1
|
Ogwu MC, Malík M, Tlustoš P, Patočka J. The psychostimulant drug, fenethylline (captagon): Health risks, addiction and the global impact of illicit trade. DRUG AND ALCOHOL DEPENDENCE REPORTS 2025; 15:100323. [PMID: 40151181 PMCID: PMC11946500 DOI: 10.1016/j.dadr.2025.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Fenethylline (street name, captagon) is a synthetic amphetamine-type stimulant that is emerging as a significant public health and security concern, particularly in the Middle East. This systematic review synthesizes original research articles, epidemiological studies, systematic reviews, policy analyses, and case reports to provide a comprehensive analysis of fenethylline's health impacts, addiction potential, and dynamics of illicit trade. Initially developed for therapeutic use, fenethylline illicit production and use have escalated, raising concern about its physiological, psychological, and socio-economic impacts. This stimulant profoundly affects the central nervous system, enhancing wakefulness, concentration, and physical stamina while inducing euphoria. These effects come at the cost of serious adverse health outcomes, particularly with prolonged or heavy use, including cardiovascular complications, neurological damage, and addiction. The dependence-forming nature of captagon contributes to escalating substance use disorders, impacting healthcare systems. Beyond its biomedical implications, fenethylline trafficking has become a global issue, with supply chains deeply intertwined with politically unstable regions where illicit economies thrive. The geopolitical dimensions of captagon's trade amplify its global security threat, influencing international relations and regional stability. This paper underscores the urgent need for systematic data collection and coordinated efforts to regulate illicit fenethylline production and distribution. Strategies such as improved surveillance, public health interventions, and international cooperation are essential to mitigate its escalating risks. Addressing this issue requires a multidisciplinary approach, integrating public health, law enforcement, and policy development to curb its impact on global health and security.
Collapse
Affiliation(s)
- Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Appalachian State University, 212 Living Learning Center, 305 Bodenheimer Drive, Boone, NC 28608, United States
| | - Matěj Malík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha 165 00, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha 165 00, Czech Republic
| | - Jiří Patočka
- Department of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 1167/27, České Budějovice 370 11, Czech Republic
| |
Collapse
|
2
|
Jones JD, Arout CA, Luba R, Murugesan D, Madera G, Gorsuch L, Schusterman R, Martinez S. The influence of drug class on reward in substance use disorders. Pharmacol Biochem Behav 2024; 240:173771. [PMID: 38670466 PMCID: PMC11162950 DOI: 10.1016/j.pbb.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Caroline A Arout
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Rachel Luba
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dillon Murugesan
- CUNY School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Gabriela Madera
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Liam Gorsuch
- Department of Psychiatry, The University of British Columbia, 430-5950 University Blvd., Vancouver V6T 1Z3, BC, Canada
| | - Rebecca Schusterman
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
3
|
Barbosa-Méndez S, Salazar-Juárez A. Evaluation of multitarget drugs on the expression of cocaine-induced locomotor sensitization in male rats: A comparative study. Heliyon 2024; 10:e29979. [PMID: 38726128 PMCID: PMC11079035 DOI: 10.1016/j.heliyon.2024.e29979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose - Cocaine use disorder (CUD) is a complex disease. Several studies have shown the efficacy of multitarget drugs used to treat CUD. Here we compare the efficacy of mirtazapine (MIR), pindolol (PIN), fluoxetine (FLX), risperidone (RIS), trazodone (TRZ), ziprasidone (ZPR), ondansetron (OND), yohimbine (YOH), or prazosin (PRZ), to reduce long-term cocaine-induced locomotor activity and the expression of cocaine-induced locomotor sensitization in rats. Methods - The study consists of four experiments, which were divided into four experimental phases. Induction (10 days), cocaine withdrawal (30 days), expression (10 days), and post-expression phase (10 days). Male Wistar rats were daily dosed with cocaine (10 mg/kg; i.p.) during the induction and post-expression phases. During drug withdrawal, the MIR, PIN, FLX, RIS, TRZ, ZPR, OND, YOH, or PRZ were administered 30 min before saline. In the expression, the multitarget drugs were administered 30 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min.During the agonism phase, in experiment four, 8-OH-DPAT, DOI, CP-809-101, SR-57227A, or clonidine (CLO) was administered 30 min before MIR and 60 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min. Results -MIR, FLX, RIS, ZPR, OND, or PRZ attenuated the cocaine-induced locomotor activity and cocaine locomotor sensitization. PIN, TRZ, and YOH failed to decrease cocaine locomotor sensitization. At the optimal doses used, PIN, FLX, RIS, TRZ, ZPR, OND, YOH, or PRZ failed to attenuate long-term cocaine locomotor activation. MIR generated a decrease in cocaine-induced locomotor activity of greater magnitude and duration than the other multitarget drugs evaluated. Conclusion - At the optimal doses of multitarget drugs evaluated, MIR was the multitarget drug that showed the greatest long-term cocaine-induced behavior effects compared to other multitarget drugs.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental. Instituto Nacional de Psiquiatría. Ciudad de México, 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental. Instituto Nacional de Psiquiatría. Ciudad de México, 14370, Mexico
| |
Collapse
|
4
|
Lamoureux L, Beverley J, Steiner H, Marinelli M. Methylphenidate with or without fluoxetine triggers reinstatement of cocaine seeking behavior in rats. Neuropsychopharmacology 2024; 49:953-960. [PMID: 38086900 PMCID: PMC11039773 DOI: 10.1038/s41386-023-01777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 04/25/2024]
Abstract
Methylphenidate (MP) is commonly prescribed to treat attention-deficit hyperactivity disorder (ADHD). MP is also taken for non-medical purposes as a recreational drug or "cognitive enhancer". Combined exposure to MP and selective serotonin reuptake inhibitors such as fluoxetine (FLX) can also occur, such as in the treatment of ADHD with depression comorbidity or when patients taking FLX use MP for non-medical purposes. It is unclear if such exposure could subsequently increase the risk for relapse in former cocaine users. We investigated if an acute challenge with MP, FLX, or the combination of MP + FLX could trigger reinstatement of cocaine seeking behavior in a model for relapse in rats. Juvenile rats self-administered cocaine (600 µg/kg/infusion, 1-2 h/day, 7-8 days) and then underwent extinction and withdrawal during late adolescence-early adulthood. Reinstatement was tested at a low dose of MP (2 mg/kg, I.P., comparable to doses used therapeutically) or a high dose of MP (5 mg/kg, comparable to doses used recreationally or as a cognitive enhancer), with or without FLX (2.5-5 mg/kg, I.P.). An acute challenge with the high dose of MP (5 mg/kg), with or without FLX, reinstated cocaine seeking behavior to levels comparable to those seen after an acute challenge with cocaine (15 mg/kg, I.P.). The low dose of MP (2 mg/kg) with or without FLX did not reinstate cocaine seeking behavior. Our results suggest that acute exposure to a high dose of MP, with or without FLX, may increase the risk for relapse in individuals who used cocaine during the juvenile period.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| | - Joel Beverley
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heinz Steiner
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Michela Marinelli
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, Department of Psychiatry and Behavioral Science, and the Mulva Clinic for the Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, the University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Cid-Jofré V, Bahamondes T, Zúñiga Correa A, Ahumada Arias I, Reyes-Parada M, Renard GM. Psychostimulants and social behaviors. Front Pharmacol 2024; 15:1364630. [PMID: 38725665 PMCID: PMC11079219 DOI: 10.3389/fphar.2024.1364630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Mounting evidence from animal models and human studies indicates that psychostimulants can significantly affect social behaviors. This is not surprising considering that the neural circuits underlying the regulation and expression of social behaviors are highly overlapped with those targeted by psychostimulants, which in most cases have strong rewarding and, consequently, addictive properties. In the present work, we provide an overview regarding the effects of illicit and prescription psychostimulants, such as cocaine, amphetamine-type stimulants, methylphenidate or modafinil, upon social behaviors such as social play, maternal behavior, aggression, pair bonding and social cognition and how psychostimulants in both animals and humans alter them. Finally, we discuss why these effects can vary depending on numerous variables such as the type of drug considered, acute versus long-term use, clinical versus recreational consumption, or the presence or absence of concomitant risk factors.
Collapse
Affiliation(s)
- Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Tamara Bahamondes
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Agustina Zúñiga Correa
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ivalú Ahumada Arias
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Georgina M. Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
6
|
Minnes GL, Wiener AJ, Liley AE, Simon NW. Dopaminergic modulation of sensitivity to immediate and delayed punishment during decision-making. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:304-321. [PMID: 38052746 DOI: 10.3758/s13415-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Effective decision-making involves careful consideration of all rewarding and aversive outcomes. Importantly, negative outcomes often occur later in time, leading to underestimation, or "discounting," of these consequences. Despite the frequent occurrence of delayed outcomes, little is known about the neurobiology underlying sensitivity to delayed punishment during decision-making. The Delayed Punishment Decision-making Task (DPDT) addresses this by assessing sensitivity to delayed versus immediate punishment in rats. Rats initially avoid punished reinforcers, then select this option more frequently when delay precedes punishment. We used DPDT to examine effects of acute systemic administration of catecholaminergic drugs on sensitivity to delayed punishment in male and female adult rats. Cocaine did not affect choice of rewards with immediate punishment but caused a dose-dependent reduction in choice of delayed punishment. Neither activation nor blockade of D1-like dopamine receptor affected decision-making, but activation of D2-like dopamine receptors reduced choice of delayed punishment. D2 blockade did not attenuate cocaine's effects on decision-making, suggesting that cocaine's effects are not dependent on D2 receptor activation. Increasing synaptic norepinephrine via atomoxetine also reduced choice of delayed (but not immediate) punishment. Notably, when DPDT was modified from ascending to descending pre-punishment delays, these drugs did not affect choice of delayed or immediate punishment, although high-dose quinpirole impaired behavioral flexibility. In summary, sensitivity to delayed punishment is regulated by both dopamine and norepinephrine transmission in task-specific fashion. Understanding the neurochemical modulation of decision-making with delayed punishment is a critical step toward treating disorders characterized by aberrant sensitivity to negative consequences.
