1
|
Rajbhandari RM, Forcina G, Manandhar P, Rajbhandari PG, Napit R, Raut R, Shrestha S, Sadaula A, Gortázar C, Alves PC, de la Fuente J, Queirós J, Karmacharya D. Gut microbiota diversity among humans, elephants, livestock and wild herbivores in Chitwan National Park bears implications for conservation medicine. Sci Rep 2025; 15:11596. [PMID: 40185849 PMCID: PMC11971256 DOI: 10.1038/s41598-025-89402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/05/2025] [Indexed: 04/07/2025] Open
Abstract
Gut microbiome influences host health and well-being. Co-occurring hosts may exchange disease-causing bacteria belonging to these microbial communities. Therefore, monitoring gut microbiota composition in wildlife and humans is paramount to prevent zoonotic diseases, thus protecting and strengthening public health. We characterized diversity and abundance of the gut microbiome bacterial component across mahouts (captive elephant trainers and handlers), their pachyderms, livestock and wild herbivores in and around Chitwan National Park (Nepal). Firmicutes and Bacteroidota were invariably the dominant phyla. In humans, the relative abundance of Firmicutes was higher, the alpha diversity lower and beta diversity different compared to other host categories. Livestock and wild herbivores displayed similar alpha and beta diversity due to the presence of Proteobacteria, Actinobacteriota and Verrucomicrobiota. Elephants had a higher alpha diversity, and a significant beta diversity compared to other mammals. Our results suggest that taxonomic affiliation and diet niche are the main drivers of gut microbiota composition. Nevertheless, Mycobacterium and other potentially pathogenic bacteria genera were detected in elephants and livestock other than wild herbivores. These findings shed light on microbiota sharing and interlinking in each environment, thereby highlighting the importance of conservation medicine to better our understanding of health in co-occurring host species.
Collapse
Affiliation(s)
- Rajesh Man Rajbhandari
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Giovanni Forcina
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Ciencias de la Vida, Global Change Ecology and Evolution (GloCEE) Group and Research Team on Soil Biology and Subterranean Ecosystems (GIBSES), Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, Spain
| | - Prajwol Manandhar
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Pragun G Rajbhandari
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Rajindra Napit
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Roji Raut
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Seily Shrestha
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Amir Sadaula
- Biodiversity Conservation Center, National Trust for Nature Conservation, Sauraha, Chitwan, Nepal
| | - Christian Gortázar
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
| | - Paulo Célio Alves
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- EBM, Estação Biológica de Mértola, Praça Luís de Camões, 7750-329, Mértola, Portugal
| | - José de la Fuente
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - João Queirós
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- EBM, Estação Biológica de Mértola, Praça Luís de Camões, 7750-329, Mértola, Portugal
| | - Dibesh Karmacharya
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal.
- School of Biological Sciences, Faculty of Science, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Rana S, Singh P, Bhardwaj T, Somvanshi P. A Comprehensive Metagenome Study Identifies Distinct Biological Pathways in Asthma Patients: An In-Silico Approach. Biochem Genet 2024; 62:4264-4279. [PMID: 38285123 DOI: 10.1007/s10528-023-10635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Asthma is a multifactorial disease with phenotypes and several clinical and pathophysiological characteristics. Besides innate and adaptive immune responses, the gut microbiome generates Treg cells, mediating the allergic response to environmental factors and exposure to allergens. Because of the complexity of asthma, microbiome analysis and other precision medicine methods are now widely regarded as essential elements of efficient disease therapy. An in-silico pipeline enables the comparative taxonomic profiling of 16S rRNA metagenomic profiles of 20 asthmatic patients and 15 healthy controls utilizing QIIME2. Further, PICRUSt supports downstream gene enrichment and pathway analysis, inferring the enriched pathways in a diseased state. A significant abundance of the phylum Proteobacteria, Sutterella, and Megamonas is identified in asthma patients and a diminished genus Akkermansia. Nasal samples reveal a high relative abundance of Mycoplasma in the nasal samples. Further, differential functional profiling identifies the metabolic pathways related to cofactors and amino acids, secondary metabolism, and signaling pathways. These findings support that a combination of bacterial communities is involved in mediating the responses involved in chronic respiratory conditions like asthma by exerting their influence on various metabolic pathways.
Collapse
Affiliation(s)
- Samiksha Rana
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India
| | - Pooja Singh
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India
| | - Tulika Bhardwaj
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India.
- Special Centre of Systems Medicine (SCSM), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India.
| |
Collapse
|
3
|
Cheng Y, Ren Y, Zhang W, Lu J, Xie F, Fang YD, Fan X, He W, Wang W. Regionalization of intestinal microbiota and metabolites in the small intestine of the Bactrian camel. Front Immunol 2024; 15:1464664. [PMID: 39660142 PMCID: PMC11628504 DOI: 10.3389/fimmu.2024.1464664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Peyer's patches (PPs) are crucial antigen-inductive sites of intestinal mucosal immunity. Prior research indicated that, in contrast to other ruminants, PPs in the small intestine of Bactrian camels are found in the duodenum, jejunum, and ileum and display polymorphism. Using this information, we analyzed the microbial and metabolic characteristics in various segments of the Bactrian camel's small intestine to further elucidate how the immune system varies across different regions. Methods In this study, the microbiota and metabolite of 36 intestinal mucosal samples, including duodenal (D-PPs), jejunal (J-PPs), and ileal PPs (I-PPs), were profiled for six Bactrian camels using 16S rRNA gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). To confirm meaningful associations, we conducted connection analyses on the significantly different objects identified in each group's results. ELISA was used to analyze the levels of IgA, IgG, and IgM in the same tissues. Results The microbiota and metabolite profiles of J-PPs and I-PPs were found to be similar, whereas those of D-PPs were more distinct. In J-PPs and I-PPs, the dominant bacterial genera included Clostridium, Turicibacter, and Shigella. In contrast, D-PPs had a significant increase in the abundance of Prevotella, Fibrobacter, and Succinobacter. Regarding the metabolomics, D-PPs exhibited high levels of polypeptides, acetylcholine, and histamine. On the other hand, J-PPs and I-PPs were characterized by an enrichment of free amino acids, such as L-arginine, L-glutamic acid, and L-serine. These metabolic differences mainly involve amino acid production and metabolic processes. Furthermore, the distribution of intestinal immunoglobulins highlighted the specificity of D-PPs. Our results indicated that proinflammatory microbes and metabolites were significantly enriched in D-PPs. In contrast, J-PPs and I-PPs contained substances that more effectively enhance immune responses, as evidenced by the differential distribution of IgA, IgG, and IgM. Discussion The intestinal microenvironment of Bactrian camels displays distinct regional disparities, which we propose are associated with variations in immunological function throughout different segments of the small intestine. This study highlights the specific traits of the intestinal microbiota and metabolites in Bactrian camels, offering a valuable reference for understanding the relationship between regional intestinal immunity and the general health and disease of the host.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Ko GP, Jo H, Kim J, Kim JS, Boo KH, Kim CS. Enterotype-Specific Effects of Red Beetroot ( Beta vulgaris L.) Powder and Betanin on Human Gut Microbiota: A Preliminary Study Based on In Vitro Fecal Fermentation Model. Life (Basel) 2024; 14:1391. [PMID: 39598189 PMCID: PMC11595470 DOI: 10.3390/life14111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Red beetroots, rich in betanin, may act as prebiotics and impact gut microbiota. Because the human gut microbiota is unique to each person, the effectiveness of prebiotics varies with the enterotype. In this study, we hypothesized that the effects of red beetroot powder (RP) and betanin pigment (BP) would differ depending on the enterotype. Fecal samples from 30 subjects were analyzed and categorized into three enterotypes: Phocaeicola, Prevotella, and Bifidobacterium. Feces were collected from one representative subject from each enterotype cluster for fermentation. Results showed that RP and BP affected microbiota composition and short-chain fatty acid (SCFA) production differently across enterotypes. The Bifidobacterium cluster showed significantly reduced alpha diversity, with the direction of change in the gut microbiota composition being different from that of other subjects. Additionally, SCFAs significantly increased, with the highest increase in the Bifidobacterium cluster. In this cluster, metabolic pathways related to SCFAs (i.e., starch and sucrose metabolism and glycolysis/gluconeogenesis) were altered. Conversely, Prevotella-dominant feces exhibited fewer changes in SCFAs and a lower increase in Bifidobacterium abundance than the others. These findings highlight that RP and BP elicit enterotype-specific responses in the gut microbiota composition and SCFA production, emphasizing the importance of enterotypes in personalized nutrition.
Collapse
Affiliation(s)
- Gwang-Pyo Ko
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
| | - Hyejun Jo
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
| | - Jungman Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
- Jeju Institute of Korean Medicine, Jeju 63309, Republic of Korea
| | - Jeong Seon Kim
- Jeju Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si 63556, Republic of Korea;
| | - Kyung-Hwan Boo
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
| | - Chang Sook Kim
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
5
|
Shah H, Trivedi M, Gurjar T, Sahoo DK, Jergens AE, Yadav VK, Patel A, Pandya P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024; 12:1831. [PMID: 39338505 PMCID: PMC11433972 DOI: 10.3390/microorganisms12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The changing notion of "companion animals" and their increasing global status as family members underscores the dynamic interaction between gut microbiota and host health. This review provides a comprehensive understanding of the intricate microbial ecology within companion animals required to maintain overall health and prevent disease. Exploration of specific diseases and syndromes linked to gut microbiome alterations (dysbiosis), such as inflammatory bowel disease, obesity, and neurological conditions like epilepsy, are highlighted. In addition, this review provides an analysis of the various factors that impact the abundance of the gut microbiome like age, breed, habitual diet, and microbe-targeted interventions, such as probiotics. Detection methods including PCR-based algorithms, fluorescence in situ hybridisation, and 16S rRNA gene sequencing are reviewed, along with their limitations and the need for future advancements. Prospects for longitudinal investigations, functional dynamics exploration, and accurate identification of microbial signatures associated with specific health problems offer promising directions for future research. In summary, it is an attempt to provide a deeper insight into the orchestration of multiple microbial species shaping the health of companion animals and possible species-specific differences.
Collapse
Affiliation(s)
- Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Mithil Trivedi
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Tejas Gurjar
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, India;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| |
Collapse
|
6
|
Yau C, Danska JS. Cracking the type 1 diabetes code: Genes, microbes, immunity, and the early life environment. Immunol Rev 2024; 325:23-45. [PMID: 39166298 DOI: 10.1111/imr.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) results from a complex interplay of genetic predisposition, immunological dysregulation, and environmental triggers, that culminate in the destruction of insulin-secreting pancreatic β cells. This review provides a comprehensive examination of the multiple factors underpinning T1D pathogenesis, to elucidate key mechanisms and potential therapeutic targets. Beginning with an exploration of genetic risk factors, we dissect the roles of human leukocyte antigen (HLA) haplotypes and non-HLA gene variants associated with T1D susceptibility. Mechanistic insights gleaned from the NOD mouse model provide valuable parallels to the human disease, particularly immunological intricacies underlying β cell-directed autoimmunity. Immunological drivers of T1D pathogenesis are examined, highlighting the pivotal contributions of both effector and regulatory T cells and the multiple functions of B cells and autoantibodies in β-cell destruction. Furthermore, the impact of environmental risk factors, notably modulation of host immune development by the intestinal microbiome, is examined. Lastly, the review probes human longitudinal studies, unveiling the dynamic interplay between mucosal immunity, systemic antimicrobial antibody responses, and the trajectories of T1D development. Insights garnered from these interconnected factors pave the way for targeted interventions and the identification of biomarkers to enhance T1D management and prevention strategies.
