1
|
Aloisio Caruso E, De Nunzio V, Tutino V, Notarnicola M. The Endocannabinoid System: Implications in Gastrointestinal Physiology and Pathology. Int J Mol Sci 2025; 26:1306. [PMID: 39941074 PMCID: PMC11818434 DOI: 10.3390/ijms26031306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R), located principally in the nervous system and immune cells, orchestrate processes such as intestinal motility, intestinal and hepatic inflammation, and energy metabolism, respectively. The main endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), influence appetite, body weight regulation, and inflammatory states and thus have implications in obesity, non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS). Recent studies have highlighted the therapeutic potential of targeting the ECS to modulate gastrointestinal and metabolic diseases. In particular, peripheral CB1R antagonists and CB2R agonists have shown efficacy in treating intestinal inflammation, reducing hepatic steatosis, and controlling IBS symptoms. Moreover, the ECS is emerging as a potential target for the treatment of colorectal cancer, acting on cell proliferation and apoptosis. This review highlights the opportunity to exploit the endocannabinoid system in the search for innovative therapeutic strategies, emphasizing the importance of a targeted approach to optimize treatment efficacy and minimize side effects.
Collapse
Affiliation(s)
- Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| |
Collapse
|
2
|
Crowley K, Kiraga Ł, Miszczuk E, Skiba S, Banach J, Latek U, Mendel M, Chłopecka M. Effects of Cannabinoids on Intestinal Motility, Barrier Permeability, and Therapeutic Potential in Gastrointestinal Diseases. Int J Mol Sci 2024; 25:6682. [PMID: 38928387 PMCID: PMC11203611 DOI: 10.3390/ijms25126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds. The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins. The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.
Collapse
Affiliation(s)
- Kijan Crowley
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Edyta Miszczuk
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Sergiusz Skiba
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Joanna Banach
- Department of Research and Processing Seed, Institute of Natural Fibers and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| | - Urszula Latek
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| |
Collapse
|
3
|
Guo YX, Wang BY, Gao H, Hua RX, Gao L, He CW, Wang Y, Xu JD. Peroxisome Proliferator–Activated Receptor-α: A Pivotal Regulator of the Gastrointestinal Tract. Front Mol Biosci 2022; 9:864039. [PMID: 35558563 PMCID: PMC9086433 DOI: 10.3389/fmolb.2022.864039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Peroxisome proliferator–activated receptor (PPAR)-α is a ligand-activated transcription factor distributed in various tissues and cells. It regulates lipid metabolism and plays vital roles in the pathology of the cardiovascular system. However, its roles in the gastrointestinal tract (GIT) are relatively less known. In this review, after summarizing the expression profile of PPAR-α in the GIT, we analyzed its functions in the GIT, including physiological control of the lipid metabolism and pathologic mediation in the progress of inflammation. The mechanism of this regulation could be achieved via interactions with gut microbes and further impact the maintenance of body circadian rhythms and the secretion of nitric oxide. These are also targets of PPAR-α and are well-described in this review. In addition, we also highlighted the potential use of PPAR-α in treating GIT diseases and the inadequacy of clinical trials in this field.
Collapse
Affiliation(s)
- Yue-Xin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rong-Xuan Hua
- Clinical Medicine of “5+3” Program, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- Department of Dermatology, Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
4
|
Basarkar V, Govardhane S, Shende P. Multifaceted applications of genetically modified microorganisms: A biotechnological revolution. Curr Pharm Des 2022; 28:1833-1842. [PMID: 35088657 DOI: 10.2174/1381612828666220128102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genetically modified microorganisms specifically bacteria, viruses, algae and fungi are the novel approaches used in field of healthcare due to more efficacious and targeted delivery in comparison to conventional approaches. OBJECTIVE This review article focuses on applications of genetically modified microorganisms such as bacteria, virus, fungi, virus, etc. in treatment of cancer, obesity, and HIV. Gut microbiome is used to cause metabolic disorders but use of genetically-modified bacteria alters the gut microbiota and delivers the therapeutically effective drug in the treatment of obesity. METHODS To enhance the activity of different microorganisms for treatment, they are genetically modified by incorporating a fragment into the fungi filaments, integrating a strain into the bacteria, engineer a live-virus with a peptide using methods such as amelioration of NAPE synthesis, silica immobilization, polyadenylation, electrochemical, etc. Results: The development of newer microbial strains using genetic modifications offers higher precision, enhance the molecular multiplicity, prevent the degradation of microbes in atmospheric temperature and reduce the concerned side-effect for therapeutic application. Other side genetically modified microorganisms are used in non-healthcare based sector like generation of electricity, purification of water, bioremediation process etc. Conclusions: The bio-engineered micro-organisms with genetic modification prove the advantage over the treatment of various diseases like cancer, diabetes, malaria, organ regeneration, inflammatory bowel disease, etc. The article provides the insights of various applications of genetically modified microbes in various arena with its implementation for the regulatory approval.
Collapse
Affiliation(s)
- Vasavi Basarkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
5
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
6
|
Galiazzo G, Tagliavia C, Giancola F, Rinnovati R, Sadeghinezhad J, Bombardi C, Grandis A, Pietra M, Chiocchetti R. Localisation of Cannabinoid and Cannabinoid-Related Receptors in the Horse Ileum. J Equine Vet Sci 2021; 104:103688. [PMID: 34416995 DOI: 10.1016/j.jevs.2021.103688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
Colic is a common digestive disorder in horses and one of the most urgent problems in equine medicine. A growing body of literature has indicated that the activation of cannabinoid receptors could exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity. The localisation of cannabinoid and cannabinoid-related receptors in the intestine of the horse has not yet been investigated. The purpose of this study was to immunohistochemically localise the cellular distribution of canonical and putative cannabinoid receptors in the ileum of healthy horses. Distal ileum specimens were collected from six horses at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor-alpha (PPARα), transient receptor potential ankyrin 1 and serotonin 5-HT1a receptor (5-HT1aR). Cannabinoid and cannabinoid-related receptors showed a wide distribution in the ileum of the horse. The epithelial cells showed immunoreactivity for CB1R, CB2R and 5-HT1aR. Lamina propria inflammatory cells showed immunoreactivity for CB2R and 5-HT1aR. The enteric neurons showed immunoreactivity for CB1R, transient receptor potential ankyrin 1 and PPARα. The enteric glial cells showed immunoreactivity for CB1R and PPARα. The smooth muscle cells of the tunica muscularis and the blood vessels showed immunoreactivity for PPARα. The present study represents a histological basis which could support additional studies regarding the distribution of cannabinoid receptors during gastrointestinal inflammatory diseases as well as studies assessing the effects of non-psychotic cannabis-derived molecules in horses for the management of intestinal diseases.