Collapse
Affiliation(s)
- Grace L Minnes
- Department of Psychology, University of Memphis, Memphis, TN, USA
| | - Anna J Wiener
- Department of Psychology, University of Memphis, Memphis, TN, USA
| | - Anna E Liley
- Department of Psychology, University of Memphis, Memphis, TN, USA
| | - Nicholas W Simon
- Department of Psychology, University of Memphis, Memphis, TN, USA.
| |
Collapse
|
7
|
Lark AR, Nass SR, Hahn YK, Gao B, Milne GL, Knapp PE, Hauser KF. HIV-1 Tat and morphine interactions dynamically shift striatal monoamine levels and exploratory behaviors over time. J Neurochem 2024; 168:185-204. [PMID: 38308495 PMCID: PMC10922901 DOI: 10.1111/jnc.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.
Collapse
Affiliation(s)
| | | | | | - Benlian Gao
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Ginger L. Milne
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Pamela E. Knapp
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|
8
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
9
|
Gao Z, Ding P, Xu R. IUPHAR review - Data-driven computational drug repurposing approaches for opioid use disorder. Pharmacol Res 2024; 199:106960. [PMID: 37832859 DOI: 10.1016/j.phrs.2023.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Opioid Use Disorder (OUD) is a chronic and relapsing condition characterized by the misuse of opioid drugs, causing significant morbidity and mortality in the United States. Existing medications for OUD are limited, and there is an immediate need to discover treatments with enhanced safety and efficacy. Drug repurposing aims to find new indications for existing medications, offering a time-saving and cost-efficient alternative strategy to traditional drug discovery. Computational approaches have been developed to further facilitate the drug repurposing process. In this paper, we reviewed state-of-the-art data-driven computational drug repurposing approaches for OUD and discussed their advantages and potential challenges. We also highlighted promising repurposed candidate drugs for OUD that were identified by computational drug repurposing techniques and reviewed studies supporting their potential mechanisms of action in treating OUD.
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Bader A, Yousaf A, Chu XP. Commentary: Effects of acid-sensing ion channel-1A (ASIC1A) on cocaine-induced synaptic adaptations. Front Physiol 2023; 14:1295561. [PMID: 38111896 PMCID: PMC10725958 DOI: 10.3389/fphys.2023.1295561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
11
|
Hafenbreidel M, Pandey S, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral amygdala corticotropin releasing factor receptor 2 interacts with nonmuscle myosin II to destabilize memory in males. Neurobiol Learn Mem 2023; 206:107865. [PMID: 37995804 DOI: 10.1016/j.nlm.2023.107865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Preclinical studies show that inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory in male and female adult and adolescent rodents. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g., dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To understand the mechanisms responsible for drug specific selectivity we began by investigating, in male mice, the pharmacokinetic differences in METH and COC brain exposure . Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, we next assessed transcriptional differences. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotropin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility. Pretreatment with AS2B prevented the ability of Blebb to disrupt an established METH-associated memory. Alternatively, combining CRF2 overexpression and agonist treatment, urocortin 3 (UCN3), in the BLA during conditioning rendered COC-associated memory susceptible to disruption by NMII inhibition, mimicking the Blebb-induced, retrieval-independent memory disruption seen with METH. These results suggest that BLA CRF2 receptor activation during memory formation in male mice can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption by NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Surya Pandey
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
12
|
Yepez JE, Juárez J. Atomoxetine promotes incentive value of modafinil and sensitizes exploratory behavior. Pharmacol Biochem Behav 2023; 230:173618. [PMID: 37595803 DOI: 10.1016/j.pbb.2023.173618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Substance dependence is a disorder that alters the functioning of the nervous system due to frequent abuse of drugs. The role of dopamine in the addictive effect of psychostimulants is well known; however, the involvement of the noradrenergic system is still unclear and poorly understood, though drugs like cocaine and amphetamines are known to exert significant activity on this system. The drug modafinil (MOD) has no proven addictive effect. It promotes wakefulness by acting mainly on the dopaminergic system and, to a lesser degree, the noradrenergic (NOR) system. Atomoxetine (ATX) is a non-stimulant drug that acts only on the NOR system, enhancing its activity. The aims of the present study were to analyze the effect of co-activating the DA and NOR systems (with MOD and ATX, respectively) on motor activity and exploratory behavior, and to examine the possible emergence of rewarding properties of MOD and an MOD+ATX mixture. Male Wistar rats at postnatal day 60 were treated chronically (16 days) with either monotherapy with 2ATX, 4ATX, or 60MOD mg/kg, two combinations of these substances -60MOD + 2ATX and 60MOD + 4ATX- or a vehicle. The rats co-administered with 60MOD + 4ATX reduced the rearing behavior frequency induced by MOD, but this behavior was sensitized by self-administration of the MOD+ATX mixture after chronic treatment. The rats pre-treated with 60MOD + 4ATX showed higher self-administration of MOD and greater activity on an operant task to obtain the MOD+ATX mixture. In addition, the 60MOD, 2ATX, and 60MOD + 2ATX groups showed sensitization of exploratory behavior after ingesting the mixture. Results suggest that the noradrenergic system enhances the incentive value of MOD and a MOD+ATX mixture, while also playing an important role in the sensitization of exploratory behavior.
Collapse
Affiliation(s)
- Jesús E Yepez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
13
|
Goud TJ. Epigenetic and Long-Term Effects of Nicotine on Biology, Behavior, and Health. Pharmacol Res 2023; 192:106741. [PMID: 37149116 DOI: 10.1016/j.phrs.2023.106741] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Tobacco and nicotine use are associated with disease susceptibility and progression. Health challenges associated with nicotine and smoking include developmental delays, addiction, mental health and behavioral changes, lung disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Increasing evidence suggests that nicotine-associated epigenetic changes may mediate or moderate the development and progression of a myriad of negative health outcomes. In addition, nicotine exposure may confer increased lifelong susceptibility to disease and mental health challenges through alteration of epigenetic signaling. This review examines the relationship between nicotine exposure (and smoking), epigenetic changes, and maladaptive outcomes that include developmental disorders, addiction, mental health challenges, pulmonary disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Overall, findings support the contention that nicotine (or smoking) associated altered epigenetic signaling is a contributing factor to disease and health challenges.
Collapse
Affiliation(s)
- Thomas J Goud
- Department of Biobehavioral Health, The Pennsylvania State University, Penn State University, University Park, PA, USA.
| |
Collapse
|
14
|
Jeong S, Yoon KS, Lee JM, Jo ES, Kim D, Choi SO. Neurotoxic and cardiotoxic effects of N-methyl-1-(naphthalen-2-yl)propan-2-amine (methamnetamine) and 1-phenyl-2-pyrrolidinylpentane (prolintane). Drug Chem Toxicol 2023; 46:430-440. [PMID: 35296205 DOI: 10.1080/01480545.2022.2049289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two synthetic phenylethylamines, N-methyl-1-(naphthalen-2-yl)propan-2-amine (MNA) and 1-phenyl-2-pyrrolidinylpentane (prolintane), are being abused by people seeking hallucinogens for pleasure. These new psychotropic substances may provoke problems because there is no existing information about their toxicity and pharmacological behaviors. Therefore, we evaluated the safety of nerves and cardiovascular systems by determining toxicity after MNA and prolintane drugs administrations to mice and rat. Consequently, side effects such as increased spontaneous motion and body temperature were observed in oral administration of MNA. In addition, both substances reduced motor coordination levels. The IHC tests were conducted to see whether the immune response also shows abnormalities in brain tissue compared to the control group. It has been confirmed that the length of allograft inflammatory factor 1(IBA-1), an immune antibody known as microglia marker, has been shortened. We identified that a problem with the contact between synapses and neurons might be possibly produced. In the assessment of the cardiac toxicity harmfulness, no substances have been confirmed to be toxic to myocardial cells, but at certain concentrations, they have caused the QT prolongation, an indicator of ventricular arrhythmia. In addition, the hERG potassium channel, the biomarker of the QT prolongation, has been checked for inhibition. The results revealed that the possibility of QT prolongation through the hERG channel could not be excluded, and the two substances can be considered toxic that may cause ventricular arrhythmia. In sum, this study demonstrated that the possibility of toxicity in MNA and prolintane compounds might bring many harmful effects on nerves and hearts.