Collapse
Affiliation(s)
- Christopher Yau
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Toyokuni K, Yamamoto-Hanada K, Yang L, Hagino K, Harama D, Omori M, Matsumoto Y, Suzuki D, Umezawa K, Takada K, Shimada M, Hirai S, Ishikawa F, Hamaguchi S, Saito-Abe M, Sato M, Miyaji Y, Kabashima S, Fukuie T, Noguchi E, Suzuki K, Ohya Y. Influence of household pet ownership and filaggrin loss-of-function mutations on eczema prevalence in children: A birth cohort study. Allergol Int 2024; 73:422-427. [PMID: 38302328 DOI: 10.1016/j.alit.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The association between pet exposure in infancy, early childhood eczema, and FLG mutations remains unclear. METHODS This was a birth cohort study performed in Tokyo, Japan. The primary outcome was current eczema based on questionnaire responses collected repeatedly from birth to 5 years of age. Generalized estimating equations and generalized linear modeling were used to evaluate the association. RESULTS Data from 1448 participants were used for analyses. Household dog ownership during gestation, early infancy, and 18 months of age significantly reduced the risk of current eczema. Household cat ownership also reduced the risk of current eczema, albeit without statistical significance. The combined evaluation of children from households with pets, be it cats, dogs or both, the risk of current eczema at 1-5 years of age was lower in those with household pet exposure ownership during gestation (RR = 0.59, 95 % CI 0.45-0.77) and at 6 months (RR = 0.49, 95 % CI 0.36-0.68). , Reduced risks of eczema were also observed at 2-5 (RR = 0.52, 95 % CI 0.37-0.73) and 3-5 years of age (RR = 0.50 95 % CI 0.35-0.74) when the respective household pet ownership were evaluated at 18 months and 3 years of age. These protective associations of reduced risk of eczema were only observed in children without FLG mutations. CONCLUSIONS Household dog and pet (dog, cat, or both) ownership was protective against early childhood eczema in a birth cohort dataset. This protective association was observed only in children without FLG mutations, which should be confirmed in studies with larger cohorts.
Collapse
Affiliation(s)
- Kenji Toyokuni
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan; Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | | | - Limin Yang
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kouhei Hagino
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daisuke Harama
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Marei Omori
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuaki Matsumoto
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daichi Suzuki
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kotaro Umezawa
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuma Takada
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mami Shimada
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seiko Hirai
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Fumi Ishikawa
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan; Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Sayaka Hamaguchi
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mayako Saito-Abe
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Miori Sato
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan; Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Yumiko Miyaji
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shigenori Kabashima
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuki Fukuie
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kohta Suzuki
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
9
|
Zimmermann-Rösner A, Prehn-Kristensen A. The Microbiome in Child and Adolescent Psychiatry. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2024; 52:213-226. [PMID: 38240707 DOI: 10.1024/1422-4917/a000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Recent research has increasingly emphasized the function of the microbiome in human health. The gut microbiome is essential for digesting food and seems to play a vital role in mental health as well. This review briefly overviews the gut microbiome and its interplay with the central nervous system. We then summarize some of the latest findings on the possible role of the microbiome in psychiatric disorders in children and adolescents. In particular, we focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, anorexia nervosa, bipolar disorder, and major depressive disorder. Although the role of microbiota in mental development and health still needs to be researched intensively, it has become increasingly apparent that the impact of microbiota must be considered to better understand psychiatric disorders.
Collapse
Affiliation(s)
| | - Alexander Prehn-Kristensen
- Institute for Child and Adolescent Psychiatry, Center of Integrative Psychiatry GmbH, Kiel, Germany
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| |
Collapse
|
10
|
Gowda V, Sarkar R, Verma D, Das A. Probiotics in Dermatology: An Evidence-based Approach. Indian Dermatol Online J 2024; 15:571-583. [PMID: 39050079 PMCID: PMC11265726 DOI: 10.4103/idoj.idoj_614_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 07/27/2024] Open
Abstract
Probiotics are viable microorganisms that confer health benefits when administered to the host in adequate amounts. Over the past decade, there has been a growing demand for the use of oral and topical probiotics in several inflammatory conditions such as atopic dermatitis, psoriasis, acne vulgaris, etc., although their role in a few areas still remains controversial. The objective of this article is to shed light on understanding the origin and implications of microbiota in the pathophysiology of these dermatological conditions and the effect of probiotic usage. We have conducted a comprehensive search of the literature across multiple databases (PubMed, EMBASE, MEDLINE, and Google Scholar) on the role of probiotics in dermatological disorders. Commensal microbes of the skin and gastrointestinal tract play an important role in both health and disease. Increased use of probiotics has asserted a good safety profile, especially in this era of antibiotic resistance. With the advent of new products in the market, the indications, mechanism of action, efficacy, and safety profile of these agents need to be validated. Further studies are required. Oral and topical probiotics may be tried as a treatment or prevention modality in cutaneous inflammatory disorders, thus facilitating decreased requirement for topical or systemic steroids and antimicrobial agents. Tempering microbiota with probiotics is a safe and well-tolerated approach in this era of antimicrobial resistance.
Collapse
Affiliation(s)
- Vaishnavi Gowda
- Consultant at Department of Dermatology, Doctors Aesthetics Clinic, Kochi, Kerala, India
| | - Rashmi Sarkar
- Department of Dermatology, Lady Hardinge Medical College and Hospitals, New Delhi, India
| | - Damini Verma
- Department of Dermatology, Lady Hardinge Medical College and Hospitals, New Delhi, India
| | - Anupam Das
- Department of Dermatology, KPC Medical College, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Matsumoto W, Takemura M, Nanaura H, Ami Y, Maoka T, Shindo K, Kurihara S, Misawa N. Carotenoid productivity in human intestinal bacteria Eubacterium limosum and Leuconostoc mesenteroides with functional analysis of their carotenoid biosynthesis genes. ENGINEERING MICROBIOLOGY 2024; 4:100147. [PMID: 39629323 PMCID: PMC11611032 DOI: 10.1016/j.engmic.2024.100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 12/07/2024]
Abstract
The human intestinal microbiota that comprise over 1,000 species thrive in dark and anaerobic environments. They are recognized for the production of diverse low-molecular-weight metabolites crucial to human health and diseases. Carotenoids, low-molecular-weight pigments known for their antioxidative activity, are delivered to humans through oral intake. However, it remains unclear whether human intestinal bacteria biosynthesize carotenoids as part of the in-situ microbiota. In this study, we investigated carotenoid synthesis genes in various human gut and probiotic bacteria. As a result, novel candidates, the crtM and crtN genes, were identified in the carbon monoxide-utilizing gut anaerobe Eubacterium limosum and the lactic acid bacterium Leuconostoc mesenteroides subsp. mesenteroides. These gene candidates were isolated, introduced into Escherichia coli, which synthesized a carotenoid substrate, and cultured aerobically. Structural analysis of the resulting carotenoids revealed that the crtM and crtN gene candidates of E. limosum and L. mesenteroides mediate the production of 4,4'-diaponeurosporene through 15-cis-4,4'-diapophytoene. Evaluation of the crtE-homologous genes in these bacteria indicated their non-functionality for C40-carotenoid production. E. limosum and L. mesenteroides, along with the known carotenogenic lactic acid bacterium Lactiplantibacillus plantarum, were observed to produce no carotenoids under strictly anaerobic conditions. The two lactic acid bacteria synthesized detectable levels of 4,4'-diaponeurosporene under semi-aerobic conditions. The findings highlight that the obligate anaerobe E. limosum retains aerobically functional C30-carotenoid biosynthesis genes, potentially with no immediate self-utility, suggesting an evolutionary direction in carotenoid biosynthesis. (229 words).
Collapse
Affiliation(s)
- Wataru Matsumoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Haruka Nanaura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Yuta Ami
- Department of Science and Technology on Food Safety, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Shimogamo-morimotocho, Sakyo-ku, Kyoto 606-0805, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Shin Kurihara
- Department of Science and Technology on Food Safety, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| |
Collapse
|
12
|
Zhang B, Mei X, Zhao M, Lu Q. The new era of immune skin diseases: Exploring advances in basic research and clinical translations. J Transl Autoimmun 2024; 8:100232. [PMID: 39022635 PMCID: PMC11252396 DOI: 10.1016/j.jtauto.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
13
|
Li M, Li N, Dong Y, Zhang H, Bai Z, Zhang R, Fei Z, Zhu W, Xiao P, Sun X, Zhou D. Soil intake modifies the gut microbiota and alleviates Th2-type immune response in an ovalbumin-induced asthma mouse model. World Allergy Organ J 2024; 17:100897. [PMID: 38655570 PMCID: PMC11035114 DOI: 10.1016/j.waojou.2024.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Background A low-clean living environment (LCLE) can increase gut microbial diversity and prevent allergic diseases, whereas gut microbial dysbiosis is closely related to the pathogenesis of asthma. Our previous studies suggested that soil in the LCLE is a key factor in shaping intestinal microbiota. We aimed to explore whether sterilized soil intake as a prebiotic while being incubated with microbes in the air can attenuate mouse asthma inflammation by modifying gut microbiota. Methods 16S rRNA gene sequencing was used to analyze the gut microbial composition, in combination with immune parameters measured in the lung and serum samples. Results 16S rRNA gene sequencing results showed significant differences in the fecal microbiota composition between the test and control mice, with a higher abundance of Allobaculum, Alistipes, and Lachnospiraceae_UCG-001, which produce short-chain fatty acids and are beneficial for health in the test mice. Soil intake significantly downregulated the concentrations of IL-4 and IL-9 in serum and increased the expression of IFN-γ, which regulated the Th1/Th2 balance in the lung by polarizing the immune system toward Th1, alleviating ovalbumin-induced asthma inflammation. The effect of sensitization on gut microbiota was greater than that of air microbes and age together but weaker than that of soil. Conclusions Soil intake effectively reduced the expression of inflammatory cytokines in asthmatic mice, possibly by promoting the growth of multiple beneficial bacteria. The results indicated that the development of soil-based prebiotic products might be used for allergic asthma management, and our study provides further evidence for the hygiene hypothesis.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Na Li
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yangyang Dong
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Honglin Zhang
- College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhimao Bai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China
| | - Rui Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Dongrui Zhou
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Tai SK, Lin YH, Lin CH, Lin MC. Antibiotic exposure during pregnancy increases risk for childhood atopic diseases: a nationwide cohort study. Eur J Med Res 2024; 29:189. [PMID: 38504329 PMCID: PMC10953187 DOI: 10.1186/s40001-024-01793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
PURPOSE The prevalence of atopic diseases has increased in recent decades. A possible link between antibiotic use during pregnancy and childhood atopic disease has been proposed. The aim of this study is to explore the association of antibiotic exposure during pregnancy with childhood atopic diseases from a nationwide, population-based perspective. METHODS This was a nationwide population-based cohort study. Taiwan's National Health Insurance Research Database was the main source of data. The pairing of mothers and children was achieved by linking the NHIRD with the Taiwan Maternal and Child Health Database. This study enrolled the first-time pregnancies from 2004 to 2010. Infants of multiple delivery, preterm delivery, and death before 5 years old were excluded. All participants were followed up at least for 5 years. Antenatal antibiotics prescribed to mothers during the pregnancy period were reviewed. Children with more than two outpatient visits, or one admission, with a main diagnosis of asthma, allergic rhinitis, or atopic dermatitis were regarded as having an atopic disease. RESULTS A total of 900,584 children were enrolled in this study. The adjusted hazard ratios of antibiotic exposure during pregnancy to childhood atopic diseases were 1.12 for atopic dermatitis, 1.06 for asthma, and 1.08 for allergic rhinitis, all of which reached statistical significance. The trimester effect was not significant. There was a trend showing the higher the number of times a child was prenatally exposed to antibiotics, the higher the hazard ratio was for childhood atopic diseases. CONCLUSIONS Prenatal antibiotic exposure might increase the risk of childhood atopic diseases in a dose-dependent manner.