Collapse
Affiliation(s)
- Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy.
| |
Collapse
|
7
|
Otagiri S, Ohnishi S, Ohara M, Fu Q, Yamamoto K, Yamamoto K, Katsurada T, Sakamoto N. Oleoylethanolamide Ameliorates Dextran Sulfate Sodium-Induced Colitis in Rats. Front Pharmacol 2020; 11:1277. [PMID: 32922296 PMCID: PMC7457075 DOI: 10.3389/fphar.2020.01277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Oleoylethanolamide (OEA) is an endogenous fatty acid ethanolamide known for its anti-inflammatory effects and its influence on gut microbiota composition; however, the effects of OEA in inflammatory bowel disease (IBD) remain unknown. During in vitro experiments, OEA downregulated the expression of tumor necrosis factor (TNF)-α and reduced phosphorylation of inhibitor of kappa (Iκ) Bα induced by lipopolysaccharide in human embryonic kidney cells. Moreover, OEA downregulated the expression of interleukin (IL)-8 and IL-1β and inhibited the phosphorylation of IκBα and p65 induced by TNF-α in human enterocytes (Caco-2). The effect of OEA in reducing the expression of IL-8 was blocked by the peroxisome proliferator-activated receptor (PPAR)-α antagonist. During in vivo experiments on rats, colitis was induced by the oral administration of 8% dextran sulfate sodium from day 0 through day 5, and OEA (20 mg/kg) was intraperitoneally injected once a day from day 0 for 6 days. OEA administration significantly ameliorated the reduction in body weight, the increase in disease activity index score, and the shortening of colon length. In rectums, OEA administration reduced the infiltration of macrophages and neutrophils and tended to reduce the histological score and the expression of inflammatory cytokines. Administration of OEA produced significant improvement in a colitis model, possibly by inhibiting the nuclear factor kappa B signaling pathway through PPAR-α receptors. OEA could be a potential new treatment for IBD.
Collapse
Affiliation(s)
- Shinsuke Otagiri
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takehiko Katsurada
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun 2020; 11:2577. [PMID: 32444671 PMCID: PMC7244730 DOI: 10.1038/s41467-020-16431-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome consists of a multi-kingdom microbial community. Whilst the role of bacteria as causal contributors governing host physiological development is well established, the role of fungi remains to be determined. Here, we use germ-free mice colonized with defined species of bacteria, fungi, or both to differentiate the causal role of fungi on microbiome assembly, immune development, susceptibility to colitis, and airway inflammation. Fungal colonization promotes major shifts in bacterial microbiome ecology, and has an independent effect on innate and adaptive immune development in young mice. While exclusive fungal colonization is insufficient to elicit overt dextran sulfate sodium-induced colitis, bacterial and fungal co-colonization increase colonic inflammation. Ovalbumin-induced airway inflammation reveals that bacterial, but not fungal colonization is necessary to decrease airway inflammation, yet fungi selectively promotes macrophage infiltration in the airway. Together, our findings demonstrate a causal role for fungi in microbial ecology and host immune functionality, and therefore prompt the inclusion of fungi in therapeutic approaches aimed at modulating early life microbiomes. The immunomodulatory role of commensal gut fungi and interactions with bacteria remain unclear. Here, using germ-free mice colonized with defined species of bacteria and fungi, the authors find that fungal colonization induces changes in bacterial microbiome ecology while having an independent effect on innate and adaptive immunity in mice.
Collapse
|
9
|
Pan X, Schwartz GJ, Hussain MM. Oleoylethanolamide differentially regulates glycerolipid synthesis and lipoprotein secretion in intestine and liver. J Lipid Res 2018; 59:2349-2359. [PMID: 30369486 DOI: 10.1194/jlr.m089250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/26/2018] [Indexed: 01/13/2023] Open
Abstract
Dietary fat absorption takes place in the intestine, and the liver mobilizes endogenous fat to other tissues by synthesizing lipoproteins that require apoB and microsomal triglyceride transfer protein (MTP). Dietary fat triggers the synthesis of oleoylethanolamide (OEA), a regulatory fatty acid that signals satiety to reduce food intake mainly by enhancing neural PPARα activity, in enterocytes. We explored OEA's roles in the assembly of lipoproteins in WT and Ppara -/- mouse enterocytes and hepatocytes, Caco-2 cells, and human liver-derived cells. In differentiated Caco-2 cells, OEA increased synthesis and secretion of triacylglycerols, apoB secretion in chylomicrons, and MTP expression in a dose-dependent manner. OEA also increased MTP activity and triacylglycerol secretion in WT and knockout primary enterocytes. In contrast to its intestinal cell effects, OEA reduced synthesis and secretion of triacylglycerols, apoB secretion, and MTP expression and activity in human hepatoma Huh-7 and HepG2 cells. Also, OEA reduced MTP expression and triacylglycerol secretion in WT, but not knockout, primary hepatocytes. These studies indicate differential effects of OEA on lipid synthesis and lipoprotein assembly: in enterocytes, OEA augments glycerolipid synthesis and lipoprotein assembly independent of PPARα. Conversely, in hepatocytes, OEA reduces MTP expression, glycerolipid synthesis, and lipoprotein secretion through PPARα-dependent mechanisms.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY .,Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY
| | - Gary J Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY .,Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY.,Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY
| |
Collapse
|
10
|
Di Paola M, Bonechi E, Provensi G, Costa A, Clarke G, Ballerini C, De Filippo C, Passani MB. Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Sci Rep 2018; 8:14881. [PMID: 30291258 PMCID: PMC6173739 DOI: 10.1038/s41598-018-32925-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
The lipid sensor oleoylethanolamide (OEA), an endogenous high-affinity agonist of peroxisome proliferator-activated receptor-α (PPAR-α) secreted in the proximal intestine, is endowed with several distinctive homeostatic properties, such as control of appetite, anti-inflammatory activity, stimulation of lipolysis and fatty acid oxidation. When administered exogenously, OEA has beneficial effects in several cognitive paradigms; therefore, in all respects, OEA can be considered a hormone of the gut-brain axis. Here we report an unexplored modulatory effect of OEA on the intestinal microbiota and on immune response. Our study shows for the first time that sub-chronic OEA administration to mice fed a normal chow pellet diet, changes the faecal microbiota profile, shifting the Firmicutes:Bacteroidetes ratio in favour of Bacteroidetes (in particular Bacteroides genus) and decreasing Firmicutes (Lactobacillus), and reduces intestinal cytokines expression by immune cells isolated from Peyer's patches. Our results suggest that sub-chronic OEA treatment modulates gut microbiota composition towards a "lean-like phenotype", and polarises gut-specific immune responses mimicking the effect of a diet low in fat and high in polysaccharides content.