Collapse
Affiliation(s)
- Sohee Jeong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| | - Kyung Sik Yoon
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| | - Jin-Moo Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| | - Eun Sung Jo
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| | - Dojung Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| |
Collapse
|
15
|
Pauly RC, Bhimani RV, Li JX, Blough BE, Landavazo A, Park J. Distinct Effects of Methamphetamine Isomers on Limbic Norepinephrine and Dopamine Transmission in the Rat Brain. ACS Chem Neurosci 2023. [PMID: 36976755 DOI: 10.1021/acschemneuro.2c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Methamphetamine (METH) is a psychostimulant that primarily exerts its effects on the catecholamine (dopamine (DA) and norepinephrine (NE)) systems, which are implicated in drug addiction. METH exists as two distinct enantiomers, dextrorotatory (d) and levorotatory (l). In contrast to d-METH, the major component of illicit METH used to induce states of euphoria and alertness, l-METH is available without prescription as a nasal decongestant and has been highlighted as a potential agonist replacement therapy to treat stimulant use disorder. However, little is known regarding l-METH's effects on central catecholamine transmission and behavior. In this study, we used fast-scan cyclic voltammetry to elucidate how METH isomers impact NE and DA transmission in two limbic structures, the ventral bed nucleus of the stria terminalis (vBNST) and nucleus accumbens (NAc), respectively, of anesthetized rats. In addition, the dose-dependent effects of METH isomers on locomotion were characterized. d-METH (0.5, 2.0, 5.0 mg/kg) enhanced both electrically evoked vBNST-NE and NAc-DA concentrations and locomotion. Alternatively, l-METH increased electrically evoked NE concentration with minimal effects on DA regulation (release and clearance) and locomotion at lower doses (0.5 and 2.0 mg/kg). Furthermore, a high dose (5.0 mg/kg) of d-METH but not l-METH elevated baseline NE and DA concentrations. These results suggest mechanistic differences between NE and DA regulation by the METH isomers. Moreover, l-METH's asymmetric regulation of NE relative to DA may have distinct implications in behaviors and addiction, which will set the neurochemical framework for future studies examining l-METH as a potential treatment for stimulant use disorders.
Collapse
Affiliation(s)
| | | | | | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Antonio Landavazo
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, North Carolina 27709, United States
| | | |
Collapse
|
16
|
Kielbinski M, Bernacka J, Zajda K, Wawrzczak-Bargieła A, Maćkowiak M, Przewlocki R, Solecki W. Acute stress modulates noradrenergic signaling in the ventral tegmental area-amygdalar circuit. J Neurochem 2023; 164:598-612. [PMID: 36161462 DOI: 10.1111/jnc.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Noradrenergic neurotransmission is a critical mediator of stress responses. In turn, exposure to stress induces noradrenergic system adaptations, some of which are implicated in the etiology of stress-related disorders. Adrenergic receptors (ARs) in the ventral tegmental area (VTA) have been demonstrated to regulate phasic dopamine (DA) release in the forebrain, necessary for behavioral responses to conditional cues. However, the impact of stress on noradrenergic modulation of the VTA has not been previously explored. We demonstrate that ARs in the VTA regulate dopaminergic activity in the VTA-BLA (basolateral amygdala) circuit, a key system for processing stress-related stimuli; and that such control is altered by acute stress. We utilized fast-scan cyclic voltammetry to assess the effects of intra-VTA microinfusion of α1 -AR and α2 -AR antagonists (terazosin and RX-821002, respectively), on electrically evoked phasic DA release in the BLA in stress-naïve and stressed (unavoidable electric shocks - UES) anesthetized male Sprague-Dawley rats. In addition, we used western blotting to explore UES-induced alterations in AR protein level in the VTA. Intra-VTA terazosin or RX-821002 dose-dependently attenuated DA release in the BLA. Interestingly, UES decreased the effects of intra-VTA α2 -AR blockade on DA release (24 h but not 7 days after stress), while the effects of terazosin were unchanged. Despite changes in α2 -AR physiological function in the VTA, UES did not alter α2 -AR protein levels in either intracellular or membrane fractions. These findings demonstrate that NA-ergic modulation of the VTA-BLA circuit undergoes significant alterations in response to acute stress, with α2 -AR signaling indicated as a key target.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland.,Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Agnieszka Wawrzczak-Bargieła
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marzena Maćkowiak
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| |
Collapse
|
17
|
Graczyk MM, Sahakian BJ, Robbins TW, Ersche KD. Genotype-by-diagnosis interaction influences self-control in human cocaine addiction. Transl Psychiatry 2023; 13:51. [PMID: 36774338 PMCID: PMC9922269 DOI: 10.1038/s41398-023-02347-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
Not everyone who uses drugs loses control over their intake, which is a hallmark of addiction. Although familial risk studies suggest significant addiction heritability, the genetic basis of vulnerability to drug addiction remains largely unknown. In the present study, we investigate the relationship between self-control, cocaine use, and the rs36024 single nucleotide polymorphism of the noradrenaline transporter gene (SLC6A2). We hypothesize that C-allele-carrying adults show impaired self-control, as measured by the stop-signal task and demonstrated previously in adolescents, and further exacerbated by chronic cocaine use. Patients with cocaine use disorder (CUD, n = 79) and healthy unrelated participants with no history of drug abuse (n = 54) completed the stop-signal task. All participants were genotyped for rs36024 allelic variants (CC/TT homozygotes, CT heterozygotes). We measured mean stop-signal reaction time, reflecting the ability to inhibit ongoing motor responses, reaction times to go stimuli, and the proportion of successful stops. CUD patients showed prolonged stop-signal reaction time, however, there was no main effect of rs36024 genotype. Importantly, there was a significant genotype-by-diagnosis interaction such that CUD patients with CC genotype had longer stop-signal reaction time and fewer successful stops compared with CC healthy controls and TT CUD patients. CT CUD patients showed an intermediate performance. Self-control deficits were associated with cocaine use disorder diagnosis, which interacts with the noradrenaline transporter rs36024 polymorphism. Our findings suggest that rs36024 may represent a potential genetic vulnerability marker, which facilitates the transition from first cocaine use to addiction by weakening the inhibitory control over behavior.
Collapse
Affiliation(s)
- Michal M Graczyk
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
18
|
Fox HC, Milivojevic V, Sinha R. Therapeutics for Substance-Using Women: The Need to Elucidate Sex-Specific Targets for Better-Tailored Treatments. Handb Exp Pharmacol 2023; 282:127-161. [PMID: 37592081 DOI: 10.1007/164_2023_687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In the last decade, alcohol consumption in the US has risen by 84% in women compared with 35% in men. Furthermore, research has shown that sex- and gender-related differences may disadvantage women in terms of developing a range of psychological, cognitive, and medical problems considerably earlier in their drinking history than men, and despite consuming a similar quantity of substances. While this "telescoping" process has been acknowledged in the literature, a concomitant understanding of the underlying biobehavioral mechanisms, and an increase in the development of specific treatments tailored to women, has not occurred. In the current chapter we focus on understanding why the need for personalized, sex-specific medications is imperative, and highlight some of the potential sex-specific gonadal and stress-related adaptations underpinning the accelerated progress from controlled to compulsive drug and alcohol seeking in women. We additionally discuss the efficacy of these mechanisms as novel targets for medications development, using exogenous progesterone and guanfacine as examples. Finally, we assess some of the challenges faced and progress made in terms of developing innovative medications in women. We suggest that agents such as exogenous progesterone and adrenergic medications, such as guanfacine, may provide some efficacy in terms of attenuating stress-induced craving for several substances, as well as improving the ability to emotionally regulate in the face of stress, preferentially in women. However, to fully leverage the potential of these therapeutics in substance-using women, greater focus needs to the placed on reducing barriers to treatment and research by encouraging women into clinical trials.
Collapse
Affiliation(s)
- Helen C Fox
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Lafuente JV, Sharma A, Feng L, Muresanu DF, Nozari A, Tian ZR, Buzoianu AD, Sjöquist PO, Wiklund L, Sharma HS. Nanowired Delivery of Mesenchymal Stem Cells with Antioxidant Compound H-290/51 Reduces Exacerbation of Methamphetamine Neurotoxicity in Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:317-352. [PMID: 37480465 DOI: 10.1007/978-3-031-32997-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel are often exposed to hot environments either for combat operations or peacekeeping missions. Hot environment is a severe stressful situation leading to profound hyperthermia, fatigue and neurological impairments. To avoid stressful environment, some people frequently use methamphetamine (METH) or other psychostimulants to feel comfortable under adverse situations. Our studies show that heat stress alone induces breakdown of the blood-brain barrier (BBB) and edema formation associated with reduced cerebral blood flow (CBF). On the other hand, METH alone induces hyperthermia and neurotoxicity. These effects of METH are exacerbated at high ambient temperatures as seen with greater breakdown of the BBB and brain pathology. Thus, a combination of METH use at hot environment may further enhance the brain damage-associated behavioral dysfunctions. METH is well known to induce severe oxidative stress leading to brain pathology. In this investigation, METH intoxication at hot environment was examined on brain pathology and to explore suitable strategies to induce neuroprotection. Accordingly, TiO2-nanowired delivery of H-290/51 (150 mg/kg, i.p.), a potent chain-breaking antioxidant in combination with mesenchymal stem cells (MSCs), is investigated in attenuating METH-induced brain damage at hot environment in model experiments. Our results show that nanodelivery of H-290/51 with MSCs significantly enhanced CBF and reduced BBB breakdown, edema formation and brain pathology following METH exposure at hot environment. These observations are the first to point out that METH exacerbated brain pathology at hot environment probably due to enhanced oxidative stress, and MSCs attenuate these adverse effects, not reported earlier.
