1
|
Crestani G, Večeřová K, Cunningham N, Badmus UO, Urban O, Jansen MAK. Comprehensive Modulation of Secondary Metabolites in Terpenoid-Accumulating Mentha spicata L. via UV Radiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1746. [PMID: 38999586 PMCID: PMC11243551 DOI: 10.3390/plants13131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Kristýna Večeřová
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Uthman O. Badmus
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Marcel A. K. Jansen
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
3
|
Jan R, Kim N, Asaf S, Lubna, Asif S, Du XX, Kim EG, Jang YH, Kim KM. OsCM regulates rice defence system in response to UV light supplemented with drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:902-914. [PMID: 37641387 DOI: 10.1111/plb.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023]
Abstract
Studies on plant responses to combined abiotic stresses are very limited, especially in major crop plants. The current study evaluated the response of chorismate mutase overexpressor (OxCM) rice line to combined UV light and drought stress. The experiments were conducted in pots in a growth chamber, and data were assessed for gene expression, antioxidant and hormone regulation, flavonoid accumulation, phenotypic variation, and amino acid accumulation. Wild-type (WT) rice had reduced the growth and vigour, while transgenic rice maintained growth and vigour under combined UV light and drought stress. ROS and lipid peroxidation analysis revealed that chorismate mutase (OsCM) reduced oxidative stress mediated by ROS scavenging and reduced lipid peroxidation. The combined stresses reduced biosynthesis of total flavonoids, kaempferol and quercetin in WT plants, but increased significantly in plants with OxCM. Phytohormone analysis showed that SA was reduced by 50% in WT and 73% in transgenic plants, while ABA was reduced by 22% in WT plants but increased to 129% in transgenic plants. Expression of chorismate mutase regulates phenylalanine biosynthesis, UV light and drought stress-responsive genes, e.g., phenylalanine ammonia lyase (OsPAL), dehydrin (OsDHN), dehydration-responsive element-binding (OsDREB), ras-related protein 7 (OsRab7), ultraviolet-B resistance 8 (OsUVR8), WRKY transcription factor 89 (OsWRKY89) and tryptophan synthase alpha chain (OsTSA). Moreover, OsCM also increases accumulation of free amino acids (aspartic acid, glutamic acid, leucine, tyrosine, phenylalanine and proline) and sodium (Na), potassium (K), and calcium (Ca) ions in response to the combined stresses. Together, these results suggest that chorismate mutase expression induces physiological, biochemical and molecular changes that enhance rice tolerance to combined UV light and drought stresses.
Collapse
Affiliation(s)
- R Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| | - N Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - S Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - S Asif
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - X-X Du
- Biosafty Division, National Academy of Agriculture Science, Rural Development, Administration, Jeonju, South Korea
| | - E-G Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Y-H Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - K-M Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Induction, Proliferation, Regeneration and Kinsenoside and Flavonoid Content Analysis of the Anoectochilus roxburghii (Wall.) Lindl Protocorm-like Body. PLANTS 2022; 11:plants11192465. [PMID: 36235328 PMCID: PMC9570929 DOI: 10.3390/plants11192465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Anoectochilus roxburghii (Wall.) Lindl has been used in Chinese herbal medicine for treating various ailments. However, its wild resources are endangered, and artificial cultivation of the plant is limited by the low regeneration rate of conventional propagation methods. The lack of A. roxburghii resources is detrimental to the commercial production of the plant and kinsenoside, which is unique to Anoectochilus species. To develop highly efficient methods for A. roxburghii micropropagation and find alternative resources for kinsenoside production, we created an induction, proliferation, and regeneration of PLBs (IPR-PLB) protocol for A. roxburghii. We also analyzed the kinsenoside and flavonoid contents during the induction and proliferation of PLBs. The best media of IPR-PLB for PLB induction and proliferation (secondary PLB induction and proliferation), shoot formation, and rooting medium were Murashige and Skoog (MS) + 3 mg/L 6-benzylaminopurine (6-BA) + 0.5 mg/L naphthaleneacetic acid (NAA) + 0.8 mg/L zeatin (ZT) + 0.2 mg/L 2,4-dichlorophenoxyacetic acid (2, 4-D), MS + 3 mg/L 6-BA + 0.5 mg/L NAA, and MS + 0.5 mg/L NAA, respectively. On these optimized media, the PLB induction rate was 89 ± 2.08%, secondary PLB induction rate was 120 ± 5%, secondary PLB proliferation rate was 400 ± 10% and 350 ± 10 % in terms of the quantity and biomass at approximately 1 month, shoot induction rate was 10.5 shoots/PLB mass, and root induction rate was 98%. All plantlets survived after acclimation. Darkness or weak light were essential for PLB proliferation, and light was crucial for PLB differentiation on these optimized media. The kinsenoside contents of PLBs and secondary PLBs were 10.38 ± 0.08 and 12.30 ± 0.08 mg/g fresh weight (FW), respectively. Moreover, the peak kinsenoside content during the proliferation of secondary PLBs was 34.27 ± 0.79 mg/g FW, which was slightly lower than that of the whole plant (38.68 ± 3.12 mg/g FW). Two flavonoids exhibited tissue- or temporal-specific accumulation patterns, and astragalin accumulated exclusively during the first 2 weeks of cultivation. The IPR-PLB protocol for A. roxburghii may facilitate the efficient micropropagation of A. roxburghii plants. Furthermore, the PLBs are a good alternative resource for kinsenoside production.
Collapse
|
5
|
UVA and UVB Radiation as Innovative Tools to Biofortify Horticultural Crops with Nutraceuticals. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The consumption of fruits and vegetables is related to the prevention and treatment of chronic–degenerative diseases due to the presence of secondary metabolites with pharmaceutical activity. Most of these secondary metabolites, also known as nutraceuticals, are present in low concentrations in the plant tissue. Therefore, to improve the health benefits of horticultural crops, it is necessary to increase their nutraceutical content before reaching consumers. Applying ultraviolet radiation (UVR) to fruits and vegetables has been a simple and effective technology to biofortify plant tissue with secondary metabolites. This review article describes the physiological and molecular basis of stress response in plants. Likewise, current literature on the mechanisms and effects of UVA and UVB radiation on the accumulation of different bioactive phytochemicals are reviewed. The literature shows that UVR is an effective tool to biofortify horticultural crops to enhance their nutraceutical content.