Collapse
Affiliation(s)
- Sheng-Kang Tai
- Department of Pediatrics, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yi-Hsuan Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung, 40705, Taiwan
| | - Ming-Chih Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Hua JL, Yang ZF, Cheng QJ, Han YP, Li ZT, Dai RR, He BF, Wu YX, Zhang J. Prevention of exacerbation in patients with moderate-to-very severe COPD with the intent to modulate respiratory microbiome: a pilot prospective, multi-center, randomized controlled trial. Front Med (Lausanne) 2024; 10:1265544. [PMID: 38249987 PMCID: PMC10797043 DOI: 10.3389/fmed.2023.1265544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Considering the role of bacteria in the onset of acute exacerbation of COPD (AECOPD), we hypothesized that the use of influenza-Streptococcus pneumoniae vaccination, oral probiotics or inhaled amikacin could prevent AECOPD. Methods In this pilot prospective, muti-central, randomized trial, moderate-to-very severe COPD subjects with a history of moderate-to-severe exacerbations in the previous year were enrolled and assigned in a ratio of 1:1:1:1 into 4 groups. All participants were managed based on the conventional treatment recommended by GOLD 2019 report for 3 months, with three groups receiving additional treatment of inhaled amikacin (0.4 g twice daily, 5-7 days monthly for 3 months), oral probiotic Lactobacillus rhamnosus GG (1 tablet daily for 3 months), or influenza-S. pneumoniae vaccination. The primary endpoint was time to the next onset of moderate-to-severe AECOPD from enrollment. Secondary endpoints included CAT score, mMRC score, adverse events, and survival in 12 months. Results Among all 112 analyzed subjects (101 males, 96 smokers or ex-smokers, mean ± SD age 67.19 ± 7.39 years, FEV1 41.06 ± 16.09% predicted), those who were given dual vaccination (239.7 vs. 198.2 days, p = 0.044, 95%CI [0.85, 82.13]) and oral probiotics (248.8 vs. 198.2 days, p = 0.017, 95%CI [7.49, 93.59]) had significantly delayed onset of next moderate-to-severe AECOPD than those received conventional treatment only. For subjects with high symptom burden, the exacerbations were significantly delayed in inhaled amikacin group as compared to the conventional treatment group (237.3 vs. 179.1 days, p = 0.009, 95%CI [12.40,104.04]). The three interventions seemed to be safe and well tolerated for patient with stable COPD. Conclusion The influenza-S. pneumoniae vaccine and long-term oral probiotic LGG can significantly delay the next moderate-to-severe AECOPD. Periodically amikacin inhalation seems to work in symptomatic patients. The findings in the current study warrants validation in future studies with microbiome investigation.Clinical trial registration:https://clinicaltrials.gov/, identifier NCT03449459.
Collapse
Affiliation(s)
- Jian-lan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qi-jian Cheng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-pin Han
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng-tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ran-ran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-feng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-xing Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
16
|
Liu F, Duan W, Guan T, Zhou Q, Yan W, Geng Y. Water extract of Pingchuan formula ameliorated murine asthma through modulating metabolites and gut microbiota. J Pharm Biomed Anal 2023; 236:115728. [PMID: 37793314 DOI: 10.1016/j.jpba.2023.115728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Pingchuan formula is a traditional Chinese herbal prescription for asthma, but its components and underlying mechanisms remain unclear. Here, we evaluated its anti-asthmatic actvity and regulatory effects on the gut microbiota in mice based on the traditional Chinese medicine Zang-Fu theory, which proposed the exterior-interior relationship between the lung and the large intestine. METHODS Mouse model withovalbumin (OVA)-induced asthma was used to assess the protective effect of the water extract of Pingchuan formula (PC). The chemical compounds of PC and mouse serum metabolites were identified by Ultraperformance liquid chromatography-Q Exactive HF-X spectrometry. Gut microbiota was evaluated by 16 S rRNA gene sequencing. The gut microbiota was depleted with a broad-spectrum antibiotic mixture (Abx) to explore whether it plays a role in the protective effects of PC. RESULTS PC mainly contains phenols, flavonoids, alkaloids, carboxylic acids, and their derivatives. PC attenuated OVA-induced asthma in mice by alleviating inflammatory infiltration, indicated by decreased levels of IL-18, IL-6, IL-4, and Eotaxin in lung tissues. PC treatment altered the serum metabolites and affected the pyrimidine pathway. In addition, our results showed that acacetin and abscisic acid were the key serum metabolites PC treatment changed the composition of gut microbiota by increasing the relative abundance of Clostridia_UCG_014 and Akkermansia while decreasing Blautia, Barnesiella, and Clostridium_Ⅲ at the genus level. Importantly, the Abx treatment partly abolished the anti-asthmatic effect of PC. CONCLUSION We demonstrated that PC could alleviate OVA-induced asthma in mice and protect against inflammatory infiltration in lungs via modulating the serum metabolites and gut microbiota, thereby providing a new reference for the therapeutic effect of PC.
Collapse
Affiliation(s)
- Fei Liu
- WuXi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China
| | - Wenhui Duan
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Tianyue Guan
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Qi Zhou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Wei Yan
- Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
17
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Medeleanu MV, Qian YC, Moraes TJ, Subbarao P. Early-immune development in asthma: A review of the literature. Cell Immunol 2023; 393-394:104770. [PMID: 37837916 DOI: 10.1016/j.cellimm.2023.104770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023]
Abstract
This review presents a comprehensive examination of the various factors contributing to the immunopathogenesis of asthma from the prenatal to preschool period. We focus on the contributions of genetic and environmental components as well as the role of the nasal and gut microbiome on immune development. Predisposing genetic factors, including inherited genes associated with increased susceptibility to asthma, are discussed alongside environmental factors such as respiratory viruses and pollutant exposure, which can trigger or exacerbate asthma symptoms. Furthermore, the intricate interplay between the nasal and gut microbiome and the immune system is explored, emphasizing their influence on allergic immune development and response to environmental stimuli. This body of literature underscores the necessity of a comprehensive approach to comprehend and manage asthma, as it emphasizes the interactions of multiple factors in immune development and disease progression.
Collapse
Affiliation(s)
- Maria V Medeleanu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Yu Chen Qian
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Theo J Moraes
- Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Laboratory Medicine and Pathology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada
| | - Padmaja Subbarao
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada; Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Canada.
| |
Collapse
|
19
|
Liao X, Gao S, Xie F, Wang K, Wu X, Wu Y, Gao W, Wang M, Sun J, Liu D, Xu W, Li Q. An underlying mechanism behind interventional pulmonology techniques for refractory asthma treatment: Neuro-immunity crosstalk. Heliyon 2023; 9:e20797. [PMID: 37867902 PMCID: PMC10585236 DOI: 10.1016/j.heliyon.2023.e20797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Asthma is a common disease that seriously threatens public health. With significant developments in bronchoscopy, different interventional pulmonology techniques for refractory asthma treatment have been developed. These technologies achieve therapeutic purposes by targeting diverse aspects of asthma pathophysiology. However, even though these newer techniques have shown appreciable clinical effects, their differences in mechanisms and mutual commonalities still deserve to be carefully explored. Therefore, in this review, we summarized the potential mechanisms of bronchial thermoplasty, targeted lung denervation, and cryoablation, and analyzed the relationship between these different methods. Based on available evidence, we speculated that the main pathway of chronic airway inflammation and other pathophysiologic processes in asthma is sensory nerve-related neurotransmitter release that forms a "neuro-immunity crosstalk" and amplifies airway neurogenic inflammation. The mechanism of completely blocking neuro-immunity crosstalk through dual-ablation of both efferent and afferent fibers may have a leading role in the clinical efficacy of interventional pulmonology in the treatment of asthma and deserves further investigation.
Collapse
Affiliation(s)
- Ximing Liao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoyong Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyang Xie
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yin Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Muyun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongchen Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Young GR, Nelson A, Stewart CJ, Smith DL. Bacteriophage communities are a reservoir of unexplored microbial diversity in neonatal health and disease. Curr Opin Microbiol 2023; 75:102379. [PMID: 37647765 DOI: 10.1016/j.mib.2023.102379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Acquisition and development of the gut microbiome are vital for immune education in neonates, especially those born preterm. As such, microbial communities have been extensively studied in the context of postnatal health and disease. Bacterial communities have been the focus of research in this area due to the relative ease of targeted bacterial sequencing and the availability of databases to align and validate sequencing data. Recent increases in high-throughput metagenomic sequencing accessibility have facilitated research to investigate bacteriophages within the context of neonatal gut microbial communities. Focusing on unexplored viral diversity, has identified novel bacteriophage species and previously uncharacterised viral diversity. In doing so, studies have highlighted links between bacteriophages and bacterial community structure in the context of health and disease. However, much remains unknown about the complex relationships between bacteriophages, the bacteria they infect and their human host. With a particular focus on preterm infants, this review highlights opportunities to explore the influence of bacteriophages on developing microbial communities and the tripartite relationships between bacteriophages, bacteria and the neonatal human host. We suggest a focus on expanding collections of isolated bacteriophages that will further our understanding of the growing numbers of bacteriophages identified in metagenomes.
