1
|
Dos Santos ACC, Figueiredo-Vanzan D, Bentes J, Motta JM, Mata-Santos HA, Pyrrho ADS, Castelo-Branco MTL. Tetrylpyamethrazine alleviates hepatic fibrosis induced by experimental mansonic schistosomiasis. Inflammopharmacology 2025:10.1007/s10787-025-01759-1. [PMID: 40268854 DOI: 10.1007/s10787-025-01759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Hepatic fibrosis resulting from human mansonic schistosomiasis significantly impairs liver function and contributes substantially to morbidity associated with helminth infections. This pathological state develops following the deposition of helminth eggs within hepatic tissues, triggering a granulomatous inflammatory reaction. Schistosomiasis, a neglected tropical disease affecting approximately 240 million individuals globally, represents a major public health challenge. Although praziquantel (PZQ) is recommended by the World Health Organization (WHO) as the primary treatment for helminth infections, additional therapies are required to address the associated liver fibrosis. This study investigated the efficacy of tetramethylpyrazine (TMP), a natural compound known for its anti-inflammatory, antifibrotic, and hepatoprotective properties in various experimental models, in mitigating hepatic fibrosis induced by mansonic schistosomiasis. Our in vivo experiments demonstrated that TMP treatment significantly reduced hepatic granuloma size, as evidenced by histological analysis. Furthermore, our in vitro studies showed that TMP increased levels of the anti-inflammatory cytokine IL-10 while decreasing levels of the profibrotic cytokine IL-13 in a concentration-dependent manner. Immunofluorescence analysis also revealed that TMP effectively inhibited collagen deposition. Collectively, these findings suggest that TMP exhibits potential as an anti-inflammatory and antifibrotic agent for hepatic fibrosis resulting from Schistosoma mansoni infection.
Collapse
Affiliation(s)
- Ana Carolina Campos Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Josiane Bentes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Maria Motta
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Morgana Teixeira Lima Castelo-Branco
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Abebe W, Lemma W, Tegegne Y, Sisay A, Misganaw T, Ayana S, Kasew D, Debash MN, Zemariam AB, Emagneneh T, Derso A. Biochemical, coagulation, and platelet count profiles among Schistosoma mansoni infected patients attending at selected Dembiya health institutions, Northwest Ethiopia. BMC Microbiol 2025; 25:119. [PMID: 40045196 PMCID: PMC11881258 DOI: 10.1186/s12866-025-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease that causes coagulation disorders and biochemical abnormalities. This is due to liver failure, platelet destruction, disruption of blood flow, and endothelial function by the schistosomes. However, there is no adequate data on biochemical and coagulation profiles and platelet count of patients infected with Schistosoma mansoni in Dembiya Selected Health Institutions. Hence, the aim of this study was to assess the effect of Schistosoma mansoni infection on selected biochemical and coagulation profiles and platelet count. METHOD An institutional-based comparative cross-sectional study was conducted from March to August 2022 at Dembiya Primary Hospital, Chuahit Health Center, and Abrija Health Center, Northwest Ethiopia. A total of 70 individuals were enrolled in the study using convenient sampling techniques. A stool sample was collected for Schistosoma mansoni detection. Likewise, a blood sample was collected for biochemical and coagulation profiles and platelet count analysis. The data were analyzed using SPSS version 25. A p-value less than 0.05 was considered statistically significant. RESULTS Median values for alanine aminotransferase, aspartate aminotransferase, creatinine, total bilirubin, and direct bilirubin values were significantly higher, while total protein and glucose were significantly lower in Schistosoma mansoni infected than in the healthy control participants (P < 0.05). Prothrombin time, activated partial thromboplastin time, and international normalization ratio were significantly higher, while the platelet count was significantly lower in the Schistosoma mansoni infected than healthy control participants (P < 0.05). The values of alanine aminotransferase, aspartate aminotransferase, creatinine, total bilirubin, direct bilirubin, prothrombin time, activated partial thromboplastin time, and international normalization ratio were significantly higher, while total protein, glucose, and platelet count were significantly lower in those with moderate and heavy Schistosoma mansoni infection intensity compared to healthy control participants (P < 0.05). The number of Schistosoma mansoni eggs per gram of stool had a positive correlation with biochemical and coagulation profiles, except for total protein, glucose, and platelet count, which were correlated negatively in Schistosoma mansoni infected participants (P < 0.05). CONCLUSION Biochemical and coagulation profiles, including alanine aminotransferase, aspartate aminotransferase, creatinine, total bilirubin, direct bilirubin, glucose, total protein, prothrombin time, activated partial thromboplastin time, international normalization ratio, and platelet count, were significantly altered in S. mansoni infected participants compared to controls (p < 0.05). These findings underscore the need for routine biochemical and coagulation monitoring in endemic areas.
Collapse
Affiliation(s)
- Wagaw Abebe
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia.
| | - Wossenseged Lemma
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yalewayker Tegegne
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Assefa Sisay
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Tadesse Misganaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sisay Ayana
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Desie Kasew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Marye Nigatie Debash
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Alemu Birara Zemariam
- Department of Pediatrics and Child Health Nursing, School of Nursing, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Tadele Emagneneh
- Department of Midwifery, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Adane Derso
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Arega G, Adane L, Mekonnen E, Negussie MA. Spinal schistosomiasis masquerading as spinal cord tumor in a 12-year-old male adolescent: A case report. Radiol Case Rep 2025; 20:1717-1720. [PMID: 39868061 PMCID: PMC11760330 DOI: 10.1016/j.radcr.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
Spinal schistosomiasis, a rare manifestation of schistosomal infection, can closely mimic the presentation of spinal cord tumors and pose significant diagnostic challenges. We present the case of a 12-year-old boy from northern Ethiopia who experienced progressive back pain, tingling sensations in his lower extremities, and intermittent fever. Initially referred with a presumptive diagnosis of myxopapillary ependymoma for pediatric hematology-oncology evaluation, his marked eosinophilia and history of swimming in local rivers raised suspicion for spinal schistosomiasis. Upon review by a neuroradiologist, an MRI revealed a long-segment expansion of the spinal cord from T10 to L2, showing heterogenous enhancement on T1-weighted postcontrast images and hyperintense signals on T2-weighted images. Furthermore, the patient's Schistosoma mansoni IgG titer was elevated, strongly supporting the diagnosis. Treatment was initiated with praziquantel and corticosteroids, leading to a notable improvement in his symptoms. This case highlights the importance of considering parasitic infections like schistosomiasis in regions where they are endemic, particularly when spinal pathologies may resemble neoplastic conditions. Early diagnosis and intervention are crucial to preventing long-term neurological damage.
Collapse
Affiliation(s)
- Gashaw Arega
- Department of Pediatrics and Child Health, Division of Hematology and Oncology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Leul Adane
- Department of Diagnostic Radiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eden Mekonnen
- School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Michael A. Negussie
- School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Alves-Jr JL, Costa ELV, Hoette S, Fernandes CJCDS, Ribeiro HB, Abizaid AAC, Castro MA, Piloto BM, Lemos PA, Jardim CVP, Tedford RJ, Souza R. Right ventricular-pulmonary arterial coupling in schistosomiasis associated pulmonary arterial hypertension. J Heart Lung Transplant 2025:S1053-2498(25)00058-0. [PMID: 39947502 DOI: 10.1016/j.healun.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Schistosomiasis associated pulmonary arterial hypertension (Sch-PAH) is a highly relevant form of pulmonary hypertension, particularly in developing countries. Compared with idiopathic pulmonary arterial hypertension (IPAH), Sch-PAH has a better prognosis, though without identified mechanisms that justify this clinical course. Right ventricular-arterial pulmonary (RV-PA) coupling, expressed by the relationship between right ventricular contractility and afterload, has been studied as a potential marker of cardiac response to pulmonary vascular disease. However, there are no studies evaluating RV-PA coupling in Sch-PAH. METHODS Retrospective cohort including patients diagnosed with Sch-PAH or IPAH who underwent right heart catheterization (RHC) at our institution from 2013 to 2018. Clinical and hemodynamic characteristics were reviewed and, by means of the recorded and digitized RHC pressure curves, right ventricular maximum isovolumic pressure (Pmaxiso) was estimated through the single-beat method to calculate right ventricular elastance at the end systole (Ees). The RV-PA was expressed by the Ees and the pulmonary artery elastance (Ea) ratio. RESULTS A total of 101 patients were included (33 with Sch-PAH and 68 with IPAH). Sch-PAH patients were older (55.5 ± 15.1 vs 42.7 ± 15.2; p <0.001) with no significant difference in terms of traditional hemodynamics; nevertheless, Sch-PAH patients had better survival (p=0.031). Patients with Sch-PAH showed higher RV-PA coupling (0.95±0,58 vs 0.67±0.41; p = 0.004), higher Ees (2.07±1.65 vs 1.33±0.91; p = 0.005) without any difference in Pmaxiso and Ea compared with IPAH. At univariate analysis, RV-PA coupling was associated with survival. The RV-PA coupling remained an independent prognostic marker in the multivariable analysis adjusted for the type of pulmonary arterial hypertension (p = 0.030; HR = 0.287; 95% CI, 0.093-0.883). CONCLUSIONS RV-PA coupling is better preserved in Sch-PAH patients and is significantly associated with survival, suggesting that the right ventricular response to the increased afterload in Sch-PAH might represent an important pathophysiological mechanism that could explain the better clinical course observed in this relevant form of PAH.
Collapse
Affiliation(s)
- Jose Leonidas Alves-Jr
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Interventional Cardiology Division - Instituto do Coração - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor - HCFMUSP), São Paulo, SP, Brazil.
| | - Eduardo Leite Vieira Costa
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Susana Hoette
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Caio Julio Cesar Dos Santos Fernandes
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Henrique Barbosa Ribeiro
- Interventional Cardiology Division - Instituto do Coração - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor - HCFMUSP), São Paulo, SP, Brazil.
| | - Alexandre Antonio Cunha Abizaid
- Interventional Cardiology Division - Instituto do Coração - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor - HCFMUSP), São Paulo, SP, Brazil.
| | - Marcela Araújo Castro
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Bruna Mamprim Piloto
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Pedro Alves Lemos
- Interventional Cardiology Division - Instituto do Coração - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor - HCFMUSP), São Paulo, SP, Brazil.
| | - Carlos Viana Poyares Jardim
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ryan J Tedford
- Cardiology Section - Medical University of South Carolina (MUSC), Charleston, SC.
| | - Rogerio Souza
- Pulmonary Division - Instituto do Coração (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
El-Refaiy AI, Amer NS, Alhejely A, Qahl SH, Shaban AM, Mohamed AE, Saleh AA, Badawy AA, El-Magd MA. Impact of dandelion (Taraxacum officinale) leaf aqueous extract on immunological response of mice after Schistosoma mansoni infection. Mol Biochem Parasitol 2025; 262:111673. [PMID: 39875026 DOI: 10.1016/j.molbiopara.2025.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
This study investigated the effect of dandelion (Taraxacum officinale) leaf aqueous extract (DLE) on the immunological response of mice following infection with Schistosoma mansoni. Mice (in groups of 7) were first experimentally infected with S. mansoni and, 6 weeks later, were treated with praziquantel (PZQ) and/or DLE. Control mice were uninfected. In contrast to the untreated group, animals given PZQ and/or DLE exhibited an enhanced immunological response, as indicated by increased serum IFNγ, TNFα, IL4 and IL10 levels, increased numbers of CD4 + and CD25 + cells in blood and spleen and altered expression of apoptosis-related genes (low Bax and caspase3 and high Bcl2) in the spleen. DLE treatment had a significantly bigger impact in all these parameters compared with PZQ alone and combined DLE/PZQ treatment have the largest effect. While DLE treatment alone significantly decreased parasite burden, it did not improve upon the greater protective effect of PZQ, even when given in combination.
