describe transdermal delivery of genetic vaccines using the Helios Gene Gun device. A central role is that the model should have generally functional immune response, but with selective defects towards HBV and/or HCV. Thus, mice with stable integrated transgenes are useful. However, as a simple model to study the hepatic entry and functionality of a HBV- and/or HCV-specific immune responses other models are needed, where a killed transgenic hepatocyte is replaced by a healthy non-transgenic hepatocyte. Here we can effectively apply a technique termed hydrodynamic injection, which makes 10-30% of hepatocytes transiently transgenic for any plasmid. Within this chapter the methods used to characterize transiently transgenic mice are described. The main methods are the hydrodynamic injection technique, detection of transgene expression by immuno-precipitation, western blot, and immunohistochemistry. Finally, the in vivo functionality of T cells can be determined by using stably transfected syngeneic tumor cell lines expressing HBV and/or HCV proteins. The tumor challenge model enables studies of in vivo T cell function, whereas the cytotoxicity assay is used to determine T cell function in vitro. Overall, these models effectively reveal the efficiency by which various vaccine technologies, including biolistic DNA vaccination can kill the "infected" hepatocyte.
Collapse
|
3
|
Jan RH, Lin YL, Chen CJ, Lin TY, Hsu YC, Chen LK, Chiang BL. Hepatitis B virus surface antigen can activate human monocyte-derived dendritic cells by nuclear factor kappa B and p38 mitogen-activated protein kinase mediated signaling. Microbiol Immunol 2013; 56:719-27. [PMID: 22853328 DOI: 10.1111/j.1348-0421.2012.00496.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus Ag (HBsAg), a major antigen of hepatitis B virus (HBV), is also a vaccine component for prevention of HBV infection. Dendritic cells (DCs) of HBV carriers reportedly exhibit functional impairment. In this study, the aim was to investigate the effect of HBsAg on activation of human monocyte-derived dendritic cells (MD-DCs), and the subsequent signal transduction pathway. Treatment of MD-DCs with HBsAg resulted in enhanced cell surface expression of cluster of differentiation 80, CD83, CD86 and major histocompatibility complex class II, and increased interleukin (IL)-12 p40, IL-12p70, and IL-10 production. Furthermore, HBsAg treatment of MD-DCs with HBsAg resulted in enhanced T cell-stimulatory capacity and increased T cell secretion of interferon and IL-10. The pathway of MD-DCs activation by HBsAg was further investigated in the present study. Inhibition of nuclear factor (NF)-kappa B (κB) by helenalin and p38 mitogen-activated protein kinase (MAPK) by SB203580 prevented production of IL-12 p40, IL-12 p70, and IL-10. HBsAg also augmented MAPK phosphorylation. Thus, cytokine secretion of human MD-DCs by HBsAg is blocked by inhibition of the NF-κB and p38 MAPK pathways. Likewise, decreased inhibition of kappa B alpha concentrations and MAPK phosphorylation are critical for MD-DC maturation by HBsAg. These findings may provide a strategy for improving the prophylactic and therapeutic efficacy of vaccines and tumor therapies that utilize these pathways.
Collapse
Affiliation(s)
- Rong-Hwa Jan
- Institute of Medical Sciences, Tzu-Chi University, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
4
|
Lee KA, Song YC, Kim GY, Choi G, Lee YS, Lee JM, Kang CY. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells. Eur J Immunol 2012; 42:1685-94. [PMID: 22585464 DOI: 10.1002/eji.201142322] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/25/2012] [Accepted: 03/27/2012] [Indexed: 11/07/2022]
Abstract
Retinoic acid (RA) is a diverse regulator of immune responses. Although RA promotes natural killer T (NKT) cell activation in vitro by increasing CD1d expression on antigen-presenting cells (APCs), the direct effects of RA on NKT-cell responses in vivo are not known. In the present study, we demonstrated the effect of RA on the severity of Con A-induced hepatitis and molecular changes of NKT cells. First, we demonstrated that Con A-induced liver damage was ameliorated by RA. In correlation with cytokine levels in serum, RA regulated the production of IFN-γ and IL-4 but not TNF-α by NKT cells without influencing the NKT-cell activation status. However, RA did not alleviate α-GalCer-induced liver injury, even though it reduced IFN-γ and IL-4 but not TNF-α levels in serum. This regulation was also detected when liver mononuclear cells (MNCs) or NKT hybridoma cells were treated with RA in vitro. The regulatory effect of RA on NKT cells was mediated by RAR-α, and RA reduced the phosphorylation of MAPK. These results suggest that RA differentially modulates the production of effector cytokines by NKT cells in hepatitis, and the suppressive effect of RA on hepatitis varies with the pathogenic mechanism of liver injury.
