1
|
Negi Y, Kumar K. OsWNK9 mitigates salt stress by promoting root growth and stomatal closure in rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70129. [PMID: 39968709 PMCID: PMC11836919 DOI: 10.1111/ppl.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Salinity stress severely affects rice growth and reduces its productivity. With No Lysine Kinases (WNKs) are serine/threonine kinases emerging as potential candidate genes due to their involvement in various abiotic stress tolerance responses. However, studies providing mechanistic insights into the roles of WNKs in plants remain scarce. In the present study, OsWNK9-overexpressing rice lines showed strong tolerance to salinity stress. Overexpression of OsWNK9 also triggered the accumulation of abscisic acid (ABA) and restored indole-3-acetic acid (IAA) concentrations in roots, triggering stomatal closure in shoots and maintaining cell expansion of the root epidermal cells when challenged with salt treatment. The overexpression lines showed increased activity of antioxidant enzymes, which further mitigated ROS-mediated cellular damage under salinity stress. We also identified that OsWNK9 interacts with Receptor for Activated Kinase C1A (RACK1A), ABA-8'-hydroxylase, and (Vacuolar Type ATPase) V-Type ATPase. Taken together, our findings suggest that OsWNK9 expression is warranted under salinity stress and exerts its effects by interacting with its downstream targets and by increased accumulation of ABA and IAA, thereby regulating seed germination, stomatal activity, improved root growth, and ionic homeostasis, which all contribute to significantly higher yield produced per plant under long term salinity stress.
Collapse
Affiliation(s)
- Yogesh Negi
- Department of Biological SciencesBirla Institute of Technology & Science Pilani, K. K. Birla Goa CampusGoaIndia
| | - Kundan Kumar
- Department of Biological SciencesBirla Institute of Technology & Science Pilani, K. K. Birla Goa CampusGoaIndia
| |
Collapse
|
2
|
Wei Z, Wu ZC, Zang J, Zhao D, Guo W, Dai H. Genome-Wide Identification and Expression Pattern Analysis of the WNK Gene Family in Apple under Abiotic Stress and Colletotrichum siamense Infection. Int J Mol Sci 2024; 25:8528. [PMID: 39126096 PMCID: PMC11313067 DOI: 10.3390/ijms25158528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
With-no-lysine kinase (WNK) is a unique serine/threonine kinase family member. WNK differs from other protein kinases by not having a standard lysine in subdomain II of the universally preserved kinase catalytic region. Conversely, the amino acid lysine located in subdomain I plays a crucial role in its phosphorylation. The WNK family has been reported to regulate Arabidopsis flowering, circadian rhythm, and abiotic stress. Eighteen members of the WNK gene family were discovered in apples in this research, and they were primarily grouped into five categories on the phylogenetic tree. Conserved domains and motifs also confirmed their identity as members of the WNK family. Promoter cis-acting element analysis indicated their potential role in responses to both abiotic stress and phytohormones. Furthermore, qRT-PCR analysis showed that the expression of MdWNK family genes was stimulated to different extents by Colletotrichum siamense, NaCl, mannitol, ABA, JA, and SA, with Colletotrichum siamense being the most prominent stimulant. MdWNK family genes were expressed across all apple tissues, with young fruits showing the greatest expression and roots showing the least expression. The research offered detailed insights into the MdWNK gene family, serving as a crucial basis for investigating the biological roles of MdWNK genes.
Collapse
Affiliation(s)
- Ziwen Wei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China;
| | - Zheng-Chao Wu
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Jian Zang
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Wei Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China;
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China;
| |
Collapse
|
3
|
Su B, Ge T, Zhang Y, Wang J, Wang F, Feng T, Liu B, Kong F, Sun Z. Genome-wide identification and expression analysis of the WNK kinase gene family in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:16. [PMID: 38371442 PMCID: PMC10869327 DOI: 10.1007/s11032-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
WNK kinases are a unique class of serine/threonine protein kinases that lack a conserved catalytic lysine residue in the kinase domain, hence the name WNK (with no K, i.e., lysine). WNK kinases are involved in various physiological processes in plants, such as circadian rhythm, flowering time, and stress responses. In this study, we identified 26 WNK genes in soybean and analyzed their phylogenetic relationships, gene structures, chromosomal distribution, cis-regulatory elements, expression patterns, and conserved protein motifs. The soybean WNK genes were unevenly distributed on 15 chromosomes and underwent 21 segmental duplication events during evolution. We detected 14 types of cis-regulatory elements in the promoters of the WNK genes, indicating their potential involvement in different signaling pathways. The transcriptome database revealed tissue-specific and salt stress-responsive expression of WNK genes in soybean, the second of which was confirmed by salt treatments and qRT-PCR analysis. We found that most WNK genes were significantly up-regulated by salt stress within 3 h in both roots and leaves, except for WNK5, which showed a distinct expression pattern. Our findings provide valuable insights into the molecular characteristics and evolutionary history of the soybean WNK gene family and lay a foundation for further analysis of WNK gene functions in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01440-5.