Collapse
Affiliation(s)
- José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Zhukovsky P, Morein-Zamir S, Ziauddeen H, Fernandez-Egea E, Meng C, Regenthal R, Sahakian BJ, Bullmore ET, Robbins TW, Dalley JW, Ersche KD. Prefrontal Cortex Activation and Stopping Performance Underlie the Beneficial Effects of Atomoxetine on Response Inhibition in Healthy Volunteers and Those With Cocaine Use Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1116-1126. [PMID: 34508901 DOI: 10.1016/j.bpsc.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Impaired response inhibition in individuals with cocaine use disorder (CUD) is hypothesized to depend on deficient noradrenergic signaling in corticostriatal networks. Remediation of noradrenergic neurotransmission with selective norepinephrine reuptake inhibitors such as atomoxetine may therefore have clinical utility to improve response inhibitory control in CUD. METHODS We carried out a randomized, double-blind, placebo-controlled, crossover study with 26 participants with CUD and 28 control volunteers investigating the neural substrates of stop-signal inhibitory control. The effects of a single dose of atomoxetine (40 mg) were compared with placebo on stop-signal reaction time performance and functional network connectivity using dynamic causal modeling. RESULTS We found that atomoxetine speeded Go response times in both control participants and those with CUD. Improvements in stopping efficiency on atomoxetine were conditional on baseline (placebo) stopping performance and were directly associated with increased inferior frontal gyrus activation. Further, stopping performance, task-based brain activation, and effective connectivity were similar in the 2 groups. Dynamic causal modeling of effective connectivity of multiple prefrontal and basal ganglia regions replicated and extended previous models of network function underlying inhibitory control to CUD and control volunteers and showed subtle effects of atomoxetine on prefrontal-basal ganglia interactions. CONCLUSIONS These findings demonstrate that atomoxetine improves response inhibition in a baseline-dependent manner in control participants and in those with CUD. Our results emphasize inferior frontal cortex function as a future treatment target owing to its key role in improving response inhibition in CUD.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Sharon Morein-Zamir
- School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom
| | - Emilio Fernandez-Egea
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom
| | - Chun Meng
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Regenthal
- Clinical Pharmacology Department, Leipzig University, Leipzig, Germany; Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom; GlaxoSmithKline, Immuno-Inflammation Therapeutic Area Unit, Stevenage, Hertfordshire, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jeffrey W Dalley
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Institut of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
21
|
Alrfooh A, Smith RM. Genetic and epigenetic analysis of the serotonin 2A receptor in the context of cocaine abuse. Epigenetics 2022; 17:1246-1258. [PMID: 34813393 PMCID: PMC9543049 DOI: 10.1080/15592294.2021.2005277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
Despite more than 2 million American cocaine users monthly, there is no approved drug for treating cocaine use disorder. Cocaine use disorder has a multifactorial aetiology, including both genetic and environmental factors. Both cocaine use and genetic variations demonstrably alter DNA methylation and gene expression in the brain in a complex manner. How these factors interact in the context of cocaine abuse in humans is unknown. We propose that we can identify potential drug targets for treating cocaine use disorders by examining genetic, epigenetic, and expression changes in the brains of individuals that abused cocaine. In this study, we identified the interaction between the epigenetics changes (DNA CpG methylation) and genetic variants (SNPs) in the HTR2A gene in the context of cocaine addiction by using brain tissue collected from individuals that overdosed on cocaine (N = 14) and healthy matched controls (N = 16). We generated DNA CpG methylation profiles in eight regions of HTR2A harbouring frequent SNPs, measuring both allelic and total methylation, and compared these methylation profiles with HTR2A mRNA expression. Furthermore, we examined the influence of common variants rs6311 and rs6313 on cocaine abuse, methylation, and gene expression. We found evidence that rs6311 regulates HTR2A methylation, consistent with earlier studies. Furthermore, the minor alleles for rs6311 and rs6313 are associated with significantly increased expression of a splice isoform in which exon 2 is truncated in both cocaine and control samples. These results reveal specific roles for HTR2A in the context of cocaine abuse, highlighting opportunities to modulate this target for treating cocaine use disorder.
Collapse
Affiliation(s)
- Aysheh Alrfooh
- Department Of Pharmaceutical Sciences And Experimental Therapeutics, College Of Pharmacy, University Of Iowa, Iowa City, IA, USA
| | - Ryan M. Smith
- Department Of Pharmaceutical Sciences And Experimental Therapeutics, College Of Pharmacy, University Of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Feng H, Gao K, Chen D, Shen L, Robison AJ, Ellsworth E, Wei GW. Machine Learning Analysis of Cocaine Addiction Informed by DAT, SERT, and NET-Based Interactome Networks. J Chem Theory Comput 2022; 18:2703-2719. [PMID: 35294204 DOI: 10.1021/acs.jctc.2c00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is a psychosocial disorder induced by the chronic use of cocaine and causes a large number of deaths around the world. Despite decades of effort, no drugs have been approved by the Food and Drug Administration (FDA) for the treatment of cocaine dependence. Cocaine dependence is neurological and involves many interacting proteins in the interactome. Among them, the dopamine (DAT), serotonin (SERT), and norepinephrine (NET) transporters are three major targets. Each of these targets has a large protein-protein interaction (PPI) network, which must be considered in the anticocaine addiction drug discovery. This work presents DAT, SERT, and NET interactome network-informed machine learning/deep learning (ML/DL) studies of cocaine addiction. We collected and analyzed 61 protein targets out of 460 proteins in the DAT, SERT, and NET PPI networks that have sufficiently large existing inhibitor datasets. Utilizing autoencoder (AE) and other ML/DL algorithms, including gradient boosting decision tree (GBDT) and multitask deep neural network (MT-DNN), we built predictive models for these targets with 115 407 inhibitors to predict drug repurposing potential and possible side effects. We further screened their absorption, distribution, metabolism, and excretion, and toxicity (ADMET) properties to search for leads having potential for developing treatments for cocaine addiction. Our approach offers a new systematic protocol for artificial intelligence (AI)-based anticocaine addiction lead discovery.
Collapse
Affiliation(s)
- Hongsong Feng
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dong Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Li Shen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Edmund Ellsworth
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
24
|
Kean JD, Downey LA, Sarris J, Kaufman J, Zangara A, Stough C. Effects of Bacopa monnieri (CDRI 08®) in a population of males exhibiting inattention and hyperactivity aged 6 to 14 years: A randomized, double-blind, placebo-controlled trial. Phytother Res 2022; 36:996-1012. [PMID: 35041248 DOI: 10.1002/ptr.7372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/06/2022]
Abstract
The current study investigated the efficacy of extract of Bacopa monnieri (BM; CDRI 08®) in reducing levels of inattention and hyperactivity in young children. BM has demonstrated improvements in cognitive outcomes in adults, yet little research is available on its effects in younger populations. A 14-week randomized, double-blind, placebo-controlled clinical trial, with placebo run-in and run-out phases, investigated the effects of BM on behavioural, cognitive, mood, and sleep effects in male children aged 6 to 14 years against placebo. One-hundred and twelve participants were recruited into the trial, with 93 datasets available for analysis. No significant behavioural differences were noted between treatment groups. Cognitive outcomes indicated decreased error-making in children taking CDRI 08® (p = .04) and increased speed of reaction time in those taking placebo (p = .04) at study end. Improvements in cognitive flexibility (p = .01), executive functioning (p = .04), interpersonal problems (p = .02), and sleep routine (p = .04) were noted in those consuming CDRI 08® over placebo. CDRI 08® did not improve behavioural outcomes, but may have cognitive, mood and sleep benefits in children aged 6 to 14 years. Further study is required to support the findings presented here.
Collapse
Affiliation(s)
- James D Kean
- Orygen Health, Centre for Youth Mental Health, Parkville, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Institute for Breathing and Sleep, Austin Hospital, Melbourne, Victoria, Australia
| | - Jerome Sarris
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - Jordy Kaufman
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Andrea Zangara
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
25
|
Moulin V, Framorando D, Gasser J, Dan-Glauser E. The Link Between Cannabis Use and Violent Behavior in the Early Phase of Psychosis: The Potential Role of Impulsivity. Front Psychiatry 2022; 13:746287. [PMID: 35392388 PMCID: PMC8980530 DOI: 10.3389/fpsyt.2022.746287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Recently, the literature has shown that Cannabis Use (CU) was a risk factor for Violent Behavior (VB) in patients with psychosis, and those in the early phase of psychosis (EPP). These findings are relevant because of the high prevalence of CU in this EPP, and the potential for prevention during this phase of illness. However, there is still a lack of clear explanations, supported by empirical evidence, about what underlies the link between CU and VB against other. METHOD This viewpoint reviews the scientific literature on the link between CU and VB, and the involvement of impulsivity in this relationship. This last point will be addressed at clinical and neurobiological levels. RESULTS Recent studies confirmed that CU is particularly high in the EPP, and is a risk factor for VB in the EPP and schizophrenia. Studies have also shown that impulsivity is a risk factor for VB in psychosis, is associated with CU, and may mediate the link between CU and VB. Research suggests a neurobiological mechanism, as CU affects the structures and function of frontal areas, known to play a role in impulsive behavior. CONCLUSION Scientific evidence support the hypothesis of an involvement of impulsivity as a variable that could mediate the link between CU and aggression, particularly, when CU has an early onset. However, this hypothesis should be confirmed with longitudinal studies and by taking into account confounding factors. The studies highlight the relevance of early prevention in the EPP, in addition to interventions focusing on psychotic disorders.