Collapse
Affiliation(s)
- Kyoo-A Lee
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Byrd KK, Murphy TV, Hu DJ. Hepatitis B and Hepatitis D Viruses. PRINCIPLES AND PRACTICE OF PEDIATRIC INFECTIOUS DISEASES 2012:1077-1087.e6. [DOI: 10.1016/b978-1-4377-2702-9.00215-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Hempel F, Lau J, Klingl A, Maier UG. Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One 2011; 6:e28424. [PMID: 22164289 PMCID: PMC3229587 DOI: 10.1371/journal.pone.0028424] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 11/08/2011] [Indexed: 12/29/2022] Open
Abstract
Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies.
Collapse
Affiliation(s)
- Franziska Hempel
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| | | | | | | |
Collapse
|
7
|
Jan RH, Lin YL, Chen LK, Huang MT, Wang LC, Chiang BL. Hepatitis B virus surface antigen can activate dendritic cells and modulate T helper type immune response. Microbiol Immunol 2011; 55:51-9. [PMID: 21175774 DOI: 10.1111/j.1348-0421.2010.00284.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus surface antigen (HBsAg) is a major antigen of hepatitis B virus (HBV). Dendritic cells (DC) of HBV carriers have been reported to exhibit functional impairment. In this study, the role of HBsAg on mice bone marrow-derived dendritic cells and immune responses in vivo was studied. The immune modulatory function of HBsAg was explored by using mice bone marrow-derived dendritic cells in vitro and also by examining an ovalbumin (OVA) specific immune response in vivo. Treatment of dendritic cells with HBsAg resulted in enhanced cell surface expression of cluster of differentiation (CD) 80, CD83, CD86, and major histocompatibility complex (MHC) class II, and enhanced production of interleukin (IL)-12 p40 and IL-12 p70. Treatment of dendritic cells with HBsAg resulted in decreased T cell secretion of IL-5 by OVA stimulation. In addition, the results showed stronger OVA-specific immunoglobulin (Ig) M and weaker IgG responses in mice sera when they had been immunized with OVA and co-injected with HBsAg. It was also found that the mice exhibited significant enhancement of anti-OVA IgG2a antibody (Ab), as well as marked inhibition of IgG1 Ab production. In cellular immune responses, IL-5 production was significantly decreased and interferon (IFN)-γ increased in the group co-injected with HBsAg. On the other hand, the induction of lymphoproliferative response to OVA stimulation in spleen cells was decreased in the HBsAg co-injected group. These results demonstrate that HBsAg can affect the differentiation of T helper (Th) cells, which might provide a strategy for improving its prophylactic and therapeutic efficacy.
Collapse
Affiliation(s)
- Rong-Hwa Jan
- Tzu-Chi University Department of Pediatrics, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Block TM, Guo J, London WT. Clinical Implications of the Molecular Biology of Hepatitis B Virus. THE LIVER 2009:859-876. [DOI: 10.1002/9780470747919.ch52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Zeng Z, Guan L, An P, Sun S, O'Brien SJ, Winkler CA. A population-based study to investigate host genetic factors associated with hepatitis B infection and pathogenesis in the Chinese population. BMC Infect Dis 2008; 8:1. [PMID: 18171470 PMCID: PMC2238742 DOI: 10.1186/1471-2334-8-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a significant public health problem that may lead to chronic liver disease, cirrhosis, and hepatocellular carcinoma (HCC). Approximately 30% of the world's population has been infected with HBV and approximately 350 million (5-6%) are persistent carriers. More than 120 million Chinese are infected with HBV. The role of host genetic factors and their interactions with environmental factors leading to chronic HBV infection and its complications are not well understood. We believe that a better understanding of these factors and interactions will lead to more effective diagnostic and therapeutic options. METHODS/DESIGN This is a population-based, case-control study protocol to enroll 2200 Han Chinese from medical centers in northern and western China. Adult subjects in the following groups are being enrolled: healthy donors (n = 200), HBV infected persons achieving virus clearance (n = 400), asymptomatic HBV persistent carriers (n = 400), chronic hepatitis B cases (n = 400), decompensated liver cirrhosis with HBV infection cases (n = 400), and hepatocellular carcinoma with HBV infection cases (n = 400). In addition, for haplotype inference and quality control of sample handling and genotyping results, children of 1000 cases will be asked to provide a buccal sample for DNA extraction. With the exception of adult patients presenting with liver cirrhosis or HCC, all other cases and controls will be 40 years or older at enrollment. A questionnaire is being administered to capture dietary and environmental risk factors. Both candidate-gene and genome-wide association approaches will be used to assess the role of single genetic factors and higher order interactions with other genetic or environmental factors in HBV diseases. CONCLUSION This study is designed and powered to detect single gene effects as well as gene-gene and environmental-gene interactions. The identification of allelic polymorphisms in genes involved in the pathway leading to chronic viral infection, liver cirrhosis and, ultimately, hepatocellular carcinoma would provide insights to those factors leading to HBV replication, liver inflammation, fibrosis, and the carcinogenic process. An understanding of the contribution of host genetic factors and their interactions may inform public health policy, improve diagnostics and clinical management, and provide targets for drug development.