Collapse
Affiliation(s)
- Monica Di Paola
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Elena Bonechi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Universitá di Firenze, Firenze, Italy
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Universitá di Firenze, Firenze, Italy
| | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Firenze, Italy
| | - Carlotta De Filippo
- Instituto di Biologia e Biotecnologie Agrarie (IBBA), Consiglio Nazionale delle Ricerce (CNR), Pisa, Italy
| | - M Beatrice Passani
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy.
| |
Collapse
|
11
|
The Role of Nuclear Hormone Receptors in Cannabinoid Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:291-328. [PMID: 28826538 DOI: 10.1016/bs.apha.2017.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the early 2000s, evidence has been accumulating that most cannabinoid compounds interact with the nuclear hormone family peroxisome proliferator-activated receptors (PPARs). This can be through direct binding of these compounds to PPARs, metabolism of cannabinoid to other PPAR-activating chemicals, or indirect activation of PPAR through cell signaling pathways. Delivery of cannabinoids to the nucleus may be facilitated by fatty acid-binding proteins and carrier proteins. All PPAR isoforms appear to be activated by cannabinoids, but the majority of evidence is for PPARα and γ. To date, little is known about the potential interaction of cannabinoids with other nuclear hormones. At least some (but not all) of the well-known biological actions of cannabinoids including neuroprotection, antiinflammatory action, and analgesic effects are partly mediated by PPAR-activation, often in combination with activation of the more traditional target sites of action. This has been best investigated for the endocannabinoid-like compounds palmitoylethanolamide and oleoylethanolamine acting at PPARα, and for phytocannabinoids or their derivatives activation acting at PPARγ. However, there are still many aspects of cannabinoid activation of PPAR and the role it plays in the biological and therapeutic effects of cannabinoids that remain to be investigated.
Collapse
|
12
|
Cremon C, Stanghellini V, Barbaro MR, Cogliandro RF, Bellacosa L, Santos J, Vicario M, Pigrau M, Alonso Cotoner C, Lobo B, Azpiroz F, Bruley des Varannes S, Neunlist M, DeFilippis D, Iuvone T, Petrosino S, Di Marzo V, Barbara G. Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment Pharmacol Ther 2017; 45:909-922. [PMID: 28164346 DOI: 10.1111/apt.13958] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/02/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Intestinal immune activation is involved in irritable bowel syndrome (IBS) pathophysiology. While most dietary approaches in IBS involve food avoidance, there are fewer indications on food supplementation. Palmithoylethanolamide, structurally related to the endocannabinoid anandamide, and polydatin are dietary compounds which act synergistically to reduce mast cell activation. AIM To assess the effect on mast cell count and the efficacy of palmithoylethanolamide/polydatin in patients with IBS. METHODS We conducted a pilot, 12-week, randomised, double-blind, placebo-controlled, multicentre study assessing the effect of palmithoylethanolamide/polydatin 200 mg/20 mg or placebo b.d. on low-grade immune activation, endocannabinoid system and symptoms in IBS patients. Biopsy samples, obtained at screening visit and at the end of the study, were analysed by immunohistochemistry, enzyme-linked immunoassay, liquid chromatography and Western blot. RESULTS A total of 54 patients with IBS and 12 healthy controls were enrolled from five European centres. Compared with controls, IBS patients showed higher mucosal mast cell counts (3.2 ± 1.3 vs. 5.3 ± 2.7%, P = 0.013), reduced fatty acid amide oleoylethanolamide (12.7 ± 9.8 vs. 45.8 ± 55.6 pmol/mg, P = 0.002) and increased expression of cannabinoid receptor 2 (0.7 ± 0.1 vs. 1.0 ± 0.8, P = 0.012). The treatment did not significantly modify IBS biological profile, including mast cell count. Compared with placebo, palmithoylethanolamide/polydatin markedly improved abdominal pain severity (P < 0.05). CONCLUSIONS The marked effect of the dietary supplement palmithoylethanolamide/polydatin on abdominal pain in patients with IBS suggests that this is a promising natural approach for pain management in this condition. Further studies are now required to elucidate the mechanism of action of palmithoylethanolamide/polydatin in IBS. ClinicalTrials.gov number, NCT01370720.
Collapse
Affiliation(s)
- C Cremon
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - V Stanghellini
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - M R Barbaro
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - R F Cogliandro
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - L Bellacosa
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - J Santos
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - M Vicario
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - M Pigrau
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - C Alonso Cotoner
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - B Lobo
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - F Azpiroz
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | | | - M Neunlist
- Institut des Maladies de l'Appareil Digestif, Hotel Dieu, Nantes, France
| | - D DeFilippis
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - T Iuvone
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - S Petrosino
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Epitech Group SpA, Saccolongo, Italy
| | - V Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - G Barbara
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
The Combination of Blueberry Juice and Probiotics Ameliorate Non-Alcoholic Steatohepatitis (NASH) by Affecting SREBP-1c/PNPLA-3 Pathway via PPAR-α. Nutrients 2017; 9:nu9030198. [PMID: 28264426 PMCID: PMC5372861 DOI: 10.3390/nu9030198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is liver inflammation and a major threat to public health. Several pharmaceutical agents have been used for NASH therapy but their high-rate side effects limit the use. Blueberry juice and probiotics (BP) have anti-inflammation and antibacterial properties, and may be potential candidates for NASH therapy. To understand the molecular mechanism, Sprague Dawley rats were used to create NASH models and received different treatments. Liver tissues were examined using HE (hematoxylin and eosin) and ORO (Oil Red O) stain, and serum biochemical indices were measured. The levels of peroxisome proliferators-activated receptor (PPAR)-α, sterol regulatory element binding protein-1c (SREBP-1c), Patatin-like phospholipase domain-containing protein 3 (PNPLA-3), inflammatory cytokines and apoptosis biomarkers in liver tissues were measured by qRT-PCR and Western blot. HE and ORO analysis indicated that the hepatocytes were seriously damaged with more and larger lipid droplets in NASH models while BP reduced the number and size of lipid droplets (p < 0.05). Meanwhile, BP increased the levels of SOD (superoxide dismutase), GSH (reduced glutathione) and HDL-C (high-density lipoprotein cholesterol), and reduced the levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), TG (triglycerides), LDL-C (low-density lipoprotein cholesterol) and MDA (malondialdehyde) in NASH models (p < 0.05). BP increased the level of PPAR-α (Peroxisome proliferator-activated receptor α), and reduced the levels of SREBP-1c (sterol regulatory element binding protein-1c) and PNPLA-3 (Patatin-like phospholipase domain-containing protein 3) (p < 0.05). BP reduced hepatic inflammation and apoptosis by affecting IL-6 (interleukin 6), TNF-α (Tumor necrosis factor α), caspase-3 and Bcl-2 in NASH models. Furthermore, PPAR-α inhibitor increased the level of SREBP-1c and PNPLA-3. Therefore, BP prevents NASH progression by affecting SREBP-1c/PNPLA-3 pathway via PPAR-α.