Collapse
Affiliation(s)
- Bohong Su
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tianli Ge
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yuhang Zhang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Jianhao Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fan Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tu Feng
- School of Ecological Engineering, Guizhou University of Engineering Science, Bijie, 551700 People’s Republic of China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Zhihui Sun
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
4
|
Fofana B, Soto-Cerda B, Zaidi M, Main D, Fillmore S. Genome-wide genetic architecture for plant maturity and drought tolerance in diploid potatoes. Front Genet 2024; 14:1306519. [PMID: 38357658 PMCID: PMC10864671 DOI: 10.3389/fgene.2023.1306519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Cultivated potato (Solanum tuberosum) is known to be highly susceptible to drought. With climate change and its frequent episodes of drought, potato growers will face increased challenges to achieving their yield goals. Currently, a high proportion of untapped potato germplasm remains within the diploid potato relatives, and the genetic architecture of the drought tolerance and maturity traits of diploid potatoes is still unknown. As such, a panel of 384 ethyl methanesulfonate-mutagenized diploid potato clones were evaluated for drought tolerance and plant maturity under field conditions. Genome-wide association studies (GWAS) were conducted to dissect the genetic architecture of the traits. The results obtained from the genetic structure analysis of the panel showed five main groups and seven subgroups. Using the Genome Association and Prediction Integrated Tool-mixed linear model GWAS statistical model, 34 and 17 significant quantitative trait nucleotides (QTNs) were found associated with maturity and drought traits, respectively. Chromosome 5 carried most of the QTNs, some of which were also detected by using the restricted two-stage multi-locus multi-allele-GWAS haploblock-based model, and two QTNs were found to be pleiotropic for both maturity and drought traits. Using the non-parametric U-test, one and three QTNs, with 5.13%-7.4% phenotypic variations explained, showed favorable allelic effects that increase the maturity and drought trait values. The quantitaive trait loci (QTLs)/QTNs associated with maturity and drought trait were found co-located in narrow (0.5-1 kb) genomic regions with 56 candidate genes playing roles in plant development and senescence and in abiotic stress responses. A total of 127 potato clones were found to be late maturing and tolerant to drought, while nine were early to moderate-late maturing and tolerant to drought. Taken together, the data show that the studied germplasm panel and the identified candidate genes are prime genetic resources for breeders and biologists in conventional breeding and targeted gene editing as climate adaptation tools.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Braulio Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Moshin Zaidi
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - David Main
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Sherry Fillmore
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| |
Collapse
|
5
|
Ji H, Wu Y, Zhao X, Miao JL, Deng S, Li S, Gao R, Liu ZJ, Zhai J. Genome-Wide Identification and Expression Analysis of WNK Kinase Gene Family in Acorus. Int J Mol Sci 2023; 24:17594. [PMID: 38139421 PMCID: PMC10743480 DOI: 10.3390/ijms242417594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
WNK (With No Lysine) kinases are members of serine/threonine protein kinase family, which lack conserved a catalytic lysine (K) residue in protein kinase subdomain II and this residue is replaced by either asparagine, serine, or glycine residues. They are involved in various physiological regulations of flowering time, circadian rhythms, and abiotic stresses in plants. In this study, we identified the WNK gene family in two species of Acorus, and analyzed their phylogenetic relationship, physiochemical properties, subcellular localization, collinearity, and cis-elements. The results showed twenty-two WNKs in two Acorus (seven in Ac. gramineus and fifteen in Ac. calamus) have been identified and clustered into five main clades phylogenetically. Gene structure analysis showed all WNKs possessed essential STKc_WNK or PKc_like superfamily domains, and the gene structures and conserved motifs of the same clade were similar. All the WNKs harbored a large number of light response elements, plant hormone signaling elements, and stress resistance elements. Through a collinearity analysis, two and fourteen segmental duplicated gene pairs were identified in the Ac. gramineus and Ac. calamus, respectively. Moreover, we observed tissue-specificity of WNKs in Acorus using transcriptomic data, and their expressions in response to salt stress and cold stress were analyzed by qRT-PCR. The results showed WNKs are involved in the regulation of abiotic stresses. There were significant differences in the expression levels of most of the WNKs in the leaves and roots of Acorus under salt stress and cold stress, among which two members in Ac. gramineus (AgWNK3 and AgWNK4) and two members in Ac. calamus (AcWNK8 and AcWNK12) were most sensitive to stress. In summary, this paper will significantly contribute to the understanding of WNKs in monocots and thus provide a set up for functional genomics studies of WNK protein kinases.
Collapse
Affiliation(s)
- Hongyu Ji
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
| | - You Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang-Lin Miao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
| | - Shuwen Deng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
| | - Shixing Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
| | - Rui Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Y.W.); (X.Z.); (J.-L.M.); (S.D.); (S.L.); (R.G.)
| |
Collapse
|
6
|
Hooker JC, Nissan N, Luckert D, Charette M, Zapata G, Lefebvre F, Mohr RM, Daba KA, Warkentin TD, Hadinezhad M, Barlow B, Hou A, Golshani A, Cober ER, Samanfar B. A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean ( Glycine max). Int J Mol Sci 2022; 24:ijms24010222. [PMID: 36613666 PMCID: PMC9820483 DOI: 10.3390/ijms24010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Soybean (Glycine max (L.) Merr.) is among the most valuable crops based on its nutritious seed protein and oil. Protein quality, evaluated as the ratio of glycinin (11S) to β-conglycinin (7S), can play a role in food and feed quality. To help uncover the underlying differences between high and low protein soybean varieties, we performed differential expression analysis on high and low total protein soybean varieties and high and low 11S soybean varieties grown in four locations across Eastern and Western Canada over three years (2018-2020). Simultaneously, ten individual differential expression datasets for high vs. low total protein soybeans and ten individual differential expression datasets for high vs. low 11S soybeans were assessed, for a total of 20 datasets. The top 15 most upregulated and the 15 most downregulated genes were extracted from each differential expression dataset and cross-examination was conducted to create shortlists of the most consistently differentially expressed genes. Shortlisted genes were assessed for gene ontology to gain a global appreciation of the commonly differentially expressed genes. Genes with roles in the lipid metabolic pathway and carbohydrate metabolic pathway were differentially expressed in high total protein and high 11S soybeans in comparison to their low total protein and low 11S counterparts. Expression differences were consistent between East and West locations with the exception of one, Glyma.03G054100. These data are important for uncovering the genes and biological pathways responsible for the difference in seed protein between high and low total protein or 11S cultivars.