Collapse
Affiliation(s)
- Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Beijing, P.R.China
| | - Li Guan
- SAIC/Laboratory of Genomic Diversity, National Cancer Institute-Frederick, National Institutes of Health, Frederick, USA
| | - Ping An
- SAIC/Laboratory of Genomic Diversity, National Cancer Institute-Frederick, National Institutes of Health, Frederick, USA
| | - Shan Sun
- Conservation International (CI) China program, Beijing, P.R.China
| | - Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, National Institutes of Health, Frederick, USA
| | - Cheryl A Winkler
- SAIC/Laboratory of Genomic Diversity, National Cancer Institute-Frederick, National Institutes of Health, Frederick, USA
| | - the HBV study consortium
- HBV study consortium: Department of Infectious Diseases, Peking University First Hospital, Beijing, P.R.China (Zheng Zeng, Yanyan Yu, Xiaoyuan Xu, Haiying Lu); Institute of Liver Diseases Research, Beijing Military General Hospital, Beijing, P.R.China (Darong Hu); Beijing Ditan Hospital (Rongbing Wang, Yifan Chen); Department of Surgery, Beijing Institute of Tumor Prevention and Therapy, Beijing, P.R.China (Cunyi Hao); Department of Infectious Diseases, Shanxi Medical University, Taiyuan, P.R.China (Heping Zhou); Department of Infectious Diseases, Qinhuangdao No. 3 Hospital, Qinhuangdao, P.R.China (Zhonghou Han); Department of Surgery, Inner Mongolia Medical College, Hohhot, P.R.China (Lidao Bao, Xiping Zhang); Department of Infectious Diseases, Xuzhou No. 3 Hospital, Xuzhou, P.R.China (Dasi Guo); Department of Infectious Diseases, Xinjian Medical University, Urumoqi, P.R.China (Yaoxin Zhang); Department of Infectious Diseases, the Second Affiliate Hospital of China Medical University, Shenyang, P.R.China (Xiaoguang Dou); Institute of Liver Diseases Research, Peking University Second Hospital, Beijing, P.R.China (Lai Wei); Department of Surgery, Peking Union Medical College, Beijing, P.R.China (Jingan Rui, Qiang Qu)
| |
Collapse
|
10
|
Abstract
This article reviews the molecular biology of the hepatitis B virus in an effort to explain its natural history from a molecular perspective. The life cycle of the virus, with special attention to virus replication, polypeptide production, and morphogenesis, is described. The way in which these steps may influence the natural history of viral pathogenesis, as well as the effectiveness of interventions, receives special consideration.
Collapse
|
11
|
Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine 2007; 25:8585-97. [PMID: 18031872 DOI: 10.1016/j.vaccine.2007.09.072] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 12/11/2022]
Abstract
Induction of curative immune responses by therapeutic vaccination in chronic viral infections such as chronic hepatitis B (CHB) is expected to be facilitated by reduction of viral load by antiviral treatment. In this open label, controlled, randomized study, 195 patients with HBeAg positive CHB were randomized to receive 12 doses of HBsAg with AS02B adjuvant candidate vaccine plus lamivudine daily for 52 weeks or lamivudine daily alone. The combined administration of vaccine and lamivudine was safe and well tolerated, but did not improve the HBe seroconversion rate (18.8%) when compared to treatment with lamivudine alone (16.1%) (p=0.6824). Despite induction of a vigorous HBsAg-specific lymphoproliferative response, cytokine production and anti-HBs antibodies, therapeutic vaccination with an adjuvanted HBsAg vaccine administered concomitantly with lamivudine did not demonstrate superior clinical efficacy in HBeAg positive CHB patients as compared to lamivudine therapy alone.