Collapse
Affiliation(s)
- Gregory R Young
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Andrew Nelson
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK
| | | | - Darren L Smith
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK.
| |
Collapse
|
21
|
Boicean A, Bratu D, Fleaca SR, Vasile G, Shelly L, Birsan S, Bacila C, Hasegan A. Exploring the Potential of Fecal Microbiota Transplantation as a Therapy in Tuberculosis and Inflammatory Bowel Disease. Pathogens 2023; 12:1149. [PMID: 37764957 PMCID: PMC10535282 DOI: 10.3390/pathogens12091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the potential benefits of fecal microbiota transplantation (FMT) as an adjunct treatment in tuberculosis (TB), drawing parallels from its efficacy in inflammatory bowel disease (IBD). FMT has shown promise in restoring the gut microbial balance and modulating immune responses in IBD patients. Considering the similarities in immunomodulation and dysbiosis between IBD and TB, this review hypothesizes that FMT may offer therapeutic benefits as an adjunct therapy in TB. Methods: We conducted a systematic review of the existing literature on FMT in IBD and TB, highlighting the mechanisms and potential implications of FMT in the therapeutic management of both conditions. The findings contribute to understanding FMT's potential role in TB treatment and underscore the necessity for future research in this direction to fully leverage its clinical applications. Conclusion: The integration of FMT into the comprehensive management of TB could potentially enhance treatment outcomes, reduce drug resistance, and mitigate the side effects of conventional therapies. Future research endeavors should focus on well-designed clinical trials to develop guidelines concerning the safety and short- and long-term benefits of FMT in TB patients, as well as to assess potential risks.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Dan Bratu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Gligor Vasile
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Leeb Shelly
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| |
Collapse
|
22
|
Choy CT, Siu PLK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Lo CJY, Loo SKF, Tsui SKW. Improvements in Gut Microbiome Composition Predict the Clinical Efficacy of a Novel Synbiotics Formula in Children with Mild to Moderate Atopic Dermatitis. Microorganisms 2023; 11:2175. [PMID: 37764019 PMCID: PMC10536305 DOI: 10.3390/microorganisms11092175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a significant association with various type-2 inflammation-related comorbidities. Ongoing research suggests the crucial involvement of gut microbiome, especially in childhood onset AD, and hence, probiotics have emerged as a potential non-steroid-based therapeutics option to complement existing AD management plans. In order to delineate the impact of probiotics in the gut microbiome of pediatric AD patients from southern China, targeted 16S rRNA sequencing and thorough bioinformatic analysis were performed to analyze the gut microbiome profiles of 24 AD children after taking an orally administered novel synbiotics formula with triple prebiotics for 8 weeks. A notable improvement in Eczema Area and Severity Index (EASI) (p = 0.008) was observed after taking an 8-week course of probiotics, with no adverse effects observed. The relative abundances of key microbial drivers including Bacteroides fragilis and Lactobacillus acidophilus were significantly increased at week 8. We also found that the positive responsiveness towards an 8-week course of probiotics was associated with improvements in the gut microbiome profile with a higher relative abundance of probiotic species. Over-represented functional abundance pathways related to vitamin B synthesis and peptidoglycan recycling may imply the underlying mechanism. In summary, our study suggests how the gut microbial landscape shifts upon probiotic supplementation in AD children, and provides preliminary evidence to support targeted probiotic supplementation for the management of childhood AD.
Collapse
Affiliation(s)
- Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | | | - Claudia Jun Yi Lo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Li R, Guo Q, Zhao J, Kang W, Lu R, Long Z, Huang L, Chen Y, Zhao A, Wu J, Yin Y, Li S. Assessing causal relationships between gut microbiota and asthma: evidence from two sample Mendelian randomization analysis. Front Immunol 2023; 14:1148684. [PMID: 37539057 PMCID: PMC10394653 DOI: 10.3389/fimmu.2023.1148684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Background Accumulating evidence has suggested that gut microbiota dysbiosis is commonly observed in asthmatics. However, it remains unclear whether dysbiosis is a cause or consequence of asthma. We aimed to examine the genetic causal relationships of gut microbiota with asthma and its three phenotypes, including adult-onset asthma, childhood-onset asthma, and moderate-severe asthma. Methods To elucidate the causality of gut microbiota with asthma, we applied two sample Mendelian randomization (MR) based on the largest publicly available genome-wide association study (GWAS) summary statistics. Inverse variance weighting meta-analysis (IVW) was used to obtain the main estimates; and Weighted median, MR-Egger, Robust Adjusted Profile Score (MR-RAPS), Maximum likelihood method (ML), and MR pleiotropy residual sum and outlier (MR-PRESSO) methods were applied in sensitivity analyses. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation. Results In the absence of heterogeneity and horizontal pleiotropy, the IVW method revealed that genetically predicted Barnesiella and RuminococcaceaeUCG014 were positively correlated with the risk of asthma, while the association between genetically predicted CandidatusSoleaferrea and asthma was negative. And for the three phenotypes of asthma, genetically predicted Akkermansia reduced the risk of adult-onset asthma, Collinsella and RuminococcaceaeUCG014 increased the risk of childhood-onset asthma, and FamilyXIIIAD3011group, Eisenbergiella, and Ruminiclostridium6 were correlated with the risk of moderate-severe asthma (all P<0.05). The reverse MR analysis didn't find evidence supporting the reverse causality from asthma and its three phenotypes to the gut microbiota genus. Conclusion This study suggested that microbial genera were causally associated with asthma as well as its three phenotypes. The findings deepened our understanding of the role of gut microbiota in the pathology of asthma, which emphasizes the potential of opening up a new vista for the prevention and diagnosis of asthma.
Collapse
Affiliation(s)
- Rong Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Guo
- School Health Department, Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Jian Zhao
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Kang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoyu Lu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichong Long
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Huang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Chen
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wu
- Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Yin
- Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Pantazi AC, Mihai CM, Balasa AL, Chisnoiu T, Lupu A, Frecus CE, Mihai L, Ungureanu A, Kassim MAK, Andrusca A, Nicolae M, Cuzic V, Lupu VV, Cambrea SC. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 2023; 15:nu15112529. [PMID: 37299492 DOI: 10.3390/nu15112529] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The intestinal microbiota is a diverse and complex microecosystem that lives and thrives within the human body. The microbiota stabilizes by the age of three. This microecosystem plays a crucial role in human health, particularly in the early years of life. Dysbiosis has been linked to the development of various allergic diseases with potential long-term implications. Next-generation sequencing methods have established that allergic diseases are associated with dysbiosis. These methods can help to improve the knowledge of the relationship between dysbiosis and allergic diseases. The aim of this review paper is to synthesize the current understanding on the development of the intestinal microbiota in children, the long-term impact on health, and the relationship between dysbiosis and allergic diseases. Furthermore, we examine the connection between the microbiome and specific allergies such as atopic dermatitis, asthma, and food allergies, and which mechanisms could determine the induction of these diseases. Furthermore, we will review how factors such as mode of delivery, antibiotic use, breastfeeding, and the environment influence the development of the intestinal flora, as well as review various interventions for the prevention and treatment of gut microbiota-related allergies.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Corina Elena Frecus
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adina Ungureanu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| | | | - Antonio Andrusca
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Maria Nicolae
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Viviana Cuzic
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| |
Collapse
|
25
|
Szukala W, Pilarczyk-Zurek M, Folkert J, Kotlinowski J, Koziel J, Jura J. Depletion of Mcpip1 in murine myeloid cells results in intestinal dysbiosis followed by allergic inflammation. Biochim Biophys Acta Mol Basis Dis 2023:166764. [PMID: 37257731 DOI: 10.1016/j.bbadis.2023.166764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
MCPIP1 (called also Regnase-1) is a negative regulator of inflammation. Knockout of the Zc3h12a gene, encoding Mcpip1 in cells of myeloid origin (Mcpip1MKO), has a pathological effect on many organs. The aim of this study was to comprehensively analyze pathological changes in the skin caused by Mcpip1 deficiency in phagocytes with an emphasis on its molecular mechanism associated with microbiome dysbiosis. Mcpip1MKO mice exhibited spontaneous wound formation on the skin. On a molecular level, the Th2-type immune response was predominantly characterized by an increase in Il5 and Il13 transcript levels, as well as eosinophil and mast cell infiltration. Irritation by DNFB led to a more severe skin contact allergy in Mcpip1MKO mice. Allergic reactions on the skin were strongly influenced by gut dysbiosis and enhanced systemic dissemination of bacteria. This process was followed by activation of the C/EBP pathway in peripheral macrophages, leading to local changes in the cytokine microenvironment that promoted the Th2 response. A reduced bacterial load inhibited allergic inflammation, indicating the role of intestinal dysbiosis in the development of skin diseases. Our results clearly show that MCPIP1 in phagocytes is an essential negative regulator that controls the gut-skin axis.
Collapse
Affiliation(s)
- Weronika Szukala
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Magdalena Pilarczyk-Zurek
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Folkert
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jerzy Kotlinowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland
| | - Joanna Koziel
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Jolanta Jura
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
26
|
Kienhorst S, van Aarle MHD, Jöbsis Q, Bannier MAGE, Kersten ETG, Damoiseaux J, van Schayck OCP, Merkus PJFM, Koppelman GH, van Schooten FJ, Smolinska A, Dompeling E. The ADEM2 project: early pathogenic mechanisms of preschool wheeze and a randomised controlled trial assessing the gain in health and cost-effectiveness by application of the breath test for the diagnosis of asthma in wheezing preschool children. BMC Public Health 2023; 23:629. [PMID: 37013496 PMCID: PMC10068201 DOI: 10.1186/s12889-023-15465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The prevalence of asthma-like symptoms in preschool children is high. Despite numerous efforts, there still is no clinically available diagnostic tool to discriminate asthmatic children from children with transient wheeze at preschool age. This leads to potential overtreatment of children outgrowing their symptoms, and to potential undertreatment of children who turn out to have asthma. Our research group developed a breath test (using GC-tof-MS for VOC-analysis in exhaled breath) that is able to predict a diagnosis of asthma at preschool age. The ADEM2 study assesses the improvement in health gain and costs of care with the application of this breath test in wheezing preschool children. METHODS This study is a combination of a multi-centre, parallel group, two arm, randomised controlled trial and a multi-centre longitudinal observational cohort study. The preschool children randomised into the treatment arm of the RCT receive a probability diagnosis (and corresponding treatment recommendations) of either asthma or transient wheeze based on the exhaled breath test. Children in the usual care arm do not receive a probability diagnosis. Participants are longitudinally followed up until the age of 6 years. The primary outcome is disease control after 1 and 2 years of follow-up. Participants of the RCT, together with a group of healthy preschool children, also contribute to the parallel observational cohort study developed to assess the validity of alternative VOC-sensing techniques and to explore numerous other potential discriminating biological parameters (such as allergic sensitisation, immunological markers, epigenetics, transcriptomics, microbiomics) and the subsequent identification of underlying disease pathways and relation to the discriminative VOCs in exhaled breath. DISCUSSION The potential societal and clinical impact of the diagnostic tool for wheezing preschool children is substantial. By means of the breath test, it will become possible to deliver customized and high qualitative care to the large group of vulnerable preschool children with asthma-like symptoms. By applying a multi-omics approach to an extensive set of biological parameters we aim to explore (new) pathogenic mechanisms in the early development of asthma, creating potentially interesting targets for the development of new therapies. TRIAL REGISTRATION Netherlands Trial Register, NL7336, Date registered 11-10-2018.