Collapse
|
14
|
Hasenoehrl C, Taschler U, Storr M, Schicho R. The gastrointestinal tract - a central organ of cannabinoid signaling in health and disease. Neurogastroenterol Motil 2016; 28:1765-1780. [PMID: 27561826 PMCID: PMC5130148 DOI: 10.1111/nmo.12931] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract. Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors. After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS. Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity. In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer. PURPOSE The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Carina Hasenoehrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany and Zentrum für Endoskopie, Starnberg, Germany
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Identification and characterization of PPARα ligands in the hippocampus. Nat Chem Biol 2016; 12:1075-1083. [PMID: 27748752 PMCID: PMC5110367 DOI: 10.1038/nchembio.2204] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/08/2016] [Indexed: 02/01/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.
Collapse
|
16
|
Abstract
OPINION STATEMENT Despite the political and social controversy affiliated with it, the medical community must come to the realization that cannabinoids exist as a ubiquitous signaling system in many organ systems. Our understanding of cannabinoids and how they relate not only to homeostasis but also in disease states must be furthered through research, both clinically and in the laboratory. The identification of the cannabinoid receptors in the early 1990s have provided us with the perfect target of translational research. Already, much has been done with cannabinoids and the nervous system. Here, we explore the implications it has for the gastrointestinal tract. Most therapeutics currently on the market presently target only one aspect of the cannabinoid system. Our main purpose here is to highlight areas of research and potential avenues of discovery that the cannabinoid system has yet to reveal.
Collapse
Affiliation(s)
- Zachary Wilmer Reichenbach
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ron Schey
- Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 2016; 537:675-679. [PMID: 27602517 DOI: 10.1038/nature19357] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder (ASD) comprises a range of neurodevelopmental disorders characterized by deficits in social interaction and communication as well as by restricted and repetitive behaviours. ASD has a strong genetic component with high heritability. Exome sequencing analysis has recently identified many de novo mutations in a variety of genes in individuals with ASD, with CHD8, a gene encoding a chromatin remodeller, being most frequently affected. Whether CHD8 mutations are causative for ASD and how they might establish ASD traits have remained unknown. Here we show that mice heterozygous for Chd8 mutations manifest ASD-like behavioural characteristics including increased anxiety, repetitive behaviour, and altered social behaviour. CHD8 haploinsufficiency did not result in prominent changes in the expression of a few specific genes but instead gave rise to small but global changes in gene expression in the mouse brain, reminiscent of those in the brains of patients with ASD. Gene set enrichment analysis revealed that neurodevelopment was delayed in the mutant mouse embryos. Furthermore, reduced expression of CHD8 was associated with abnormal activation of RE-1 silencing transcription factor (REST), which suppresses the transcription of many neuronal genes. REST activation was also observed in the brains of humans with ASD, and CHD8 was found to interact physically with REST in the mouse brain. Our results are thus consistent with the notion that CHD8 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis probably resulting from a delay in neurodevelopment.
Collapse
|
18
|
O'Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol 2016; 173:1899-910. [PMID: 27077495 PMCID: PMC4882496 DOI: 10.1111/bph.13497] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/16/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
Some cannabinoids activate the different isoforms of PPARs (α, β and γ), as shown through the use of reporter gene assays, binding studies, selective antagonists and knockout studies. Activation of all isoforms, but primarily PPARα and γ, mediates some (but not all) of the analgesic, neuroprotective, neuronal function modulation, anti-inflammatory, metabolic, anti-tumour, gastrointestinal and cardiovascular effects of some cannabinoids, often in conjunction with activation of the more traditional target sites of action such as the cannabinoid CB1 and CB2 receptors and the TRPV1 ion channel. PPARs also mediate some of the effects of inhibitors of endocannabinoid degradation or transport. Cannabinoids may be chaperoned to the PPARs by fatty acid binding proteins. The aims of this review are to update the evidence supporting PPAR activation by cannabinoids and to review the physiological responses to cannabinoids that are mediated, and not mediated, by PPAR activation.
Collapse
|
19
|
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:343-362. [PMID: 28161834 DOI: 10.1007/164_2016_105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands' synthesizing/degrading enzymes. The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury. For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects. New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.
Collapse
|
20
|
Cluny NL, Keenan CM, Reimer RA, Le Foll B, Sharkey KA. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. PLoS One 2015; 10:e0144270. [PMID: 26633823 PMCID: PMC4669115 DOI: 10.1371/journal.pone.0144270] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
Objective Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Methods Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. Results THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Conclusions Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.
Collapse
Affiliation(s)
- Nina L. Cluny
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M. Keenan
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
21
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
22
|
Capasso R, Orlando P, Pagano E, Aveta T, Buono L, Borrelli F, Di Marzo V, Izzo AA. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB₁ receptors and TRPV1 channels. Br J Pharmacol 2015; 171:4026-37. [PMID: 24818658 DOI: 10.1111/bph.12759] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Palmitoylethanolamide (PEA), a naturally occurring acylethanolamide chemically related to the endocannabinoid anandamide, interacts with targets that have been identified in peripheral nerves controlling gastrointestinal motility, such as cannabinoid CB1 and CB2 receptors, TRPV1 channels and PPARα. Here, we investigated the effect of PEA in a mouse model of functional accelerated transit which persists after the resolution of colonic inflammation (post-inflammatory irritable bowel syndrome). EXPERIMENTAL APPROACH Intestinal inflammation was induced by intracolonic administration of oil of mustard (OM). Mice were tested for motility and biochemical and molecular biology changes 4 weeks later. PEA, oleoylethanolamide and endocannabinoid levels were measured by liquid chromatography-mass spectrometry and receptor and enzyme mRNA expression by qRT-PCR. KEY RESULTS OM induced transient colitis and a functional post-inflammatory increase in upper gastrointestinal transit, associated with increased intestinal anandamide (but not 2-arachidonoylglycerol, PEA or oleoylethanolamide) levels and down-regulation of mRNA for TRPV1 channels. Exogenous PEA inhibited the OM-induced increase in transit and tended to increase anandamide levels. Palmitic acid had a weaker effect on transit. Inhibition of transit by PEA was blocked by rimonabant (CB1 receptor antagonist), further increased by 5'-iodoresiniferatoxin (TRPV1 antagonist) and not significantly modified by the PPARα antagonist GW6471. CONCLUSIONS AND IMPLICATIONS Intestinal endocannabinoids and TRPV1 channel were dysregulated in a functional model of accelerated transit exhibiting aspects of post-inflammatory irritable bowel syndrome. PEA counteracted the accelerated transit, the effect being mediated by CB1 receptors (possibly via increased anandamide levels) and modulated by TRPV1 channels.