Collapse
Affiliation(s)
- Amal I El-Refaiy
- Department of Agricultural Zoology and Nematology, Faculty of Agriculture (Girls), Al-Azhar University, Egypt
| | - Nahed S Amer
- Department of Agricultural Zoology and Nematology, Faculty of Agriculture (Girls), Al-Azhar University, Egypt
| | - Amani Alhejely
- Department of Biology, University College in Darb, Jazan University, Al-Darb, Jazan 45142, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Amira M Shaban
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University 62511, Egypt
| | - Amro E Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Amira A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abdelnaser A Badawy
- Biochemistry Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Mohammed A El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| |
Collapse
|
6
|
Warrell CE, Polley S, Bodhani R, Coltart CEM, Rafferty H, Nabarro LE, Godbole G, Bustinduy AL, Hsieh MH, Chiodini PL. Urogenital Schistosoma haematobium Cases at the Hospital for Tropical Diseases, London (1998-2018), and Suggested Pragmatic Follow-up Pathway for Non-endemic Settings. Open Forum Infect Dis 2025; 12:ofae759. [PMID: 39917740 PMCID: PMC11800978 DOI: 10.1093/ofid/ofae759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 02/09/2025] Open
Abstract
Background Characteristics of confirmed urogenital Schistosoma haematobium infections and outcomes in non-endemic regions are scarce in the literature and there is a minimal evidence base for appropriate management in this setting. Specific schistosomal urinary and urological complications include risk of hydronephrosis, renal impairment, and malignant transformation. Therefore, approach to follow-up should be robust and systematic. Methods This is a retrospective case-note review of all patients with confirmed S haematobium infection (defined as visible ova in terminal urine and/or histopathological diagnosis on biopsy) at the Hospital for Tropical Diseases (HTD), London, between 1998 and 2018. Outcomes of follow-up were reviewed and formulated into a pragmatic guideline for follow-up of these patients in this setting. Results A majority of the 186 patients with confirmed S haematobium infection presented before 2012. Young, male migrants were at highest risk of complications from chronic infection and were most prone to being lost to follow-up. One patient was referred with squamous cell carcinoma of the bladder found on biopsy with S haematobium infection. Conclusions We put forward a pragmatic pathway for S haematobium investigation and follow-up for patients presenting to nonendemic settings with the current resource capabilities of the United Kingdom.
Collapse
Affiliation(s)
- Clare E Warrell
- Parasitology Department, Hospital for Tropical Diseases, London, UK
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
- Rare and Imported Pathogens Laboratory, Porton Down, Salisbury, UK
| | - Spencer Polley
- Parasitology Department, Hospital for Tropical Diseases, London, UK
| | - Rashmita Bodhani
- Parasitology Department, Hospital for Tropical Diseases, London, UK
| | - Cordelia E M Coltart
- Infectious Diseases Department, Royal Free NHS Foundation Trust, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Hannah Rafferty
- Parasitology Department, Hospital for Tropical Diseases, London, UK
| | - Laura E Nabarro
- Parasitology Department, Hospital for Tropical Diseases, London, UK
| | - Gauri Godbole
- Parasitology Department, Hospital for Tropical Diseases, London, UK
| | - Amaya L Bustinduy
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael H Hsieh
- Department of Urology, School of Medicine and Health Sciences, The George Washington University, Washington DC, Washington, USA
| | - Peter L Chiodini
- Parasitology Department, Hospital for Tropical Diseases, London, UK
- Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
7
|
Tavakoli Pirzaman A, Sepidarkish M, Alizadeh F, Al-Obidy S, Ebrahimi P, Kianifard N, Sheikhi Nooshabadi M, Jafari Tadi M, Zolfaghari Dehkharghani M, Mousavi S, Rezapour N, Mohammadnia S, Fazlollahpour Naghibi A, Bagheri K, Asghari MH, Bayani M, Rollinson D, Gasser RB, Rostami A. Prevalence of human Schistosoma mansoni infection in endemic regions (2010-2024): a systematic review and meta-analysis. EClinicalMedicine 2024; 77:102855. [PMID: 39430613 PMCID: PMC11490763 DOI: 10.1016/j.eclinm.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Background Schistosoma mansoni infection poses a substantial public health challenge globally, and the World Health Organization (WHO) aims for the elimination of schistosomiasis by 2030. This study aimed to assess the current prevalence of human S. mansoni infection in endemic regions worldwide between 2010 and 2024. Methods We conducted a comprehensive search in PubMed/Medline and Scopus databases as well as other public sources from 1 January 2010 to 15 July 2024. Population-based studies reporting the prevalence of S. mansoni infection were eligible. We undertook a random-effects meta-analysis to estimate pooled prevalences with 95% confidence intervals (CIs) in WHO-defined regions and assessed potential risk factors associated with S. mansoni infection. The protocol for this study was registered on PROSPERO (CRD42023438455). Findings We identified a total of 542 eligible studies involving 1,163,866 individuals who had been tested for S. mansoni infection in 38 countries. The overall, pooled global prevalence of S. mansoni infection in endemic region was 14.8% (95% CI, 13.5%-16.1%). The pooled prevalences (95% CI) in specific regions were: 15.3% (13.9-16.8%) in sub-Saharan Africa, 12.4% (8.9-16.4%) in South America and 9.5% (5.4-14.6%) in the Eastern Mediterranean region. There was a 52.6% decrease in prevalence of S. mansoni infection and a 37% decrease in high-intensity infection for studies conducted between 2010 and 2014 compared to those conducted between 2020 and 2023. The present analysis revealed that factors including male gender, bathing or swimming in natural water bodies, crossing rivers or lakes, and engaging in water irrigation activities such as fishing, working in rice paddies or maintaining irrigation canals were significantly associated with S. mansoni infection. Interpretation The findings of this investigation revealed that, despite a decline in prevalence and high-intensity infection, 7-12% of people in endemic regions, notably in sub-Saharan Africa, remained affected by schistosomiasis mansoni between 2020 and 2024. This study provides data of relevance to policymakers to support efforts to eliminate this disease. Funding This study received no funding.
Collapse
Affiliation(s)
- Ali Tavakoli Pirzaman
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Alizadeh
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, USA
| | | | - Pouyan Ebrahimi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nazanin Kianifard
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehradad Jafari Tadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Safa Mousavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nassim Rezapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sara Mohammadnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Andarz Fazlollahpour Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kimia Bagheri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad-Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Masomeh Bayani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - David Rollinson
- Global Schistosomiasis Alliance, Natural History Museum, London, SW7 5BD, UK
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Eastham G, Fausnacht D, Becker MH, Gillen A, Moore W. Praziquantel resistance in schistosomes: a brief report. FRONTIERS IN PARASITOLOGY 2024; 3:1471451. [PMID: 39817170 PMCID: PMC11732111 DOI: 10.3389/fpara.2024.1471451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/10/2024] [Indexed: 01/18/2025]
Abstract
Schistosomiasis is a group of both acute and chronic parasitic trematode infections of the genus Schistosoma. Research into schistosomiasis has been minimal, leading to its classification as a neglected tropical disease, yet more than 140 million people are infected with schistosomes globally. There are no treatments available for early-stage infections, schistosomal dermatitis, or Katayama syndrome, other than symptomatic control with steroids and antihistamines, as the maturing organisms seem to be mostly resistant to typical antiparasitics. However, praziquantel (PZQ) has been the drug of choice for schistosomiasis for decades in the latter stages of the disease. Though it is effective against all three clinically relevant species, heavy reliance on PZQ has led to concerns of schistosome resistance, especially in areas that have implemented this drug in mass drug administration (MDA) programs. This article summarizes the available literature concerning the available evidence for and against a warranted concern for PZQ resistance, genomic studies in schistosomes, proposed mechanisms of resistance, and future research in alternative methods of schistosomiasis treatment.
Collapse
Affiliation(s)
- Gabriela Eastham
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA, United States
| | - Matthew H. Becker
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Alan Gillen
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| |
Collapse
|
9
|
Archer J, Cunningham LJ, Juhász A, Jones S, O’Ferrall AM, Rollason S, Mainga B, Chammudzi P, Kapira DR, Lally D, Namacha G, Makaula P, LaCourse JE, Kayuni SA, Webster BL, Musaya J, Stothard JR. Molecular epidemiology and population genetics of Schistosoma mansoni infecting school-aged children situated along the southern shoreline of Lake Malawi, Malawi. PLoS Negl Trop Dis 2024; 18:e0012504. [PMID: 39374309 PMCID: PMC11458004 DOI: 10.1371/journal.pntd.0012504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND In areas of low disease endemicity, highly sensitive diagnostic tools to identify, diagnose, and monitor intestinal schistosomiasis transmission are needed to reliably measure the burden and risk of infection. Here, we used highly sensitive molecular diagnostic methods to investigate Schistosoma mansoni prevalence and transmission along the southern shoreline of Lake Malawi, five years post-disease outbreak. METHODOLOGY AND PRINCIPAL FINDINGS Faecal and urine samples were provided by school-aged children situated along the southern shoreline of Lake Malawi. Kato-Katz faecal-egg microscopy and point-of-care circulating cathodic antigen (POC-CCA) rapid diagnostic tests were then performed to diagnose infection with S. mansoni. Urine-egg microscopy was also used to diagnose infection with Schistosoma haematobium. In addition, Schistosoma miracidia were isolated from faecal material using a standard miracidium hatching technique. A two-step real-time PCR approach was then used to diagnose infection with S. mansoni using DNA isolated from faecal samples. Furthermore, isolated miracidia were genotyped to species level through PCR and Sanger sequencing. Phylogenetic analyses were then carried out to identify which previously defined S. mansoni cox1 lineage group S. mansoni miracidia were most closely related to. The measured prevalence of S. mansoni infection varied considerably depending on which diagnostic assay was used. When compared to real-time PCR, faecal-egg microscopy had a sensitivity of 9% and a specificity of 100%. When POC-CCA 'trace' results were considered positive, POC-CCA had a sensitivity of 73% and a specificity of 81% when compared to real-time PCR. However, when considered negative, POC-CCA sensitivity was reduced to 56%, whereas specificity was increased to 90%. In addition, a high degree of S. haematobium DNA was detected in DNA isolated from faecal samples and motile S. haematobium miracidia were recovered from faecal samples. Schistosoma mansoni miracidia were closely related to two independent cox1 lineage groups, suggesting multiple recent introduction and colonisation events originating from surrounding east African countries. CONCLUSIONS AND SIGNIFICANCE Intestinal schistosomiasis is now highly prevalent along the southern shoreline of Lake Malawi just five years post-disease outbreak. In addition, a high prevalence of urogenital schistosomiasis persists. The revision of ongoing schistosomiasis control programmes in this area is therefore recommended. Our study also highlights the need for reliable diagnostic assays capable of distinguishing between Schistosoma species in multispecies co-endemic areas.