Collapse
Affiliation(s)
- Sophie Kienhorst
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Moniek H D van Aarle
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Quirijn Jöbsis
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel A G E Bannier
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elin T G Kersten
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Onno C P van Schayck
- Department of Family Medicine, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Peter J F M Merkus
- Department of Paediatric Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gerard H Koppelman
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederik-Jan van Schooten
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Edward Dompeling
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
27
|
Sinkko H, Lehtimäki J, Lohi H, Ruokolainen L, Hielm-Björkman A. Distinct healthy and atopic canine gut microbiota is influenced by diet and antibiotics. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221104. [PMID: 37122947 PMCID: PMC10130713 DOI: 10.1098/rsos.221104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The rising trend in non-communicable chronic inflammatory diseases coincides with changes in Western lifestyle. While changes in the human microbiota may play a central role in the development of chronic diseases, estimating the contribution of associated lifestyle factors remains challenging. We studied the influence of lifestyle-diet, antibiotic use, and residential environment with housing and family-on the gut microbiota of healthy and owner-reported atopic pet dogs, searching for associations between the lifestyle factors, atopy and microbiota. The results showed that atopic and healthy dogs had contrasting gut microbial composition. The gut microbiota also differed between two breeds, Labrador Retriever and Finnish Lapphund, selected for our study. Among all lifestyle factors studied, diet was most significantly associated with gut microbiota but only weakly with atopic symptoms. Thus, diet- and atopy-associated changes in the microbiota were not interrelated. Instead, the severity of symptoms was positively associated with the usage of antibiotics, which in turn was associated with the microbiota composition. Urban lifestyle was significantly associated with the increased prevalence of allergies but not with the gut microbiota. Our results from pet dogs supported previous evidence from humans, demonstrating that antibiotics, gut microbiota and atopic manifestation are interrelated. This congruence suggests that canine atopy might be a promising model for understanding the aetiology of human allergy.
Collapse
Affiliation(s)
- Hanna Sinkko
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, Human Microbiome Research (HUMI), University of Helsinki, Helsinki, Finland
| | - Jenni Lehtimäki
- Environmental Policy Centre, Finnish Environment Institute, 00790 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics and Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Lasse Ruokolainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Parra-Llorca A, Pinilla-Gonzlez A, Torrejón-Rodríguez L, Lara-Cantón I, Kuligowski J, Collado MC, Gormaz M, Aguar M, Vento M, Serna E, Cernada M. Effects of Sepsis on Immune Response, Microbiome and Oxidative Metabolism in Preterm Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:602. [PMID: 36980160 PMCID: PMC10046958 DOI: 10.3390/children10030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
This is a narrative review about the mechanisms involved in bacterial sepsis in preterm infants, which is an illness with a high incidence, morbidity, and mortality. The role of the innate immune response and its relationship with oxidative stress in the pathogenesis are described as well as their potential implementation as early biomarkers. Moreover, we address the impact that all the mechanisms triggered by sepsis have on the dysbiosis and the changes on neonatal microbiota.
Collapse
Affiliation(s)
- Anna Parra-Llorca
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Alejandro Pinilla-Gonzlez
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Laura Torrejón-Rodríguez
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Inmaculada Lara-Cantón
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - María Gormaz
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Marta Aguar
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Eva Serna
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| |
Collapse
|
29
|
Kim HJ, Mo SJ, Kim J, Nam B, Park S, Sim J, Sim J, Lee J. Organic vegetable juice supplement alleviates hyperlipidemia in diet-induced obese mice and modulates microbial community in continuous colon simulation system. Food Sci Nutr 2023; 11:1531-1543. [PMID: 36911823 PMCID: PMC10002948 DOI: 10.1002/fsn3.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, we investigated the effects of organic vegetable juice (OVJ) supplementation on modulating the microbial community, and how its consumption ameliorated blood-lipid profiles in diet-induced obese mice. Here, we studied the alleviating effect of hyperlipidemia via animal experiments using diet-induced obese mice and analyzed the effect of OVJ on the microbial community in continuous colon simulation system. OVJ consumption did not have a significant effect on weight loss but helped reduce the weight of the epididymis fat tissue and adipocytes. Additionally, blood-lipid profiles, such as triglyceride, high-density lipoprotein, and glucose, were improved in the OVJ-fed group. Expression levels of genes related to lipid synthesis, including SREBP-1, PPARγ, C/EBPα, and FAS, were significantly decreased. In addition, OVJ treatment significantly reduced inflammatory cytokines and oxidative stress. OVJ supplement influenced intestinal bacterial composition from phylum to genus level, including decreased Proteobacteria in the ascending colon in the phylum. At the family level, Akkermansia, which are associated with obesity, were significantly augmented in the transverse colon and descending colon compared to the control juice group. In addition, treatment with OVJ affected predicted lipid-metabolism-function genes related to lipid synthesis. These results suggest that OVJ supplementation may modulate gut microbial community and reduce the potential symptom of hyperlipidemia in diet-obese mice.
Collapse
Affiliation(s)
| | | | - Jisoo Kim
- R&BD Center, hy Co., Ltd.Yongin‐siKorea
| | - Bora Nam
- R&BD Center, hy Co., Ltd.Yongin‐siKorea
| | | | | | | | | |
Collapse
|
30
|
Zeng Y, Jiang L, Zhou B, Liu Y, Wang L, Hu Z, Wang C, Tang Z. Effect of High Efficiency Digestion and Utilization of Organic Iron Made by Saccharomyces cerevisiae on Antioxidation and Caecum Microflora in Weaned Piglets. Animals (Basel) 2023; 13:ani13030498. [PMID: 36766387 PMCID: PMC9913381 DOI: 10.3390/ani13030498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Organic iron is expected to replace inorganic iron used in diets as an iron source. Organic iron possesses high absorption efficiency and low fecal iron excretion. This study aims to study the effect of organic iron produced by Saccharomyces cerevisiae (yeast iron) on digestion, utilization, antioxidation and caecum microflora in weaned piglets. In total, 20 piglets that had been weaned after 28 days were divided into 4 groups, each of which followed a different basal diet. The basal diet of each of these 4 groups contained, respectively, 104 mg/kg iron (ferrous sulfate, CON), 84 mg/kg iron (yeast iron, LSC), 104 mg/kg iron (yeast iron, MSC) or 124 mg/kg iron (yeast iron, HSC). This experiment lasted 35 d. The apparent digestibility of iron in LSC, MSC and HMS was higher than that in CON (p < 0.01) and the fecal iron content in LSC, MSC and HMS was lower than that in CON (p < 0.01). Serum iron contents in LSC, MSC and HMS were higher than that in CON (p < 0.01). The iron contents of the heart, lungs, liver, kidney and left gluteus muscle in the MSC and HMS groups were higher than that in CON and LSC (p < 0.05). Serum catalase, glutathione peroxidase, superoxide dismutase activity, superoxide anion, glutathione, hydroxyl free radical scavenging rate, total antioxidant capacity, and liver superoxide anion clearance rate and peroxidase in MSC and HMS were higher than that in CON and LSC (p < 0.05). The contents of nitric oxide and peroxide of the weaned piglets in MSC and HMS were lower than that in CON and LSC (p < 0.05). The abundance of Firmicutes, Blautia and Peptococcus in LSC, HSC and MSC was higher than that in CON (p < 0.01). The abundance of Lactobacillus in CON and LSC was higher than that in MSC and HSC (p < 0.01). The abundance of Acinetobacter, Streptococcus and Prevotella in LSC, MSC and HSC was lower than that in CON (p < 0.01). The results suggested that a diet containing 84 mg/kg iron of yeast iron has the same effect as a diet containing 104 mg/kg iron of ferric sulfate, and that a diet containing 104 or 124 mg/kg iron of yeast iron is superior to a diet containing 104 mg/kg iron of ferric sulfate.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Liwen Jiang
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Yubo Liu
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Lingang Wang
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhijin Hu
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chunping Wang
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Zhiru Tang
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-1399-6192-900
| |
Collapse
|
31
|
Childhood Acid Suppressants May Increase Allergy Risk-A Systematic Review and Meta-Analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:228-237.e8. [PMID: 36257597 DOI: 10.1016/j.jaip.2022.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Recent studies suggest that the use of acid suppressants in early childhood may increase the risk of allergic diseases. OBJECTIVE To systematically review and synthesize associations between the childhood use of acid suppressants and development of allergic diseases. METHODS PubMed, Embase, The Cochrane Library, and Scopus were searched using a systematic search strategy. We included observational or interventional studies that looked at the use of acid suppressants in the pediatric population, in association with allergic outcomes such as asthma, atopic dermatitis, allergic rhinitis, allergic conjunctivitis, and food allergies. Key data were extracted and risk of bias was evaluated according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and a PROSPERO-registered protocol. Maximally adjusted estimates were pooled using mixed-effects models, and heterogeneity was measured using I2. Further subgroup and sensitivity analyses were conducted. Overall quality of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations framework. RESULTS This review included 5 observational studies from 1977 records with low-to-moderate risk of bias. Childhood acid-suppressant use was associated with significantly increased hazards of asthma (hazard ratio [HR] = 1.44, 95% confidence interval [CI] = 1.31-1.58), atopic dermatitis (HR = 1.12, 95% CI = 1.10-1.14), and allergic rhinitis (HR = 1.40, 95% CI = 1.24-1.58). These associations were adjusted for confounders such as demographics, parental educational level, and use of antibiotics. Overall quality of evidence was low. CONCLUSIONS Childhood use of acid suppressants may increase the risk of incident asthma, atopic dermatitis, and allergic rhinitis. However, larger studies such as randomized controlled trials are needed to determine causality. These drugs should be used judiciously in pediatric patients, and more stringent guidelines should be advocated.
Collapse
|
32
|
Does Oxidative Stress Along with Dysbiosis Participate in the Pathogenesis of Asthma in the Obese? Cell Biochem Biophys 2023; 81:117-126. [PMID: 36346545 PMCID: PMC9925511 DOI: 10.1007/s12013-022-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2022] [Indexed: 11/11/2022]
Abstract
The most important environmental factor that can play a key role in the development of asthma in the obese is overproduction of reactive oxygen species (ROS). The aim of the study was to examine changes in the concentration of oxidative stress parameters in the lungs, bronchoalveolar lavage (BAL) fluid and blood of mice in models of asthma or/and obesity caused by high-fat diet (HFD). The concentrations of 4-HNE and isoprostanes in the lungs of the animals were measured. BAL fluid levels of hydrogen peroxide were marked. Additionally, thiobarbituric acid reactive substances (TBARS) and ferric reducing ability of plasma (FRAP) were used as biomarkers of oxidative stress in the blood. Administration of lipoic acid (LA), a probiotic with standard-fat diet (SFD, 10% fat) and low-fat diet (LFD, 5% fat) significantly decreased the concentration of 4-HNE as compared to the OVA (ovalbumin) + HFD group (p < 0.05). Treatment with low-fat diet or LFD in combination with apocynin insignificantly decreased H2O2 values as compared to the OVA + HFD group. Supplementation of probiotic with SFD and LFD significantly decreased the concentration of TBARS as compared to the OVA + SFD and saline + HDF groups (p < 0.05). Significantly lower concentrations of TBARS were also observed in the LA plus LFD group (p < 0.05) as compared to the OVA + HFD group. Low-fat diet with probiotic significantly increased the concentration of FRAP as compared to the obese mice (p = 0.017). Treatment with LFD in combination with LA significantly increased FRAP values as compared to the obese and obese asthmatic mice (p < 0.001).