Collapse
|
6
|
UV-B Radiation as Abiotic Elicitor to Enhance Phytochemicals and Development of Red Cabbage Sprouts. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: The main objective of this study was to evaluate the effect of periodical UV-B illumination during red cabbage germination on morphological development and the phenolics and carotenoid accumulation. Methods: During a sprouting period of 10 days at 20 °C in darkness, seedlings received 5, 10, or 15 kJ m−2 UV-B (T5, T10, and T15) applied in four steps (25% on days 3, 5, 7, and 10). UV untreated sprouts were used as control (CTRL). After 10 days of germination, the sprouts were harvested and stored 10 days at 4 °C as a minimally processed product. Phenolic and carotenoid compounds were analysed 1 h after each UV-B application and on days 0, 4, 7, and 10 during cold storage. Results: The longest hypocotyl length was observed in T10-treated sprouts. The total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant capacity (TAC) increased during germination following a sigmoidal kinetic, especially in the UV-B-treated samples, which reported a dose-dependent behaviour. In this way, T10-treated sprouts increased the TPC by 40% after 10 days at 4 °C compared to CTRL, while TAC and TFC increased by 35 and 30%, respectively. Carotenoids were enhanced with higher UV-B doses (T15). Conclusions: We found that UV-B stimulated the biosynthesis of bioactive compounds, and a dose of 10 kJ m−2 UV-B, proportionally applied on days 3, 5, 7, and 10 days, is recommended.
Collapse
|
7
|
Neugart S, Tobler MA, Barnes PW. Rapid adjustment in epidermal UV sunscreen: Comparison of optical measurement techniques and response to changing solar UV radiation conditions. PHYSIOLOGIA PLANTARUM 2021; 173:725-735. [PMID: 34375003 DOI: 10.1111/ppl.13517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The accumulation of soluble and cell-wall bound UV-absorbing compounds (i.e., flavonoids) in the epidermis and the mesophyll of leaves is a response of plants to UV exposure. These compounds are known to function in UV screening, but they are also of potential value for food quality. One way to non-destructively monitor UV screening in leaves is by optical methods, from which UVA-PAM and Dualex instruments stand out. The degree and rapidity to which plants can modulate UV screening in response to fluctuating solar UV conditions is poorly understood. In this study, okra plants were exposed to two solar radiation treatments (near-ambient UV [+UV] and attenuated UV [-UV]) and the epidermal UV transmittance (TUV ; UVA-PAM) and flavonoid index (Dualex) were measured in the youngest and second youngest mature leaves over three consecutive days and within an individual day. The day-to-day (measured near solar noon) and diurnal (over the course of a day) measurements of leaf optical properties indicated that TUV decreased and flavonoid index increased in the adaxial epidermis ~50% until 15:00 CDT then returned close to morning values later in the day. Correlations between UV-B radiation and TUV and flavonoid index revealed highest values 30 min to 1 h prior to the measurements. These findings indicate that plants can respond quickly to fluctuating solar UV conditions and underlines the importance of the harvest-time point for health-promoting compounds in fruit and vegetables. Our findings also indicate that the UVA-PAM and the Dualex instruments are both suitable instruments to monitor rapid changes in UV screening in plants.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Goettingen, Germany
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana
| |
Collapse
|
8
|
Holzbach B, Reuter V, Bacher M, Schinnerl J, Brecker L, Rosenau T, Valant-Vetschera K. Flavonoid diversification in different leaf compartments of Primula auricula (Primulaceae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wiesner-Reinhold M, Dutra Gomes JV, Herz C, Tran HTT, Baldermann S, Neugart S, Filler T, Glaab J, Einfeldt S, Schreiner M, Lamy E. Subsequent treatment of leafy vegetables with low doses of UVB-radiation does not provoke cytotoxicity, genotoxicity, or oxidative stress in a human liver cell model. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Hormonal Regulation in Different Varieties of Chenopodium quinoa Willd. Exposed to Short Acute UV-B Irradiation. PLANTS 2021; 10:plants10050858. [PMID: 33922810 PMCID: PMC8145599 DOI: 10.3390/plants10050858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023]
Abstract
Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m−2 d−1 may induce UV-B-specific signaling while 18.24 kJ m−2 d−1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa’s geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.
Collapse
|
11
|
Yoon HI, Kim HY, Kim J, Oh MM, Son JE. Quantitative Analysis of UV-B Radiation Interception in 3D Plant Structures and Intraindividual Distribution of Phenolic Contents. Int J Mol Sci 2021; 22:2701. [PMID: 33800078 PMCID: PMC7962183 DOI: 10.3390/ijms22052701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet-B (UV-B) acts as a regulatory stimulus, inducing the dose-dependent biosynthesis of phenolic compounds such as flavonoids at the leaf level. However, the heterogeneity of biosynthesis activation generated within a whole plant is not fully understood until now and cannot be interpreted without quantification of UV-B radiation interception. In this study, we analyzed the spatial UV-B radiation interception of kales (Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-tracing simulation with 3-dimension-scanned models and leaf optical properties. The UV-B-induced phenolic compounds and flavonoids accumulated more, with higher UV-B interception and younger leaves. To distinguish the effects of UV-B energy and leaf developmental age, the contents were regressed separately and simultaneously. The effect of intercepted UV-B on flavonoid content was 4.9-fold that of leaf age, but the effects on phenolic compound biosynthesis were similar. This study confirmed the feasibility and relevance of UV-B radiation interception analysis and paves the way to explore the physical and physiological base determining the intraindividual distribution of phenolic compound in controlled environments.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Hyun Young Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju 28644, Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul 08826, Korea; (H.I.Y.); (H.Y.K.); (J.K.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Neugart S, Bumke-Vogt C. Flavonoid Glycosides in Brassica Species Respond to UV-B Depending on Exposure Time and Adaptation Time. Molecules 2021; 26:molecules26020494. [PMID: 33477705 PMCID: PMC7831952 DOI: 10.3390/molecules26020494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse flavonoid glycosides. In this study, the effect of short-term UV-B radiation at the end of the production cycle was investigated without affecting plant growth. The aim was to verify which exposure and adaptation time was suitable and needs to be further investigated to use UV as a biotechnological tool in greenhouse production of Brassica species. It is possible to modify the flavonoid glycoside profile of leafy Brassica species by increasing compounds that appear to have potentially high antioxidant activity. Exemplarily, the present experiment shows that kaempferol glycosides may be preferred over quercetin glycosides in response to UV-B in Brassica rapa ssp. chinensis, for example, whereas other species appear to prefer quercetin glycosides over kaempferol glycosides, such as Brassica oleracea var. sabellica or Brassica carinata. However, the response to short-term UV-B treatment is species-specific and conclusions on exposure and adaptation time cannot be unified but must be drawn separately for each species.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany
- Correspondence: ; Tel.: +49-0551-39-27958
| | - Christiane Bumke-Vogt
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany;
| |
Collapse
|
13
|
Yoon HI, Kim HY, Kim J, Son JE. Quantitative Analysis of UV-B Radiation Interception and Bioactive Compound Contents in Kale by Leaf Position According to Growth Progress. FRONTIERS IN PLANT SCIENCE 2021; 12:667456. [PMID: 34305968 PMCID: PMC8297650 DOI: 10.3389/fpls.2021.667456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