Collapse
Affiliation(s)
- John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
| | - Lucas J. Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Juhász
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Sam Jones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angus M. O’Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sarah Rollason
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Bright Mainga
- Laboratory Department, Mangochi District Hospital, Mangochi, Malawi
| | - Priscilla Chammudzi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Donales R. Kapira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - David Lally
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Gladys Namacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Peter Makaula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - James E. LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sekeleghe A. Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
| | - Janelisa Musaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
10
|
Li Q, Wang J, Lv J, Liu D, Xiao S, Mo J, Lu Z, Qiu R, Li C, Tang L, He S, Tang Z, Cheng Q, Zhan T. Total flavonoids of litchi Seed alleviates schistosomiasis liver fibrosis in mice by suppressing hepatic stellate cells activation and modulating the gut microbiomes. Biomed Pharmacother 2024; 178:117240. [PMID: 39094546 DOI: 10.1016/j.biopha.2024.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-β1 (TGF-β1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.
Collapse
Affiliation(s)
- Qing Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jilong Wang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Lv
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dengyu Liu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Suyu Xiao
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingquan Mo
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zuochao Lu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Qiu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiqi Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Qiuchen Cheng
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
| | - Tingzheng Zhan
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China; Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Elguindy DAS, Ashour DS, Elmarhoumy SM, El-Guindy DM, Ismail HIH. The efficacy of cercarial antigen loaded on nanoparticles as a potential vaccine candidate in Schistosoma mansoni-infected mice. J Parasit Dis 2024; 48:381-399. [PMID: 38840868 PMCID: PMC11147980 DOI: 10.1007/s12639-024-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis is one of the most common causes of morbidity and mortality from parasitic diseases. Mass treatment has proven to be insufficient because of repeated infection after treatment and the appearance of strains resistant to drug therapy. Hence, immunization is a new approach to control the disease and limit the pathological consequences of schistosomiasis. To evaluate the prophylactic effect of Cercarial antigen (CAP) loaded on chitosan nanoparticles (CSNPs) as a potential vaccine against Schistosoma mansoni-infected mice. 130 mice divided into 2 groups were used: Group I: Control groups (50 mice) subdivided into subgroup Ia (10 mice): Non-infected mice (normal control), subgroup Ib (20 mice): Schistosoma infected mice (infected control) and subgroup Ic (20 mice): Non-infected mice receiving NPs only. Group II: Vaccinated group (80 mice) subdivided equally into subgroup IIa (CAP): Received cercarial antigen and subgroup IIb (CAP + CSNP): Received cercarial antigen loaded on chitosan NPs then both vaccinated groups were infected with S. mansoni 3 weeks following the initial vaccination dose. CAP + CSNP and CAP groups showed significant reduction in adult worms count, hepatic egg count, hepatic granulomas number and size in comparison to the infected control group. Elevation of serum IgG and IgM levels, CD4+ and CD8+ T cell frequencies, IL-4, IL-10 and INF-γ levels was more significant in CAP + CSNP group than CAP group. CAP + CSNP is a promising new preparation of Schistosomal antigens that gave better results than immunization with CAP alone. CSNPs enhanced the immune and protective effect of CAP as validated by parasitological, histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Dina A. S. Elguindy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sirria M. Elmarhoumy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M. El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howaida I. H. Ismail
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Fuchs N, Zimmermann RA, Schwickert M, Gunkel A, Zimmer C, Meta M, Schwickert K, Keiser J, Haeberli C, Kiefer W, Schirmeister T. Dual Strategy to Design New Agents Targeting Schistosoma mansoni: Advancing Phenotypic and SmCB1 Inhibitors for Improved Efficacy. ACS Infect Dis 2024; 10:1664-1678. [PMID: 38686397 DOI: 10.1021/acsinfecdis.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this study, we have identified and optimized two lead structures from an in-house screening, with promising results against the parasitic flatworm Schistosoma mansoni and its target protease S. mansoni cathepsin B1 (SmCB1). Our correlation analysis highlighted the significance of physicochemical properties for the compounds' in vitro activities, resulting in a dual approach to optimize the lead structures, regarding both phenotypic effects in S. mansoni newly transformed schistosomula (NTS), adult worms, and SmCB1 inhibition. The optimized compounds from both approaches ("phenotypic" vs "SmCB1" approach) demonstrated improved efficacy against S. mansoni NTS and adult worms, with 2h from the "SmCB1" approach emerging as the most potent compound. 2h displayed nanomolar inhibition of SmCB1 (Ki = 0.050 μM) while maintaining selectivity toward human off-target cathepsins. Additionally, the greatly improved efficacy of compound 2h toward S. mansoni adults (86% dead worms at 10 μM, 68% at 1 μM, 35% at 0.1 μM) demonstrates its potential as a new therapeutic agent for schistosomiasis, underlined by its improved permeability.
Collapse
Affiliation(s)
- Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Annika Gunkel
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Cécile Haeberli
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Werner Kiefer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
13
|
Moreira BP, Gava SG, Haeberlein S, Gueye S, Santos ESS, Weber MHW, Abramyan TM, Grevelding CG, Mourão MM, Falcone FH. Identification of potent schistosomicidal compounds predicted as type II-kinase inhibitors against Schistosoma mansoni c-Jun N-terminal kinase SMJNK. FRONTIERS IN PARASITOLOGY 2024; 3:1394407. [PMID: 39817168 PMCID: PMC11732180 DOI: 10.3389/fpara.2024.1394407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 01/18/2025]
Abstract
Introduction Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively. This is the case for type II PK inhibitors, which cause PKs to adopt the so-called DFG-out conformation, corresponding to the inactive state of the enzyme. Methods The goal was to perform a virtual screen against the ATP pocket of the inactive JNK protein kinase. After virtually screening millions of compounds, Atomwise provided 85 compounds predicted to target c-Jun N-terminal kinase (JNK) as type II inhibitors. Selected compounds were screened in vitro against larval stage (schistosomula) of S. mansoni using the XTT assay. Adult worms were assessed for motility, attachment, and pairing stability. Active compounds were further analyzed by molecular docking against SmJNK. Results In total, 33 compounds were considered active in at least one of the assays, and two compounds were active in every in vitro screening assay. The two most potent compounds presented strong effects against both life stages of the parasite, and microscopy analysis showed phenotypic alterations on the tegument, in the gonads, and impairment of cell proliferation. Conclusion The approach to screen type II kinase inhibitors resulted in the identification of active compounds that will be further developed against schistosomiasis.
Collapse
Affiliation(s)
- Bernardo P. Moreira
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| | - Sandra G. Gava
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz – Fiocruz, Belo Horizonte, Brazil
| | - Simone Haeberlein
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| | - Sophie Gueye
- Polytech Angers, Université d’Angers, Angers, France
| | - Ester S. S. Santos
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz – Fiocruz, Belo Horizonte, Brazil
| | | | | | - Christoph G. Grevelding
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| | - Marina M. Mourão
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz – Fiocruz, Belo Horizonte, Brazil
| | - Franco H. Falcone
- Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany
| |
Collapse
|
14
|
Luh D, Heiles S, Roderfeld M, Grevelding CG, Roeb E, Spengler B. Hepatic Topology of Glycosphingolipids in Schistosoma mansoni-Infected Hamsters. Anal Chem 2024; 96:6311-6320. [PMID: 38594017 PMCID: PMC11044111 DOI: 10.1021/acs.analchem.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.
Collapse
Affiliation(s)
- David Luh
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut
für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany
- Lipidomics,
Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Martin Roderfeld
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | | | - Elke Roeb
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | - Bernhard Spengler
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
15
|
Rosa AAD, Brandão-Bezerra L, Corrêa CL, Amaral G Da-Silva S, Rodrigues LS, Machado-Silva JR, Neves RH. Changes in splenic tissue and immune response profile of Schistosoma mansoni infected mice submitted to chronic ethanol intake. Exp Parasitol 2024; 259:108706. [PMID: 38309327 DOI: 10.1016/j.exppara.2024.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
In Schistosoma mansoni infection, the spleen is one of the organs affected, causing its enlargement (splenomegaly). Intake of ethanol through alcoholic beverages can cause spleen atrophy and interfere with immune activity. To gain knowledge of this association on the spleen and on the immune response profile, male mice were used as an experimental model. These animals were divided into four groups: C. control; EC. uninfected/ethanol gavage; I. infected; and IE. infected/ethanol gavage. Groups I and IE were infected with about 100 cercariae (BH strain) of S. mansoni and in the fifth week of infection, gavage 200 μL/day/animal of 18 % ethanol was started for 28 consecutive days. At the end of the gavage (9th week of infection) all animals were euthanized. The spleen was removed and longitudinally divided in two parts. After histological processing, the sections were stained with H&E and Gomori's Reticulin for histopathological and stereological analyses, white pulp morphometry and quantification of megakaryocytes. The other fragment was macerated (in laminar flow) and the cell suspension, after adjusting the concentration (2 × 106), was plated to obtain cytokines produced by spleen cells that were measured by flow cytometry (Citometric Bead Array). Histopathological and quantitative analyzes in the spleen of the IE group showed an increase in the number of trabeculae and megakaryocytes, a decrease in reticular fibers, as well as important organizational changes in the white pulp and red pulp. Due to the decrease in the levels of cytokines measured and the result of the calculation of the ratio between the IFN-y and IL-10 cytokines (p = 0.0079) of the infected groups, we suggest that ethanol decreased the inflammatory and anti-inflammatory response generated by the infection (group IE, the production of cytokines was significantly decreased (p < 0.01). These changes demonstrate that ethanol ingestion interferes with some parameters of experimental S. mansoni infection, such as changes in splenic tissue and in the pattern of cytokine production.
Collapse
Affiliation(s)
- Aline Aparecida da Rosa
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Luciana Brandão-Bezerra
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, School of Medical Sciences, Rio de Janeiro State University, Brazil; Medicine School, Estácio de Sá University, Brazil
| | - Silvia Amaral G Da-Silva
- Laboratory of Parasitic Immunopharmacology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology, Department of Pathology and Laboratories, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - José Roberto Machado-Silva
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Renata Heisler Neves
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil.
| |
Collapse
|
16
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
17
|
Li QF, Li YX, Yang YY, Dong PP, Mei CJ, Lu JL, Zhang JF, Hua HY, Xiong CR, Yu CX, Song LJ, Yang K. The egg ribonuclease SjCP1412 accelerates liver fibrosis caused by Schistosoma japonicum infection involving damage-associated molecular patterns (DAMPs). Parasitology 2024; 151:260-270. [PMID: 38105713 PMCID: PMC11007278 DOI: 10.1017/s0031182023001361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.