Collapse
|
33
|
Fan X, Zang T, Dai J, Wu N, Hope C, Bai J, Liu Y. The associations of maternal and children's gut microbiota with the development of atopic dermatitis for children aged 2 years. Front Immunol 2022; 13:1038876. [PMID: 36466879 PMCID: PMC9714546 DOI: 10.3389/fimmu.2022.1038876] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND It is critical to investigate the underlying pathophysiological mechanisms in the development of atopic dermatitis. The microbiota hypothesis suggested that the development of allergic diseases may be attributed to the gut microbiota of mother-offspring pairs. The purpose of this study was to investigate the relationship among maternal-offspring gut microbiota and the subsequent development of atopic dermatitis in infants and toddlers at 2 years old. METHODS A total of 36 maternal-offspring pairs were enrolled and followed up to 2 years postpartum in central China. Demographic information and stool samples were collected perinatally from pregnant mothers and again postpartum from their respective offspring at the following time intervals: time of birth, 6 months, 1 year and 2 years. Stool samples were sequenced with the 16S Illumina MiSeq platform. Logistic regression analysis was used to explore the differences in gut microbiota between the atopic dermatitis group and control group. RESULTS Our results showed that mothers of infants and toddlers with atopic dermatitis had higher abundance of Candidatus_Stoquefichus and Pseudomonas in pregnancy and that infants and toddlers with atopic dermatitis had higher abundance of Eubacterium_xylanophilum_group at birth, Ruminococcus_gauvreauii_group at 1 year and UCG-002 at 2 years, and lower abundance of Gemella and Veillonella at 2 years. Additionally, the results demonstrated a lower abundance of Prevotella in mothers of infants and toddlers with atopic dermatitis compared to mothers of the control group, although no statistical difference was found in the subsequent analysis. CONCLUSION The results of this study support that gut microbiota status among mother-offspring pairs appears to be associated with the pathophysiological development of pediatric atopic dermatitis.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Jiamiao Dai
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Chloe Hope
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Alcazar CGM, Paes VM, Shao Y, Oesser C, Miltz A, Lawley TD, Brocklehurst P, Rodger A, Field N. The association between early-life gut microbiota and childhood respiratory diseases: a systematic review. THE LANCET. MICROBE 2022; 3:e867-e880. [PMID: 35988549 PMCID: PMC10499762 DOI: 10.1016/s2666-5247(22)00184-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023]
Abstract
Data from animal models suggest a role of early-life gut microbiota in lung immune development, and in establishing susceptibility to respiratory infections and asthma in humans. This systematic review summarises the association between infant (ages 0-12 months) gut microbiota composition measured by genomic sequencing, and childhood (ages 0-18 years) respiratory diseases (ie, respiratory infections, wheezing, or asthma). Overall, there was evidence that low α-diversity and relative abundance of particular gut-commensal bacteria genera (Bifidobacterium, Faecalibacterium, Ruminococcus, and Roseburia) are associated with childhood respiratory diseases. However, results were inconsistent and studies had important limitations, including insufficient characterisation of bacterial taxa to species level, heterogeneous outcome definitions, residual confounding, and small sample sizes. Large longitudinal studies with stool sampling during the first month of life and shotgun metagenomic approaches to improve bacterial and fungal taxa resolution are needed. Standardising follow-up times and respiratory disease definitions and optimising causal statistical approaches might identify targets for primary prevention of childhood respiratory diseases.
Collapse
Affiliation(s)
| | - Veena Mazarello Paes
- Institute for Child Health, University College London, London, UK; John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Clarissa Oesser
- Institute for Global Health, University College London, London, UK
| | - Ada Miltz
- Institute for Global Health, University College London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Peter Brocklehurst
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK; Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - Nigel Field
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
35
|
Zhou J, Xu G, Li X, Tu H, Li H, Chang H, Chen J, Yu R, Qi C, Sun J. Limosilactobacillus reuteri FN041 prevents atopic dermatitis in pup mice by remodeling the ileal microbiota and regulating gene expression in Peyer’s patches after vertical transmission. Front Nutr 2022; 9:987400. [PMID: 36245510 PMCID: PMC9554658 DOI: 10.3389/fnut.2022.987400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives Limosilactobacillus reuteri FN041 is a potential probiotic bacterium isolated from breast milk in traditional farming and pastoral areas of China. The purpose of this study was to investigate the optimal intervention mode and potential mechanism of FN041 to prevent atopic dermatitis (AD) in mice. Methods In intervention mode I, FN041 was supplemented to dams during the late trimester and lactation and pups after weaning; in intervention mode II, FN041 was supplemented after pups were weaned. AD was induced in pups with MC903 plus ovalbumin on the ear after weaning. Results The effect of intervention mode I in preventing AD was significantly better than that of intervention mode II. Compared with the model group, the inflammatory response of the pup’s ears, the proportion of spleen regulatory T cells and the plasma IgE were significantly decreased in mice in intervention mode I. Furthermore, the intestinal mucosal barrier was enhanced, and the Shannon index of the ileal microbiota was significantly increased. The microbiota structure deviated from the AD controls and shifted toward the healthy controls according to the PCoA of unweighted UniFrac. The relative abundances of Limosilactobacillus, Faecalibacterium, Bifidobacterium, and Akkermansia in the ileum were significantly increased compared to the AD group. Based on RNA-seq analysis of pups’ Peyer’s patches (PPs), FN041 inhibits autoimmune pathways such as asthma and systemic lupus erythematosus and activates retinol metabolism and PPAR signaling pathways to reduce inflammatory responses. Intervention mode II also significantly reduced AD severity score, but the reduction was approximately 67% of that of intervention mode I. This may be related to its ineffective remodeling of the ileal microbiota. Conclusion Prenatal and postnatal administration of FN041 is an effective way to prevent AD in offspring, and its mechanism is related to remodeling of ileal microbiota and PPs immune response.
Collapse
Affiliation(s)
- Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Gaoshun Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xinyue Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Huayu Tu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Haoyu Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Hong Chang
- Department of Pediatric Cardiology Nephrology and Rheumatism, The Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Jie Chen
- Department of Pediatric Cardiology Nephrology and Rheumatism, The Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Renqiang Yu,
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- Ce Qi,
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- *Correspondence: Jin Sun,
| |
Collapse
|
36
|
Murata T, Kyozuka H, Fukuda T, Imaizumi K, Isogami H, Yasuda S, Yamaguchi A, Sato A, Ogata Y, Shinoki K, Hosoya M, Yasumura S, Hashimoto K, Nishigori H, Fujimori K. Meconium-stained amniotic fluid during labor may be a protective factor for the offspring's childhood wheezing up to 3 years of age: the Japan Environment and Children's Study. Eur J Pediatr 2022; 181:3153-3162. [PMID: 35852596 DOI: 10.1007/s00431-022-04530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
UNLABELLED We aimed to evaluate the association between meconium-stained amniotic fluid during labor and offspring's childhood wheezing. This study analyzed the data of participants enrolled in the Japan Environment and Children's Study, a nationwide prospective birth cohort study, between 2011 and 2014. Data of women with singleton live births between 22 and 40 weeks' gestation were analyzed. Participants were categorized into two groups according to the presence or absence of meconium-stained amniotic fluid. The primary outcome measure was the offspring's childhood wheezing up to 3 years of age. A logistic regression model was used to calculate the adjusted odds ratio for childhood wheezing in children of women with meconium-stained amniotic fluid, considering those without meconium-stained amniotic fluid as a reference, taking into account the potential confounding factors affecting the incidence of wheezing. We analyzed data from 61,991 participants: 1796 (2.9%) participants had meconium-stained amniotic fluid during labor and 18,919 (30.5%) of the offspring had childhood wheezing. The adjusted odds ratios for the offspring's childhood wheezing were 0.89 (95% confidence interval, 0.79-0.99) in total participants, 0.87 (95% confidence interval, 0.78-0.97) in term births, and 2.00 (95% confidence interval, 0.98-4.09) in preterm births. CONCLUSIONS This study revealed a decreased incidence of childhood wheezing among the children of women with meconium-stained amniotic fluid in term births. By yet unknown mechanisms, meconium-stained amniotic fluid was associated with a decreased incidence of childhood wheezing in the offspring. Further studies are required to clarify the mechanism of one's own meconium in affecting their health condition. WHAT IS KNOWN • Meconium-stained amniotic fluid during labor is associated with several adverse perinatal outcomes, and meconium aspiration syndrome is associated with offspring's childhood asthma and wheezing. • Meconium-stained amniotic fluid during labor could be an independent protective factor for the offspring's dermatitis and skin rash. WHAT IS NEW • Whole cases with meconium-stained amniotic fluid during labor were associated with a decreased incidence of offspring's childhood wheezing up to 3 years of age. • This study may shed light on the effects of simple meconium-stained amniotic fluid on offspring's childhood health.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan. .,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Hyo Kyozuka
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Toma Fukuda
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Karin Imaizumi
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hirotaka Isogami
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shun Yasuda
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Akiko Yamaguchi
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Akiko Sato
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuka Ogata
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kosei Shinoki
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Mitsuaki Hosoya
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Pediatrics, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Seiji Yasumura
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Public Health, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Koichi Hashimoto
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Pediatrics, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hidekazu Nishigori
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Keiya Fujimori
- Fukushima Regional Center for the Japan Environment and Children's Study, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | | |
Collapse
|
37
|
Wilson K, Gebretsadik T, Adgent MA, Loftus C, Karr C, Moore PE, Sathyanarayana S, Byington N, Barrett E, Bush N, Nguyen R, Hartman TJ, LeWinn KZ, Calvert A, Mason WA, Carroll KN. The association between duration of breastfeeding and childhood asthma outcomes. Ann Allergy Asthma Immunol 2022; 129:205-211. [PMID: 35552008 PMCID: PMC9442497 DOI: 10.1016/j.anai.2022.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Postnatal exposures, including breastfeeding, may influence asthma development. OBJECTIVE To investigate the association between breastfeeding duration and child asthma. METHODS We studied 2021 mother-child dyads in the ECHO PATHWAYS consortium of prospective pregnancy cohorts (GAPPS, CANDLE, TIDES). Women reported the duration of any and exclusive breastfeeding and child asthma outcomes during follow-up at child age 4 to 6 years. Outcomes included current wheeze (previous 12 months), ever asthma, current asthma (having ≥2 of current wheeze, ever asthma, medication use in past 12-24 months), and strict current asthma (ever asthma with either or both current wheeze and medication use in past 12-24 months). We used multivariable logistic regression to assess associations (odds ratios and 95% confidence intervals) between breastfeeding and asthma outcomes adjusting for potential confounders. We assessed effect modification by mode of delivery, infant sex, and maternal asthma. RESULTS Among women, 33%, 13%, 9%, and 45% reported 0 to less than 2, 2 to 4, 5 to 6, and more than 6 months of any breastfeeding, respectively. The duration of any breastfeeding had a protective linear trend with ever asthma but no other outcomes. There was a duration-dependent protective association of exclusive breastfeeding and child asthma outcomes (eg, current asthma adjusted odds ratio [95% confidence interval], 0.64 [0.41-1.02], 0.61 [0.38-0.98], and 0.52 (0.31-0.87) for 2to 4 months, 5 to 6 months, and more than 6 months, respectively, compared with <2 months). For exclusive breastfeeding, protective associations were stronger in dyads with children born by vaginal vs cesarean delivery although interactions did not reach statistical significance (Pinteractions 0.12-0.40). CONCLUSION Longer duration of exclusive breastfeeding had a protective association with child asthma.