Collapse
Affiliation(s)
- Julia C. Hooker
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Nour Nissan
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Doris Luckert
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Martin Charette
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Gerardo Zapata
- Canadian Centre for Computational Genomics, 740 Dr. Penfield Ave, Montréal, QC H3A 0G1, Canada
| | - François Lefebvre
- Canadian Centre for Computational Genomics, 740 Dr. Penfield Ave, Montréal, QC H3A 0G1, Canada
| | - Ramona M. Mohr
- Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Ketema A. Daba
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Thomas D. Warkentin
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Mehri Hadinezhad
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Brent Barlow
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Anfu Hou
- Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
7
|
Ercoli MF, Ramos PZ, Jain R, Pilotte J, Dong OX, Thompson T, Wells CI, Elkins JM, Edwards AM, Couñago RM, Drewry DH, Ronald PC. An open source plant kinase chemogenomics set. PLANT DIRECT 2022; 6:e460. [PMID: 36447653 PMCID: PMC9694430 DOI: 10.1002/pld3.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.
Collapse
Affiliation(s)
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Rashmi Jain
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Joseph Pilotte
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Oliver Xiaoou Dong
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Ty Thompson
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Carrow I. Wells
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Jonathan M. Elkins
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Centre for Medicines DiscoveryUniversity of OxfordOxfordUK
| | - Aled M. Edwards
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - David H. Drewry
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
8
|
Piya S, Hawk T, Patel B, Baldwin L, Rice JH, Stewart CN, Hewezi T. Kinase-dead mutation: A novel strategy for improving soybean resistance to soybean cyst nematode Heterodera glycines. MOLECULAR PLANT PATHOLOGY 2022; 23:417-430. [PMID: 34851539 PMCID: PMC8828698 DOI: 10.1111/mpp.13168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 05/29/2023]
Abstract
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as "syncytium highly connected hubs", potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure-function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tracy Hawk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Bhoomi Patel
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Logan Baldwin
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John H. Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - C. Neal Stewart
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
9
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Liu R, Vasupalli N, Hou D, Stalin A, Wei H, Zhang H, Lin X. Genome-wide identification and evolution of WNK kinases in Bambusoideae and transcriptional profiling during abiotic stress in Phyllostachys edulis. PeerJ 2022; 10:e12718. [PMID: 35070502 PMCID: PMC8761366 DOI: 10.7717/peerj.12718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
With-no-lysine (WNK) kinases play vital roles in abiotic stress response, circadian rhythms, and regulation of flowering time in rice, Arabidopsis, and Glycine max. However, there are no previous reports of WNKs in the Bambusoideae, although genome sequences are available for diploid, tetraploid, and hexaploid bamboo species. In the present study, we identified 41 WNK genes in five bamboo species and analysed gene evolution, phylogenetic relationship, physical and chemical properties, cis-elements, and conserved motifs. We predicted the structure of PeWNK proteins of moso bamboo and determined the exposed, buried, structural and functional amino acids. Real-time qPCR analysis revealed that PeWNK5, PeWNK7, PeWNK8, and PeWNK11 genes are involved in circadian rhythms. Analysis of gene expression of different organs at different developmental stages revealed that PeWNK genes are tissue-specific. Analysis of various abiotic stress transcriptome data (drought, salt, SA, and ABA) revealed significant gene expression levels in all PeWNKs except PeWNK11. In particular, PeWNK8 and PeWNK9 were significantly down- and up-regulated, respectively, after abiotic stress treatment. A co-expression network of PeWNK genes also showed that PeWNK2, PeWNK4, PeWNK7, and PeWNK8 were co-expressed with transcriptional regulators related to abiotic stress. In conclusion, our study identified the PeWNKs of moso bamboo involved in circadian rhythms and abiotic stress response. In addition, this study serves as a guide for future functional genomic studies of the WNK genes of the Bambusoideae.
Collapse
Affiliation(s)
- RongXiu Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Naresh Vasupalli
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China,State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Hantian Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Huicong Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| |
Collapse
|
11
|
Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A, Singh B. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals. CHEMOSPHERE 2022; 287:131957. [PMID: 34450367 DOI: 10.1016/j.chemosphere.2021.131957] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Shamima Praveen
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413 115, India
| | - Chandan Kumar Gupta
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226 002, India
| | - Usha Kalidindi
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ruchi Bansal
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700 120, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
12
|
Saddhe AA, Karle SB, Aftab T, Kumar K. With no lysine kinases: the key regulatory networks and phytohormone cross talk in plant growth, development and stress response. PLANT CELL REPORTS 2021; 40:2097-2109. [PMID: 34110446 DOI: 10.1007/s00299-021-02728-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 05/25/2023]
Abstract
With No Lysine kinases (WNKs) are a distinct family of Serine/Threonine protein kinase with unique arrangement of catalytic residues in kinase domain. In WNK, an essential catalytic lysine requisite for attaching ATP and phosphorylation reaction is located in subdomain I, instead of subdomain II, which is essentially a typical feature of other Ser/Thr kinases. WNKs are identified in diverse organisms including multicellular and unicellular organisms. Mammalian WNKs are well characterized at structural and functional level, while plant WNKs are not explored much except few recent studies. Plant WNKs role in various physiological processes viz. ion maintenance, osmotic stress, pH homeostasis, circadian rhythms, regulation of flowering time, proliferation and organ development, and abiotic stresses are known, but the mechanisms involved are unclear. Plant WNKs are known to be involved in enhanced drought and salt stress response via ABA-signaling pathway, but the complete signaling cascade is yet to be elucidated. The current review will discuss the interplay between WNKs and growth regulators and their cross talks in plant growth and development. We have also highlighted the link between the stress phytohormones and WNK members in regulating abiotic stress responses in plants. The present review will provide an overall known mechanism on the involvement of WNKs in plant growth and development and abiotic stress response and highlight its role/applications in the development of stress-tolerant plants.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Suhas Balasaheb Karle
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202 002, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India.