Collapse
Affiliation(s)
- Qi-Feng Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Yi-Xin Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Ying-Ying Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Pan-Pan Dong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Cong-Jin Mei
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Ju-Lu Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Jian-Feng Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Hai-Yong Hua
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Chun-Rong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Chuan-Xin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Li-Jun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Kun Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| |
Collapse
|
18
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
19
|
Sharaf-El-Deen S, Soliman S, Brakat R. Evaluation of the antiparasitic and antifibrotic effects of gallic acid on experimental hepatic schistosomiasis mansoni. J Helminthol 2024; 98:e3. [PMID: 38167243 DOI: 10.1017/s0022149x23000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Schistosomiasis afflicts approximately 120 million individuals globally. The hepatic pathology that occurs due to egg-induced granuloma and fibrosis is commonly attributed to this condition. However, there is currently no efficacious treatment available for either of these conditions.Our study aimed to investigate the potential antifibrotic and antiparasitic properties of different doses of gallic acid (GA) in experimental schistosomiasis mansoni. In addition, we investigated the outcomes of co-administering it with the standard anti-schistosomiasis treatment, praziquantel (PZQ).In experiment I, Schistosoma mansoni-infected mice were administered GA at doses of 10, 20, or 40 mg/kg. Their effectiveness was evaluated through parasitological (worm and egg loads, granuloma number and diameter), pathological (fibrosis percentage and H-score of hepatic stellate cells (HSCs)), and functional (liver enzymes) tests. In experiment II, we investigated the optimal dosage that yielded the best outcomes. This dosage was administered in conjunction with PZQ and was evaluated regarding the parasitological, pathological, functional, and immunological (fibrosis-regulating cytokines) activities.Our findings indicate that the administration of 40 mg/kg GA exhibited the highest level of effectiveness in experiment I. In experiment II, it exhibited lower antiparasitic efficacy in comparison to PZQ. However, it surpassed PZQ in other tests. It showed enhanced outcomes when combined with PZQ.In conclusion, our findings reveal that GA only slightly increased the antischistosomal activity of PZQ. However, it was linked to decreased fibrosis, particularly when administrated with PZQ. Our pilot study identifies GA as a natural antifibrotic agent, which could be administered with PZQ to mitigate the development of fibrosis.
Collapse
Affiliation(s)
- S Sharaf-El-Deen
- Parasitology Department, Faculty of Medicine, Menoufia University, Shebin-el-kom, Menoufia, Egypt
| | - S Soliman
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin-el-kom, Menoufia, Egypt
| | - R Brakat
- Parasitology Department, Faculty of Medicine, Menoufia University, Shebin-el-kom, Menoufia, Egypt
| |
Collapse
|
20
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
21
|
Bischofsberger M, Reinholdt C, Dannenhaus TA, Aleith J, Bergmann-Ewert W, Müller-Hilke B, Löbermann M, Reisinger EC, Sombetzki M. Individually or as a Team-The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni. Pathogens 2023; 12:1432. [PMID: 38133315 PMCID: PMC10746046 DOI: 10.3390/pathogens12121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the lung is considered an efficient site for stopping the larvae of the acute Schistosoma spp. infection phase from migrating through extensive inflammatory responses in the surrounding tissues, little is known about these processes. To date, the highest resistance to infection has been achieved in experimental studies with radiation-attenuated cercariae immunization, which elicits a strong Th1/Th2 response in the lung and results in up to 80% protection. Based on our own studies demonstrating a systemic, unpolarized Th1/Th2 response resulting from infection with male or female Schistosoma mansoni, we hypothesize that this atypical immune response is already detectable during the pulmonary passage of parasite larvae. Therefore, we examined the immune milieu in the lungs of mice caused by migrating schistosome larvae, either male or female (single-sex groups) or male + female (bisexual control), 4 and 16 days after infection in bronchoalveolar lavage and lung tissue by flow cytometry, qPCR, and multiplex analyzes. Our results show only minor differences in the inflammatory profile between the single-sex groups but significant differences compared with the bisexual control group. Both single-sex infected groups have increased expression of inflammatory markers in lung tissue, higher numbers of cytotoxic T cells (day 4 post-infection) and more T helper cells (day 16 post-infection), compared with the bisexual control group. A single-sex infection, regardless of whether it is an infection with male or female cercariae, causes an immune milieu in the lung that is clearly different from an infection with both sexes. In terms of identifying therapeutic targets to achieve resistance to re-infection, it is of great scientific interest to identify the differences in the inflammatory potential of male or female and male + female parasites.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Tim Alexander Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| |
Collapse
|
22
|
Zhou X, Wang X, Xu J, Tang Q, Bergquist R, Shi L, Qin Z. High-throughput autoantibody profiling of different stages of Schistosomiasis japonica. Autoimmunity 2023; 56:2250102. [PMID: 37599561 DOI: 10.1080/08916934.2023.2250102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Infection by the Schistosoma japonicum can result in acute, chronic and late-stage manifestations. The latter often presents with severe organ failures and premature death. Importantly, infection can also produce autoimmune phenomena reflected by the development of autoantibodies. We wished to explore and profile the presence of autoantibodies in sera of patients with different stages of S. japonicum infection with the added aim of providing a reference assisting diagnosis. Blood samples from 55 patients with chronic and 20 patients with late-stage schistosomiasis japonica together, with a control group of 50 healthy people were randomly investigated against a microarray of 121 different autoantigens. In addition, the frequency of antibodies against Schistosoma egg antigen (SEA) was examined. In the sera from patients with chronic schistosomiasis japonica, 14 different highly expressed autoantibodies were detected, while patients with late-stage schistosomiasis were found to express as many as 43 autoantibody specificities together with a significantly higher frequency of antibodies against SEA compared to the control group. The findings presented suggest that autoantibody-based classification of schistosomiasis japonica represents a promising approach for the elucidation of subtypes of the disease. This approach may reflect differential disease mechanisms, which could ultimately lead to better treatment.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Qi Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Robert Bergquist
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Ingerod, Brastad, Sweden
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| |
Collapse
|
23
|
Gyening-Yeboah A, Quayson SE. Persistent Vulvar Itch Unresponsive to Treatment: A Case of Vulvar Schistosomiasis Caused by Schistosoma mansoni and a Brief Review of Literature. Case Rep Infect Dis 2023; 2023:9913905. [PMID: 37886136 PMCID: PMC10599860 DOI: 10.1155/2023/9913905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Background Vulvar schistosomiasis is a female genital schistosomiasis (FGS), which occurs because of the damage caused by the presence of schistosome ova within the vulva. FGS is mostly misdiagnosed as a sexually transmitted infection. There is no reported case of vulvar schistosomiasis from Schistosoma mansoni in an immunocompetent or immunocompromised person in Ghanaian medical literature; however, there is a reported case of S. haematobium in an immunocompromised person. This is the first case of vulvar schistosomiasis from S. mansoni infection in an immunocompromised person. This case report discusses the need to consider vulvar schistosomiasis in patients with itchiness of the vulva. Case Presentation. A sixty-nine-year-old married woman presents with a persistent vulvar itch that is unresponsive to treatment. A clinical diagnosis of vulvar lichen planus unresponsive to medical therapy was made. A histopathological diagnosis of vulvar schistosomiasis was, however, made. Ziehl-Neelsen stain revealed the ova of Schistosoma mansoni. Symptoms resolved on administration of oral praziquantel. Conclusion Vulvar schistosomiasis must be considered in clinical history-taking and investigation of signs and symptoms related to itchiness of the vulva. Ziehl-Neelsen staining is a helpful histopathology armamentarium to determine the species of schistosome ova.
Collapse
Affiliation(s)
| | - Solomon E. Quayson
- Department of Pathology, Korle Bu Teaching Hospital, Accra, Ghana
- University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
24
|
Hernández-Goenaga J, López-Abán J, Blanco-Gómez A, Vicente B, Burguillo FJ, Pérez-Losada J, Muro A. Identification of Genomic Regions Implicated in Susceptibility to Schistosoma mansoni Infection in a Murine Backcross Genetic Model. Int J Mol Sci 2023; 24:14768. [PMID: 37834216 PMCID: PMC10573152 DOI: 10.3390/ijms241914768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Only a small number of infected people are highly susceptible to schistosomiasis, showing high levels of infection or severe liver fibrosis. The susceptibility to schistosome infection is influenced by genetic background. To assess the genetic basis of susceptibility and identify the chromosomal regions involved, a backcross strategy was employed to generate high variation in schistosomiasis susceptibility. This strategy involved crossing the resistant C57BL/6J mouse strain with the susceptible CBA/2J strain. The resulting F1 females (C57BL/6J × CBA/2J) were then backcrossed with CBA/2J males to generate the backcross (BX) cohort. The BX mice exhibited a range of phenotypes, with disease severity varying from mild to severe disease, lacking a fully resistant group. We observed four levels of infection intensity using cluster and principal component analyses and K-means based on parasitological, pathological, and immunological trait measurements. The mice were genotyped with 961 informative SNPs, leading to the identification of 19 new quantitative trait loci (QTL) associated with parasite burden, liver lesions, white blood cell populations, and antibody responses. Two QTLs located on chromosomes 15 and 18 were linked to the number of granulomas, liver lesions, and IgM levels. The corresponding syntenic human regions are located in chromosomes 8 and 18. None of the significant QTLs had been reported previously.
Collapse
Affiliation(s)
- Juan Hernández-Goenaga
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropica-les de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Ldo. Méndez Nieto s/n, 37007 Salamanca, Spain; (J.H.-G.); (B.V.)
| | - Julio López-Abán
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropica-les de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Ldo. Méndez Nieto s/n, 37007 Salamanca, Spain; (J.H.-G.); (B.V.)
| | - Adrián Blanco-Gómez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain; (A.B.-G.); (J.P.-L.)
- Instituto de Biología Molecular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC)—CSIC, Laboratory 20, 37007 Salamanca, Spain
| | - Belén Vicente
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropica-les de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Ldo. Méndez Nieto s/n, 37007 Salamanca, Spain; (J.H.-G.); (B.V.)
| | - Francisco Javier Burguillo
- Departamento de Química-Física, Facultad de Farmacia, Universidad de Salamanca, C/Donantes de Sangre s/n. Campus Unamuno, 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain; (A.B.-G.); (J.P.-L.)
- Instituto de Biología Molecular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC)—CSIC, Laboratory 20, 37007 Salamanca, Spain
| | - Antonio Muro
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropica-les de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Ldo. Méndez Nieto s/n, 37007 Salamanca, Spain; (J.H.-G.); (B.V.)
| |
Collapse
|
25
|
Joekes E, McMonnies K, Blanshard A, Mutuku FM, Ireri E, Mungai P, Stothard JR, Bustinduy AL, King CH. A 14-year follow-up of ultrasound-detected urinary tract pathology associated with urogenital schistosomiasis in women living in the Msambweni region of coastal Kenya. Trans R Soc Trop Med Hyg 2023; 117:637-644. [PMID: 37042291 PMCID: PMC10472884 DOI: 10.1093/trstmh/trad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Complications of urogenital schistosomiasis include acute inflammatory and chronic fibrotic changes within the urogenital tract. Disease burden of this neglected tropical disease is often underestimated, as only active, urine egg-patent Schistosoma infection is formally considered. Previous studies have focussed on short-term effects of praziquantel treatment on urinary tract pathology, demonstrating that acute inflammation is reversible. However, the reversibility of chronic changes is less well studied. METHODS Our study compared, at two time points 14 y apart, urine egg-patent infection and urinary tract pathology in a cohort of women living in a highly endemic area having intermittent praziquantel treatment(s). In 2014 we matched 93 women to their findings in a previous study in 2000. RESULTS Between 2000 and 2014 the rate of egg-patent infection decreased from 34% (95% confidence interval [CI] 25 to 44) to 9% (95% CI 3 to 14). However, urinary tract pathology increased from 15% (95% CI 8 to 22) to 19% (95% CI 11 to 27), with the greatest increase seen in bladder thickening and shape abnormality. CONCLUSIONS Despite praziquantel treatment, fibrosis from chronic schistosomiasis outlasts the presence of active infection, continuing to cause lasting morbidity. We suggest that future efforts to eliminate persistent morbidity attributable to schistosomiasis should include intensified disease management.