Collapse
Affiliation(s)
- Valerie Moulin
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - David Framorando
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacques Gasser
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Elise Dan-Glauser
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Mahaffey AL. "N.A.M.E." FUN! Emojis may illustrate structure-function relationships of neurotransmitters to health professions students. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:895-901. [PMID: 34499561 DOI: 10.1152/advan.00123.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This article provides a qualitative examination of student responses to an enjoyable online experience illustrating structure-function relationships of chemical messengers (neurotransmitters) in the human nervous system via text messaging emojis (often employed during mobile phone messaging). The "N.A.M.E." (Neurotransmitters as Messaging Emojis) FUN! experience was presented to 216 undergraduate health professions students enrolled in a human physiology course during Spring 2020 (N = 117) and Spring 2021 (N = 99) semesters as a learning tool, during a time in which students struggled with the concepts of neurotransmitter function. Additional goals for this fun experience design are to 1) engage health professions students in the topics of chemical messengers in the nervous system, and provide 2) a learning tool for students enrolled in the human physiology courses and 3) a memorization online worksheet for select neurotransmitter function. Student participants were able to access the online neurotransmitter fun experience via mobile phone and/or laptop. Resulting analyses of the voluntary and anonymous survey highlight positive responses in both Spring 2020 and 2021 semesters to the online "N.A.M.E." experience and furthermore the recommendation of student participants to include this online experience in future lecture assignments for the Human Physiology course. Here, we examine several data sets (tables) as we review student choices for matching emojis to neurotransmitter function and qualitative responses on the efficacy of this online match-up fun as a learning tool in a human physiology course for health professions.
Collapse
Affiliation(s)
- Angela L Mahaffey
- Marcella Niehoff School of Nursing, Loyola University Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021; 12:641286. [PMID: 34777031 PMCID: PMC8578849 DOI: 10.3389/fpsyt.2021.641286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Attempts to revise the existing classifications of psychiatric disorders (DSM and ICD) continue and highlight a crucial need for the identification of biomarkers underlying symptoms of psychopathology. The present review highlights the benefits of using a Functional Constructivism approach in the analysis of the functionality of the main neurotransmitters. This approach explores the idea that behavior is neither reactive nor pro-active, but constructive and generative, being a transient selection of multiple degrees of freedom in perception and actions. This review briefly describes main consensus points in neuroscience related to the functionality of eight neurochemical ensembles, summarized as a part of the neurochemical model Functional Ensemble of Temperament (FET). None of the FET components is represented by a single neurotransmitter; all neurochemical teams have specific functionality in selection of behavioral degrees of freedom and stages of action construction. The review demonstrates the possibility of unifying taxonomies of temperament and classifications of psychiatric disorders and presenting these taxonomies formally and systematically. The paper also highlights the multi-level nature of regulation of consistent bio-behavioral individual differences, in line with the concepts of diagonal evolution (proposed earlier) and Specialized Extended Phenotype.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Bhimani RV, Vik M, Wakabayashi KT, Szalkowski C, Bass CE, Park J. Distinct dose-dependent effects of methamphetamine on real-time dopamine transmission in the rat nucleus accumbens and behaviors. J Neurochem 2021; 158:865-879. [PMID: 34265079 PMCID: PMC8376794 DOI: 10.1111/jnc.15470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 01/17/2023]
Abstract
Methamphetamine (METH) is a potent psychostimulant that exerts many of its physiological and psychomotor effects by increasing extracellular dopamine (DA) concentrations in limbic brain regions. While several studies have focused on how potent, neurotoxic doses of METH augment or attenuate DA transmission, the acute effects of lower and behaviorally activating doses of METH on modulating DA regulation (release and clearance) through DA D2 autoreceptors and transporters remain to be elucidated. In this study, we investigated how systemic administration of escalating, subneurotoxic doses of METH (0.5-5 mg/kg, IP) alter extracellular DA regulation in the nucleus accumbens (NAc), in both anesthetized and awake-behaving rats through the use of in vivo fast-scan cyclic voltammetry. Pharmacological, electrochemical, and behavioral evidence show that lower doses (≤2.0 mg/kg, IP) of METH enhance extracellular phasic DA concentrations and locomotion as well as stereotypies. In contrast, higher doses (≥5.0 mg/kg) further increase both phasic and baseline DA concentrations and stereotypies but decrease horizontal locomotion. Importantly, our results suggest that acute METH-induced enhancement of extracellular DA concentrations dose dependently activates D2 autoreceptors. Therefore, these different METH dose-dependent effects on mesolimbic DA transmission may distinctly impact METH-induced behavioral changes. This study provides valuable insights regarding how low METH doses alter DA transmission and paves the way for future clinical studies on the reinforcing effects of METH.
Collapse
Affiliation(s)
- Rohan V. Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Megan Vik
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Ken T. Wakabayashi
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caitlin Szalkowski
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caroline E. Bass
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| |
Collapse
|
29
|
Targeting the Reconsolidation of Licit Drug Memories to Prevent Relapse: Focus on Alcohol and Nicotine. Int J Mol Sci 2021; 22:ijms22084090. [PMID: 33920982 PMCID: PMC8071281 DOI: 10.3390/ijms22084090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.
Collapse
|
30
|
Deji C, Li Y, Chen Y, Lai J, Wei S. Association study of Catechol-o-methyltransferase and Alpha-1-adrenergic receptor gene polymorphisms with multiple phenotypes of heroin use disorder. Neurosci Lett 2021; 748:135677. [PMID: 33577997 DOI: 10.1016/j.neulet.2021.135677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
Heroin use disorder is a chronic relapsing brain disease containing multiple phenotypes. These phenotypes vary among heroin users and might be influenced by genetic factors. Single-nucleotide polymorphisms (SNPs) of catechol-O-methyltransferase (COMT) and alpha-1-adrenergic receptor (ADRA1A) genes are associated with heroin use disorder. However, it has not been clarified which phenotypes of heroin use disorder are related to these genes. To address this question, we recruited 801 unrelated heroin users and divided them into different subgroups according to four important phenotypes of heroin use disorder. Then 7 SNPs in the functional region of these genes were systematically screened and genotyped using a SNaPshot assay. We found that the A allele of ADRA1A rs1048101 was associated with a shorter duration of transition from first use to addiction. Subjects with the C allele of ADRA1A rs3808585 were more susceptible to memory impairment after heroin use disorder. Subjects with the G allele of COMT rs769224 were more likely to take a higher dose of heroin every day. Our study confirmed the association between polymorphisms of COMT and ADRA1A with those specific phenotypes of heroin use disorder, which will be instructive for the precise treatment of the disease.
Collapse
Affiliation(s)
- Cuola Deji
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yunxiao Li
- Department of Anatomy, Shanxi University of Chinese Medicine, Shaanxi 712046, China
| | - Yuanyuan Chen
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi 710061, China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi 710061, China
| | - Shuguang Wei
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi 710061, China; Key Laboratory of Shaanxi Province for Forensic Science, China.
| |
Collapse
|
31
|
Saloner R, Cherner M, Iudicello JE, Heaton RK, Letendre SL, Ellis RJ. Cerebrospinal Fluid Norepinephrine and Neurocognition in HIV and Methamphetamine Dependence. J Acquir Immune Defic Syndr 2020; 85:e12-e22. [PMID: 32558666 PMCID: PMC7492443 DOI: 10.1097/qai.0000000000002422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE HIV disease and methamphetamine (METH) dependence share overlapping mechanisms of neurotoxicity that preferentially compromise monoamine-rich frontostriatal circuitry. However, norepinephrine (NE) function is poorly understood in HIV and METH dependence. We evaluated associations between cerebrospinal fluid (CSF) NE and HIV, METH dependence, and neurocognition. METHODS Participants included 125 adults, stratified by HIV serostatus (HIV+/HIV-) and recent METH dependence (METH+/METH-), who underwent comprehensive neurocognitive testing and lumbar puncture. CSF NE was assayed using high-performance liquid chromatography. Multivariable regression modelled NE as a function of HIV, METH, and their interaction, adjusting for demographic and clinical factors. Pearson correlations examined relationships between NE and demographically-adjusted neurocognitive domain scores. RESULTS HIV significantly interacted with METH (P < 0.001) such that compared with HIV-/METH-, CSF NE was markedly elevated in the single risk-groups (HIV+/METH-: d = 0.96; HIV-/METH+: d = 0.79) and modestly elevated in the dual-risk group (HIV+/METH+: d = 0.48). This interaction remained significant after adjustment for lifetime depression, antidepressant use, and race/ethnicity. In the full sample, higher NE levels significantly correlated with worse global function (r = -0.19), learning (r = -0.23), and delayed recall (r = -0.18). Similar relationships between higher NE and worse neurocognition were detected in the METH- groups (ie, HIV-/METH- and HIV+/METH-) and in the virally-suppressed persons HIV+ subgroup, but not in the METH+ groups (ie, HIV-/METH+, HIV+/METH+). DISCUSSION HIV and METH independently, but not additively, relate to noradrenergic excess in the central nervous system, and perturbations to noradrenergic function may represent a pathophysiological mechanism of HIV-related neurocognitive dysfunction. Consistent with prior reports that noradrenergic excess compromises hippocampal and prefrontal function, higher NE related to worse neurocognition, even among successfully treated persons with HIV. Pharmacological and psychosocial interventions that stabilize NE function may improve neurocognition in persons with HIV.