Collapse
Affiliation(s)
- Raffaele Capasso
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abu Aboud O, Donohoe D, Bultman S, Fitch M, Riiff T, Hellerstein M, Weiss RH. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth. Am J Physiol Cell Physiol 2015; 308:C890-8. [PMID: 25810260 DOI: 10.1152/ajpcell.00322.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/13/2015] [Indexed: 11/22/2022]
Abstract
Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.
Collapse
Affiliation(s)
- Omran Abu Aboud
- Graduate Group in Comparative Pathology, University of California, Davis, California; Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Dallas Donohoe
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee
| | - Scott Bultman
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Mark Fitch
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California
| | - Tim Riiff
- KineMed, Inc., Emeryville, California; and
| | - Marc Hellerstein
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California
| | - Robert H Weiss
- Graduate Group in Comparative Pathology, University of California, Davis, California; Division of Nephrology, Department of Internal Medicine, University of California, Davis, California; Cancer Center, University of California, Davis, California; Medical Service, Sacramento Veterans Affairs Medical Center, Sacramento, California
| |
Collapse
|
24
|
Abstract
Fat is a vital macronutrient, and its intake is closely monitored by an array of molecular sensors distributed throughout the alimentary canal. In the mouth, dietary fat constituents such as mono- and diunsaturated fatty acids give rise to taste signals that stimulate food intake, in part by enhancing the production of lipid-derived endocannabinoid messengers in the gut. As fat-containing chyme enters the small intestine, it causes the formation of anorexic lipid mediators, such as oleoylethanolamide, which promote satiety. These anatomically and functionally distinct responses may contribute to the homeostatic control and, possibly, the pathological dysregulation of food intake.
Collapse
Affiliation(s)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Department of Pharmacology, and
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
25
|
Keenan CM, Storr MA, Thakur GA, Wood JT, Wager-Miller J, Straiker A, Eno MR, Nikas SP, Bashashati M, Hu H, Mackie K, Makriyannis A, Sharkey KA. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br J Pharmacol 2015; 172:2406-18. [PMID: 25572435 DOI: 10.1111/bph.13069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid (CB) ligands have been demonstrated to have utility as novel therapeutic agents for the treatment of pain, metabolic conditions and gastrointestinal (GI) disorders. However, many of these ligands are centrally active, which limits their usefulness. Here, we examine a unique novel covalent CB receptor ligand, AM841, to assess its potential for use in physiological and pathophysiological in vivo studies. EXPERIMENTAL APPROACH The covalent nature of AM841 was determined in vitro using electrophysiological and receptor internalization studies on isolated cultured hippocampal neurons. Mouse models were used for behavioural analysis of analgesia, hypothermia and hypolocomotion. The motility of the small and large intestine was assessed in vivo under normal conditions and after acute stress. The brain penetration of AM841 was also determined. KEY RESULTS AM841 behaved as an irreversible CB1 receptor agonist in vitro. AM841 potently reduced GI motility through an action on CB1 receptors in the small and large intestine under physiological conditions. AM841 was even more potent under conditions of acute stress and was shown to normalize accelerated GI motility under these conditions. This compound behaved as a peripherally restricted ligand, showing very little brain penetration and no characteristic centrally mediated CB1 receptor-mediated effects (analgesia, hypothermia or hypolocomotion). CONCLUSIONS AND IMPLICATIONS AM841, a novel peripherally restricted covalent CB1 receptor ligand that was shown to be remarkably potent, represents a new class of potential therapeutic agents for the treatment of functional GI disorders.
Collapse
Affiliation(s)
- C M Keenan
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Priestley RS, Nickolls SA, Alexander SPH, Kendall DA. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB J 2014; 29:1446-55. [PMID: 25550466 DOI: 10.1096/fj.14-263053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/01/2014] [Indexed: 01/26/2023]
Abstract
Cannabinoids are reported to have actions through peroxisome proliferator-activated receptors (PPARs), which led us to investigate PPAR agonists for activity at the cannabinoid receptors. Radio-ligand binding and functional assays were conducted using human recombinant cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors, as well as the guinea pig isolated ileum, using the full agonist CP55940 as a positive control. The PPAR-α agonist fenofibrate exhibited submicromolar affinity for both receptors (pKi CB1, 6.3 ± 0.1; CB2, 7.7 ± 0.1). Functionally, fenofibrate acted as an agonist at the CB2 receptor (pEC50, 7.7 ± 0.1) and a partial agonist at the CB1 receptor, although with a decrease in functional response at higher concentrations, producing bell-shaped concentration-response curves. High concentrations of fenofibrate were able to increase the dissociation rate constant for [(3)H]-CP55940 at the CB1 receptor, (kfast without: 1.2 ± 0.2/min; with: 3.8 ± 0.1 × 10(-2)/min) and decrease the maximal response to CP55940 (Rmax, 86 ± 2%), which is consistent with a negative allosteric modulator. Fenofibrate also reduced electrically induced contractions in isolated guinea pig ileum via CB1 receptors (pEC50, 6.0 ± 0.4). Fenofibrate is thus identified as an example of a new class of cannabinoid receptor ligand and allosteric modulator, with the potential to interact therapeutically with cannabinoid receptors in addition to its primary PPAR target.
Collapse
Affiliation(s)
- Richard S Priestley
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - Sarah A Nickolls
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - Stephen P H Alexander
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - David A Kendall
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| |
Collapse
|
27
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
28
|
Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, Morris LC, Matafonova E, Stien X, Kang L, Coulon D, McGuinness OP, Niswender KD, Davies SS. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 2014; 124:3391-406. [PMID: 24960158 DOI: 10.1172/jci72517] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 05/08/2014] [Indexed: 12/30/2022] Open
Abstract
Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.
Collapse
|
29
|
Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res 2014; 86:18-25. [PMID: 24681513 DOI: 10.1016/j.phrs.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Anandamide is a well-known agonist for the cannabinoid receptors. Along with endogenous anandamide other non-endocannabinoid N-acylethanolamines are also formed, apparently in higher amounts. These include mainly oleoylethanolamide (OEA), palmitoyelethanolamide (PEA) and linoleoylethanolamide (LEA), and they have biological activity by themselves being anorectic and anti-inflammatory. It appears that the major effect of dietary fat on the level of these molecules is in the gastrointestinal system, where OEA, PEA and LEA in the enterocytes may function as homeostatic signals, which are decreased by prolonged consumption of a high-fat diet. These lipid amides appear to mediate their signaling activity via activation of PPARα in the enterocyte followed by activation of afferent vagal fibers leading to the brain. Through this mechanism OEA, PEA and LEA may both reduce the consumption of a meal as well as increase the reward value of the food. Thus, they may function as homeostatic intestinal signals involving hedonic aspects that contribute to the regulation of the amounts of dietary fat to be ingested.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
30
|
Fichna J, Wood JT, Papanastasiou M, Vadivel SK, Oprocha P, Sałaga M, Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Małecka-Panas E, Krajewska WM, Kościelniak P, Makriyannis A, Storr MA. Endocannabinoid and cannabinoid-like fatty acid amide levels correlate with pain-related symptoms in patients with IBS-D and IBS-C: a pilot study. PLoS One 2013; 8:e85073. [PMID: 24386448 PMCID: PMC3874007 DOI: 10.1371/journal.pone.0085073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/22/2013] [Indexed: 12/04/2022] Open
Abstract
Aims Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients. Methods AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D) and constipation-predominant (IBS-C) patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls. Results Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C. Conclusion IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.