Collapse
|
12
|
Block TM, Mehta AS, Blumberg BS, Dwek RA. Does rapid oligomerization of hepatitis B envelope proteins play a role in resistance to proteasome degradation and enhance chronicity? DNA Cell Biol 2006; 25:165-70. [PMID: 16569195 DOI: 10.1089/dna.2006.25.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review discusses the nature of hepatitis B and C chronicity from a virological perspective. Work described in the literature and our in vitro studies of HBV polypeptide morphogenesis lead us to speculate about a role for HBsAg complex formation in immune evasion that may be especially important during the initial period of infection. Briefly, although viral structural proteins do eventually provide epitopes recognized by the host, we suggest that these HBs Ag complexes, which may themselves be refractory to proteasomal degradation, are an important way by which the virus shields its epitopes and evades early recognition by the cellular immune system. This suggests a central strategy by which the virus has evolved, structurally, to enable the establishment of persistent infection of its host. The concept offers an explanation for the nearly unidirectional and rapid kinetics whereby HBV proteins form multimers and generate a surplus of viral structures that have not been thought to serve any useful structural purpose.
Collapse
Affiliation(s)
- Timothy M Block
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania 18901, USA.
| | | | | | | |
Collapse
|
13
|
Biburger M, Tiegs G. Alpha-galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:1540-50. [PMID: 16034092 DOI: 10.4049/jimmunol.175.3.1540] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
NKT cells expressing phenotypic markers of both T and NK cells seem to be pivotal in murine models of immune-mediated liver injury, e.g., in Con A-induced hepatitis. Also alpha-galactosylceramide (alpha-GalCer), a specific ligand for invariant Valpha14 NKT cells, induces hepatic injury. To improve the comprehension of NKT-cell mediated liver injury, we investigated concomitants and prerequisites of alpha-GalCer-induced hepatitis in mice. Liver injury induced by alpha-GalCer injection into C57BL/6 mice was accompanied by intrahepatic caspase-3 activity but appeared independent thereof. alpha-GalCer injection also induces pronounced cytokine responses, including TNF-alpha, IFN-gamma, IL-2, IL-4, and IL-6. We provide a detailed time course for the expression of these cytokines, both in liver and plasma. Cytokine neutralization revealed that, unlike Con A-induced hepatitis, IFN-gamma is not only dispensable for alpha-GalCer-induced hepatotoxicity but even appears to exert protective effects. In contrast, TNF-alpha was clearly identified as an important mediator for hepatic injury in this model that increased Fas ligand expression on NKT cells. Whereas intrahepatic Kupffer cells are known as a pivotal source for TNF-alpha in Con A-induced hepatitis, they were nonessential for alpha-GalCer-mediated hepatotoxicity. In alpha-GalCer-treated mice, TNF-alpha was produced by intrahepatic lymphocytes, in particular NKT cells. BALB/c mice were significantly less susceptible to alpha-GalCer-induced liver injury than C57BL/6 mice, in particular upon pretreatment with d-galactosamine, a hepatocyte-specific sensitizer to TNF-alpha-mediated injury. Finally, we demonstrate resemblance of murine alpha-GalCer-induced hepatitis to human autoimmune-like liver disorders. The particular features of this model compared with other immune-mediated hepatitis models may enhance comprehension of basic mechanisms in the etiopathogenesis of NKT cell-comprising liver disorders.