UV-B (280-315 nm) radiation has been used as an effective tool to improve bioactive compound contents in controlled environments, such as plant factories. However, plant structure changes with growth progress induce different positional distributions of UV-B radiation interception, which cause difficulty in accurately evaluating the effects of UV-B on biosynthesis of bioactive compounds. The objective of this study was to quantitatively analyze the positional distributions of UV-B radiation interception and bioactive compound contents of kales (Brassica oleracea L. var. acephala) with growth progress and their relationships. Short-term moderate UV-B levels did not affect the plant growth and photosynthetic parameters. Spatial UV-B radiation interception was analyzed quantitatively by using 3D-scanned plant models and ray-tracing simulations. As growth progressed, the differences in absorbed UV-B energy between leaf positions were more pronounced. The concentrations of total phenolic compound (TPC) and total flavonoid compound (TFC) were higher with more cumulative absorbed UV-B energy. The cumulative UV energy yields for TFC were highest for the upper leaves of the older plants, while those for TPC were highest in the middle leaves of the younger plants. Despite the same UV-B levels, the UV-B radiation interception and UV-B susceptibility in the plants varied with leaf position and growth stage, which induced the different biosynthesis of TFC and TPC. This attempt to quantify the relationship between UV-B radiation interception and bioactive compound contents will contribute to the estimation and production of bioactive compounds in plant factories.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Hyun Young Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Jung Eek Son,
| |
Collapse
|
14
|
Kost MA, Perales H, Wijeratne S, Wijeratne AJ, Stockinger EJ, Mercer KL. Transcriptional differentiation of UV-B protectant genes in maize landraces spanning an elevational gradient in Chiapas, Mexico. Evol Appl 2020; 13:1949-1967. [PMID: 32908597 PMCID: PMC7463351 DOI: 10.1111/eva.12954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022] Open
Abstract
Globally, farmers cultivate and maintain crop landraces (i.e., traditional varieties). Landraces contain unique diversity shaped in part by natural and human-mediated selection and are an indispensable resource for farmers. Since environmental conditions change with elevation, crop landraces grown along elevational gradients have provided ideal locations to explore patterns of local adaptation. To further probe traits underlying this differentiation, transcriptome signatures can help provide a foundation for understanding the ways in which functional genetic diversity may be shaped by environment. In this study, we returned to an elevational gradient in Chiapas, Mexico, to assess transcriptional differentiation of genes underlying UV-B protection in locally adapted maize landraces from multiple elevations. We collected and planted landraces from three elevational zones (lowland, approximately 600 m; midland, approximately 1,550 m; highland approximately 2,100 m) in a common garden at 1,531 m. Using RNA-seq data derived from leaf tissue, we performed differential expression analysis between maize from these distinct elevations. Highland and lowland landraces displayed differential expression in phenylpropanoid and flavonoid biosynthesis genes involved in the production of UV-B protectants and did so at a rate greater than expected based on observed background transcriptional differentiation across the genome. These findings provide evidence for the differentiation of suites of genes involved in complex ecologically relevant pathways. Thus, while neutral evolutionary processes may have played a role in the observed patterns of differentiation, UV-B may have also acted as a selective pressure to differentiate maize landraces in the region. Studies of the distribution of functional crop genetic diversity across variable landscapes can aid us in understanding the response of diversity to abiotic/biotic change and, ultimately, may facilitate its conservation and utilization.
Collapse
Affiliation(s)
- Matthew A. Kost
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| | - Hugo Perales
- Departamento de Agricultura, Sociedad y AmbienteEl Colegio de la Frontera SurSan Cristóbal de Las CasasChiapasMexico
| | - Saranga Wijeratne
- Molecular and Cellular Imaging CenterOhio Agricultural Research and Development CenterThe Ohio State UniversityWoosterOHUSA
| | - Asela J. Wijeratne
- Molecular and Cellular Imaging CenterOhio Agricultural Research and Development CenterThe Ohio State UniversityWoosterOHUSA
- Department of Biological SciencesArkansas State UniversityJonesboroARUSA
| | - Eric J. Stockinger
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| | - Kristin L. Mercer
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
15
|
Yoon HI, Kim D, Son JE. Spatial and Temporal Bioactive Compound Contents and Chlorophyll Fluorescence of Kale (Brassica oleracea L.) Under UV-B Exposure Near Harvest Time in Controlled Environments. Photochem Photobiol 2020; 96:845-852. [PMID: 32104924 DOI: 10.1111/php.13237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023]
Abstract
UV-B irradiation has been used to enhance the secondary metabolite content in plants, but its spatial effect on plants has not been considered. The objective of this study was to compare spatial photosynthetic traits and bioactive compound accumulation in kale (Brassica oleracea L. var Acephala) according to the distribution and length of UV-B exposure near harvest. Plants were exposed to UV-B of 0-3, 3-6 and 6-9 W m-2 for 4 h per day at 5 days (Exp. 1) and 4.2 W m-2 at 5, 4, 3, 2 or 1 days (Exp. 2) before harvest. In spatial distribution, the higher the UV-B intensity, the lower the mean Fv /Fm (maximal photochemical efficiency of PSII) and the higher the concentration of total flavonoid compound (TFC). With UV-B stress, Fv /Fm and fluorescence transient parameters decreased except for DI0 /CS (dissipated energy flux per cross section) and PIabs (performance index of PSII). When exposed to UV-B radiation for 2 days before harvest, the total phenolic compounds and TFC per plant were highest, not always proportional to the local Fv /Fm but affected by dry weight. Short-term UV-B stress near harvest would be more efficient for the accumulation of bioactive compounds by minimizing the loss of plant weight.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Damin Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jung Eek Son
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Azarafshan M, Peyvandi M, Abbaspour H, Noormohammadi Z, Majd A. The effects of UV-B radiation on genetic and biochemical changes of Pelargonium graveolens L'Her. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:605-616. [PMID: 32205934 PMCID: PMC7078430 DOI: 10.1007/s12298-020-00758-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/08/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ultraviolet radiation induces biochemical and genetic changes in plants. The aim of this study was to investigate the effects of UV-B radiation on genetic stability, phenolic compounds and antioxidant activity of Pelargonium graveolens L'Her. Plant cuttings were exposed to 0, 0.12. 0.26 and 0.38 W/m2 of UV-B radiation. Results indicated that by increasing the UV-B radiation intensity, total phenols, flavonoids and anthocyanin contents, Phenylalanine ammonia lyase activity and antioxidant capacity were increased. Analysis of four flavonols (quercetin, myricetin, kaempferol and rutin) contents of leaves extract by HPLC indicated that these four flavonols were enhanced in all treated plants and also the ratio of quercetin to kaempferol (Q/K) showed a significant increase (P ≤ 0.05) in UV-B treated plants in compare to control. To evaluate the genetic variation in treated plants, 10 ISSR primers were used. The highest level of percentage of polymorphism (P%), Shannon index (I), number of effective allele (Ne) and Nei' genetic diversity (He), were observed at the highest UV-B radiation (0.38 W/m2). The AMOVA analysis also showed a significant genetic differentiation (P ≥ 0.001) among the studied groups, and confirmed the differentiation of groups obtained by the cluster analysis of molecular data. Overall, these results showed that biochemical changes in different intensities of UV-B were in line with genetic variations, so that the highest biochemical and genetic variations were observed in 0.38 W/m2 treatment.