Collapse
Affiliation(s)
- Elizabeth Joekes
- Department of Radiology, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kate McMonnies
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrew Blanshard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Francis M Mutuku
- Department of Environment and Health Science, Technical University of Mombasa, Mombasa, Kenya
| | - Edmund Ireri
- Kenya Medical Research Institute, CCR Radiology Unit, Nairobi, Kenya
| | - Peter Mungai
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Amaya L Bustinduy
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Charles H King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Amer AS, Othman AA, Dawood LM, El-Nouby KA, Gobert GN, Abou Rayia DM. The interaction of Schistosoma mansoni infection with diabetes mellitus and obesity in mice. Sci Rep 2023; 13:9417. [PMID: 37296126 PMCID: PMC10256771 DOI: 10.1038/s41598-023-36112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Human schistosomiasis is one of the most prevalent parasitic diseases worldwide. Various host factors can affect the host-parasite interactions. Therefore, the aim of the present work was to determine the parasitological, histopathological, biochemical, and immunological status of Schistosoma mansoni-infected hosts with metabolic disorders to identify the underlying possible mechanisms of these comorbidities. The study animals were divided into four groups. Group I represented the control groups, namely, the normal control group, the S. mansoni-infected control group, and the noninfected type 1 diabetes (T1DM), type 2 diabetes (T2DM), and obesity groups. The mice of the other three groups underwent induction of T1DM (Group II), T2DM (Group III) and obesity (Group IV) before being infected with S. mansoni. All mice were subjected to body weight measurement, blood glucose and insulin assessment, parasitological evaluation of adult worm count, tissue egg count and intestinal oogram. Histopathological and immunohistochemical study using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells (HSCs) and image analysis of Masson's trichrome-stained liver sections using ImageJ (Fiji) software were carried out. Additionally, immunological analysis of tumour necrosis factor (TNF) beta, interleukin-5 (IL-5), IL-10, Forkhead box P3 (FOXP3) and pentraxin 3 (PTX3) levels besides biochemical study of total lipid profile were evaluated. The present study revealed a significant increase in the adult worm count and tissue egg output in the obesity group compared to the infected control group. The oogram of counted eggs showed prevalence of immature eggs in T1DM group, while T2DM and obese groups showed prevalence of mature eggs. The fibrosis area percentage showed significant increase in T2DM and obese groups while it was decreased in T1DM group in comparison to infected control group. Our data also showed significant increase in the levels of TNF-β, IL-5, PTX3 in T1DM, T2DM and obesity groups in comparison to infected control group, whilst the levels of FOXP3 and IL-10 were increased in the infected groups in comparison to their noninfected controls. Moreover, infected T1DM, T2DM and obesity groups showed higher blood glucose and lipid profile in comparison to the infected control group. However, these parameters were improved in comparison to their noninfected controls. In sum, induction of T2DM and obesity increased tissue egg counts, mature egg percentage, and fibrosis density, while schistosome infection induced changes in the lipid profile and blood glucose levels in infected diabetic and obese groups and impacted favorably insulin levels in obese mice. By better understanding the complexities of host-parasite interactions, efforts to reduce the burden of these debilitating diseases can be improved.
Collapse
Affiliation(s)
- Alaa S Amer
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Lamees M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Geoffrey N Gobert
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
27
|
Chen H, Sun R, Wang J, Yao S, Batool SS, Yu Z, Huang S, Huang J. Bacillus amyloliquefaciens alleviates the pathological injuries in mice infected with Schistosoma japonicum by modulating intestinal microbiome. Front Cell Infect Microbiol 2023; 13:1172298. [PMID: 37265494 PMCID: PMC10230073 DOI: 10.3389/fcimb.2023.1172298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Schistosoma japonicum causes serious pathological organ damage and alteration of the intestinal microbiome in the mammalian host, threatening the health of millions of people in China. Bacillus amyloliquefaciens has been reported to be able to alleviate the damage to the gut and liver and maintain the homeostasis of the intestinal microenvironment. However, it was unclear whether B. amyloliquefaciens could alleviate the hepatic and intestinal symptoms caused by S. japonicum. In this study, the intragastric administration of B. amyloliquefaciens was performed to treat S. japonicum-infected mice during the acute phase. Histopathological analysis and 16S rRNA gene sequencing were used to evaluate the pathological damage and changes in the intestinal microbiome. The results of the study showed that B. amyloliquefaciens treatment significantly reduced the degree of granuloma and fibrosis in infected mice. Additionally, recovery of diversity in the intestinal microbiome, decrease in the relative abundance of potential pathogenic bacteria such as Escherichia-Shigella, and reshaping of the interactive network between genera in the intestine were also observed after treatment with B. amyloliquefaciens. Our findings indicated that treatment with B. amyloliquefaciens effectively alleviated the pathological injuries of the liver and intestine in mice infected with S. japonicum by modulating the intestinal microbiome, implying that this probiotic can function as an effective therapeutic agent against schistosomiasis. We hope our study will provide auxiliary strategies and methods for the early prevention of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Syeda Sundas Batool
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
28
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
29
|
Basile G, Tamarozzi F, Salas-Coronas J, Soriano-Pérez MJ, Luzón-García P, Moro L, Antinori S, Arsuaga M, Bartoloni A, Tomasoni LR, Gobbi FG, Köhler C, Salvador F, Bocanegra C, Zammarchi L. Management of imported complicated urogenital schistosomiasis in Europe: a TropNet retrospective study. J Travel Med 2023; 30:6956960. [PMID: 36547229 DOI: 10.1093/jtm/taac150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma. Schistosoma haematobium causes urogenital schistosomiasis (UGS), a chronic disease characterized by pathology of the urogenital tract leading to potentially severe morbidity for which the treatment is poorly standardized. We conducted a survey in TropNet centres on the clinical presentations and management strategies of complicated urogenital schistosomiasis (cUGS). METHODS We reviewed the clinical records of patients seen at TropNet centres over a 20-year timespan (January 2001-December 2020). Case definition for cUGS included the presence of urogenital cancer, obstructive uropathy, kidney insufficiency of all grades and female or male genital involvement leading to infertility. Collected data included demographic information, patient category (traveller or migrant), imaging data, microbiological data (serology results and presence/absence of eggs in urine), histological features and outcome at last visit recorded. RESULTS Eight centres contributed with at least one case. Overall, 31 patients matched the inclusion criteria. Sub-Saharan Africa was the most likely place of infection for included patients. Median age was 30.6 years (range 21-46, interquartile ranges, IQR 27-33). Most patients (28/31, 90.3%) were males. Hydronephrosis was the most frequent complication, being present in 18 (58.1%) patients, followed by cancer, present in 5 patients (16.1%); 27 patients (87.1%) required surgical management of some sort. Use of praziquantel varied across centres, with six different regimens employed. DISCUSSION Very few cases of cUGSs were found in our survey, possibly indicating underdiagnosis of this condition. Hydronephrosis was the most frequently observed urogenital complication, and most patients required invasive procedures. Infection by S. haematobium can result in considerable morbidity, resulting in clinically challenging presentations requiring a multidisciplinary approach. As such, development of common protocols for early diagnosis and treatment is urgently needed.
Collapse
Affiliation(s)
- Gregorio Basile
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134 Italy
| | - Francesca Tamarozzi
- Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, 37024, Italy
| | | | | | - Pilar Luzón-García
- Tropical Medicine Unit, Hospital Universitario Poniente, Almería, 04700, Spain
| | - Lucia Moro
- Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, 37024, Italy
| | - Spinello Antinori
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università di Milano, Milan, 20157, Italy
| | - Marta Arsuaga
- Imported Diseases and International Health Referral Unit, High Level Isolation Unit, La Paz-Carlos III University Hospital, Madrid, 28029, Spain
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134 Italy
- Infectious and Tropical Diseases Unit, Careggi University and Hospital, Florence, 50134, Italy
| | - Lina Rachele Tomasoni
- University Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, 25125, Italy
| | - Federico Giovanni Gobbi
- Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, 37024, Italy
| | - Carsten Köhler
- Institute of Tropical Medicine, Travel Medicine and Human parasitology, Center of Competence, Baden-Württtemberg, Universität und Universitätsklinikum Tübingen, Tübingen, 72074, Germany
| | - Fernando Salvador
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Cristina Bocanegra
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, 08035, Spain
| | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134 Italy
- Infectious and Tropical Diseases Unit, Careggi University and Hospital, Florence, 50134, Italy
| |
Collapse
|
30
|
CaMKII regulates neuromuscular activity and survival of the human blood fluke Schistosoma mansoni. Sci Rep 2022; 12:19831. [PMID: 36400915 PMCID: PMC9674609 DOI: 10.1038/s41598-022-23962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Calcium/calmodulin dependant protein kinase II (CaMKII), an important transducer of Ca2+ signals, orchestrates multiple cellular functions in animals. Here we investigated the importance of CaMKII to Schistosoma mansoni, a blood parasite that causes human schistosomiasis. We demonstrate that phosphorylated (activated) CaMKII is present in cercariae, schistosomula and adult worms, and show that striking activation occurs in the nervous tissue of these parasite life-stages; CaMKII was also activated in the tegument and muscles of adult worms and the vitellaria of females. Exposure of worms to the anti-schistosomal drug praziquantel (PZQ) induced significant CaMKII activation and depletion of CaMKII protein/activation in adult worms resulted in hypokinesia, reduced vitality and death. At medium confidence (global score ≥ 0.40), S. mansoni CaMKII was predicted to interact with 51 proteins, with many containing CaMKII phosphorylation sites and nine mapped to phosphoproteome data including sites within a ryanodine receptor. The CaMKII network was functionally enriched with mitogen-activated protein kinase, Wnt, and notch pathways, and ion-transport and voltage-dependent channel protein domains. Collectively, these data highlight the intricacies of CaMKII signalling in S. mansoni, show CaMKII to be an active player in the PZQ-mediated response of schistosomes and highlight CaMKII as a possible target for the development of novel anti-schistosome therapeutics.
Collapse
|
31
|
Shen C, Zhu X, Xu X, Chang H, Ni Y, Li C, He K, Chen L, Chen L, Hou M, Ji M, Xu Z. Identification and Characterization of Antigenic Properties of Schistosoma japonicum Heat Shock Protein 90α Derived Peptides. Pathogens 2022; 11:pathogens11111238. [PMID: 36364989 PMCID: PMC9696693 DOI: 10.3390/pathogens11111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022] Open
Abstract
It is known that schistosome-derived antigens induce innate and adaptive immune responses that are essential for the formation of hepatic immunopathology. Here, we screened and synthesized four peptides derived from Schistosoma japonicum (S. japonicum) heat shock protein 90α (Sjp90α-1, -2, -3, and -4), which is widely expressed in adults and eggs of the genus S. japonicum and induces remarkable immune reactions. To define the antigenicity of these peptides, we stimulated splenocytes with peptides, and the results showed that only the Sjp90α-1 peptide could predominately induce the activation of dendritic cells (DCs) and macrophages as well as alter the proportion of follicular helper T (Tfh) cells. Next, CD4+ T cells were purified and cocultured with mouse bone-marrow-derived DCs (BMDCs) with or without Sjp90α-1 peptide stimulation in vitro, and the results showed that Sjp90α-1-stimulated BMDCs can significantly induce CD4+ T-cell differentiation into Tfh cells, while the direct stimulation of CD4+ T cells with Sjp90α-1 did not induce Tfh cells, indicating that the Sjp90α-1 peptide promotes Tfh cell differentiation depending on the presence of DCs. Furthermore, we selected and prepared an Sjp90α-1-peptide-based antibody and illustrated that it has excellent reactivity with the immunizing peptide and detects a single band of 29 kDa corresponding to the Sjp90α protein. The immunolocalization results showed that the protein recognized by this Sjp90α-1-peptide-based antibody is present in the mature eggs and the tegument of adults, implying that the parasite-derived peptide has a potential interaction with the host immune system. Finally, we evaluated antipeptide IgG antibodies and revealed a significantly higher level of anti-Sjp90α-1 peptide IgG antibodies in mice 3 weeks after S. japonicum infection. In conclusion, we illustrate that these synthetic peptides warrant further investigation by evaluating their antigen-specific immune response and their ability to efficiently induce Tfh cells. Moreover, they may constitute a potentially helpful method for the laboratory diagnosis of schistosomiasis japonica.