| |
Collapse
|
13
|
Li Z, Fu Y, Shen J, Liang J. Upstream Open Reading Frame Mediated Translation of WNK8 Is Required for ABA Response in Arabidopsis. Int J Mol Sci 2021; 22:ijms221910683. [PMID: 34639024 PMCID: PMC8509022 DOI: 10.3390/ijms221910683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
With no lysine (K) (WNK) kinases comprise a family of serine/threonine kinases belonging to an evolutionary branch of the eukaryotic kinome. These special kinases contain a unique active site and are found in a wide range of eukaryotes. The model plant Arabidopsis has been reported to have 11 WNK members, of which WNK8 functions as a negative regulator of abscisic acid (ABA) signaling. Here, we found that the expression of WNK8 is post-transcriptionally regulated through an upstream open reading frame (uORF) found in its 5′ untranslated region (5′-UTR). This uORF has been predicted to encode a conserved peptide named CPuORF58 in both monocotyledons and dicotyledons. The analysis of the published ribosome footprinting studies and the study of the frameshift CPuORF58 peptide with altered repression capability suggested that this uORF causes ribosome stalling. Plants transformed with the native WNK8 promoter driving WNK8 expression were comparable with wild-type plants, whereas the plants transformed with a similar construct with mutated CPuORF58 start codon were less sensitive to ABA. In addition, WNK8 and its downstream target RACK1 were found to synergistically coordinate ABA signaling rather than antagonistically modulating glucose response and flowering in plants. Collectively, these results suggest that the WNK8 expression must be tightly regulated to fulfill the demands of ABA response in plants.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (Z.L.); (J.L.)
| | - Yajuan Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
| | - Jinyu Shen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (Z.L.); (J.L.)
| |
Collapse
|
14
|
Faillace GR, Caruso PB, Timmers LFSM, Favero D, Guzman FL, Rechenmacher C, de Oliveira-Busatto LA, de Souza ON, Bredemeier C, Bodanese-Zanettini MH. Molecular Characterisation of Soybean Osmotins and Their Involvement in Drought Stress Response. Front Genet 2021; 12:632685. [PMID: 34249077 PMCID: PMC8267864 DOI: 10.3389/fgene.2021.632685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Osmotins are multifunctional proteins belonging to the thaumatin-like family related to plant stress responses. To better understand the functions of soybean osmotins in drought stress response, the current study presents the characterisation of four previously described proteins and a novel putative soybean osmotin (GmOLPa-like). Gene and protein structure as well as gene expression analyses were conducted on different tissues and developmental stages of two soybean cultivars with varying dehydration sensitivities (BR16 and EMB48 are highly and slightly sensitive, respectively). The analysed osmotin sequences share the conserved amino acid signature and 3D structure of the thaumatin-like family. Some differences were observed in the conserved regions of protein sequences and in the electrostatic surface potential. P21-like present the most similar electrostatic potential to osmotins previously characterised as promoters of drought tolerance in Nicotiana tabacum and Solanum nigrum. Gene expression analysis indicated that soybean osmotins were differentially expressed in different organs (leaves and roots), developmental stages (R1 and V3), and cultivars in response to dehydration. In addition, under dehydration conditions, the highest level of gene expression was detected for GmOLPa-like and P21-like osmotins in the leaves and roots, respectively, of the less drought sensitive cultivar. Altogether, the results suggest an involvement of these genes in drought stress tolerance.
Collapse
Affiliation(s)
- Giulia Ramos Faillace
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Paula Bacaicoa Caruso
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Fernando Saraiva Macedo Timmers
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Débora Favero
- Programa de Pós-Graduação em Fitotecnia, Departamento de Plantas de Lavoura, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Frank Lino Guzman
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ciliana Rechenmacher
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luisa Abruzzi de Oliveira-Busatto
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Osmar Norberto de Souza
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Christian Bredemeier
- Programa de Pós-Graduação em Fitotecnia, Departamento de Plantas de Lavoura, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia: Biotec Seca-Pragas, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
15
|
Manuka R, Saddhe AA, Srivastava AK, Kumar K, Penna S. Overexpression of rice OsWNK9 promotes arsenite tolerance in transgenic Arabidopsis plants. J Biotechnol 2021; 332:114-125. [PMID: 33864842 DOI: 10.1016/j.jbiotec.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/03/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022]
Abstract
Protein kinases are involved in the transfer of phosphate group to serine, threonine, and tyrosine residues of a target protein. With No Lysine (WNK) kinase is a member of the serine/threonine protein kinase family, which has conserved catalytic lysine (K) residue in subdomain I instead of being in subdomain II.The WNKs family members in plants are stress inducible and have been validated for their role in abiotic stress tolerance. In the present study, we have characterized Arabidopsis overexpressed lines of OsWNK9 regulated by the constitutive promoter under arsenite stress. Moreover, we have performed In silico expression analysis of OsWNK9 under nutrient deficiency and heavy metal stress. Three independent transgenic Arabidopsis (OsWNK9-OX T11, T12,andT13) lines showed tolerance to arsenite stress compared to wild-type (WT) plants. Under arsenite stress, transgenic lines T11, T12 and T13 showed 56.46, 57.8 and 51.66 % increased biomass respectively, as compared to WT plants. All three ArabidopsisOsWNK9-OX lines exhibited higher proline content, increased antioxidant enzyme activities and lower hydrogen peroxide levels under arsenite stress. Besides, the total antioxidant capacity in terms of DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging percentage was increased by 8-15 % in three independent OsWNK9-OX lines compared with those of WT plants. Protein-protein interaction analysis of OsWNK9 predicted interaction partners with protein kinase and oxidative stress-responsive protein. Co-expression analysis of OsWNK9 in phosphate deficiency and arsenate stress condition predicted various proteins including membrane transporter and transcription factors. Taken together, our results, for the first time, provide evidence that OsWNK9 could positively mediate arsenite stress tolerance in plants.
Collapse
Affiliation(s)
- Rakesh Manuka
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India; Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, 382426, India
| | - Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India.