Collapse
Affiliation(s)
- Marjan Azarafshan
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peyvandi
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Abbaspour
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Majd
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Llorent-Martínez E, Ortega-Vidal J, Ruiz-Riaguas A, Ortega-Barrales P, Fernández-de Córdova M. Comparative study of the phytochemical and mineral composition of fresh and cooked broccolini. Food Res Int 2020; 129:108798. [DOI: 10.1016/j.foodres.2019.108798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/14/2023]
|
18
|
Li W, Tan L, Zou Y, Tan X, Huang J, Chen W, Tang Q. The Effects of Ultraviolet A/B Treatments on Anthocyanin Accumulation and Gene Expression in Dark-Purple Tea Cultivar 'Ziyan' ( Camellia sinensis). Molecules 2020; 25:molecules25020354. [PMID: 31952238 PMCID: PMC7024295 DOI: 10.3390/molecules25020354] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
‘Ziyan’ is a novel anthocyanin-rich tea cultivar with dark purple young shoots. However, how its anthocyanin accumulation is affected by environmental factors, such as ultraviolet (UV), remains unclear. In this study, we observed that UV light treatments stimulated anthocyanin accumulation in ‘Ziyan’ leaves, and we further analyzed the underlying mechanisms at gene expression and enzyme activity levels. In addition, the catechins and chlorophyll contents of young shoots under different light treatments were also changed. The results showed that the contents of total anthocyanins and three major anthocyanin molecules, i.e., delphinidin, cyanidin, and pelargonidin, were significantly higher in leaves under UV-A, UV-B, and UV-AB treatments than those under white light treatment alone. However, the total catechins and chlorophyll contents in these purple tea plant leaves displayed the opposite trends. The anthocyanin content was the highest under UV-A treatment, which was higher by about 66% than control. Compared with the white light treatment alone, the enzyme activities of chalcone synthase (CHS), flavonoid 3′,5′-hydroxylase (F3′5′H), and anthocyanidin synthase (ANS) under UV treatments increased significantly, whereas the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities reduced. There was no significant difference in dihydroflavonol 4-reductase (DFR) activity under all treatments. Comparative transcriptome analyses unveiled that there were 565 differentially expressed genes (DEGs) of 29,648 genes in three pair-wise comparisons (white light versus UV-A, W vs. UV-A; white light versus UV-B, W vs. UV-A; white light versus UV-AB, W vs. UV-AB). The structural genes in anthocyanin pathway such as flavanone 3-hydroxylase (F3H), F3′5′H, DFR, and ANS, and regulatory gene TT8 were upregulated under UV-A treatment; F3′5′H, DFR, ANS, and UFGT and regulatory genes EGL1 and TT2 were upregulated under UV-AB treatment. However, most structural genes involved in phenylpropanoid and flavonoid pathways were downregulated under UV-B treatment compared with control. The expression of LAR and ANR were repressed in all UV treatments. Our results indicated that UV-A and UV-B radiations can induce anthocyanin accumulation in tea plant ‘Ziyan’ by upregulating the structural and regulatory genes involved in anthocyanin biosynthesis. In addition, UV radiation repressed the expression levels of LAR, ANR, and FLS, resulting in reduced ANR activity and a metabolic flux shift toward anthocyanin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Tang
- Correspondence: ; Tel.: +86-028-8629-1748
| |
Collapse
|
19
|
Neugart S, Majer P, Schreiner M, Hideg É. Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts. FRONTIERS IN PLANT SCIENCE 2020; 11:611247. [PMID: 33584754 PMCID: PMC7875886 DOI: 10.3389/fpls.2020.611247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B; 280-315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420-490 nm) or green (490-585 nm) light. Flavonoids act as antioxidants and shielding components in the plant's response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m-2 day-1 UV-BBE), which was followed with two subsequent (equals 2 days) doses of either blue (99 μmol m-2 s-1) or green (119 μmol m-2 s-1) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MSn. Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while-contrary to this-in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Göttingen, Germany
- *Correspondence: Susanne Neugart,
| | - Petra Majer
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.V., Grossbeeren, Germany
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| |
Collapse
|
20
|
Ortega-Hernández E, Nair V, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Wounding and UVB Light Synergistically Induce the Biosynthesis of Phenolic Compounds and Ascorbic Acid in Red Prickly Pears ( Opuntia ficus-indica cv. Rojo Vigor). Int J Mol Sci 2019; 20:ijms20215327. [PMID: 31731568 PMCID: PMC6862142 DOI: 10.3390/ijms20215327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated the effects of ultraviolet B (UVB) radiation and wounding stress, applied alone or combined, on the biosynthesis of phenolic compounds and ascorbic acid in the peel and pulp of red prickly pear (Opuntia ficus-indica cv. Rojo Vigor). Whole and wounded-fruit samples were treated with UVB radiation (6.4 W·m-2) for 0 and 15 min, and stored for 24 h at 16 °C. Phytochemical analyses were performed separately in the peel and pulp. The highest phenolic accumulation occurred after storage of the whole tissue treated with UVB, where the main phenolic compounds accumulated in the peel and pulp were quercetin, sinapic acid, kaempferol, rosmarinic acid, and sinapoyl malate, showing increases of 709.8%, 570.2%, 442.8%, 439.9%, and 186.2%, respectively, as compared with the control before storage. Phenylalanine ammonia-lyase (PAL) activity was increased after storage of the whole and wounded tissue treated with UVB light, and this increase in PAL activity was associated to phenolic accumulation. On the other hand, l-galactono-γ-lactone dehydrogenase (GalLDH) activity and ascorbic acid biosynthesis was enhanced due to UVB radiation, and the effect was increased when UVB was applied in the wounded tissue showing 125.1% and 94.1% higher vitamin C content after storage when compared with the control. Respiration rate was increased due to wounding stress, whereas ethylene production was increased by wounding and UVB radiation in prickly pears. Results allowed the generation of a physiological model explaining the UVB and wound-induced accumulation of phenolic compounds and ascorbic acid in prickly pears, where wounding facilitates UVB to access the underlying tissue and enhances an apparent synergistic response.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Colonia Tecnologico, Monterrey, NL 64849, Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; (V.N.); (L.C.-Z.)