Collapse
Affiliation(s)
- Keadrea Wilson
- Division of Neonatology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine Loftus
- Departments of Environmental and Occupational Health Sciences and Pediatrics, University of Washington, Seattle, Washington
| | - Catherine Karr
- Seattle Children's Research Institute, Seattle, Washington
| | - Paul E Moore
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sheela Sathyanarayana
- Departments of Environmental and Occupational Health Sciences and Pediatrics, University of Washington, Seattle, Washington
| | - Nora Byington
- Seattle Children's Research Institute, Seattle, Washington
| | - Emily Barrett
- Department of Biostatistics and Epidemiology, Rutgers University, Piscataway, New Jersey
| | - Nicole Bush
- Department of Pediatrics, University of California San Francisco, San Francisco, California; Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Ruby Nguyen
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Terry J Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Kaja Z LeWinn
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Alexis Calvert
- Division of General Pediatrics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - W Alex Mason
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kecia N Carroll
- Division of General Pediatrics, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
38
|
Carucci L, Nocerino R, Paparo L, De Filippis F, Coppola S, Giglio V, Cozzolino T, Valentino V, Sequino G, Bedogni G, Russo R, Ercolini D, Berni Canani R. Therapeutic effects elicited by the probiotic Lacticaseibacillus rhamnosus GG in children with atopic dermatitis. The results of the ProPAD trial. Pediatr Allergy Immunol 2022; 33:e13836. [PMID: 36003050 PMCID: PMC9542056 DOI: 10.1111/pai.13836] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting up to 20% of the pediatric population associated with alteration of skin and gut microbiome. Probiotics have been proposed for AD treatment. The ProPAD study aimed to investigate the therapeutic effects of the probiotic Lacticaseibacillus rhamnosus GG (LGG) in children with AD. METHODS In total, 100 AD patients aged 6-36 months were enrolled in a randomized, double-blind, controlled trial to receive placebo (Group A) or LGG (1 x 1010 CFU/daily) (Group B) for 12 weeks. The primary outcome was the evaluation of the efficacy of LGG supplementation on AD severity comparing the Scoring Atopic Dermatitis (SCORAD) index at baseline (T0) and at 12-week (T12). A reduction of ≥8.7 points on the SCORAD index was considered as minimum clinically important difference (MCID). The secondary outcomes were the SCORAD index evaluation at 4-week (T16) after the end of LGG treatment, number of days without rescue medications, changes in Infant Dermatitis Quality Of Life questionnaire (IDQOL), gut microbiome structure and function, and skin microbiome structure. RESULTS The rate of subjects achieving MCID at T12 and at T16 was higher in Group B (p < .05), and remained higher at T16 (p < .05)The number of days without rescue medications was higher in Group B. IDQOL improved at T12 in the Group B (p < .05). A beneficial modulation of gut and skin microbiome was observed only in Group B patients. CONCLUSIONS The probiotic LGG could be useful as adjunctive therapy in pediatric AD. The beneficial effects on disease severity and quality of life paralleled with a beneficial modulation of gut and skin microbiome.
Collapse
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Veronica Giglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Tommaso Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy.,Internal Medicine, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies University of Naples Federico II, Naples, Italy.,European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Kishida S, Kato-Mori Y, Okamoto M, Hagiwara K. Anti-inflammatory effect a specific Lactiplantibacillus plantarum in an ovalbumin-induced asthma model. Microbiol Immunol 2022; 66:442-452. [PMID: 35674213 DOI: 10.1111/1348-0421.13014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Autoimmune, allergic, and respiratory inflammatory diseases are some of the most important health issues worldwide. Disorders of the gut microbiota have been associated with the induction of allergic and inflammatory diseases, and probiotics are being tested for disease prevention. We examined functional Lactiplantibacillus plantarum RGU (Lp-1) to mice with ovalbumin (OVA)-induced asthma model to elucidate the inhibitory effect on pathological progression in asthma model. Prior to the experiments, the intestinal lactic acid bacteria were reduced by administering multiple antibiotics (MAB) to evaluate the administration effect of lactic acid bacteria. Mice were administered with Lp-1 or comparative control lactic acid bacteria in each group. After that, OVA-induced asthma was induced, and cytokine gene expression and histological findings were compared. Exacerbation of lung lesions was confirmed in the MAB group. The Lp-1 group mice had alleviated lung lesions with a decrease in IL-1β, IL-13, IL-17 and an increase in IL-10 of the splenocytes and bronchial lymph nodes compared with the MAB group, but not in the other groups. In OVA-induced asthma, administration of specific Lactiplantibacillus was confirmed to induce anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Shigefumi Kishida
- Department of Pathobiology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Yuko Kato-Mori
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Minoru Okamoto
- Department of Pathobiology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Katsuro Hagiwara
- Department of Pathobiology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
40
|
Zhou Y, Wang T, Zhao X, Wang J, Wang Q. Plasma Metabolites and Gut Microbiota Are Associated With T cell Imbalance in BALB/c Model of Eosinophilic Asthma. Front Pharmacol 2022; 13:819747. [PMID: 35662725 PMCID: PMC9157759 DOI: 10.3389/fphar.2022.819747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis of allergic asthma is complex, it is usually caused by immune system imbalance. Th1, Th2, regulatory T cells (Treg) and T helper 17 (Th17) cells have an important role in the pathogenesis of eosinophilic asthma. Yet, the exact role of Th1, Th2, Treg and Th17 cells in eosinophilic asthmatic disease is not fully understood. This study used an untargeted plasma metabolomics combine 16S rDNA technology to identify new biomarkers of plasma metabolites and gut microbiota in ovalbumin-induced eosinophilic allergic asthma in BALB/c mice to further explore the biomarkers in regulating the immune balance or the immune response. We discovered that malate, l-dihydroorotate were associated with Th1/Th2 and Treg/Th17 cells balance, imidazoleacetic acid was associated with Th1/Th2 cell balance, 1,5-anhydro-d-sorbitol was associated with Treg/Th17 cell balance. The results also found that genus Candidatus Arthromitus of gut microbiota were associated with Th1/2, Treg/Th17 balance, genus Ruminiclostridium 6, they were all associated with Th1/2 and Treg/Th17 cell balance, while the gut microbiota were not associated with penh value which reflect airway hyperresponsiveness (AHR) in the eosinophilic asthma mice model. Interestingly, the plasma metabolite biomarkers of malate, l-dihydroorotate are associated with genus Ruminiclostridium 6, they were all associated with Th1/2 and Treg/Th17 cell balance, while imidazoleacetic acid is associated with genus Ruminiclostridium 6 which is associated with Th1/2 balance. Among the differential plasma metabolites, 1,5-anhydro-d-sorbitol is associated with genus Ruminiclostridium 6 and genus Candidatus Arthromitus. Among them, malate participate in the T cell activation, T cell differentiation and activation may be a new research direction in eosinophilic allergic asthma. We firstly study the gut microbiota and plasma metabolites markers of immune balance in eosinophilic asthma in mice model, laying a foundation for drug treatment in eosinophilic allergic asthma.
Collapse
Affiliation(s)
- Yumei Zhou
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Abstract
Secretory immunoglobulin A (SIgA) in human milk plays a central role in complex maternal-infant interactions that influence long-term health outcomes. Governed by genetics and maternal microbial exposure, human milk SIgA shapes both the microbiota and immune system of infants. Historically, SIgA-microbe interactions have been challenging to unravel due to their dynamic and personalized nature, particularly during early life. Recent advances have helped to clarify how SIgA acts beyond simple pathogen clearance to help guide and constrain a healthy microbiota, promote tolerance, and influence immune system development. In this review, we highlight these new findings in the context of the critical early-life window and propose outstanding areas of study that will be key to harnessing the benefits of SIgA to support healthy immune development during infancy.
Collapse
|
42
|
Wymore Brand M, Proctor AL, Hostetter JM, Zhou N, Friedberg I, Jergens AE, Phillips GJ, Wannemuehler MJ. Vertical transmission of attaching and invasive E. coli from the dam to neonatal mice predisposes to more severe colitis following exposure to a colitic insult later in life. PLoS One 2022; 17:e0266005. [PMID: 35381031 PMCID: PMC8982877 DOI: 10.1371/journal.pone.0266005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
The gastrointestinal microbiota begins to be acquired at birth and continually matures through early adolescence. Despite the relevance for gut health, few studies have evaluated the impact of pathobiont colonization of neonates on the severity of colitis later in life. LF82 is an adherent invasive E. coli strain associated with ileal Crohn’s disease. The aim of this study was to evaluate the severity of dextran sodium sulfate (DSS)-induced colitis in mice following E. coli LF82 colonization. Gnotobiotic mice harboring the altered Schaedler flora (ASF) were used as the model. While E. coli LF82 is neither adherent nor invasive, it was been demonstrated that adult ASF mice colonized with E. coli LF82 develop more severe DSS-induced colitis compared to control ASF mice treated with DSS. Therefore, we hypothesized that E. coli LF82 colonization of neonatal ASF mice would reduce the severity of DSS-induced inflammation compared to adult ASF mice colonized with E. coli LF82. To test this hypothesis, adult ASF mice were colonized with E. coli LF82 and bred to produce offspring (LF82N) that were vertically colonized with LF82. LF82N and adult-colonized (LF82A) mice were given 2.0% DSS in drinking water for seven days to trigger colitis. More severe inflammatory lesions were observed in the LF82N + DSS mice when compared to LF82A + DSS mice, and were characterized as transmural in most of the LF82N + DSS mice. Colitis was accompanied by secretion of proinflammatory cytokines (IFNγ, IL-17) and specific mRNA transcripts within the colonic mucosa. Using 16S rRNA gene amplicon sequencing, LF82 colonization did not induce significant changes in the ASF community; however, minimal changes in spatial redistribution by fluorescent in situ hybridization were observed. These results suggest that the age at which mice were colonized with E. coli LF82 pathobiont differentially impacted severity of subsequent colitic events.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Alexandra L. Proctor
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Jesse M. Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Naihui Zhou
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Gregory J. Phillips
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
43
|
Coppola S, Avagliano C, Sacchi A, Laneri S, Calignano A, Voto L, Luzzetti A, Berni Canani R. Potential Clinical Applications of the Postbiotic Butyrate in Human Skin Diseases. Molecules 2022; 27:1849. [PMID: 35335213 PMCID: PMC8949901 DOI: 10.3390/molecules27061849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Human skin is the largest organ and the most external interface between the environment and the body. Vast communities of viruses, bacteria, archaea, fungi, and mites, collectively named the skin microbiome (SM), cover the skin surface and connected structures. Skin-resident microorganisms contribute to the establishment of cutaneous homeostasis and can modulate host inflammatory responses. Imbalances in the SM structure and function (dysbiosis) are associated with several skin conditions. Therefore, novel target for the skincare field could be represented by strategies, which restore or preserve the SM natural/individual balance. Several of the beneficial effects exerted by the SM are aroused by the microbial metabolite butyrate. Since butyrate exerts a pivotal role in preserving skin health, it could be used as a postbiotic strategy for preventing or treating skin diseases. Herein, we describe and share perspectives of the potential clinical applications of therapeutic strategies using the postbiotic butyrate against human skin diseases.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Luana Voto
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
44
|
Ahn JR, Lee SH, Kim B, Nam MH, Ahn YK, Park YM, Jeong SM, Park MJ, Song KB, Lee SY, Hong SJ. Ruminococcus gnavus ameliorates atopic dermatitis by enhancing Treg cell and metabolites in BALB/c mice. Pediatr Allergy Immunol 2022; 33:e13678. [PMID: 34633714 DOI: 10.1111/pai.13678] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ruminococcus gnavus (R. gnavus) are mucin-degrading gut bacteria that play a key role in the early colonization of the gut by serving as endogenous sources of nutrients. They can also influence immune development. We had previously reported a lower abundance of R. gnavus in infants with atopic dermatitis (AD) compared with that in healthy subjects. However, the underlying mechanisms remain unclear. In this study, we investigated the effect of orally administered R. gnavus on antibiotic treatment-induced gut dysbiosis (and the underlying mechanism) in a mouse model of AD. METHODS Four-week-old female BALB/C mice were administered antibiotic cocktails for 2 weeks. R. gnavus was orally administered throughout the study duration. At 6 weeks of age, AD was induced by epidermal sensitization with ovalbumin. AD phenotypes and systemic and gut immune responses were investigated. RESULTS Orally administered R. gnavus significantly reduced AD-associated parameters (i.e., transepidermal water loss, clinical score, total serum immunoglobulin (Ig) E level, OVA-specific IgE level, and skin inflammation). R. gnavus treatment also resulted in significant downregulation of T helper 2-related cytokine mRNA and upregulation of interleukin (IL)-10 and Foxp3 in the skin. The population of CD4+ FOXP3+ T cells in mesenteric- and skin-draining lymph nodes and butyrate levels in the cecum increased in R. gnavus-administered AD mice. CONCLUSIONS Immune modulation by orally administered R. gnavus may alleviate AD symptoms through the enhancement of regulatory T-cell counts and short-chain fatty acids production in AD mice.