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India.
| |
Collapse
|
16
|
Halder T, Liu H, Chen Y, Yan G, Siddique KHM. Identification of Candidate Genes for Root Traits Using Genotype-Phenotype Association Analysis of Near-Isogenic Lines in Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:3579. [PMID: 33808237 PMCID: PMC8038026 DOI: 10.3390/ijms22073579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Global wheat (Triticum aestivum L.) production is constrained by different biotic and abiotic stresses, which are increasing with climate change. An improved root system is essential for adaptability and sustainable wheat production. In this study, 10 pairs of near-isogenic lines (NILs)-targeting four genomic regions (GRs) on chromosome arms 4BS, 4BL, 4AS, and 7AL of hexaploid wheat-were used to phenotype root traits in a semi-hydroponic system. Seven of the 10 NIL pairs significantly differed between their isolines for 11 root traits. The NIL pairs targeting qDSI.4B.1 GR varied the most, followed by the NIL pair targeting qDT.4A.1 and QHtscc.ksu-7A GRs. For pairs 5-7 targeting qDT.4A.1 GR, pair 6 significantly differed in the most root traits. Of the 4 NIL pairs targeting qDSI.4B.1 GR, pairs 2 and 4 significantly differed in 3 and 4 root traits, respectively. Pairs 9 and 10 targeting QHtscc.ksu-7A GR significantly differed in 1 and 4 root traits, respectively. Using the wheat 90K Illumina iSelect array, we identified 15 putative candidate genes associated with different root traits in the contrasting isolines, in which two UDP-glycosyltransferase (UGT)-encoding genes, TraesCS4A02G185300 and TraesCS4A02G442700, and a leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding gene, TraesCS4A02G330900, also showed important functions for root trait control in other crops. This study characterized, for the first time, that these GRs control root traits in wheat, and identified candidate genes, although the candidate genes will need further confirmation and validation for marker-assisted wheat breeding.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
17
|
Zhang Y, Wang X, Luo Y, Zhang L, Yao Y, Han L, Chen Z, Wang L, Li Y. OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Dhanapal AP, York LM, Hames KA, Fritschi FB. Genome-Wide Association Study of Topsoil Root System Architecture in Field-Grown Soybean [ Glycine max (L.) Merr.]. FRONTIERS IN PLANT SCIENCE 2020; 11:590179. [PMID: 33643326 PMCID: PMC7902768 DOI: 10.3389/fpls.2020.590179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 05/09/2023]
Abstract
Water and nutrient acquisition is a critical function of plant root systems. Root system architecture (RSA) traits are often complex and controlled by many genes. This is the first genome-wide association study reporting genetic loci for RSA traits for field-grown soybean (Glycine max). A collection of 289 soybean genotypes was grown in three environments, root crowns were excavated, and 12 RSA traits assessed. The first two components of a principal component analysis of these 12 traits were used as additional aggregate traits for a total of 14 traits. Marker-trait association for RSA traits were identified using 31,807 single-nucleotide polymorphisms (SNPs) by a genome-wide association analysis. In total, 283 (non-unique) SNPs were significantly associated with one or more of the 14 root traits. Of these, 246 were unique SNPs and 215 SNPs were associated with a single root trait, while 26, four, and one SNPs were associated with two, three, and four root traits, respectively. The 246 SNPs marked 67 loci associated with at least one of the 14 root traits. Seventeen loci on 13 chromosomes were identified by SNPs associated with more than one root trait. Several genes with annotation related to processes that could affect root architecture were identified near these 67 loci. Additional follow-up studies will be needed to confirm the markers and candidate genes identified for RSA traits and to examine the importance of the different root characteristics for soybean productivity under a range of soil and environmental conditions.
Collapse
Affiliation(s)
| | - Larry M. York
- Noble Research Institute, LLC, Ardmore, OK, United States
| | - Kasey A. Hames
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Felix B. Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Felix B. Fritschi
| |
Collapse
|
19
|
Cao-Pham AH, Urano D, Ross-Elliott TJ, Jones AM. Nudge-nudge, WNK-WNK (kinases), say no more? THE NEW PHYTOLOGIST 2018; 220:35-48. [PMID: 29949669 DOI: 10.1111/nph.15276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/01/2018] [Indexed: 05/09/2023]
Abstract
Contents Summary 35 I Overview of animal and plant WNK kinases 35 II. Structure: domains and topology 36 III. Phylogeny-evolutionary relationships 41 IV. Plant WNK kinase distribution and regulation of WNK expression and activity 41 V. Functions of WNK family members in physiology and development 41 VI. Say no more? Still many questions to be answered 45 Acknowledgements 46 References 46 SUMMARY: WITH NO LYSINE (WNK) kinases are serine/threonine kinases uniquely characterized by an anomalous placement of a catalytic lysine, hence their moniker. In animals, WNK protein kinases play critical roles in protein trafficking of components that mediate renal ion transport processes and regulate osmoregulation of cell volume. In plants, the WNK kinase gene family is larger and more diverse. Recent studies revealed WNK kinase roles in orchestrating the trafficking of an ion channel, a lipid kinase complex in animals, and a heterotrimeric G protein signaling component in plants that is necessary for signal transduction. For this reason, new attention is geared toward investigating the mechanisms adopted by WNK kinases to nudge intracellular proteins to their destinations. In this review, the functions of WNK kinases in protein trafficking are derived from what we have learned from the model organism Arabidopsis thaliana. To place this new idea in context, we provide the predicted WNK kinase structures, their predicted expression patterns, a speculated evolutionary pathway, and the regulatory roles of plant WNKs in transport processes and other physiologies. We brazenly predict that the WNK kinases in both plants and animals will soon be recognized as a nexus for trafficking-based signal transduction.