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Colonia Nuevo Mexico, Zapopan 45138, Jal., Mexico;
- Correspondence: ; Tel.: +52-33-3669-3000 (ext. 2396)
| |
Collapse
|
21
|
Lee JH, Oh MM, Son KH. Short-Term Ultraviolet (UV)-A Light-Emitting Diode (LED) Radiation Improves Biomass and Bioactive Compounds of Kale. FRONTIERS IN PLANT SCIENCE 2019; 10:1042. [PMID: 31481968 PMCID: PMC6710713 DOI: 10.3389/fpls.2019.01042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine the influence of two types of UV-A LEDs on the growth and accumulation of phytochemicals in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were transferred to a growth chamber and cultivated for 3 weeks. The kale plants were subsequently subjected to two types of UV-A LEDs (370 and 385 nm) of 30 W/m2 for 5 days. Growth characteristics were all significantly increased in plants exposed to UV-A LEDs, especially at the 385 nm level, for which dry weight of shoots and roots were significantly increased by 2.22 and 2.5 times, respectively, at 5 days of treatment. Maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ratio) began to decrease after 3 h of treatment compared to the control. The total phenolic content of plants exposed to the two types of UV-A LEDs increased by 25% at 370 nm and 42% at 385 nm at 5 days of treatment, and antioxidant capacity also increased. The two types of UV-A LEDs also induced increasing contents of caffeic acid, ferulic acid, and kaempferol. The reactive oxygen species (ROS) temporarily increased in plants exposed to the two types of UV-A LEDs after 3 h of treatment. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) genes and PAL enzyme activity were higher in plants treated with UV-A LEDs. Our results suggested that short-term UV-A LEDs were effective in increasing growth and improving antioxidant phenolic compounds in kale, thereby representing a potentially effective strategy for enhancing the production of phytochemicals.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Ki-Ho Son
- Department of Horticultural Science, College of Life Science, Gyeongnam National University of Science and Technology, Jinju, South Korea
| |
Collapse
|
22
|
Neugart S, Tobler MA, Barnes PW. Different irradiances of UV and PAR in the same ratios alter the flavonoid profiles of Arabidopsis thaliana wild types and UV-signalling pathway mutants. Photochem Photobiol Sci 2019; 18:1685-1699. [PMID: 31166333 DOI: 10.1039/c8pp00496j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The UVR8 photoreceptor in Arabidopsis thaliana is specific for ultraviolet-B (UV-B; 280-315 nm) radiation and its activation leads to a number of UV-B acclimation responses, including the accumulation of flavonoids. UVR8 participates in a signaling cascade involving COP1 and HY5 so that the absence of any of these components results in a reduction in the ability of a plant to accumulate flavonoids in response to UV; Cop1 mutants show high dropouts and hy5-ks50 hyh double mutants show very low levels of flavonoids. The predominant phenolics in Arabidopsis thaliana are sinapic acid derivatives as well as non-aclyated quercetin and kaempferol di- and triglycosides containing glucose and rhamnose as glycosylated sugar moieties. How this flavonoid profile in Arabidopsis thaliana is affected by UV radiation, how rapidly these changes occur in changing UV conditions, and which components of the UV-B signalling pathway are involved in rapid UV acclimatization reactions is poorly understood. In the present study, we examined these questions by characterizing the flavonoid profiles of Arabidopsis thaliana signalling mutants and wild types grown under different UV levels of constant UV-B+PAR ratios and then transferring a subset of plants to alternate UV conditions. Results indicate that flavonoid accumulation in Arabidopsis thaliana is triggered by UV and this response is amplified by higher levels of UV but not by all compounds to the same extent. The catechol structure in quercetin seems to be less important than the glycosylation pattern, e.g. having 2 rhamnose moieties in determining responsivity. At low UV+PAR intensities the introduction of UV leads to an initial tendency of increase of flavonoids in the wild types that was detected after 3 days. It took 7 days for these changes to be detected in plants grown under high UV+PAR intensities suggesting a priming of PAR. Thus, the flavonoid profile in Arabidopsis thaliana is altered over time following exposure to UV and PAR, but the functional significance of these changes is currently unclear.
Collapse
Affiliation(s)
- Susanne Neugart
- Department of Biological Sciences, Loyola University New Orleans, 6363 St Charles Avenue, 70118 New Orleans, LA, USA.
| | - Mark A Tobler
- Department of Biological Sciences, Loyola University New Orleans, 6363 St Charles Avenue, 70118 New Orleans, LA, USA.
| | - Paul W Barnes
- Department of Biological Sciences, Loyola University New Orleans, 6363 St Charles Avenue, 70118 New Orleans, LA, USA.
| |
Collapse
|
23
|
UV-B Exposure of Black Carrot (Daucus carota ssp. sativus var. atrorubens) Plants Promotes Growth, Accumulation of Anthocyanin, and Phenolic Compounds. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9060323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Black carrot (Daucus carota L. ssp. sativus var. atroburens) is a root vegetable with anthocyanins as major phenolic compounds. The accumulation of phenolic compounds is a common response to UV-B exposure, acting as protective compounds and as antioxidants. In the present study, black carrot plants grown under a 12-h photoperiod were supplemented with UV-B radiation (21.6 kj m−2 day−1) during the last two weeks of growth. Carrot taproots and tops were harvested separately, and the effect of the UV-B irradiance was evaluated in terms of size (biomass and length), total monomeric anthocyanin content (TMC), total phenolic content (TPC), and phytohormones levels. The results showed that UV-B irradiance promoted plant growth, as shown by the elevated root (30%) and top (24%) biomass, the increased TMC and TPC in the root (over 10%), and the increased TPC of the top (9%). A hormone analysis revealed that, in response to UV-B irradiance, the levels of abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) decreased in tops while the level of the cytokinins cis-zeatin (cZ) and trans-zeatinriboside (tZR) increased in roots, which correlated with an amplified growth and the accumulation of anthocyanins and phenolic compounds. Beyond the practical implications that this work may have, it contributes to the understanding of UV-B responses in black carrot.