Collapse
Affiliation(s)
- Jakub Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - JodiAnne T. Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America
| | - Malvina Papanastasiou
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America
| | - Subramanian K. Vadivel
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America
| | - Piotr Oprocha
- Faculty of Applied Mathematics, AGH University of Science and Technology, Cracow, Poland
| | - Maciej Sałaga
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Sobczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adam I. Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr K. Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Wanda M. Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Kościelniak
- Faculty of Mathematics and Computer Science, Jagiellonian University, Cracow, Poland
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America
| | - Martin A. Storr
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
31
|
Abstract
The absorptive epithelium of the proximal small intestine converts oleic acid released during fat digestion into oleoylethanolamide (OEA), an endogenous high-affinity agonist of peroxisome proliferator-activated receptor-α (PPAR-α). OEA interacts with this receptor to cause a state of satiety characterized by prolonged inter-meal intervals and reduced feeding frequency. The two main branches of the autonomic nervous system, sympathetic and parasympathetic, contribute to this effect: the former by enabling OEA mobilization in the gut and the latter by relaying the OEA signal to brain structures, such as the hypothalamus, that are involved in feeding regulation. OEA signaling may be a key component of the physiological system devoted to the monitoring of dietary fat intake, and its dysfunction might contribute to overweight and obesity.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92612, USA.
| |
Collapse
|
32
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
33
|
Bilbao A, Blanco E, Luque-Rojas MJ, Suárez J, Palomino A, Vida M, Araos P, Bermúdez-Silva FJ, Fernández-Espejo E, Spanagel R, Rodríguez de Fonseca F. Oleoylethanolamide dose-dependently attenuates cocaine-induced behaviours through a PPARα receptor-independent mechanism. Addict Biol 2013; 18:78-87. [PMID: 23163925 DOI: 10.1111/adb.12006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oleoylethanolamide (OEA) is an acylethanolamide that acts as an agonist of nuclear peroxisome proliferator-activated receptor alpha (PPARα) to exert their biological functions, which include the regulation of appetite and metabolism. Increasing evidence also suggests that OEA may participate in the control of reward-related behaviours. However, direct experimental evidence for the role of the OEA-PPARα receptor interaction in drug-mediated behaviours, such as cocaine-induced behavioural phenotypes, is lacking. The present study explored the role of OEA and its receptor PPARα on the psychomotor and rewarding responsiveness to cocaine using behavioural tests indicative of core components of addiction. We found that acute administration of OEA (1, 5 or 20 mg/kg, i.p.) reduced spontaneous locomotor activity and attenuated psychomotor activation induced by cocaine (20 mg/kg) in C57Bl/6 mice. However, PPARα receptor knockout mice showed normal sensitization, although OEA was capable of reducing behavioural sensitization with fewer efficacies. Furthermore, conditioned place preference and reinstatement to cocaine were intact in these mice. Our results indicate that PPARα receptor does not play a critical, if any, role in mediating short- and long-term psychomotor and rewarding responsiveness to cocaine. However, further research is needed for the identification of the targets of OEA for its inhibitory action on cocaine-mediated responses.
Collapse
Affiliation(s)
- Ainhoa Bilbao
- Institute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty of Mannheim; University of Heidelberg; Germany
| | | | | | - Juan Suárez
- Laboratorio de Medicina Regenerativa; IBIMA-Hospital Carlos Haya; Spain
| | - Ana Palomino
- Laboratorio de Medicina Regenerativa; IBIMA-Hospital Carlos Haya; Spain
| | - Margarita Vida
- Laboratorio de Medicina Regenerativa; IBIMA-Hospital Carlos Haya; Spain
| | - Pedro Araos
- Laboratorio de Medicina Regenerativa; IBIMA-Hospital Carlos Haya; Spain
| | | | | | - Rainer Spanagel
- Institute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty of Mannheim; University of Heidelberg; Germany
| | | |
Collapse
|
34
|
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int J Endocrinol 2013; 2013:361895. [PMID: 23762050 PMCID: PMC3677644 DOI: 10.1155/2013/361895] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/26/2023] Open
Abstract
Endocannabinoids and their G-protein coupled receptors (GPCR) are a current research focus in the area of obesity due to the system's role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β -oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.
Collapse
Affiliation(s)
- Shaan S. Naughton
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Michael L. Mathai
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Deanne H. Hryciw
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew J. McAinch
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- *Andrew J. McAinch:
| |
Collapse
|
35
|
O'Sullivan SE. Cannabinoid activation of peroxisome proliferator-activated receptors: an update and review of the physiological relevance. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Izzo AA, Capasso R, Aviello G, Borrelli F, Romano B, Piscitelli F, Gallo L, Capasso F, Orlando P, Di Marzo V. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. Br J Pharmacol 2012; 166:1444-60. [PMID: 22300105 DOI: 10.1111/j.1476-5381.2012.01879.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states. EXPERIMENTAL APPROACH Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS). KEY RESULTS Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB₁ receptors and down-regulation of CB₂ receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists. CONCLUSION AND IMPLICATIONS CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ruiz-Medina J, Flores JA, Tasset I, Tunez I, Valverde O, Fernandez-Espejo E. Alteration of neuropathic and visceral pain in female C57BL/6J mice lacking the PPAR-α gene. Psychopharmacology (Berl) 2012; 222:477-88. [PMID: 22354556 DOI: 10.1007/s00213-012-2662-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) participate in the control of chronic neuropathic and inflammatory pain, and these receptors could play a role on acute pain. OBJECTIVES We used null (PPAR-α -/-) and wild-type female mice and the PPAR-α blocker GW6471 to evaluate (1) the role of PPAR-α on neuropathic pain, (2) the involvement of PPAR-α on visceral and acute thermal nociception, and (3) tissue levels of pro-inflammatory factors. METHODS Neuropathic pain was induced by sciatic nerve ligature. Acute thermal nociception was evaluated through hot-plate, tail-immersion, and writhing tests. The pro-inflammatory factors nitric oxide, TNF-α, and interleukins-1β and -3 were measured. RESULTS Regarding neuropathic pain, higher sensitivity to thermal and mechanical non-noxious and noxious stimuli was observed in mice lacking PPAR-α. Cold and mechanical allodynia and heat hyperalgesia were augmented in null mice. With respect to visceral nociception, writhes after acetic acid were enhanced in mutant mice. Although basal thermal sensitivity was enhanced in PPAR-α -/- mice, cutaneous thermal nociception did not differ between genotypes. Blockade of PPAR-α was devoid of effects on acute thermal and writhing tests. Finally, nerve ligature enhanced pro-inflammatory factors in plantar tissue, levels being higher in null mice. No changes in pro-inflammatory factors were observed in the hot-plate test. CONCLUSIONS Genetic ablation of PPAR-α is involved in neuropathic and visceral nociception. Lack of PPAR-α is not involved in acute thermal pain, but it is involved in basal thermal reaction. Changes are biological adaptations to receptor deletion because blockade of PPAR-α does not affect inflammatory pain or thermal reactions.