Collapse
Affiliation(s)
- Anh H Cao-Pham
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604, Singapore
| | - Timothy J Ross-Elliott
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alan M Jones
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
20
|
Li X, Chen R, Chu Y, Huang J, Jin L, Wang G, Huang J. Overexpression of RCc3 improves root system architecture and enhances salt tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:566-576. [PMID: 30103148 DOI: 10.1016/j.plaphy.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 05/21/2023]
Abstract
Root system architecture represents an underexplored target for improving global crop yields. In this study, we investigated the biological role of the rice root-specific gene RCc3 in improving root growth and responses to abiotic stress by overexpressing RCc3 in rice plants. RCc3 was induced by osmotic and heat stress. RCc3 overexpression produced pleiotropic phenotypes of improved root system architecture, including increased growth of primary root, adventitious roots and lateral roots at the seedling stage. Further study indicated that auxin accumulation in the root was increased through auxin local biosynthesis and polar auxin transport in RCc3 overexpression lines. At maturity, the plant height and panicle traits were also significantly enhanced in overexpression plants. Under osmotic and heat stress conditions, the root and shoot growth were less severely inhibited in RCc3 overexpressing transgenic plants than that in wild-type plants, and the transcript levels of abiotic stress-related genes were significantly increased. Moreover, overexpression of RCc3 remarkably enhanced the tolerance to salt stress, with the elevated activities of antioxidant enzymes. Taken together, the data showed that RCc3 overexpression can improve rice root system, promote plant growth, and enhance plant tolerance to salt stress.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Junyang Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
21
|
Yan J, Li G, Guo X, Li Y, Cao X. Genome-wide classification, evolutionary analysis and gene expression patterns of the kinome in Gossypium. PLoS One 2018; 13:e0197392. [PMID: 29768506 PMCID: PMC5955557 DOI: 10.1371/journal.pone.0197392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
The protein kinase (PK, kinome) family is one of the largest families in plants and regulates almost all aspects of plant processes, including plant development and stress responses. Despite their important functions, comprehensive functional classification, evolutionary analysis and expression patterns of the cotton PK gene family has yet to be performed on PK genes. In this study, we identified the cotton kinomes in the Gossypium raimondii, Gossypium arboretum, Gossypium hirsutum and Gossypium barbadense genomes and classified them into 7 groups and 122-24 subfamilies using software HMMER v3.0 scanning and neighbor-joining (NJ) phylogenetic analysis. Some conserved exon-intron structures were identified not only in cotton species but also in primitive plants, ferns and moss, suggesting the significant function and ancient origination of these PK genes. Collinearity analysis revealed that 16.6 million years ago (Mya) cotton-specific whole genome duplication (WGD) events may have played a partial role in the expansion of the cotton kinomes, whereas tandem duplication (TD) events mainly contributed to the expansion of the cotton RLK group. Synteny analysis revealed that tetraploidization of G. hirsutum and G. barbadense contributed to the expansion of G. hirsutum and G. barbadense PKs. Global expression analysis of cotton PKs revealed stress-specific and fiber development-related expression patterns, suggesting that many cotton PKs might be involved in the regulation of the stress response and fiber development processes. This study provides foundational information for further studies on the evolution and molecular function of cotton PKs.
Collapse
Affiliation(s)
- Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, PR China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Guilin Li
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Yang Li
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xuecheng Cao
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, PR China
- * E-mail:
| |
Collapse
|
22
|
Manuka R, Saddhe AA, Kumar K. Expression of OsWNK9 in Arabidopsis conferred tolerance to salt and drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:58-71. [PMID: 29576087 DOI: 10.1016/j.plantsci.2018.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/22/2023]
Abstract
With No Lysine (WNK) kinase belongs to ser/thr protein kinase group in which conserved catalytic lysine (K) residue of subdomain II is shifted to subdomain I. In this study, we cloned full-length coding region of WNK9 from Oryza sativa (OsWNK9) and performed in silico studies to confirm the presence of all kinase signature regulatory elements. The transcript analysis revealed that OsWNK9 was strongly down regulated under salinity, drought and ABA stress in shoots. Constitutive expression of OsWNK9 in Arabidopsis thaliana imparted increased tolerance to salt, drought, and ABA stress. Transgenic lines showed healthy phenotypes such as green leaves, achieved higher fresh weight and longer roots under salt, drought and ABA stress as compared to wild-type (WT). Transgenic plants showed better seed germination, higher chlorophyll retention and less water loss under salt and drought stress compared to WT. Promoter/gene expression studies revealed that OsWNK9 were expressed throughout plant tissues with higher expression in roots. Subcellular localization studies of OsWNK9 showed their presence in the nucleus. The transcript analysis of abiotic stress marker genes and ABA dependent genes showed they were highly expressed in transgenic lines compared to WT in response to salt and drought stress. The endogenous ABA level under salt and drought stress in transgenic lines was higher than WT. The results indicated that OsWNK9 may regulate salt and drought response in ABA dependent manner.
Collapse
Affiliation(s)
- Rakesh Manuka
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
23
|
Capstaff NM, Miller AJ. Improving the Yield and Nutritional Quality of Forage Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:535. [PMID: 29740468 PMCID: PMC5928394 DOI: 10.3389/fpls.2018.00535] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 05/02/2023]
Abstract
Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.