Collapse
|
24
|
Groenbaek M, Tybirk E, Neugart S, Sundekilde UK, Schreiner M, Kristensen HL. Flavonoid Glycosides and Hydroxycinnamic Acid Derivatives in Baby Leaf Rapeseed From White and Yellow Flowering Cultivars With Repeated Harvest in a 2-Years Field Study. FRONTIERS IN PLANT SCIENCE 2019; 10:355. [PMID: 31001295 PMCID: PMC6454053 DOI: 10.3389/fpls.2019.00355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 05/09/2023]
Abstract
Recently, new annual and biennial cultivars of rapeseed with white flowers have been introduced to the baby leaf market. The white flower trait has been bred into modern cultivars of yellow flowering rapeseed. In baby leaf production, it is common practice to perform several cuts of the same plants, thereby harvesting regrown material. Seven white and yellow flowering annual and biennial rapeseed cultivars were harvested as baby leaves, baby leaf re-growths, and intact plants in order to investigate the content of flavonoid glycosides and hydroxycinnamic acid derivatives. The field experiment was conducted over two consecutive years to obtain seasonal differences. The yields and levels of flavonoid glycosides and hydroxycinnamic acids were higher in 2016 than 2017, due to higher temperatures and radiation. Within the growing stage, the effects of flower color, cultivar, and life cycle on flavonoid glycosides and hydroxycinnamic acids varied; however, in general, life cycle was the main influence that resulted in elevated levels of flavonoid glycosides and hydroxycinnamic acids in biennial cultivars, compared to annual cultivars. The effects of the growing stage differed between years, and were influenced by climatic conditions. In conclusion, the choice of life cycle (annual or biennial cultivars) and seasonal effects was of major influence, overruling the effect of developmental stage on the content of flavonoid glycosides and hydroxycinnamic acids.
Collapse
Affiliation(s)
- Marie Groenbaek
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | | | - Susanne Neugart
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany
| | | | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany
| | | |
Collapse
|
25
|
The Effect of Environment and Nutrients on Hydroponic Lettuce Yield, Quality, and Phytonutrients. HORTICULTURAE 2018. [DOI: 10.3390/horticulturae4040048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A study was conducted with green and red-leaf lettuce cultivars grown in a deep-water culture production system. Plants were seeded in rockwool and germinated under greenhouse conditions at 25/20 °C (day/night) for 21 days before transplanting. The experimental design was a randomized complete block with a 2 × 3 factorial arrangement of cultivar and nutrient treatments that consisted of six replications. Treatments consisted of two lettuce genotypes, (1) green (Winter Density) and (2) red (Rhazes), and three nutrient treatments containing electroconductivity (EC) levels of (1) 1.0; (2) 2.0; and (3) 4.0 mS·cm−1. After 50 days, plants were harvested, processed, and analyzed to determine marketable yield, biomass, plant height, stem diameter, phenolics, and elemental nutrient concentrations. An interaction between growing season and lettuce cultivar was the predominant factor influencing yield, biomass, and quality. Nutrient solution EC treatment significantly affected biomass and water content. EC treatments significantly impacted concentrations of 3-O-glucoside and uptake of phosphorous, potassium, iron, boron, zinc, and molybdenum. Effects of growing season and cultivar on leafy lettuce yield and quality were more pronounced than the effect of nutrient solution EC treatment. Thus, greenhouse production of green and red-leaf lettuce cultivars in the south-eastern United States should be conducted in the spring and fall growing seasons with elevated nutrient solution EC of ≈4.0 mS·cm−1 to maximize yield and quality.
Collapse
|
26
|
Natural diversity of hydroxycinnamic acid derivatives, flavonoid glycosides, carotenoids and chlorophylls in leaves of six different amaranth species. Food Chem 2018; 267:376-386. [DOI: 10.1016/j.foodchem.2017.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/02/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022]
|
27
|
Jan S, Mir JI, Singh DB, Faktoo SZ, Sharma A, Alyemeni MN, Ahmad P. Effect of environmental variables on phytonutrients of Origanum vulgare L. in the sub-humid region of the northwestern Himalayas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:571. [PMID: 30187208 DOI: 10.1007/s10661-018-6951-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Ecological and soil physiochemical parameters impact the crop quality and development. In spite of the huge commercial prospective, the phytonutrient and chemometric profiles of Himalayan oregano (Origanum vulgare L.) have not been evaluated, and their relationships with ecological parameters are still lacking. The objective of this research study was to evaluate the disparity in the phytonutrient profiles of different ecotypes of O. vulgare in wild and cultivated populations and determine whether such variation was related to the diverse climatic and edaphic conditions prevailing in the northwestern Himalayas. Micrometeorological, atomic absorption spectroscopy for micro-elemental analysis was determined for soil. HPLC was used to determine the disparity in phytonutrient (quercetin, betacarotene, ascorbic acid, and catechin) and phytochemical (arbutin) levels. Cultivated populations had lower phytonutrient levels than wild populations. The habitat exhibiting pH values ranging from 6 to 7 elevated organic carbon (2.42%), nitrogen (97.41 kg ha-1), and manganese (10-12 μg g-1) and zinc contents (0.39-0.50%) show luxirant growth of Origanum vulgarel. The phytonutrient (quercetin, betacarotene, ascorbic acid, arbutin, and catechin) levels had a direct relationship with UV-B flux (r2 = 0.82) and potassium (r2 = 0.97). Wild accessions predominantly contained catechin and ascorbic acid, with maximum values of 163.8 and 46.88 μg g-1, respectively, while the cultivated accessions had the highest level of arbutin (53.42 μg g-1). Maximum variation was observed in quercetin (114.61%) followed by β-carotene (87.53%). Cultivated accessions had less quercetin (0.04-1.25 μg g-1) than wild accessions (1.25-2.87 μg g-1). Wild accessions had higher phytonutrient values for catechin, β-carotene, and ascorbic acid while cultivated accessions had maximum values for arbutin. The correlation of environmental variables with phytonutrient levels paves the way for metabolomic-guided enhancement of agricultural practices for better herb quality.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR-Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India.