Collapse
Affiliation(s)
- Jessica Ruiz-Medina
- Grup de Recerca en Neurobiologia del Comportament, Universitat Pompeu Fabra, Parc de Recerca Biomèdica, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Stone VM, Dhayal S, Smith DM, Lenaghan C, Brocklehurst KJ, Morgan NG. The cytoprotective effects of oleoylethanolamide in insulin-secreting cells do not require activation of GPR119. Br J Pharmacol 2012; 165:2758-70. [PMID: 22029844 DOI: 10.1111/j.1476-5381.2011.01755.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE β-cells express a range of fatty acid-responsive G protein-coupled receptors, including GPR119, which regulates insulin secretion and is seen as a potential therapeutic target in type 2 diabetes. The long-chain unsaturated fatty acid derivative oleoylethanolamide (OEA) is an endogenous agonist of GPR119 and, under certain conditions, some long-chain unsaturated fatty acids can promote β-cell cytoprotection. It is not known, however, if OEA is cytoprotective in β-cells. The present study has examined this and determined whether GPR119 is involved. METHODS Clonal rat insulin-secreting cell lines, BRIN-BD11 or INS-1E, were exposed to fatty acids complexed with BSA. cAMP levels, insulin release and cell viability were measured. Protein expression was studied by Western blotting and receptor expression by RT-PCR. KEY RESULTS GPR119 was expressed in both BRIN-BD11 and INS-1E cells and OEA was cytoprotective in these cells. However, cytoprotection was not reproduced by any of a range of selective, synthetic ligands of GPR119. The cytoprotective response to OEA was lost during exposure to inhibitors of fatty acid amide hydrolase (FAAH) suggesting that OEA per se is not the cytoprotective species but that release of free oleate is required. Similar data were obtained with anandamide, which was cytoprotective only under conditions favouring release of free arachidonate. CONCLUSIONS AND IMPLICATIONS Activation of GPR119 is not required to mediate the cytoprotective actions of OEA in BRIN-BD11 or INS-1E cells. Rather, OEA is internalised and subjected to hydrolysis by FAAH to release free oleate, which then mediates the cytoprotection.
Collapse
Affiliation(s)
- Virginia M Stone
- Institute of Biomedical & Clinical Sciences, Peninsula Medical School, University of Exeter, Plymouth, Devon, UK
| | | | | | | | | | | |
Collapse
|
39
|
Bashashati M, Storr MA, Nikas SP, Wood JT, Godlewski G, Liu J, Ho W, Keenan CM, Zhang H, Alapafuja SO, Cravatt BF, Lutz B, Mackie K, Kunos G, Patel KD, Makriyannis A, Davison JS, Sharkey KA. Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice. Br J Pharmacol 2012; 165:1556-71. [PMID: 21883147 PMCID: PMC3372737 DOI: 10.1111/j.1476-5381.2011.01644.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal (GI) motility is regulated in part by fatty acid ethanolamides (FAEs), including the endocannabinoid (EC) anandamide (AEA). The actions of FAEs are terminated by fatty acid amide hydrolase (FAAH). We investigated the actions of the novel FAAH inhibitor AM3506 on normal and enhanced GI motility. EXPERIMENTAL APPROACH We examined the effect of AM3506 on electrically-evoked contractility in vitro and GI transit and colonic faecal output in vivo, in normal and FAAH-deficient mice treated with saline or LPS (100 µg·kg(-1), i.p.), in the presence and absence of cannabinoid (CB) receptor antagonists. mRNA expression was measured by quantitative real time-PCR, EC levels by liquid chromatography-MS and FAAH activity by the conversion of [(3)H]-AEA to [(3)H]-ethanolamine in intestinal extracts. FAAH expression was examined by immunohistochemistry. KEY RESULTS FAAH was dominantly expressed in the enteric nervous system; its mRNA levels were higher in the ileum than the colon. LPS enhanced ileal contractility in the absence of overt inflammation. AM3506 reversed the enhanced electrically-evoked contractions of the ileum through CB(1) and CB(2) receptors. LPS increased the rate of upper GI transit and faecal output. AM3506 normalized the enhanced GI transit through CB(1) and CB(2) receptors and faecal output through CB(1) receptors. LPS did not increase GI transit in FAAH-deficient mice. CONCLUSIONS AND IMPLICATIONS Inhibiting FAAH normalizes various parameters of GI dysmotility in intestinal pathophysiology. Inhibition of FAAH represents a new approach to the treatment of disordered intestinal motility.
Collapse
MESH Headings
- Alkanesulfonates/pharmacology
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Colon/drug effects
- Colon/metabolism
- Colon/physiology
- Endotoxins/pharmacology
- Enteric Nervous System/drug effects
- Enteric Nervous System/metabolism
- Gastrointestinal Motility/drug effects
- Gastrointestinal Motility/genetics
- Gastrointestinal Motility/physiology
- Ileum/drug effects
- Ileum/metabolism
- Ileum/physiology
- Inflammation/chemically induced
- Inflammation/genetics
- Inflammation/metabolism
- Lipopolysaccharides/adverse effects
- Male
- Mice
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Motor Activity/genetics
- Phenols/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
Collapse
Affiliation(s)
- M Bashashati
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity & Inflammation, Department of Physiology & Pharmacology, University Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov 2011; 6:995-1025. [DOI: 10.1517/17460441.2011.608063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Abstract
Stemming from the centuries-old and well known effects of Cannabis on intestinal motility and secretion, research on the role of the endocannabinoid system in gut function and dysfunction has received ever increasing attention since the discovery of the cannabinoid receptors and their endogenous ligands, the endocannabinoids. In this article, some of the most recent developments in this field are discussed, with particular emphasis on new data, most of which are published in Neurogastroenterology & Motility, on the potential tonic endocannabinoid control of intestinal motility, the function of cannabinoid type-1 (CB1) receptors in gastric function, visceral pain, inflammation and sepsis, the emerging role of cannabinoid type-2 (CB2) receptors in the gut, and the pharmacology of endocannabinoid-related molecules and plant cannabinoids not necessarily acting via cannabinoid CB1 and CB2 receptors. These novel data highlight the multi-faceted aspects of endocannabinoid function in the GI tract, support the feasibility of the future therapeutic exploitation of this signaling system for the treatment of GI disorders, and leave space for some intriguing new hypotheses on the role of endocannabinoids in the gut.