Collapse
Affiliation(s)
- Chunxiang Shen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Zhu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejun Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Kaiyue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Lu Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing 211166, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Z.X.); (M.J.)
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Z.X.); (M.J.)
| |
Collapse
|
32
|
Nikolakis ZL, Adams RH, Wade KJ, Lund AJ, Carlton EJ, Castoe TA, Pollock DD. Prospects for genomic surveillance for selection in schistosome parasites. FRONTIERS IN EPIDEMIOLOGY 2022; 2:932021. [PMID: 38455290 PMCID: PMC10910990 DOI: 10.3389/fepid.2022.932021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 03/09/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by multiple parasitic Schistosoma species, and which impacts over 200 million people globally, mainly in low- and middle-income countries. Genomic surveillance to detect evidence for natural selection in schistosome populations represents an emerging and promising approach to identify and interpret schistosome responses to ongoing control efforts or other environmental factors. Here we review how genomic variation is used to detect selection, how these approaches have been applied to schistosomes, and how future studies to detect selection may be improved. We discuss the theory of genomic analyses to detect selection, identify experimental designs for such analyses, and review studies that have applied these approaches to schistosomes. We then consider the biological characteristics of schistosomes that are expected to respond to selection, particularly those that may be impacted by control programs. Examples include drug resistance, host specificity, and life history traits, and we review our current understanding of specific genes that underlie them in schistosomes. We also discuss how inherent features of schistosome reproduction and demography pose substantial challenges for effective identification of these traits and their genomic bases. We conclude by discussing how genomic surveillance for selection should be designed to improve understanding of schistosome biology, and how the parasite changes in response to selection.
Collapse
Affiliation(s)
- Zachary L. Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Richard H. Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Kristen J. Wade
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrea J. Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Elizabeth J. Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
33
|
Jaén M, Martín-Regalado Á, Bartolomé RA, Robles J, Casal JI. Interleukin 13 receptor alpha 2 (IL13Rα2): Expression, signaling pathways and therapeutic applications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188802. [PMID: 36152905 DOI: 10.1016/j.bbcan.2022.188802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Interleukin 13 receptor alpha 2 (IL13Rα2) is increasingly recognized as a relevant player in cancer invasion and metastasis. Despite being initially considered a decoy receptor for dampening the levels of interleukin 13 (IL-13) in diverse inflammatory conditions, accumulating evidences in the last decades indicate the capacity of IL13Rα2 for mediating IL-13 signaling in cancer cells. The biological reasons behind the expression of this receptor with such extremely high affinity for IL-13 in cancer cells remain unclear. Elevated expression of IL13Rα2 is commonly associated with invasion, late stage and cancer metastasis that results in poor prognosis for glioblastoma, colorectal or breast cancer, among others. The discovery of new mediators and effectors of IL13Rα2 signaling has been critical for deciphering its underlying molecular mechanisms in cancer progression. Still, many questions about the effects of inflammation, the cancer type and the tumor degree in the expression of IL13Rα2 remain largely uncharacterized. Here, we review and discuss the current status of the IL13Rα2 biology in cancer, with particular emphasis in the role of inflammation-driven expression and the regulation of different signaling pathways. As IL13Rα2 implications in cancer continue to grow exponentially, we highlight new targeted therapies recently developed for glioblastoma, colorectal cancer and other IL13Rα2-positive tumors.
Collapse
Affiliation(s)
- Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángela Martín-Regalado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
34
|
Miranda GS, Rodrigues JGM, de Rezende MC, Resende SD, Camelo GMA, de Oliveira Silva JKA, Maggi L, Rodrigues VF, de Oliveira VG, Negrão-Corrêa DA. Experimental infection with Schistosoma mansoni isolated from the wild rodent Holochilus sciureus shows a low parasite burden but induces high schistosomiasis severity in BALB/c mice. Parasitology 2022; 149:1381-1396. [PMID: 35641335 PMCID: PMC11010505 DOI: 10.1017/s0031182022000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Wild mammals, especially rodents, can participate in the life cycle of Schistosoma mansoni; however, the impact of these parasite strains on the severity of schistosomiasis remains unclear. The aim of this study was to comparatively evaluate the parasitological and immunopathological alterations induced by an S. mansoni strain isolated from the wild rodent Holochilus sciureus (HS strain) and a parasite strain isolated from a human (LE strain) in experimentally infected mice. Male BALB/c mice were subcutaneously infected with 50 cercariae/mouse of either the HS or the LE strain and were evaluated for 12 weeks. In the experimental groups, the parasite burden was estimated by worm and egg (feces and tissues) count, and immunopathological alterations were evaluated in the liver and intestines. Compared to experimental infection with the LE parasite strain, HS-infected mice showed reduced number of parasite worms but higher fecundity rate, significant reduction in IL-5, IL-10 and IL-13 concentrations, lower EPO-activity in liver homogenate and higher concentrations of TNF-α, IFN-γ, IL-12 and IL-17 in the small intestine homogenate. Moreover, HS infection resulted in higher concentrations of NO end-products in both the liver and intestine, suggesting a predominance of the Th1/Th17 immune response. HS-infected mice also showed higher plasma transaminase levels, formed larger granulomas, and had a higher mortality rate in comparison with LE-infected mice. Data indicate that BALB/c mice infected with the HS strain of S. mansoni showed reduced susceptibility to the parasite but stronger tissue inflammation and high disease severity.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Michelle Carvalho de Rezende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Samira Diniz Resende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | - Laura Maggi
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vinícius Gustavo de Oliveira
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | |
Collapse
|
35
|
Alzain AA, Elbadwi FA. De Novo Design of Cathepsin B1 Inhibitors as Potential Anti-Schistosomal Agents Using Computational Studies. ADVANCES AND APPLICATIONS IN BIOINFORMATICS AND CHEMISTRY 2022; 15:29-41. [PMID: 35935393 PMCID: PMC9355347 DOI: 10.2147/aabc.s361626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Schistosomiasis is the world’s second most devastating disease after malaria and the leading cause of disease and mortality for more than 200 million people in developing countries. Cysteine proteases, in particular SmCB1, are the most well-researched biological targets for this disorder. Objective To apply computational techniques to design new antischistosomal agents against SmCB1 protein with favorable pharmacokinetic properties. Methods The smCB1 receptor-based pharmacophore model was created and used to screen 567,000 fragments from the Enamine library. The best scoring fragments have been linked to build novel compounds that were subjected to molecular docking, MM-GBSA free energy estimation, ADME prediction, and molecular dynamics. Results A seven-point pharmacophore hypothesis ADDDRRR was created. The developed hypothesis was used to screen 1.3 M fragment conformations. Among them, 23,732 fragments matched the hypothesis and screened against the protein. The top 50 fragments were used to design new 7745 compounds using the Breed ligand panel which were subjected to docking and MMGBSA binding energy. This led to the identification of 10 compounds with better docking scores (−8.033– −7.483 kcal/mol) and lower-bound free energies (−58.49 – −40.02 kcal/mol) compared to the reference bound ligand. Most of the designed compounds demonstrated good drug-like properties. Concerning Molecular dynamics (MD) simulation results, a low root mean square deviation (RMSD) range (0.25–1.2 Å) was found for the top 3 complexes which indicated their stability. Conclusion We identified compounds that could be potential candidates in the search for novel Schistosoma mansoni inhibitors by targeting SmCB1 utilizing various computational tools. Three newly designed compounds namely breed 1, 2, and 3 showed promising affinity to the target as well as favorable drug-like properties which might be considered potential anti-schistosomal agents.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
- Correspondence: Abdulrahim A Alzain, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan, Tel +249-511854501, Fax +249-511861180, Email
| | - Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
36
|
Darraj M. Urinary Bladder Schistosomiasis Mimicking Neoplasm: A Case Report. Medicina (B Aires) 2022; 58:medicina58081001. [PMID: 36013468 PMCID: PMC9414605 DOI: 10.3390/medicina58081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Schistosomiasis is a neglected disease that is prevalent in tropical and subtropical areas. A 20-year-old woman presented to the emergency room with a history of right flank pain and lower abdominal discomfort for one day, which coincided with the onset of menses. The patient did not provide any history of premenstrual hematuria. The physical examination revealed right costovertebral angle tenderness and was otherwise unremarkable. The urinalysis demonstrated a mild increase in red and white blood cells and no ova or parasite. The blood test was normal, except for eosinophilia. A right pedunculated intraluminal urinary bladder mass was detected by the computerized axial tomographic scan and ultrasonography, and after the transurethral resection of the mass, the patient was diagnosed with urinary schistosomiasis. The patient received two doses of oral praziquantel of 1200 mg every 12 h for one day. The cure was confirmed with a one-month post-treatment follow-up that revealed a normal urine microscope and eosinophil count. The S. haematobium infection should be evaluated as a possible cause of urinary bladder lesion in those who have travelled or lived in endemic areas.