| | - Javid Iqbal Mir
- ICAR-Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Desh Beer Singh
- ICAR-Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Shafia Zaffar Faktoo
- ICAR-Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Anil Sharma
- ICAR-Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Mohammad Nassar Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
28
|
Zhao X, Dai X, Gao L, Guo L, Zhuang J, Liu Y, Ma X, Wang R, Xia T, Wang Y. Functional Analysis of an Uridine Diphosphate Glycosyltransferase Involved in the Biosynthesis of Polyphenolic Glucoside in Tea Plants (Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10993-11001. [PMID: 29161813 DOI: 10.1021/acs.jafc.7b04969] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyphenols are one of the largest groups of compounds that confer benefits to the health of plants and humans. Flavonol glycosides are a major ingredient of polyphenols in Camellia sinensis. Flavonol-3-O-glycosides are characteristic astringent taste compounds in tea infusion. A polyphenolic glycosyltransferase (CsUGT72AM1) belonging to cluster IIIb was isolated from the tea plant. The full-length cDNA of CsUGT72AM1 is 1416 bp. It encodes 472 amino acids with a calculated molecular mass of 50.92 kDa and an isoelectric point of 5.21. The recombinant CsUGT72AM1 protein was expressed in Escherichia coli and exhibited catalytic activity toward multiple flavonoids and coniferyl aldehyde. The enzyme assay indicated that rCsUGT72AM1 could perform glycosidation of flavonols or coniferyl aldehyde in vitro to form 3-O-glucoside or 4-O-glucoside, respectively. Interestingly, this enzyme also had activities and performed multisite glycosidation toward flavanones. The consistent products were confirmed to be naringenin-7-O-glucoside and -4'-O-glucoside by the nuclear magnetism assay. In addition, in the enzyme assay with cyanidin as the substrate, the results suggested that the glycosylated activity of CsUGT72AM1 was remarkably inhibited by a high concentration of anthocyanins. The above results indicate that CsUGT72AM1 may be involved in the metabolism of flavonol, flavanone, anthocyanin, and lignin.
Collapse
Affiliation(s)
- Xuecheng Zhao
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Xinlong Dai
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Liping Gao
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Lina Guo
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Juhua Zhuang
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Yajun Liu
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Xiubing Ma
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Rui Wang
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Tao Xia
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Yunsheng Wang
- School of Life Science and ‡State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 West Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
29
|
Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids? PLoS One 2017; 12:e0188522. [PMID: 29190278 PMCID: PMC5708618 DOI: 10.1371/journal.pone.0188522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022] Open
Abstract
Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants.
Collapse
|
30
|
Castagna A, Csepregi K, Neugart S, Zipoli G, Večeřová K, Jakab G, Jug T, Llorens L, Martínez-Abaigar J, Martínez-Lüscher J, Núñez-Olivera E, Ranieri A, Schoedl-Hummel K, Schreiner M, Teszlák P, Tittmann S, Urban O, Verdaguer D, Jansen MAK, Hideg É. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient. PLANT, CELL & ENVIRONMENT 2017; 40:2790-2805. [PMID: 28792065 DOI: 10.1111/pce.13054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/30/2017] [Indexed: 05/08/2023]
Abstract
A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations.
Collapse
Affiliation(s)
- Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Kristóf Csepregi
- Department of Plant Biology, University of Pécs, Ifjúság u. 6, 7624, Pécs, Hungary
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | | | - Kristýna Večeřová
- Global Change Research Institute CAS, v.v.i, Bělidla 4a, 60300, Brno, Czech Republic
| | - Gábor Jakab
- Department of Plant Biology, University of Pécs, Ifjúság u. 6, 7624, Pécs, Hungary
- Research Institute of Viticulture and Oenology, University of Pécs, Pázmány Péter u. 4, 7624, Pécs, Hungary
| | - Tjaša Jug
- Agricultural and Forestry Institute of Nova Gorica, Pri hrastu 18, 5270, Nova Gorica, Slovenia
| | - Laura Llorens
- Department of Environmental Sciences, Faculty of Sciences, University of Girona, Av. Montilivi s/n, 17071, Girona, Spain
| | - Javier Martínez-Abaigar
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño, La Rioja, 26006, Spain
| | - Johann Martínez-Lüscher
- Department of Viticulture and Enology, University of California Davis Oakville Experiment Station, 1380 Oakville Grade Road, Oakville, CA, 94562, USA
| | - Encarnación Núñez-Olivera
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño, La Rioja, 26006, Spain
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Katharina Schoedl-Hummel
- Department of Crop Sciences, BOKU-University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Péter Teszlák
- Research Institute of Viticulture and Oenology, University of Pécs, Pázmány Péter u. 4, 7624, Pécs, Hungary
| | - Susanne Tittmann
- Institute for General and Organic Viticulture, Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Otmar Urban
- Global Change Research Institute CAS, v.v.i, Bělidla 4a, 60300, Brno, Czech Republic
| | - Dolors Verdaguer
- Department of Environmental Sciences, Faculty of Sciences, University of Girona, Av. Montilivi s/n, 17071, Girona, Spain
| | - Marcel A K Jansen
- School of Biological, Environmental and Earth Sciences, University College Cork, College Road, T23 TK30, Cork, Ireland
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Ifjúság u. 6, 7624, Pécs, Hungary
| |
Collapse
|
31
|
Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, Krystkowiak K, Gudyś K, Guzy-Wróbelska J, Krajewski P, Kachlicki P. Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:898-913. [PMID: 27880018 DOI: 10.1111/tpj.13430] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 05/21/2023]
Abstract
Determining the role of plant secondary metabolites in stress conditions is problematic due to the diversity of their structures and the complexity of their interdependence with different biological pathways. Correlation of metabolomic data with the genetic background provides essential information about the features of metabolites. LC-MS analysis of leaf metabolites from 100 barley recombinant inbred lines (RILs) revealed that 98 traits among 135 detected phenolic and terpenoid compounds significantly changed their level as a result of drought stress. Metabolites with similar patterns of change were grouped in modules, revealing differences among RILs and parental varieties at early and late stages of drought. The most significant changes in stress were observed for ferulic and sinapic acid derivatives as well as acylated glycosides of flavones. The tendency to accumulate methylated compounds was a major phenomenon in this set of samples. In addition, the polyamine derivatives hordatines as well as terpenoid blumenol C derivatives were observed to be drought related. The correlation of drought-related compounds with molecular marker polymorphisms resulted in the definition of metabolomic quantitative trait loci in the genomic regions of single-nucleotide polymorphism 3101-111 and simple sequence repeat Bmag0692 with multiple linkages to metabolites. The associations pointed to genes related to the defence response and response to cold, heat and oxidative stress, but not to genes related to biosynthesis of the compounds. We postulate that the significant metabolites have a role as antioxidants, regulators of gene expression and modulators of protein function in barley during drought.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
32
|
Mageney V, Neugart S, Albach DC. A Guide to the Variability of Flavonoids in Brassica oleracea. Molecules 2017; 22:molecules22020252. [PMID: 28208739 PMCID: PMC6155772 DOI: 10.3390/molecules22020252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 01/09/2023] Open
Abstract
Flavonoids represent a typical secondary metabolite class present in cruciferous vegetables. Their potential as natural antioxidants has raised considerable scientific interest. Impacts on the human body after food consumption as well as their effect as pharmaceutical supplements are therefore under investigation. Their numerous physiological functions make them a promising tool for breeding purposes. General methods for flavonoid analysis are well established, though new compounds are still being identified. However, differences in environmental circumstances of the studies and analytical methods impede comparability of quantification results. To promote future investigations on flavonoids in cruciferous plants we provide a checklist on best-practice in flavonoid research and specific flavonoid derivatives that are valuable targets for further research, choosing a representative species of scientific interest, Brassica oleracea.