Collapse
|
24
|
Balao F, Paun O, Alonso C. Uncovering the contribution of epigenetics to plant phenotypic variation in Mediterranean ecosystems. PLANT BIOLOGY (STUTTGART, GERMANY) 2018. [PMID: 28637098 DOI: 10.1111/plb.12594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Epigenetic signals can affect plant phenotype and fitness and be stably inherited across multiple generations. Epigenetic regulation plays a key role in the mechanisms of plant response to the environment, without altering DNA sequence. As plants cannot adapt behaviourally or migrate instantly, such dynamic epigenetic responses may be particularly crucial for survival of plants within changing and challenging environments, such as the Mediterranean-Type Ecosystems (MTEs). These ecosystems suffer recurrent stressful events (warm and dry summers with associated fire regimes) that have selected for plants with similar phenotypic complex traits, resulting in similar vegetation growth forms. However, the potential role of epigenetics in plant adaptation to recurrent stressful environments such as the MTEs has generally been ignored. To understand the full spectrum of adaptive processes in such contexts, it is imperative to prompt study of the causes and consequences of epigenetic variation in natural populations. With this purpose, we review here current knowledge on epigenetic variation in natural populations and the genetic and epigenetic basis of some key traits for plants in the MTEs, namely those traits involved in adaptation to drought, fire and oligotrophic soils. We conclude there is still much to be learned about 'plant epigenetics in the wild' and, thus, we propose future research steps in the study of natural epigenetic variation of key traits in the MTEs at different scales.
Collapse
Affiliation(s)
- F Balao
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - C Alonso
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
25
|
Tian H, Chen S, Yang W, Wang T, Zheng K, Wang Y, Cheng Y, Zhang N, Liu S, Li D, Liu B, Wang S. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2958-2971. [PMID: 28857190 DOI: 10.1111/pce.13058] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongqiu Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
26
|
Manuka R, Saddhe AA, Kumar K. Genome-wide identification and expression analysis of WNK kinase gene family in rice. Comput Biol Chem 2015; 59 Pt A:56-66. [DOI: 10.1016/j.compbiolchem.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/31/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
|
27
|
Xie M, Wu D, Duan G, Wang L, He R, Li X, Tang D, Zhao X, Liu X. AtWNK9 is regulated by ABA and dehydration and is involved in drought tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:73-83. [PMID: 24561249 DOI: 10.1016/j.plaphy.2014.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
WNK (with no lysine [K]) kinases play important regulatory roles in flowering, as well as salt and osmotic stress tolerance in plants. Here, we report that AtWNK9, a member of the Arabidopsis WNK gene family, was induced by exogenous abscisic acid (ABA) treatment and dehydration stress. Overexpression of AtWNK9 from the cauliflower mosaic virus 35S promoter in Arabidopsis resulted in increased sensitivity to ABA, strong inhibition of primary root elongation, increased proline accumulation, reduced stomatal aperture, and a reduced rate of water loss. In addition, plant survival under drought stress was improved compared to wild type. In contrast, a mutant with a T-DNA insertion in AtWNK9 showed reduced ABA sensitivity and an increased rate of water loss; further, it showed increased susceptibility to drought stress. The transcription of a number of ABA signaling components, including ABI1, ERA1, ABI3, and ABF3, was up-regulated in AtWNK9 transgenic plants and down-regulated in the wnk9 mutant in response to ABA. Some ABA-responsive and biosynthetic genes, as well as other drought-related genes, were altered at various levels in AtWNK9 transgenic plants and wnk9 mutants under dehydration stress. Overall, these findings suggest that AtWNK9 plays a positive role in ABA signaling and improves drought tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Minmin Xie
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Dan Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Guifang Duan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Liqun Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Reqing He
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiushan Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoying Zhao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| |
Collapse
|
28
|
Zhang B, Liu K, Zheng Y, Wang Y, Wang J, Liao H. Disruption of AtWNK8 enhances tolerance of Arabidopsis to salt and osmotic stresses via modulating proline content and activities of catalase and peroxidase. Int J Mol Sci 2013; 14:7032-47. [PMID: 23535337 PMCID: PMC3645675 DOI: 10.3390/ijms14047032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 11/17/2022] Open
Abstract
With no lysine kinases (WNKs) play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT) activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD) activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.
Collapse
Affiliation(s)
- Baige Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kaidong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
- Life science and Technology School, Zhanjiang Normal University, Zhanjiang 524048, China
| | - Yan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
| | - Yingxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; E-Mails: (B.Z.); (K.L.); (Y.Z.); (Y.W.); (H.L.)
| |
Collapse
|
29
|
Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci 2012; 367:2619-39. [PMID: 22889912 DOI: 10.1098/rstb.2012.0003] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.
Collapse
Affiliation(s)
- Melissa D Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
30
|
Zheng Y, Huang Y, Xian W, Wang J, Liao H. Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses. ANNALS OF BOTANY 2012; 110:743-56. [PMID: 22751653 PMCID: PMC3400457 DOI: 10.1093/aob/mcs133] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/16/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Abscisic acid (ABA) plays crucial roles in plants' responses to abiotic stresses. ABA 8'-hydroxylation controlled by CYP707A genes has been well studied in Arabidopsis and rice, but not in legumes. The aims of the present study were to identify and functionally analyse the soybean CYP707A gene family, and to explore their expression patterns under dehydration and salt stresses. METHODS A complementation experiment was employed to verify the function of soybean CYP707A1a in ABA catabolism. Genomic and cDNA sequences of other soybean CYP707A genes were isolated from the Phytozome database based on soybean CYP707A1a. The structure and phylogenetic relationship of this gene family was further analysed. The expression patterns of soybean CYP707A genes under dehydration and salt stress were analysed via quantitative real-time PCR. KEY RESULTS Over-expression of GmCYP707A1a in the atcyp707a2 T-DNA insertion mutant decreased its sensitivity to ABA, indicating that GmCYP707A1a indeed functions as an ABA 8'-hydroxylase in higher plants. The soybean genome contains ten CYP707A genes. Gene structure and phylogenetic analysis showed high conservation of ten GmCYP707A genes to the other CYP707A genes from monocots and dicots. Seed imbibition induced expression of A1a, A1b, A2a, A2b, A2c, A3a and A5 in embryo, and expression of A1a, A1b, A2a and A2b in cotyledon. Dehydration induced expression of A1a, A1b, A2b, A2c, A3a, A3b, A4a, A4b and A5 both in roots and in leaves, whereas rehydration stimulated transcription of A2a, A2b, A3b, A4a and A5 in roots, and only A3b and A5 in leaves. Expression of all soybean CYP707A genes was induced either by short- or by long-term salt stress. CONCLUSIONS The first biological evidence is provided that GmCYP7071a encodes an ABA 8'-hydroxylase through transgenic studies. Ten soybean GmCYP707A genes were identified, most of them expressed in multiple soybean tissues, and were induced by imbibition, dehydration and salinity.