Collapse
Affiliation(s)
- Jae-Rin Ahn
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Byunghyun Kim
- Korea Basic Science Institute, Seoul Center, Seoul, Korea
| | - Myung Hee Nam
- Korea Basic Science Institute, Seoul Center, Seoul, Korea
| | - Yoon Kyung Ahn
- Korea Basic Science Institute, Western Seoul Center, Seoul, Korea
| | - Yoon Mee Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Seon-Mi Jeong
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jee Park
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Baek Song
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
46
|
Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants (Basel) 2021; 10:antiox10121930. [PMID: 34943033 PMCID: PMC8750034 DOI: 10.3390/antiox10121930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.
Collapse
|
47
|
Zhao Y, Qi C, Li X, Lu M, Zhang H, Zhou J, Dang H, Chen J, Li S, Sun J, Yu R, Li D. Prevention of Atopic Dermatitis in Mice by Lactobacillus Reuteri Fn041 Through Induction of Regulatory T Cells and Modulation of the Gut Microbiota. Mol Nutr Food Res 2021; 66:e2100699. [PMID: 34825773 DOI: 10.1002/mnfr.202100699] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/11/2021] [Indexed: 11/11/2022]
Abstract
SCOPE The development of atopic dermatitis (AD) in infants is closely related to the lagging development of intestinal microbiota, including that inoculated by breast milk bacteria, and immune development. Lactobacillus reuteri Fn041 is a secretory immunoglobulin A (sIgA) -coated bacterium derived from human milk. METHODS AND RESULTS We intervened with L. reuteri Fn041 in maternal and offspring BALB/C mice during late gestation and lactation and after weaning of the pups, respectively. AD was then induced with MC903. L. reuteri Fn041 significantly suppressed AD symptoms such as skin swelling, mast cell and eosinophil infiltration. This effect was attributed to the regulation of the systemic Th1 and Th2 cytokine ratios and the promotion of CD4+ CD25+ Foxp3+ regulatory T cell proliferation in mesenteric lymph nodes. It is also associated with the regulation of intestinal microbiota, particularly promoting Lactobacillus and Akkermansia. CONCLUSIONS Our study strengthens the understanding that breast milk-derived sIgA coated potential probiotics are involved in the development of infant intestinal microbiota, thus promoting immune development and preventing allergic diseases, and expanding the knowledge of breast milk sIgA and bacterial interactions on infant immune development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuning Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Xinyue Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Mengyao Lu
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Haowen Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Hongyang Dang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Jie Chen
- Department of Pediatric Cardiology Nephrology and Rheumatism, The Affiliated, Hospital of Qingdao University Medical College, Qingdao, 266003, China
| | - Shuangqi Li
- Guangzhou Fine Nutrition Research Center, Guangzhou, 510700, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
48
|
Zhu L, Wu Y, Lin C, Tang L, Yu B, Wan W, Xuan J, Du Y, Chen Z, Liang W. Dynamic Microbial Shifts and Signatures of Long-Term Remission in Allergic Rhinitis After an Herbal Formula Treatment. Front Immunol 2021; 12:774966. [PMID: 34745150 PMCID: PMC8569905 DOI: 10.3389/fimmu.2021.774966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
A mixed Chinese herbal formula, Xiao-Qing-Long-Decoction (XQLD), may contribute to sustained remission in allergic rhinitis (AR), but it is unknown which factors determine such long-term effect. Here, we aimed to identify bacterial signatures associated with sustained remission. To this end, samples from AR patients at four different times were analyzed to compare the dynamic bacterial community and structure shifts. Diversity indices Chao1 showed significant difference across different time (p<0.05), and the Kruskal-Wallis test identified that Dialister (OTU_31), Roseburia (OTU_36), Bacteroides (OTU_22), Bacteroides (OTU_2040), and Prevotella_9 (OTU_5) were the significant differential bacterial taxa (p<0.05). These distinctive genera were significantly associated with the change of AR clinical indices and the predicted functional pathways such as PPAR signaling pathway, peroxisome, and citrate cycle (TCA cycle) (p<0.05), indicating that they may be important bacterial signatures involving in the sustained remission in AR (p<0.05). Besides, lower Firmicutes/Bacteroidetes (F/B) ratio at 6 months follow-up may also contribute to the long-term remission of AR. No seriously adverse events and safety concerns were observed in this study. In conclusion, XQLD is a meaningful, long-term efficient and safe medication for AR treatment. The underlying mechanisms of sustained remission in AR after XQLD treatment may be associated with the dynamic alteration of featured gut bacteria taxa.
Collapse
Affiliation(s)
- Libing Zhu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, Xiamen University Hospital, Xiamen, China
| | - Yuning Wu
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Chenglong Lin
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Tang
- Department of Otorhinolaryngology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Bin Yu
- Department of Otorhinolaryngology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Wenrong Wan
- Internal Medicine Department of Traditional Chinese Medicine, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Jingxiu Xuan
- Laboratory of Rheumatology and Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yanling Du
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhangran Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liang
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
49
|
Darlenski R, Kozyrskyj AL, Fluhr JW, Caraballo L. Association between barrier impairment and skin microbiota in atopic dermatitis from a global perspective: Unmet needs and open questions. J Allergy Clin Immunol 2021; 148:1387-1393. [PMID: 34688495 DOI: 10.1016/j.jaci.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
Atopic diathesis encompassing atopic dermatitis (AD), allergic rhinoconjunctivitis, food allergy, eosinophilic esophagitis, and asthma is a widely prevalent condition with a broad heterogeneity in clinical course, age of onset, and lifespan persistence. A primary event in AD is the commonly inherited epidermal barrier dysfunction. Together with the host-microbiome interactions, barrier defect and allergen exposure modulate both innate and adaptive immunity, thus triggering and maintaining the inflammatory response. Microbiome diversity, together with the host's contact with nonpathogenic microbes in childhood, is a prerequisite for functional maturation of the immune system, which is in part mediated by microbiome-induced epigenetic changes. Yet, whether microbiome alterations are the result or the reason for barrier impairment and inflammatory response of the host is unclear. Exposure to locally prevalent microbial species could contribute to further modification of the disease course. The objective of this review is to reveal the link between changes in the skin microbiota, barrier dysfunction, and inflammation in AD. Addressing unmet needs includes determining the genetic background of AD susceptibility; the epigenetic modifications induced by the microbiota and other environmental factors; the role of globally diverse provoking factors; and the implementation of personalized, phenotype-specific therapies such as a epidermal barrier restoration in infancy and microbiota modulation via systemic or topical interventions, all of which open gaps for future research.
Collapse
Affiliation(s)
- Razvigor Darlenski
- Department of Dermatovenerology, ACC Tokuda Hospital, Sofia, Bulgaria; Department of Dermatovenerology, Trakia University, Stara Zagora, Bulgaria.
| | - Anita L Kozyrskyj
- Department of Pediatrics, Faculty of Medicine and Dentistry, Edmonton Clinic Health Academy, Edmonton, Alberta, Canada
| | - Joachim W Fluhr
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
50
|
Jin BY, Li Z, Xia YN, Li LX, Zhao ZX, Li XY, Li Y, Li B, Zhou RC, Fu SC, Li SY, Li YQ. Probiotic Interventions Alleviate Food Allergy Symptoms Correlated With Cesarean Section: A Murine Model. Front Immunol 2021; 12:741371. [PMID: 34650564 PMCID: PMC8505808 DOI: 10.3389/fimmu.2021.741371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Delivery by cesarean section (CS) is linked to an increased incidence of food allergies in children and affects early gut microbiota colonization. Furthermore, emerging evidence has connected disordered intestinal microbiota to food allergies. Here, we investigated the impact of CS on a rat model for food allergy to ovalbumin (OVA). Rats delivered by CS were found to be more responsive to OVA sensitization than vaginally born ones, displaying a greater reduction in rectal temperature upon challenge, worse diarrhea, and higher levels of OVA-specific antibodies and histamine. 16S rRNA sequencing of feces revealed reduced levels of Lactobacillus and Bifidobacterium in the CS rats. Preventative supplementation with a probiotic combination containing Lactobacillus and Bifidobacterium could protect CS rats against an allergic response to OVA, indicating that the microbiota dysbiosis contributes to CS-related response. Additionally, probiotic intervention early in life might help to rebuild aberrant Th2 responses and tight junction proteins, both of which have been linked to CS-related high allergic reactions. Taken together, this study shows that disordered intestinal microbiota plays an essential role in the pathogenesis of food allergy mediated by CS. More importantly, interventions that modulate the microbiota composition in early life are therapeutically relevant for CS-related food allergies.
Collapse
Affiliation(s)
- Bi-Ying Jin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Ya-Nan Xia
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Zi-Xiao Zhao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Yu Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Bing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Ru-Chen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Shi-Chen Fu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Shi-Yang Li
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|