Collapse
Affiliation(s)
- Majid Darraj
- Department of Medicine, College of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
37
|
Yang L, Sun L, Cao Y, Wang Q, Song A, Zhu R, Liu W, Lu S. MULT1-Encoding DNA Alleviates Schistosomiasis-Associated Hepatic Fibrosis via Modulating Cellular Immune Response. J Inflamm Res 2022; 15:4027-4045. [PMID: 35873385 PMCID: PMC9301018 DOI: 10.2147/jir.s354224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose In schistosomiasis-associated hepatic fibrosis, the role of murine UL16-binding protein-like transcript 1 (MULT1), the strongest ligand of natural killer group 2-member D receptor (NKG2D), remains unclear. Here, Schistosoma japonicum-infected mice administered with MULT1-encoding DNA were used to test MULT1 as a potential therapy for schistosomiasis-associated hepatic fibrosis and explore relevant mechanisms. Materials and Methods A recombinant plasmid encoding MULT1 (p-rMULT1) was constructed and administered to Schistosoma japonicum-infected BALB/c mice via hydrodynamic tail vein injection. Egg granulomas in liver, hepatic fibrosis biomarkers and levels of cytokines were investigated. Comparisons of CD4+ T, CD8+ T, NK and NKT proportions as well as their phenotype were performed not only between Schistosoma infected, p-rMULT1 treated group and Schistosoma infected, backbone plasmid pEGFP-N1 treated group but also between infected, nontreated group and health control group. Results Reduced area of granuloma formation and fibrosis around single eggs, downregulated expression of collagen I, α-smooth muscle actin, TGF-β and IL-10, and upregulated expression of IFN-γ, were observed in the livers of p-rMULT1 treated mice. p-rMULT1 treatment improved Schistosoma infection impacted immune microenvironment by modulating proportion of CD4+ T CD8+ T, natural killer (NK) and NKT cells, enhancing expression of NKG2D, in lymphocytes, and augmenting IFN-γ secretion by CD4+ T, CD8+ T, NK and NKT cells, as well as partially reversing some other phenotype changes of lymphocytes. Conclusion To the best of our knowledge, we provided the first in vivo evidence that MULT1 is a favorable anti-fibrosis factor in the context of schistosomiasis. The inhibitory effect of MULT1 overexpression on schistosomiasis associated with hepatic fibrosis may result from augmenting the proportion and function of NKG2D-expressing immune cells, and from enhancing NK- and T-cell activation, as well as regulating the helper T (Th)1/Th2 balance.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yalan Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Anni Song
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ru Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqi Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shengjun Lu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
38
|
Winkelmann F, Rabes A, Reinholdt C, Koslowski N, Koczan D, Reisinger EC, Sombetzki M. Sex-Specific Modulation of the Host Transcriptome in the Spleen of Schistosoma mansoni-Infected Mice. Front Cell Infect Microbiol 2022; 12:893632. [PMID: 35865813 PMCID: PMC9294737 DOI: 10.3389/fcimb.2022.893632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Schistosomiasis is a severe parasitic disease that is primarily driven by the host’s immune response to schistosome eggs trapped in tissue and by the granulomatous inflammatory and fibrotic reaction they cause. Despite significant progress in understanding the complex immunological processes involved in the relationship between schistosomes and their host, neither an effective vaccine against the infection nor anti-fibrotic drugs currently exists, making the search for new targets for schistosome drugs and vaccine candidates even more important. In order to identify new molecular targets for defense against or elimination of the parasite, we investigate herein the interplay between the host and male or female schistosomes, clearly separating this from the action of the parasite eggs. Methods For this purpose, we infected 6–8-week-old female NMRI mice with 100 male (M), female (F), or both (MF) S. mansoni cercariae and performed a comparative transcriptomic and flow cytometric analysis of their spleens. Results Principal component analysis of a total of 22,207 transcripts showed a clear clustering of the experimental groups. We identified a total of 1,293 genes in group M, 512 genes in group F, and 4,062 genes in group MF that were differentially expressed compared to naive controls. The highest percentage of regulated genes (2,972; 65.9%) was found in group MF alone, but there was a large overlap between groups M and MF (798; 17.7%) and a small overlap between groups F and MF (91; 2.0%). Only 4.5% of genes (201) were revealed to be regulated in all experimental groups (M/F/MF). In addition, we were able to show that both worm sexes trigger immune responses in an egg-independent manner (non-polarized Th1 and Th2 response), with female worms exerting less regulatory influence than males. Conclusion Our data show that adult schistosomes trigger sex-specific, egg-independent immune responses. The lists of genes regulated by adult female or male worms presented here may be useful in deciphering host–parasite interactions to identify targets for schistosome elimination.
Collapse
Affiliation(s)
- Franziska Winkelmann
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Anne Rabes
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Cindy Reinholdt
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nicole Koslowski
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Emil C. Reisinger
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Martina Sombetzki,
| |
Collapse
|
39
|
Immune Cells in Pulmonary Arterial Hypertension. Heart Lung Circ 2022; 31:934-943. [PMID: 35361533 DOI: 10.1016/j.hlc.2022.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and serious cardiopulmonary disease; it is characterised by increased pulmonary arterial pressure and pulmonary vascular remodelling accompanied by disordered endothelial and smooth muscle cell proliferation within pulmonary arterioles and arteries. Although recent reports have suggested that dysregulated immunity and inflammation are key players in PAH pathogenesis, their roles in PAH progression remain unclear. Intriguingly, altered host immune cell distribution, number, and polarisation within the lung arterial vasculature have been linked to disease development. This review mainly focusses on the roles of different immune cells in PAH and discusses the underlying mechanisms.
Collapse
|
40
|
Ogongo P, Nyakundi RK, Chege GK, Ochola L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol 2022; 13:846108. [PMID: 35592327 PMCID: PMC9112563 DOI: 10.3389/fimmu.2022.846108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The new WHO Roadmap for Neglected Tropical Diseases targets the global elimination of schistosomiasis as a public health problem. To date, control strategies have focused on effective diagnostics, mass drug administration, complementary and integrative public health interventions. Non-mammalian intermediate hosts and other vertebrates promote transmission of schistosomiasis and have been utilized as experimental model systems. Experimental animal models that recapitulate schistosomiasis immunology, disease progression, and pathology observed in humans are important in testing and validation of control interventions. We discuss the pivotal value of these models in contributing to elimination of schistosomiasis. Treatment of schistosomiasis relies heavily on mass drug administration of praziquantel whose efficacy is comprised due to re-infections and experimental systems have revealed the inability to kill juvenile schistosomes. In terms of diagnosis, nonhuman primate models have demonstrated the low sensitivity of the gold standard Kato Katz smear technique. Antibody assays are valuable tools for evaluating efficacy of candidate vaccines, and sera from graded infection experiments are useful for evaluating diagnostic sensitivity of different targets. Lastly, the presence of Schistosomes can compromise the efficacy of vaccines to other infectious diseases and its elimination will benefit control programs of the other diseases. As the focus moves towards schistosomiasis elimination, it will be critical to integrate treatment, diagnostics, novel research tools such as sequencing, improved understanding of disease pathogenesis and utilization of experimental models to assist with evaluating performance of new approaches.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Ruth K. Nyakundi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Gerald K. Chege
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
- Department of Environmental Health, School of Behavioural and Lifestyle Sciences, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
41
|
Pathological and immunological evaluation of different regimens of praziquantel treatment in a mouse model of Schistosoma mansoni infection. PLoS Negl Trop Dis 2022; 16:e0010382. [PMID: 35446855 PMCID: PMC9064093 DOI: 10.1371/journal.pntd.0010382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/03/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
One of the considerable challenges of schistosomiasis chemotherapy is the inefficacy of praziquantel (PZQ) at the initial phase of the infection. Immature schistosomes are not susceptible to PZQ at the curative dose. Here, we investigated the efficacy of different PZQ regimens administered during the initial stage of Schistosoma mansoni infection in mice.
Methodology/Principal findings
Two months-old mice were individually infected with 80 S. mansoni cercariae and divided into one infected-untreated control group (IC) and four PZQ-treated groups: PZQ at 100 mg/kg/day for five consecutive days (group PZQ1), PZQ at 100 mg/kg/day for 28 days (group PZQ2), PZQ at 18 mg/kg/day for 28 days (group PZQ3) and a single dose of PZQ at 500 mg/kg (group PZQ4). The treatment started on day one post-infection (p.i), and each group of mice was divided into two subgroups euthanized on day 36 or 56 p.i, respectively. We determined the mortality rate, the parasitological burden, the hepatic and intestinal granulomas, the serum levels of Th-1, Th-2, and Th-17 cytokines, and gene expression. The treatment led to a significant (p < 0.001) reduction of worm burden and egg counts in the intestine and liver in groups PZQ2 and PZQ3. On 56th day p.i, there was a significant reduction (p < 0.001) of the number and volume of the hepatic granulomas in groups PZQ2 and PZQ3 compared to group PZQ1 or PZQ4. Moreover, in group PZQ3, the serum levels of IFN-γ, TNF-α, IL-13, and IL-17 and their liver mRNA expressions were significantly reduced while IL-10 and TGF-β gene expression significantly increased. The highest mortality rate (81.25%) was recorded in group PZQ2.
Conclusion/Significance
This study revealed that the administration of PZQ at 18 mg/kg/day for 28 consecutive days was the optimal effective posology for treating S. mansoni infection at the initial stage in a murine model.
Collapse
|
42
|
Zhou M, Xue C, Wu Z, Wu X, Li M. Genome-Wide Association Study Identifies New Risk Loci for Progression of Schistosomiasis Among the Chinese Population. Front Cell Infect Microbiol 2022; 12:871545. [PMID: 35493725 PMCID: PMC9039613 DOI: 10.3389/fcimb.2022.871545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosoma japonicum infections, which lead to local inflammatory responses to schistosome eggs trapped in host tissues, can result in long-term, severe complications. The development of schistosomiasis may result from a complex interaction between the pathogenic, environmental, and host genetic components. Notably, the genetic factors that influence the development of schistosomiasis complications are poorly understood. Here we performed a genome-wide association study on multiple schistosomiasis-related phenotypes of 637 unrelated schistosomiasis patients in the Chinese population. Among three indicators of liver damage, we identified two novel, genome-wide significant single-nucleotide polymorphisms (SNPs) rs34486793 (P = 1.415 × 10-8) and rs2008259 (P = 6.78 × 10-8) at locus 14q32.2 as well as a gene, PMEPA1, at 20q13.31 (index rs62205791, P = 6.52 × 10-7). These were significantly associated with serum levels of hyaluronic acid (HA). In addition, RASIP1 and MAMSTR at 19q13.33 (index rs62132778, P = 1.72 × 10-7) were significantly associated with serum levels of aspartate aminotransferase (AST), and TPM1 at 15q22.2 (index rs12442303, P = 4.39 × 10-7) was significantly associated with serum levels of albumin. In schistosomiasis clinical signs, ITIH4 at 3p21.1 (index rs2239548) was associated with portal vein diameter (PVD) class, an indicator of portal hypertension, and OGDHL at 10q11.23 (index rs1258172) was related to ascites grade. We also detected an increased expression of these six genes in livers of mice with severe schistosomiasis. Summary data-based Mendelian randomization analyses indicated that ITIH4, PMEPA1 and MAMSTR were pleiotropically associated with PVD class, HA and AST, respectively.
Collapse
Affiliation(s)
- Miao Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Chao Xue
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- School of Public Health, Fudan University, Shanghai, China
- *Correspondence: Xiaoying Wu, ; Miaoxin Li,
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Xiaoying Wu, ; Miaoxin Li,
| |
Collapse
|
43
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Exp Parasitol 2022; 236-237:108255. [PMID: 35385714 DOI: 10.1016/j.exppara.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
44
|
Rodrigues JGM, Lira MGS, Nogueira RA, Gomes GCC, Licá ICL, Silva JKADO, Miranda GS, Silva-Souza N. Alterations in blood glucose concentration in wild rodents, Holochilus sciureus, naturally infected with Schistosoma mansoni. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e021921. [PMID: 35352759 PMCID: PMC9901889 DOI: 10.1590/s1984-29612022019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
The present study aimed to evaluate the changes in peripheral blood glucose concentrations induced by Schistosoma mansoni infection in Holochilus sciureus rodents, a wild reservoir of the parasite. Glucose concentration was measured in the plasma of blood samples using a colorimetric enzymatic test. Biological parameters and S. mansoni burden in each rodent were also verified and correlated with glucose concentrations. A total of 76 H. sciureus were captured, out of which 20 (26%) were infected with S. mansoni (n=13 males and n=7 females). Although the parasite burden was comparable between the sexes, blood glucose concentration was lower in infected males and almost unchanged in females. Furthermore, histopathological data revealed that male rodents had a greater hepatic granulomatous inflammatory reaction than females. In addition, we also confirmed that the weight and total length of the analyzed animals had no effect on glucose levels. Therefore, natural infection with S. mansoni in H. sciureus may have a lower impact on glycemic homeostasis in females, which will help us understand the role of these rodents as reservoirs of S. mansoni.