Collapse
Affiliation(s)
- Markus Biburger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
14
|
Jarrosson L, Kolopp-Sarda MN, Aguilar P, Béné MC, Lepori ML, Vignaud MC, Faure GC, Kohler C. Most humoral non-responders to hepatitis B vaccines develop HBV-specific cellular immune responses. Vaccine 2004; 22:3789-96. [PMID: 15315860 DOI: 10.1016/j.vaccine.2004.02.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 02/29/2004] [Indexed: 11/25/2022]
Abstract
About 10% of health care professionals vaccinated against hepatitis B virus (HBV) fail to develop protective antibodies. We tested the capacity of peripheral blood lymphocytes from 121 health care professionals, including 76 non-responders, to proliferate to four HBV vaccines, examined the proliferating cells' subset, production of IFN-gamma, IL-4 and IL-10, and for 22 subjects, the cytokine production genotype. Specific proliferative responses to at least one HBV antigen were noted in 75% humoral non-responders. These cells differed from the CD4+ strongly proliferating cells of responders. Non-responders frequently displayed a genotype of high TGF-beta and intermediate IL-10 secretion. Most humoral non-responders to HBV thus develop specific cellular immune responses, eventually liable to protect them against viral infection.
Collapse
Affiliation(s)
- L Jarrosson
- Laboratoire d'Immunologie du CHU, Faculté de Médecine, BP 184, 54500 Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Vanlandschoot P, Van Houtte F, Roobrouck A, Farhoudi A, Leroux-Roels G. Hepatitis B virus surface antigen suppresses the activation of monocytes through interaction with a serum protein and a monocyte-specific receptor. J Gen Virol 2002; 83:1281-1289. [PMID: 12029142 DOI: 10.1099/0022-1317-83-6-1281] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During hepatitis B virus (HBV) infection, high numbers of non-infectious HBV surface antigen (HBsAg) particles are present in circulation. It is shown here that recombinant HBsAg (rHBsAg) particles, which contain the S protein only, bind almost exclusively to monocytes. Attachment of rHBsAg to the THP-1 pre-monocytic cell line occurs upon 1,25-dihydroxyvitamin D3-induced differentiation. Binding to monocytes is enhanced by a heat-labile serum protein and is inhibited by Ca(2+)/Mg(2+), low pH and an HBsAg-specific monoclonal antibody. Furthermore, it is shown that rHBsAg suppresses lipopolysaccharide- and IL-2-induced production of cytokines. These results suggest the existence of a monocyte-specific receptor, the engagement of which by HBsAg suppresses the activity of these cells.
Collapse
Affiliation(s)
- Peter Vanlandschoot
- Center for Vaccinology, Department of Clinical Biology, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium1
| | - Freya Van Houtte
- Center for Vaccinology, Department of Clinical Biology, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium1
| | - Annelies Roobrouck
- Center for Vaccinology, Department of Clinical Biology, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium1
| | - Ali Farhoudi
- Center for Vaccinology, Department of Clinical Biology, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium1
| | - Geert Leroux-Roels
- Center for Vaccinology, Department of Clinical Biology, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium1
| |
Collapse
|
16
|
Owiredu WK, Kramvis A, Kew MC. Molecular analysis of hepatitis B virus genomes isolated from black African patients with fulminant hepatitis B. J Med Virol 2001. [PMID: 11596083 DOI: 10.1002/jmv.2062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate further the possible role of mutant hepatitis B viruses in the pathogenesis of fulminant hepatitis B, the genomic sequence of hepatitis B virus isolates from 9 South African blacks with this disease, including 5 entire genomes, was analysed. Seven of the isolates were genotype A. The mutation most often reported in patients with fulminant hepatitis B, the G1896A precore stop-codon substitution, was, as expected, not present in the genotype A isolates with the exception of one in which it was accompanied by a compensatory C1858T substitution. G1896A was, however, present in the one genotype D isolate. No other precore-defective mutants were detected. The other mutation commonly found in patients with fulminant hepatitis B, the paired A1762T, G1764A substitution in the basic core promoter, was present in only one patient and G1764A in one other. The pre-surface initiation-codon mutation documented in a number of patients with fulminant hepatitis B was not found in our isolates. An 18-amino acid deletion present in the pre-surface region of one isolate has not previously been described in fulminant hepatitis B. Variations within the surface region were mainly genotype specific and not previously described. A relatively large number of mutations were present in the middle region of the core gene in those isolates without G1896A or A1762T, G1764A mutations, although the pattern was not consistent with those in published studies. Thus, as in other published series in which the entire genome of hepatitis B virus responsible for fulminant hepatitis was sequenced, we detected many mutations in different genes, but none was common to all the reported isolates.