Collapse
Affiliation(s)
- V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.
| | | |
Collapse
|
42
|
Flock G, Holland D, Seino Y, Drucker DJ. GPR119 regulates murine glucose homeostasis through incretin receptor-dependent and independent mechanisms. Endocrinology 2011; 152:374-83. [PMID: 21068156 PMCID: PMC3082521 DOI: 10.1210/en.2010-1047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
G protein-coupled receptor 119 (GPR119) was originally identified as a β-cell receptor. However, GPR119 activation also promotes incretin secretion and enhances peptide YY action. We examined whether GPR119-dependent control of glucose homeostasis requires preservation of peptidergic pathways in vivo. Insulin secretion was assessed directly in islets, and glucoregulation was examined in wild-type (WT), single incretin receptor (IR) and dual IR knockout (DIRKO) mice. Experimental endpoints included plasma glucose, insulin, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and peptide YY. Gastric emptying was assessed in WT, Glp1r-/-, DIRKO, Glp2r-/-, and GPR119-/- mice treated with the GPR119 agonist AR231453. AR231453 stimulated insulin secretion from WT and DIRKO islets in a glucose-dependent manner, improved glucose homeostasis, and augmented plasma levels of GLP-1, GIP, and insulin in WT and Gipr-/- mice. In contrast, although AR231453 increased levels of GLP-1, GIP, and insulin, it failed to lower glucose in Glp1r-/- and DIRKO mice. Furthermore, AR231453 did not improve ip glucose tolerance and had no effect on insulin action in WT and DIRKO mice. Acute GPR119 activation with AR231453 inhibited gastric emptying in Glp1r-/-, DIRKO, Glp2r-/-, and in WT mice independent of the Y2 receptor (Y2R); however, AR231453 did not control gastric emptying in GPR119-/- mice. Our findings demonstrate that GPR119 activation directly stimulates insulin secretion from islets in vitro, yet requires intact IR signaling and enteral glucose exposure for optimal control of glucose tolerance in vivo. In contrast, AR231453 inhibits gastric emptying independent of incretin, Y2R, or Glp2 receptors through GPR119-dependent pathways. Hence, GPR119 engages multiple complementary pathways for control of glucose homeostasis.
Collapse
Affiliation(s)
- Grace Flock
- Samuel Lunenfeld Research Institute Mt Sinai Hospital, 600 University Avenue TCP5-1004, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Dipasquale P, Romano A, Cianci S, Righetti L, Gaetani S. Oleoylethanolamide: a new player in energy metabolism control. Role in food intake. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ddmec.2011.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Pavón FJ, Serrano A, Romero-Cuevas M, Alonso M, Rodríguez de Fonseca F. Oleoylethanolamide: a new player in peripheral control of energy metabolism. Therapeutic implications. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ddmec.2011.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2010; 62:588-631. [PMID: 21079038 PMCID: PMC2993256 DOI: 10.1124/pr.110.003004] [Citation(s) in RCA: 1220] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Collapse
MESH Headings
- Cannabinoid Receptor Agonists
- Cannabinoid Receptor Antagonists
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoids/metabolism
- Humans
- Ligands
- Phylogeny
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/metabolism
- Terminology as Topic
Collapse
Affiliation(s)
- R G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, Hansen HS. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J 2010; 25:765-74. [PMID: 20959516 DOI: 10.1096/fj.10-166595] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study was undertaken to investigate the link between dietary fat content and intestinal levels of anorectic N-acylethanolamines (NAEs), including oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA). Male rats were fed high-fat diets (HFDs) with variable percentages of fat [20-45% of total energy (E%)] for 1-7 d; afterward, the jejunums were isolated, and jejunal NAE levels were measured by liquid-chromatography mass spectrometry. Enzyme activities and mRNA expression levels were measured for two synthesizing enzymes, N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and glycerophosphodiesterase (GDE1), and one degrading enzyme, fatty acid amide hydrolase (FAAH). We found a dose-response relation between the quantity/percentage of dietary fat, irrespective of the energy density, and the reduction of intestinal levels of OEA, PEA, and LEA. The reductions were present after 1 d of 45E% HFD. LEA, the major NAE species, was shown to have an anorectic potency slightly less than that of OEA but higher than PEA. Regulation at the enzyme level seems not to explain the changes in NAE levels. The results suggest the presence of a fat sensor, mediating the reduced intestinal NAE levels. The intestinal NAE levels are reduced in a dose- and time-dependent manner in response to dietary fat intake, and this may contribute to the well-known hyperphagic effect of HFDs.
Collapse
Affiliation(s)
- Thi Ai Diep
- Department of Pharmacology and Pharmacotheraphy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
47
|
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 2010; 126:21-38. [PMID: 20117132 DOI: 10.1016/j.pharmthera.2009.12.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 12/11/2022]
Abstract
Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy.
| | | |
Collapse
|
48
|
Godlewski G, Offertáler L, Wagner JA, Kunos G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat 2009; 89:105-11. [PMID: 19615459 DOI: 10.1016/j.prostaglandins.2009.07.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/07/2009] [Indexed: 02/07/2023]
Abstract
Acylethanolamides are lipid substances widely distributed in the body, generated from a membrane phospholipid precursor, N-acylphosphatidylethanolamine (NAPE). The recent identification of arachidonoyl ethanolamide (anandamide or AEA) as an endogenous cannabinoid ligand has focused attention on acylethanolamides, which has further increased with the subsequent identification of related additional acylethanolamides with signaling function, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Most of the biological functions of anandamide are mediated by the two G protein-coupled cannabinoid receptors identified to date, CB(1) and CB(2), with the transient receptor potential vanilloid-1 receptor being an additional potential target. There has been increasing pharmacological evidence for the existence of additional cannabinoid receptors, with the orphan G protein-coupled receptor GPR55 being the most actively scrutinized, and is one of the subjects of this review. The other receptor reviewed here is GPR119, which can recognize OEA and PEA. These two acylethanolamides, although structurally related to anandamide, do not interact with classical cannabinoid receptors. Instead, they have high affinity for the nuclear receptor PPARalpha, which is believed to mediate many of their biological effects.
Collapse
Affiliation(s)
- Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|