Collapse
Affiliation(s)
- João Gustavo Mendes Rodrigues
- Programa de Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG, Brasil
- Departamento de Química e Biologia, Universidade Estadual do Maranhão – UEMA, São Luís, MA, Brasil
| | - Maria Gabriela Sampaio Lira
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão – UFMA, São Luís, MA, Brasil
| | - Ranielly Araújo Nogueira
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão – UFMA, São Luís, MA, Brasil
| | | | - Irlla Correia Lima Licá
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão – UFMA, São Luís, MA, Brasil
| | | | - Guilherme Silva Miranda
- Programa de Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG, Brasil
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, São Raimundo das Mangabeiras, MA, Brasil
| | - Nêuton Silva-Souza
- Departamento de Química e Biologia, Universidade Estadual do Maranhão – UEMA, São Luís, MA, Brasil
| |
Collapse
|
45
|
Archer J, Patwary FK, Sturt AS, Webb EL, Phiri CR, Mweene T, Hayes RJ, Ayles H, Brienen EAT, van Lieshout L, Webster BL, Bustinduy AL. Validation of the isothermal Schistosoma haematobium Recombinase Polymerase Amplification (RPA) assay, coupled with simplified sample preparation, for diagnosing female genital schistosomiasis using cervicovaginal lavage and vaginal self-swab samples. PLoS Negl Trop Dis 2022; 16:e0010276. [PMID: 35286336 PMCID: PMC8947142 DOI: 10.1371/journal.pntd.0010276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/24/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Female genital schistosomiasis (FGS) is a neglected and disabling gynecological disease that can result from infection with the parasitic trematode Schistosoma haematobium. Accurate diagnosis of FGS is crucial for effective case management, surveillance and control. However, current methods for diagnosis and morbidity assessment can be inaccessible to those at need, labour intensive, costly and unreliable. Molecular techniques such as PCR can be used to reliably diagnose FGS via the detection of Schistosoma DNA using cervicovaginal lavage (CVL) samples as well as lesser-invasive vaginal self-swab (VSS) and cervical self-swab samples. PCR is, however, currently unsuited for use in most endemic settings. As such, in this study, we assessed the use of a rapid and portable S. haematobium recombinase polymerase amplification (Sh-RPA) isothermal molecular diagnostic assay, coupled with simplified sample preparation methodologies, to detect S. haematobium DNA using CVL and VSS samples provided by patients in Zambia. METHODOLOGY/PRINCIPAL FINDINGS VSS and CVL samples were screened for FGS using a previously developed Sh-RPA assay. DNA was isolated from VSS and CVL samples using the QIAamp Mini kit (n = 603 and 527, respectively). DNA was also isolated from CVL samples using two rapid and portable DNA extraction methods: 1) the SpeedXtract Nucleic Acid Kit (n = 223) and 2) the Extracta DNA Tissue Prep Kit (n = 136). Diagnostic performance of the Sh-RPA using VSS DNA extacts (QIAamp Mini kit) as well as CVL DNA extracts (QIAamp Mini kit, SpeedXtract Nucleic Acid Kit and Extracta DNA Tissue Prep Kit) was then compared to a real-time PCR reference test. Results suggest that optimal performance may be achieved when the Sh-RPA is used with PuVSS samples (sensitivity 93.3%; specificity 96.6%), however no comparisons between different DNA extraction methods using VSS samples could be carried out within this study. When using CVL samples, sensitivity of the Sh-RPA ranged between 71.4 and 85.7 across all three DNA extraction methods when compared to real-time PCR using CVL samples prepared using the QIAamp Mini kit. Interestingly, of these three DNA extraction methods, the rapid and portable SpeedXtract method had the greatest sensitivity and specificity (85.7% and 98.1%, respectively). Specificity of the Sh-RPA was >91% across all comparisons. CONCLUSIONS/SIGNIFICANCE These results supplement previous findings, highlighting that the use of genital self-swab sampling for diagnosing FGS should be explored further whilst also demonstrating that rapid and portable DNA isolation methods can be used to detect S. haematobium DNA within clinical samples using RPA. Although further development and assessment is needed, it was concluded that the Sh-RPA, coupled with simplified sample preparation, shows excellent promise as a rapid and sensitive diagnostic tool capable of diagnosing FGS at the point-of-care in resource-poor schistosomiasis-endemic settings.
Collapse
Affiliation(s)
- John Archer
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Farhan K. Patwary
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Amy S. Sturt
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Emily L. Webb
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | - Tobias Mweene
- School of Medicine, University of Zambia, Zambart, Lusaka, Zambia
| | - Richard J. Hayes
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Helen Ayles
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- School of Medicine, University of Zambia, Zambart, Lusaka, Zambia
| | - Eric A. T. Brienen
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
| | - Amaya L. Bustinduy
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
46
|
Profile of T and B lymphocytes in individuals resistant to Schistosoma mansoni infection. Parasitol Res 2022; 121:951-963. [PMID: 35132469 DOI: 10.1007/s00436-022-07435-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The mechanisms involved in the development of resistance to infection/reinfection by Schistosoma mansoni still arouse great interest and controversy. Some authors demonstrate that resistance to infection is attributed to a mixed Th1 and Th2 response and resistance to reinfection after repeated treatments through mechanisms associated with the Th2 response. Through flow cytometry, the phenotypic characterization of B and T lymphocytes in individuals residing in endemic areas with low parasite loads over 10 years was evaluated for the first time in humans. In this study, individuals with low parasite loads for Schistosoma mansoni had a higher proportion of Th1 and Th2 cells. In addition, lymphocytes from these individuals showed a higher degree of expression of costimulatory molecules CD28 and CTLA-4 and regulatory molecules FoxP3 and IL-10, when compared to individuals with high parasite loads. Our data indicate that the control of the parasite load of S. mansoni must be associated with a Th1, Th2, and regulatory response, and that further studies are needed to elucidate the possibility of mechanisms associated with the hyporesponsiveness of lymphocytes from individuals with high parasite loads.
Collapse
|
47
|
AlGabbani Q. Mutations in TP53 and PIK3CA genes in hepatocellular carcinoma patients are associated with chronic Schistosomiasis. Saudi J Biol Sci 2022; 29:848-853. [PMID: 35197752 PMCID: PMC8847977 DOI: 10.1016/j.sjbs.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to evaluate the genetic variation of the PIK3CA gene and the histopathological changes in liver tissue of patients with chronic Schistosomiasis to predict hepatocellular carcinoma. In this retrospective, the study samples were taken from 20 patients, divided into chronic schistosomiasis infected group of people (S) and chronic schistosomiasis uninfected group of people (C). The liver tissue biopsy samples for histological examinations were obtained only from chronic Schistosomiasis patients (n = 9). The blood samples were obtained from groups S and C for the mutational analysis of the PIK3CA and TP53 genes. The results suggest that the patients diagnosed with chronic Schistosomiasis were 9 (55%), and healthy patients without Schistosomiasis were 11 (45%). Histological results found that proliferation of fibrosis was observed in the hepatocytes of schistosomiasis patients. A total of 8 mutations (5 male, 3 female) were detected in PIK3CA and TP53 genes. Including 1634 A > G substitution mutations in PIK3CA, which was the only mutation found in males and females among the 8 mutations, accounting 22.22%. PIK3CA gene mutations were found more predominant in male groups as compared to other TP53 gene mutations. In conclusion, this study found that patients with chronic Schistosomiasis are at risk of PIK3CA gene mutations, eventually leading to hepatocytes fibrosis and liver cancer.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
48
|
Stroehlein AJ, Korhonen PK, Lee VV, Ralph SA, Mentink-Kane M, You H, McManus DP, Tchuenté LAT, Stothard JR, Kaur P, Dudchenko O, Aiden EL, Yang B, Yang H, Emery AM, Webster BL, Brindley PJ, Rollinson D, Chang BCH, Gasser RB, Young ND. Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathog 2022; 18:e1010288. [PMID: 35167626 PMCID: PMC8846543 DOI: 10.1371/journal.ppat.1010288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023] Open
Abstract
Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Andreas J. Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - V. Vern Lee
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Margaret Mentink-Kane
- NIH-NIAID Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louis-Albert Tchuem Tchuenté
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J. Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, China
- Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bicheng Yang
- BGI Australia, Oceania, BGI Group, CBCRB Building, Herston, Queensland, Australia
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Aidan M. Emery
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bonnie L. Webster
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Paul J. Brindley
- School of Medicine & Health Sciences, Department of Microbiology, Immunology & Tropical Medicine, George Washington University, Washington DC, United States of America
| | - David Rollinson
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bill C. H. Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Shams M, Khazaei S, Ghasemi E, Nazari N, Javanmardi E, Majidiani H, Bahadory S, Anvari D, Fatollahzadeh M, Nemati T, Asghari A. Prevalence of urinary schistosomiasis in women: a systematic review and meta-analysis of recently published literature (2016-2020). Trop Med Health 2022; 50:12. [PMID: 35093180 PMCID: PMC8800356 DOI: 10.1186/s41182-022-00402-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Urinary schistosomiasis is a serious threat in endemic territories of Africa and the Middle East. The status of female urinary schistosomiasis (FUS) in published literature between 2016 and 2020 was investigated. METHODS A systematic search in PubMed, Scopus, Google Scholar, and Web of Science, based on the 'Preferred Reporting Items for Systematic Reviews and Meta-analyses' checklist, and a meta-analysis using random-effects model to calculate the weighted estimates and 95% confidence intervals (95% CIs) were done. RESULTS Totally, 113 datasets reported data on 40,531 women from 21 African countries, showing a pooled prevalence of 17.5% (95% CI: 14.8-20.5%). Most studies (73) were performed in Nigeria, while highest prevalence was detected in Mozambique 58% (95% CI: 56.9-59.1%) (one study). By sample type and symptoms, vaginal lavage [25.0% (95% CI: 11.4-46.1%)] and hematuria 19.4% (95% CI: 12.2-29.4%) showed higher FUS frequency. Studies using direct microscopy diagnosed a 17.1% (95% CI: 14.5-20.1%) prevalence rate, higher than PCR-based studies 15.3% (95% CI: 6.1-33.2%). Except for sample type, all other variables had significant association with the overall prevalence of FUS. CONCLUSIONS More studies are needed to evaluate the true epidemiology of FUS throughout endemic regions.
Collapse
Affiliation(s)
- Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sasan Khazaei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ezatollah Ghasemi
- Department of Medical Parasitology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Naser Nazari
- Department of Parasitology and Mycology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Javanmardi
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital of Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamidreza Majidiani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Saeed Bahadory
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Davood Anvari
- Department of Parasitology, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Fatollahzadeh
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Taher Nemati
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
50
|
Phares CR, Liu Y, Wang Z, Posey DL, Lee D, Jentes ES, Weinberg M, Mitchell T, Stauffer W, Self JL, Marano N. Disease Surveillance Among U.S.-Bound Immigrants and Refugees — Electronic Disease Notification System, United States, 2014–2019. MMWR. SURVEILLANCE SUMMARIES 2022; 71:1-21. [PMID: 35051136 PMCID: PMC8791661 DOI: 10.15585/mmwr.ss7102a1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Problem/Condition Period Covered Description of System Results Interpretation Public Health Action
Collapse
|