Collapse
Affiliation(s)
- W K Owiredu
- MRC/CANSA/University Molecular Hepatology Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
17
|
Sobotta D, Sominskaya I, Jansons J, Meisel H, Schmitt S, Heermann KH, Kaluza G, Pumpens P, Gerlich WH. Mapping of immunodominant B-cell epitopes and the human serum albumin-binding site in natural hepatitis B virus surface antigen of defined genosubtype. J Gen Virol 2000; 81:369-78. [PMID: 10644835 DOI: 10.1099/0022-1317-81-2-369] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Twelve MAbs were generated by immunization of BALB/c mice with plasma-derived hepatitis B virus surface spherical antigen particles subtype ayw2 (HBsAg/ayw2 genotype D). Their epitopes were mapped by analysis of reactivity with plasma-derived HBsAg/ayw2 and HBsAg/adw2 (genotype A) in enzyme immunoassays and blots. Mapping was supported by nested sets of truncated preS2 proteins and preS2 peptides. Five antibodies were S domain-specific, seven were preS2-specific and 11 had a preference for genotype D. According to our data, group I of the three known epitope groups of preS2 has to be divided into IA and IB. Three preS2-specific MAbs forming the new group IA reacted with genotype D residues 3-15 which have not yet been described as an epitope region. IA antibodies strongly inhibited the binding of polymerized human serum albumin. Two antibodies (group II) reacted with the glycosylated N-terminal region of preS2 in plasma-derived HBsAg, but not with a preparation from transfected murine cells. One group III antibody was subtype-specific and reacted with the highly variable preS2 sequence 38-48. Only one antibody (group IB) mapped to the region (old group I) which was believed to be immunodominant and genotype-independent. Geno(sub)type-specific epitopes of preS2 are obviously the immunodominant components of natural HBsAg in BALB/c mice, but these epitopes may be masked by serum albumins in humans. The data may explain why it is difficult to detect anti-preS2 antibodies in human recipients of preS2-containing vaccines, in spite of the preS2 immunodominance in mice.
Collapse
Affiliation(s)
- D Sobotta
- Institute of Medical Virology, Clinics of the Justus-Liebig-University, Frankfurter Str. 107, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hultgren C, Weiland O, Milich DR, Sällberg M. Cell-mediated immune responses and loss of hepatitis B e-antigen (HBeAg) during successful lamivudine and famciclovir combination therapy for chronic replicating hepatitis B virus infection. Clin Infect Dis 1999; 29:1575-7. [PMID: 10585820 DOI: 10.1086/313518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- C Hultgren
- Divisions of Clinical Virology, Basic Oral Sciences, Karolinska Institutet at Huddinge University Hospital, Huddinge, Sweden
| | | | | | | |
Collapse
|
19
|
Sterneck M, Kalinina T, Günther S, Fischer L, Santantonio T, Greten H, Will H. Functional analysis of HBV genomes from patients with fulminant hepatitis. Hepatology 1998; 28:1390-7. [PMID: 9794926 DOI: 10.1002/hep.510280530] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two previous case reports suggest that hepatitis B virus (HBV) core promoter variants with a high replication competence contribute to the pathogenesis of fulminant hepatitis B (FHB). We recently found in HBV genomes from patients with FHB an accumulation of mutations within the core promoter region. Therefore, the aim of this study was to investigate the phenotype of these HBV variants. Replication competence and expression of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) of viral genomes from seven patients with FHB and one patient with fulminant recurrent hepatitis after liver transplantation were analyzed by transfection experiments in human hepatoma cells. Compared with wild-type virus, the HBV variants from the seven patients with FHB produced similar or slightly lower levels of intracellular replicative intermediates and extracellular viral particles. In contrast, the HBV genomes from the patient with fulminant recurrent hepatitis synthesized and secreted significantly more HBV DNA. All genomes tested expressed similar or even higher levels of HBeAg compared with wild-type virus, except for those from four patients with a precore stop codon mutation in the respective dominant viral populations. The level of HBsAg produced by all variant genomes was similar or reduced compared with wild-type virus. These data indicate that in some cases HBV variants with enhanced replication competence and/or a defect in HBeAg expression may contribute to the development of FHB. However, neither phenotype is an essential prerequisite; thus, an additional role of other viral or host factors in the pathogenesis of FHB is suggested.
Collapse
Affiliation(s)
- M Sterneck
- Department of Medicine, University Hospital Hamburg Eppendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|