Collapse
Affiliation(s)
- Rowan Saloner
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Jennifer E. Iudicello
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Robert K. Heaton
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Scott L. Letendre
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
- Department of Neurosciences, University of California, San Diego
| |
Collapse
|
32
|
Mwobobia R, Kanui T, Abelson K. Investigation of noradrenergic receptor system in anti-nociception using formalin test in the naked mole rat ( Heterocephalus glaber). Heliyon 2020; 6:e05216. [PMID: 33134574 PMCID: PMC7586093 DOI: 10.1016/j.heliyon.2020.e05216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023] Open
Abstract
The naked mole rat (NMR) is a rodent that has gained importance as a biomedical research model for various conditions like hypoxic brain injury, cancer and nociception. This study was designed to investigate possible involvement of the noadrenergic receptor system in antinoception in the NMR, using the alpha-2 adrenergic receptor specific ligands clonidine (agonist) and yohimbine (antagonist) in the formalin test. Formalin test followed 30 min after intraperitoneal administration of ligands or control. A total of 96 naked mole rats were used. A significant reduction in nociceptive behaviours was demonstrated after administration of clonidine in the doses 1,3,10 and 30 μg/kg (n = 8 per group). Doses of clonidine above 30 μg/kg caused loss of motor and proprietion skills exhibited by prostration and failure to turn over when placed on their backs. The antinociception by 3 μg/kg clonidine was reversed by administration of 30 μg/kg of yohimbine. The present study demonstrates that the noradrenergic receptor system is present and involved in formalin test-related antinociceptive mechanisms in the NMR, similar to other mammals. Given the increasing importance of the NMR as a model for pain and nociception, the species may prove useful as an animal model for noradrenergic mechanisms in pain modulation.
Collapse
Affiliation(s)
- R.M. Mwobobia
- School of Agriculture and Veterinary Sciences, South Eastern Kenya University, P O Box 170-90200, Kitui, Kenya
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamvej 3B, 2200, Copenhagen, Denmark
| | - T.I. Kanui
- School of Agriculture and Veterinary Sciences, South Eastern Kenya University, P O Box 170-90200, Kitui, Kenya
| | - K.S.P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamvej 3B, 2200, Copenhagen, Denmark
| |
Collapse
|
33
|
Asaoka Y, Won M, Morita T, Ishikawa E, Lee YA, Goto Y. Monoamine and genome-wide DNA methylation investigation in behavioral addiction. Sci Rep 2020; 10:11760. [PMID: 32678220 PMCID: PMC7366626 DOI: 10.1038/s41598-020-68741-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Behavioral addiction (BA) is characterized by repeated, impulsive and compulsive seeking of specific behaviors, even with consequent negative outcomes. In drug addiction, alterations in biological mechanisms, such as monoamines and epigenetic processes, have been suggested, whereas whether such mechanisms are also altered in BA remains unknown. In this preliminary study with a small sample size, we investigated monoamine concentrations and genome-wide DNA methylation in blood samples from BA patients and control (CT) subjects. Higher dopamine (DA) metabolites and the ratio between DA and its metabolites were observed in the BA group than in the CT group, suggesting increased DA turnover in BA. In the methylation assay, 186 hyper- or hypomethylated CpGs were identified in the BA group compared to the CT group, of which 64 CpGs were further identified to correlate with methylation status in brain tissues with database search. Genes identified with hyper- or hypomethylation were not directly associated with DA transmission, but with cell membrane trafficking and the immune system. Some of the genes were also associated with psychiatric disorders, such as drug addiction, schizophrenia, and autism spectrum disorder. These results suggest that BA may involve alterations in epigenetic regulation of the genes associated with synaptic transmission, including that of monoamines, and neurodevelopment.
Collapse
Affiliation(s)
- Yui Asaoka
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Moojun Won
- Kyowa Hospital, Obu, Aichi, 474-0071, Japan
| | | | | | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk, 38430, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
34
|
Horiguchi T, Miyatake Y, Miyoshi K, Tanimura A, Hagita H, Sakaue H, Noma T. Gene-expression profile reveals the genetic and acquired phenotypes of hyperactive mutant SPORTS rat. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 67:51-61. [PMID: 32378618 DOI: 10.2152/jmi.67.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Spontaneously Running Tokushima Shikoku (SPORTS) rat is a hyperactive rat strain. However, the causative mutation of this phenotype has not yet been identified. To investigate the molecular basis for the unique phenotype of SPORTS rats, we examined gene-expression profiles by microarray analyses. Among adenylate kinase isozymes that maintain the homeostasis of cellular adenine nucleotide composition in the cell, only adenylate kinase 1 is highly up-regulated in both exercised and sedentary SPORTS rats compared with wild-type (WT) rats, 5.5-fold and 3.3-fold, respectively. Further comparative analyses revealed that genes involved in glucose metabolism were up-regulated in skeletal muscle tissue of exercised SPORTS rats compared with sedentary mutants, whereas genes related to extracellular matrix or region were down-regulated compared with WT rats. In brain tissue of sedentary SPORTS rats, genes associated with defense and catecholamine metabolism were highly expressed compared with WT rats. These findings suggest that genetic mutation(s) in SPORTS rat remodels metabolic demands through differentially regulating gene expression regardless of exercise. Therefore, the SPORTS rats are useful animal model not only for further examining the effects of exercise on metabolism but also for deeply studying the molecular basis how mutation affect the psychological motivation with spontaneous voluntary exercise phenotype. J. Med. Invest. 67 : 51-61, February, 2020.
Collapse
Affiliation(s)
- Taigo Horiguchi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.,Department of Physiology, Wakayama Medical University School of Medicine, 811-1, Kimiidera, Wakayama City, Wakayama 641-8509, Japan
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| | - Ayako Tanimura
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan.,Division of Food & Health Environmental Sciences, Department of Environmental & Symbiotic Sciences, Faculty of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-ku, Kumamoto 862-8502, Japan
| | - Hiroko Hagita
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
35
|
Niedzielak T, Ravenelle R, Joseph M, Calhoun C, Plotkin B, Jones R, Herrera M, Tiffany Donaldson S. 5-HT1A and α2 adrenergic receptor levels are associated with high anxiety-like patterns and impulsivity in selectively bred Long Evans rats. Behav Brain Res 2020; 383:112522. [PMID: 32007493 DOI: 10.1016/j.bbr.2020.112522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 11/27/2022]
Abstract
Impulsivity and anxiety are psychological traits involved in many aspects of the drug addiction cycle. However, few preclinical models exist for examining both impulsive and anxiety patterns. In the current study, we investigated whether 6th generation rats selectively bred for high anxiety (HAn)-like behavior would display amphetamine (AMPH) hyperactivity. In the same generational line, we also determined if HAn animals would display impulsivity in an operant task. Filial 5 male Long Evans rats phenotyped as HAn and low anxiety (LAn) were tested on the elevated plus maze (EPM) and in locomotor chambers following a low dose of AMPH (0.5 mg/kg, IP). Next, a separate group of F5 animals was exposed to a differential reinforcement of low rate of responding (DRL: 30 s) operant schedule to assess impulsivity. Postmortem, 5-HT1A and α2 adrenergic receptor protein levels were measured in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) core and shell, and α2 adrenergic counts were assessed in the locus coeruleus (LC), and the paraventricular nucleus (PVN) of the hypothalamus. F5 outbred HAn rats had decreased percent open arm time and entries on the EPM and elevated AMPH-induced locomotion. In the DRL, HAn rats displayed an impulsive profile, they attained fewer total rewards, had more inter-response times, and showed greater burst ratios. We found that HAn rats had a higher number of 5-HT1A receptor immunostained cells in the mPFC but were not different than LAn in NAc core or shell. By contrast, levels of the α2 adrenergic receptor protein were no different in the mPFC while HAn rats had greater levels in the LC and lower levels in the PVN. Overall, these data further validate our outbred trait anxiety rats: HAn males show anxiety-like behavior, AMPH hypersensitivity, greater impulsivity, and varying levels of limbic and midbrain 5-HT1A and α2 adrenergic receptor proteins.
Collapse
Affiliation(s)
- Tim Niedzielak
- Broward Health Medical Center, 3100 SW 62nd Avenue, Miami, FL, 33155, USA
| | - Rebecca Ravenelle
- City University of New York, CUNY Neuroscience Collaborative, The Graduate Center, 365 Fifth Ave., New York, NY, 10016, USA
| | - Marie Joseph
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Corey Calhoun
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Brooke Plotkin
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Raquel Jones
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Maria Herrera
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - S Tiffany Donaldson
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA.
| |
Collapse
|
36
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
37
|
Soder HE, Berumen AM, Gomez KE, Green CE, Suchting R, Wardle MC, Vincent J, Teixeira AL, Schmitz JM, Lane SD. Elevated Neutrophil to Lymphocyte Ratio in Older Adults with Cocaine Use Disorder as a Marker of Chronic Inflammation. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:32-40. [PMID: 31958903 PMCID: PMC7006975 DOI: 10.9758/cpn.2020.18.1.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/23/2023]
Abstract
Objective The neutrophil to lymphocyte ratio (NLR) is a non-specific, easy-to-obtain marker of inflammation associated with morbidity and mortality in systemic, psychiatric, and age-related inflammatory conditions. Given the growing trend of substance use disorder (SUD) in older adults, and the relationship between inflammation and SUD elevated NLR may serve as a useful inflammatory biomarker of the combined burden of aging and SUD. The present study focused on cocaine use disorder (CUD) to examine if cocaine adds further inflammatory burden among older adults, by comparing NLR values between older adults with CUD and a non-cocaine using, aged-matched, nationally representative sample. Methods The dataset included 107 (86% male) participants (aged 50-65 years) with cocaine use disorder. NLR was derived from complete blood count tests by dividing the absolute value of peripheral neutrophil concentration by lymphocyte concentration. For comparison, we extracted data from age-matched adults without CUD using the National Health and Nutrition Examination Survey. Individuals with immunocompromising conditions were excluded (e.g., rheumatoid arthritis and sexually transmitted infections such as HIV). A doubly-robust inverse probability-weighted regression adjustment (IPWRA) propensity score method was used to estimate group differences on NLR while controlling for potential confounding variables (age, gender, race, income, nicotine, marijuana and alcohol use). Results The IPWRA model revealed that the CUD sample had significantly elevated NLR in comparison to non-cocaine users, with a moderate effect size (β weight = 0.67). Conclusion Although non-specific, NLR represents a readily obtainable inflammatory marker for SUD research. CUD may add further inflammatory burden to aging cocaine users.