Collapse
Affiliation(s)
| | | | | | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
31
|
Saeed M, Dahab AHA, Wangzhen G, Tianzhen Z. A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:188-99. [PMID: 22433075 DOI: 10.1089/omi.2011.0109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Today, agriculture is facing a tremendous threat from the climate change menace. As human survival is dependent on a constant supply of food from plants as the primary producers, we must aware of the underlying molecular mechanisms that plants have acquired as a result of molecular evolution to cope this rapidly changing environment. This understanding will help us in designing programs aimed at developing crop plant cultivars best suited to our needs of a sustainable agriculture. The field of systems biology is rapidly progressing, and new insight is coming out about the molecular mechanisms involved in abiotic stress tolerance. There is a cascade of changes in transcriptome, proteome, and metabolome of plants during these stress responses. We have tried to cover most pronounced recent developments in the field of "omics" related to abiotic stress tolerance of plants. These changes are very coordinated, and often there is crosstalk between different components of stress tolerance. The functions of various molecular entities are becoming more clear and being associated with more precise biological phenomenon.
Collapse
Affiliation(s)
- Muhammad Saeed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | |
Collapse
|
32
|
Lovelli S, Scopa A, Perniola M, Di Tommaso T, Sofo A. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:226-33. [PMID: 22070973 DOI: 10.1016/j.jplph.2011.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 05/08/2023]
Abstract
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na(+) and Cl(-) in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψ(w)) decreased from an average value of approximately -1.0 MPa, measured on control plants and S10, to -1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g(-1) fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.
Collapse
Affiliation(s)
- Stella Lovelli
- Department of Crop System, Forestry and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy.
| | | | | | | | | |
Collapse
|
33
|
Wang Y, Suo H, Zhuang C, Ma H, Yan X. Overexpression of the soybean GmWNK1 altered the sensitivity to salt and osmotic stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2260-7. [PMID: 21925762 DOI: 10.1016/j.jplph.2011.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
The WNK (With No Lysine K) serine-threonine kinases have been shown to be osmosensitive regulators and are critical for cell volume homeostasis in humans. We previously identified a soybean root-specific WNK homolog, GmWNK1, which is important for normal late root development by fine-tuning regulation of ABA levels. However, the functions of WNKs in plant osmotic stress response remains uncertain. In this study, we generated transgenic Arabidopsis plants with constitutive expression of GmWNK1. We found that these transgenic plants had increased endogenous ABA levels and altered expression of ABA-responsive genes, and exhibited a significantly enhanced tolerance to NaCl and osmotic stresses during seed germination and seedling development. These findings suggest that, in addition to regulating root development, GmWNK1 also regulates ABA-responsive gene expression and/or interacts with other stress related signals, thereby modulating osmotic stress responses. Thus, these results suggest that WNKs are members of an evolutionarily conserved kinase family that modulates cellular response to osmotic stresses in both animal and plants.
Collapse
Affiliation(s)
- Yingxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China.
| | | | | | | | | |
Collapse
|
34
|
Ghanem ME, Hichri I, Smigocki AC, Albacete A, Fauconnier ML, Diatloff E, Martinez-Andujar C, Lutts S, Dodd IC, Pérez-Alfocea F. Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. PLANT CELL REPORTS 2011; 30:807-23. [PMID: 21298270 DOI: 10.1007/s00299-011-1005-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 05/09/2023]
Abstract
Since plant root systems capture both water and nutrients essential for the formation of crop yield, there has been renewed biotechnological focus on root system improvement. Although water and nutrient uptake can be facilitated by membrane proteins known as aquaporins and nutrient transporters, respectively, there is a little evidence that root-localised overexpression of these proteins improves plant growth or stress tolerance. Recent work suggests that the major classes of phytohormones are involved not only in regulating aquaporin and nutrient transporter expression and activity, but also in sculpting root system architecture. Root-specific expression of plant and bacterial phytohormone-related genes, using either root-specific or root-inducible promoters or grafting non-transformed plants onto constitutive hormone producing rootstocks, has examined the role of root hormone production in mediating crop stress tolerance. Root-specific traits such as root system architecture, sensing of edaphic stress and root-to-shoot communication can be exploited to improve resource (water and nutrients) capture and plant development under resource-limited conditions. Thus, root system engineering provides new opportunities to maintain sustainable crop production under changing environmental conditions.
Collapse
Affiliation(s)
- Michel Edmond Ghanem
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute (ELI-A), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Den Herder G, Van Isterdael G, Beeckman T, De Smet I. The roots of a new green revolution. TRENDS IN PLANT SCIENCE 2010; 15:600-7. [PMID: 20851036 DOI: 10.1016/j.tplants.2010.08.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 05/18/2023]
Abstract
A significant increase in shoot biomass and seed yield has always been the dream of plant biologists who wish to dedicate their fundamental research to the benefit of mankind; the first green revolution about half a century ago represented a crucial step towards contemporary agriculture and the development of high-yield varieties of cereal grains. Although there has been a steady rise in our food production from then onwards, the currently applied technology and the available crop plants will not be sufficient to feed the rapidly growing world population. In this opinion article, we highlight several below-ground characteristics of plants such as root architecture, nutrient uptake and nitrogen fixation as promising features enabling a very much needed new green revolution.
Collapse
Affiliation(s)
- Griet Den Herder
- Genetics, Faculty of Biology, University of Munich (LMU), D-82152 Martinsried-München, Germany
| | | | | | | |
Collapse
|