Collapse
Affiliation(s)
- Heather E Soder
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Amber M Berumen
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Kira E Gomez
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Charles E Green
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA.,epartment of Pediatrics, University of Texas Health Science Center at Houston, Houston,TX, USA
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Margaret C Wardle
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA.,Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica Vincent
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | | | - Joy M Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Scott D Lane
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| |
Collapse
|
38
|
Spachos D, Siafis S, Bamidis P, Kouvelas D, Papazisis G. Combining big data search analytics and the FDA Adverse Event Reporting System database to detect a potential safety signal of mirtazapine abuse. Health Informatics J 2020; 26:2265-2279. [PMID: 32026758 DOI: 10.1177/1460458219901232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study sought to detect a potential safety signal of mirtazapine abuse by combining two different sources of surveillance, specifically Google Analytics (Google, Inc., Mountain View, CA, USA) and the FDA Adverse Event Reporting System database. Data from the first quarter of 2004 to the second quarter of 2017 were collected and analysed. The search interest over time, the frequencies of abuse-related terms in the search analytics domain, and the odds ratio of abuse events in FDA Adverse Event Reporting System were determined. Correlations between the two aforementioned domains using quarterly data from the timeline series were also assessed. Our results suggest a positive correlation between abuse-related searches in the Google domain and abuse-related events in FDA Adverse Event Reporting System database. These results indicate that these methods can be used in combination with each other as a pharmacovigilance supplementary tool to detect drug safety signals.
Collapse
|
39
|
Fu Y, Depue RA. A novel neurobehavioral framework of the effects of positive early postnatal experience on incentive and consummatory reward sensitivity. Neurosci Biobehav Rev 2019; 107:615-640. [DOI: 10.1016/j.neubiorev.2019.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
|
40
|
Kozak K, Lucatch AM, Lowe DJ, Balodis IM, MacKillop J, George TP. The neurobiology of impulsivity and substance use disorders: implications for treatment. Ann N Y Acad Sci 2019; 1451:71-91. [PMID: 30291624 PMCID: PMC6450787 DOI: 10.1111/nyas.13977] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022]
Abstract
Impulsivity is strongly associated with substance use disorders (SUDs). Our review discusses impulsivity as an underlying vulnerability marker for SUDs, and treatment of co-occurring impulsivity in SUDs. Three factors should be considered for the complex relationship between impulsivity and a SUD: (1) the trait effect of impulsivity, centering on decreased cognitive and response inhibition, (2) the state effect resulting from either acute or chronic substance use on brain structure and function, and (3) the genetic and environmental factors (e.g., age and sex) may influence impulsive behavior associated with SUDs. Both subjective and objective measures are used to assess impulsivity. Together, treatment developments (pharmacological, behavioral, and neurophysiological) should consider these clinically relevant dimensions assessed by a variety of measures, which have implications for treatment matching in individuals with SUD. Despite its heterogeneity, impulsivity is a marker associated with SUDs and may be understood as an imbalance of bottom-up and top-down neural systems. Further investigation of these relationships may lead to more effective SUD treatments.
Collapse
Affiliation(s)
- Karolina Kozak
- Addictions Division, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto,
Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Aliya M. Lucatch
- Addictions Division, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto,
Canada
| | - Darby J.E. Lowe
- Addictions Division, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto,
Canada
| | - Iris M. Balodis
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - James MacKillop
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Tony P. George
- Addictions Division, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto,
Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Castillo-Aguirre A, Maldonado M. Preparation of Methacrylate-based Polymers Modified with Chiral Resorcinarenes and Their Evaluation as Sorbents in Norepinephrine Microextraction. Polymers (Basel) 2019; 11:E1428. [PMID: 31480387 PMCID: PMC6780700 DOI: 10.3390/polym11091428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 11/17/2022] Open
Abstract
Aminomethylation reactions between chiral amino compounds (S)-(-)-1-phenylethylamine and l-proline with tetranonylresorcinarene and tetra-(4-hydroxyphenyl)resorcinarene in presence of formaldehyde were studied. The reaction between l-proline and resorcinarenes generated regioselectively chiral tetra-Mannich bases, due to the molecular incorporation of the fragment of the chiral amino acid. On the other hand, tetranonylresorcinarene and (S)-(-)-1-phenylethylamine formed regio- and diasteroselectively chiral tetrabenzoxazines, both by chiral auxiliary functionalization and by the transformation of the molecular structure that confers inherent chirality. The products obtained were characterized using IR, 1H-NMR, 13C-NMR, COSY, HMQC, and HMBC techniques. The reaction of (S)-(-)-1-phenylethylamine with tetra-(4-hydroxyphenyl)resorcinarene did not proceed under the experimental conditions. Once the chiral aminomethylated tetra-(4-hydroxyphenyl)resorcinarene was obtained, the chemical modification of poly(GMA-co-EDMA) was studied, and the results showed an efficient incorporation of the aminomethylated compound. For the physical modification, chiral aminomethylated tetranonylresorcinarenes were employed, finding that the incorporation of modified resorcinarenes occurs, but with less efficiency than that observed using chemical modification. The modified polymers were characterized via FT-IR, scanning electron microscopy imaging, and elemental analysis. Finally, polymers modified with chiral resorcinarenes were used as sorbents in norepinephrine microextraction; for practical purposes, artificial urine was prepared and used. To perform the microextraction, the decision was made to use the modern rotating-disk sorptive extraction technique (RDSE), because of its analytical attributes as a green, or eco-friendly, technique. According to the results, the method preliminarily validated for the determination of norepinephrine in artificial urine shows that the modified polymer with chiral derivative of tetra-(4-hydroxyphenyl)resorcinarene worked effectively as a new sorbent phase for the quantitative microextraction of norepinephrine, exhibiting high stability and homogeneity of composition and structure within the working range.
Collapse
Affiliation(s)
- Alver Castillo-Aguirre
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45, Carrera 03, Colombia
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45, Carrera 03, Colombia.
| |
Collapse
|
42
|
Badiani A, Caprioli D, De Pirro S. Opposite environmental gating of the experienced utility ('liking') and decision utility ('wanting') of heroin versus cocaine in animals and humans: implications for computational neuroscience. Psychopharmacology (Berl) 2019; 236:2451-2471. [PMID: 31289884 PMCID: PMC6695361 DOI: 10.1007/s00213-019-05318-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND In this paper, we reviewed translational studies concerned with environmental influences on the rewarding effects of heroin versus cocaine in rats and humans with substance use disorder. These studies show that both experienced utility ('liking') and decision utility ('wanting') of heroin and cocaine shift in opposite directions as a function of the setting in which these drugs were used. Briefly, rats and humans prefer using heroin at home but cocaine outside the home. These findings appear to challenge prevailing theories of drug reward, which focus on the notion of shared substrate of action for drug of abuse, and in particular on their shared ability to facilitate dopaminergic transmission. AIMS Thus, in the second part of the paper, we verified whether our findings could be accounted for by available computational models of reward. To account for our findings, a model must include a component that could mediate the substance-specific influence of setting on drug reward RESULTS: It appears of the extant models that none is fully compatible with the results of our studies. CONCLUSIONS We hope that this paper will serve as stimulus to design computational models more attuned to the complex mechanisms responsible for the rewarding effects of drugs in real-world contexts.
Collapse
Affiliation(s)
- Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Sussex Addiction Research & Intervention Centre (SARIC) and School of Psychology, University of Sussex, Brighton, UK.
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Silvana De Pirro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Sussex Addiction Research & Intervention Centre (SARIC) and School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
43
|
Simmler LD, Blakely RD. The SERT Met172 Mouse: An Engineered Model To Elucidate the Contributions of Serotonin Signaling to Cocaine Action. ACS Chem Neurosci 2019; 10:3053-3060. [PMID: 30817127 DOI: 10.1021/acschemneuro.9b00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cocaine abuse and addiction remain highly prevalent and, unfortunately, poorly treated. It is well-known that essential aspects of cocaine's addictive actions involve the drug's ability to block the presynaptic dopamine (DA) transporter (DAT), thereby elevating extracellular levels of DA in brain circuits that subserve reward, reinforcement, and habit. Less well appreciated are the multiple DA-independent actions of cocaine, activities that we and others believe contribute key pieces to the puzzle of cocaine addiction, treatment, and relapse. In particular, a significant body of work points to altered serotonin (5-HT) signaling as one such component, not surprising given that, relative to DAT, cocaine acts as potently to block the 5-HT transporter (SERT) as to block DAT, and thereby elevates extracellular 5-HT levels throughout the brain when reward-eliciting DA elevations occur. To elucidate the contribution of SERT antagonism to the actions of cocaine, we engineered a mouse model that significantly reduces cocaine potency at SERT without disrupting the expression or function of SERT in vivo. In this short Perspective, we review the rationale for development of the SERT Met172 model, the studies that document the pharmacological impact of the Ile172Met substitution in vitro and in vivo, and our findings with the model that demonstrate serotonergic contributions to the genetic, physiological, and behavioral actions of cocaine.
Collapse
Affiliation(s)
- Linda D. Simmler
- Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
44
|
Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Front Neuroanat 2019; 13:48. [PMID: 31133823 PMCID: PMC6524618 DOI: 10.3389/fnana.2019.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Amphetamine (AMPH) and methamphetamine (METH) are widely abused psychostimulants, which produce a variety of psychomotor, autonomic and neurotoxic effects. The behavioral and neurotoxic effects of both compounds (from now on defined as AMPHs) stem from a fair molecular and anatomical specificity for catecholamine-containing neurons, which are placed in the brainstem reticular formation (RF). In fact, the structural cross-affinity joined with the presence of shared molecular targets between AMPHs and catecholamine provides the basis for a quite selective recruitment of brainstem catecholamine neurons following AMPHs administration. A great amount of investigations, commentary manuscripts and books reported a pivotal role of mesencephalic dopamine (DA)-containing neurons in producing behavioral and neurotoxic effects of AMPHs. Instead, the present review article focuses on catecholamine reticular neurons of the low brainstem. In fact, these nuclei add on DA mesencephalic cells to mediate the effects of AMPHs. Among these, we also include two pontine cholinergic nuclei. Finally, we discuss the conundrum of a mixed neuronal population, which extends from the pons to the periaqueductal gray (PAG). In this way, a number of reticular nuclei beyond classic DA mesencephalic cells are considered to extend the scenario underlying the neurobiology of AMPHs abuse. The mechanistic approach followed here to describe the action of AMPHs within the RF is rooted on the fine anatomy of this region of the brainstem. This is exemplified by a few medullary catecholamine neurons, which play a pivotal role compared with the bulk of peripheral sympathetic neurons in sustaining most of the cardiovascular effects induced by AMPHs.
Collapse
Affiliation(s)
- Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
45
|
Behan JA, Grajkowski F, Jayasundara DR, Vilella-Arribas L, García-Melchor M, Colavita PE. Influence of carbon nanostructure and oxygen moieties on dopamine adsorption and charge transfer kinetics at glassy carbon surfaces. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Randesi M, van den Brink W, Levran O, Blanken P, van Ree JM, Ott J, Kreek MJ. VMAT2 gene ( SLC18A2) variants associated with a greater risk for developing opioid dependence. Pharmacogenomics 2019; 20:331-341. [PMID: 30983500 DOI: 10.2217/pgs-2018-0137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine if selected serotonergic and noradrenergic gene variants are associated with heroin addiction. Subjects & methods: A total of 126 variants in 19 genes in subjects with Dutch European ancestry from The Netherlands. Subjects included 281 opioid-dependent volunteers in methadone maintenance or heroin-assisted treatment, 163 opioid-exposed but not opioid-dependent volunteers who have been using illicit opioids but never became opioid-dependent and 153 healthy controls. Results: Nominal associations were indicated for 20 variants in six genes including an experiment-wise significant association from the combined effect of three SLC18A2 SNPs (rs363332, rs363334 and rs363338) with heroin dependence (pfinal = 0.047). Conclusion: Further studies are warranted to confirm and elucidate the role of these variants in the vulnerability to opioid addiction.
Collapse
Affiliation(s)
- Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Peter Blanken
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD Amsterdam, The Netherlands.,Parnassia Addiction Research Centre (PARC, Brijder Addiction Treatment), PO Box 53002, 2505 AA The Hague, The Netherlands
| | - Jan M van Ree
- Rudolf Magnus Brain Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jurg Ott
- Laboratory of Statistical Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
47
|
Pei F, Li H, Liu B, Bahar I. Quantitative Systems Pharmacological Analysis of Drugs of Abuse Reveals the Pleiotropy of Their Targets and the Effector Role of mTORC1. Front Pharmacol 2019; 10:191. [PMID: 30906261 PMCID: PMC6418047 DOI: 10.3389/fphar.2019.00191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Existing treatments against drug addiction are often ineffective due to the complexity of the networks of protein-drug and protein-protein interactions (PPIs) that mediate the development of drug addiction and related neurobiological disorders. There is an urgent need for understanding the molecular mechanisms that underlie drug addiction toward designing novel preventive or therapeutic strategies. The rapidly accumulating data on addictive drugs and their targets as well as advances in machine learning methods and computing technology now present an opportunity to systematically mine existing data and draw inferences on potential new strategies. To this aim, we carried out a comprehensive analysis of cellular pathways implicated in a diverse set of 50 drugs of abuse using quantitative systems pharmacology methods. The analysis of the drug/ligand-target interactions compiled in DrugBank and STITCH databases revealed 142 known and 48 newly predicted targets, which have been further analyzed to identify the KEGG pathways enriched at different stages of drug addiction cycle, as well as those implicated in cell signaling and regulation events associated with drug abuse. Apart from synaptic neurotransmission pathways detected as upstream signaling modules that “sense” the early effects of drugs of abuse, pathways involved in neuroplasticity are distinguished as determinants of neuronal morphological changes. Notably, many signaling pathways converge on important targets such as mTORC1. The latter emerges as a universal effector of the persistent restructuring of neurons in response to continued use of drugs of abuse.
Collapse
Affiliation(s)
- Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bing Liu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
48
|
Fajardo A, Tapia D, Pizarro J, Segura R, Jara P. Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01288-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Stock AK, Rädle M, Beste C. Methamphetamine-associated difficulties in cognitive control allocation may normalize after prolonged abstinence. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:41-52. [PMID: 29953935 DOI: 10.1016/j.pnpbp.2018.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 12/24/2022]
Abstract
Chronic heavy methamphetamine use likely causes dopaminergic neurotoxicity, which is commonly thought to result in cognitive control deficits. Both of these alterations may persist even after the use is discontinued, but tend to (partly) improve with increasing duration of abstinence. While several studies have demonstrated that the reinstatement of comparatively normal dopaminergic signaling may take months, if not years, the amelioration of cognitive deficits has predominantly been investigated in much shorter intervals of several weeks to less than half a year. Against this background, we set out to investigate the effects on prolonged abstinence in n = 27 abstinent former methamphetamine users in a cross-sectional design using behavioral and neurophysiological measures of cognitive control. Our behavioral results suggest that former users struggled to identify and adapt to different degrees of cognitive control requirements, which made their behavioral performance less expedient than that of healthy controls. On the neurophysiological level, this was reflected by reduced modulations of the N2-N450 amplitude in response to high vs. low cognitive control requirements. Yet, those effects could only be observed in methamphetamine users who had been abstinent for a relatively short time (mean 9.9; max. 18 months), but not in former users who had been abstinent two years or longer. While this finding alone does not allow for causal inferences, it suggests that the amelioration of control deficits may take longer than what is commonly investigated (1-6 months). Hence, some of the statements about permanent/irreversible dopamine-dependent executive dysfunctions in former methamphetamine users should be interpreted with caution.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| | - Marion Rädle
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
50
|
De Luca MT, Montanari C, Meringolo M, Contu L, Celentano M, Badiani A. Heroin versus cocaine: opposite choice as a function of context but not of drug history in the rat. Psychopharmacology (Berl) 2019; 236:787-798. [PMID: 30443795 PMCID: PMC6469678 DOI: 10.1007/s00213-018-5115-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022]
Abstract
RATIONALE Previous studies have shown that rats trained to self-administer heroin and cocaine exhibit opposite preferences, as a function of setting, when tested in a choice paradigm. Rats tested at home prefer heroin to cocaine, whereas rats tested outside the home prefer cocaine to heroin. Here, we investigated whether drug history would influence subsequent drug preference in distinct settings. Based on a theoretical model of drug-setting interaction, we predicted that regardless of drug history rats would prefer heroin at home and cocaine outside the home. METHODS Rats with double-lumen catheters were first trained to self-administer either heroin (25 μg/kg) or cocaine (400 μg/kg) for 12 consecutive sessions. Twenty-six rats were housed in the self-administration chambers (thus, they were tested at home), whereas 30 rats lived in distinct home cages and were transferred to self-administration chambers only for the self-administration session (thus, they were tested outside the home). The rats were then allowed to choose repeatedly between heroin and cocaine within the same session for seven sessions. RESULTS Regardless of the training drug, the rats tested outside the home preferred cocaine to heroin, whereas the rats tested at home preferred heroin to cocaine. There was no correlation between drug preference and drug intake during the training phase. CONCLUSION Drug preferences were powerfully influenced by the setting but, quite surprisingly, not by drug history. This suggests that, under certain conditions, associative learning processes and drug-induced neuroplastic adaptations play a minor role in shaping individual preferences for one drug or the other.
Collapse
Affiliation(s)
- Maria Teresa De Luca
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| | - Christian Montanari
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| | - Maria Meringolo
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| | - Laura Contu
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| | - Michele Celentano
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| | - Aldo Badiani
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy.
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, Sussex, UK.
- Sussex Neuroscience, University of Sussex, Sussex, UK.
| |
Collapse
|