Collapse
Affiliation(s)
- Vera Mageney
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg Carl von Ossietzky Str. 9-11, 26129 Oldenburg, Germany.
| | - Susanne Neugart
- Leibniz-Institute of Vegetables and Ornamental Crops Grossbeeren/Erfurt e. V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| | - Dirk C Albach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg Carl von Ossietzky Str. 9-11, 26129 Oldenburg, Germany.
| |
Collapse
|
33
|
Different Narrow-Band Light Ranges Alter Plant Secondary Metabolism and Plant Defense Response to Aphids. J Chem Ecol 2016; 42:989-1003. [PMID: 27589867 DOI: 10.1007/s10886-016-0755-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Light of different wavelengths affects various physiological processes in plants. Short-wavelength radiation (like UV) can activate defense pathways in plants and enhance the biosynthesis of secondary metabolites (such as flavonoids and glucosinolates) responsible for resistance against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. In this study, broccoli (Brassica oleracea var. italica) plants were grown for 4 weeks in a climate chamber under conventional fluorescent tubes and were additionally treated with UV-B (310 nm), UV-A (365 or 385 nm), or violet (420 nm) light generated with UV-B tubes or light-emitting diodes (LEDs). The objective was to determine the influence of narrow bandwidths of light (from UV-B to violet) on plant secondary metabolism and on the performance of the cabbage aphid Brevicoryne brassicae (a specialist) and the green peach aphid Myzus persicae (a generalist). Among flavonol glycosides, specific quercetin and kaempferol glycosides increased markedly under UV-B, while among glucosinolates only 4-methoxy-3-indolylmethyl showed a 2-fold increase in plants exposed to UV-B and UV-A. The concentration of 3-indolylmethyl glucosinolate in broccoli plants increased with UV-B treatment. Brevicoryne brassicae adult weights and fecundity were lower on UV-B treated plants compared to UV-A or violet light-treated plants. Adult weights and fecundity of M. persicae were increased under UV-B and UV-A treatments. When specific light wavelengths are used to induce metabolic changes in plants, the specificity of the induced effects on herbivores should be considered.
Collapse
|
34
|
Ben-Yakir D, Fereres A. The effects of UV radiation on arthropods: a review of recent publications (2010-2015). ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1134.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Wang QW, Kamiyama C, Hidema J, Hikosaka K. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands. Oecologia 2016; 181:1069-82. [PMID: 27139425 DOI: 10.1007/s00442-016-3644-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/20/2016] [Indexed: 01/19/2023]
Abstract
High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.
Collapse
Affiliation(s)
- Qing-Wei Wang
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
| | - Chiho Kamiyama
- Institute for the Advanced Study of Sustainability, United Nations University, Shibuya, Tokyo, 150-8925, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.,CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
36
|
Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica). Food Chem 2016; 197:530-8. [DOI: 10.1016/j.foodchem.2015.10.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/17/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022]
|
37
|
Barnes PW, Tobler MA, Keefover-Ring K, Flint SD, Barkley AE, Ryel RJ, Lindroth RL. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids. PLANT, CELL & ENVIRONMENT 2016; 39:222-30. [PMID: 26177782 DOI: 10.1111/pce.12609] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 05/20/2023]
Abstract
The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, 70118, USA
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, 70118, USA
| | - Ken Keefover-Ring
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Stephan D Flint
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Anne E Barkley
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, 70118, USA
| | - Ronald J Ryel
- Department of Wildland Resources, Utah State University, Logan, UT, 84322, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
38
|
Neugart S, Krumbein A, Zrenner R. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica). FRONTIERS IN PLANT SCIENCE 2016; 7:326. [PMID: 27066016 PMCID: PMC4812050 DOI: 10.3389/fpls.2016.00326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/03/2016] [Indexed: 05/05/2023]
Abstract
Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.
Collapse
|
39
|
Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’). Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.02.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
41
|
Müller V, Lankes C, Albert A, Winkler JB, Zimmermann BF, Noga G, Hunsche M. Concentration of hinokinin, phenolic acids and flavonols in leaves and stems of Hydrocotyle leucocephala is differently influenced by PAR and ecologically relevant UV-B level. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:105-115. [PMID: 25462084 DOI: 10.1016/j.jplph.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 06/04/2023]
Abstract
We examined the effects of ambient, non-stressing ultraviolet (UV)-B (280-315nm) level combined with different intensities of photosynthetic active radiation (PAR, 400-700nm) on the accumulation of the lignan (-)-hinokinin, in leaves and stems of Hydrocotyle leucocephala. Plants were exposed in sun simulators under almost natural irradiance and climatic conditions to one of four light regimes, i.e. two PAR intensities (906 and 516μmolm(-2)s(-1)) including or excluding UV-B radiation (0 and 0.4Wm(-2)). Besides hinokinin, we identified three chlorogenic acid isomers, one other phenolic acid, 12 quercetin, and five kaempferol derivatives in the H. leucocephala extracts. Hinokinin was most abundant in the stems, and its accumulation was slightly enhanced under UV-B exposure. We therefore assume that hinokinin contributes to cell wall stabilization and consequently to a higher resistance of the plant to environmental factors. Quercetin derivatives increasingly accumulated under UV-B and high PAR exposure at the expense of kaempferols and chlorogenic acids, which was apparently related to its ability to scavenge reactive oxygen species. In general, the concentration of the constituents depended on the plant organ, the leaf age, the light regimes, and the duration of exposure. The distribution pattern of the compounds within the examined organs was not influenced by the treatments. Based on the chemical composition of the extracts a principal component analysis (PCA) enabled a clear separation of the plant organs and harvesting dates. Younger leaves mostly contained higher phenylpropanoid concentrations than older leaves. Nevertheless, more pronounced effects of the light regimes were detected in older leaves. As assessed, in many cases the individual compounds responded differently to the PAR/UV-B combinations, even within the same phenylpropanoid class. Since this is the first report on the influence of light conditions on the accumulation of lignans in herbaceous plants, it opens many perspectives for a more precise elucidation of all involved biochemical and molecular processes.
Collapse
Affiliation(s)
- Viola Müller
- Institute of Crop Science and Resource Conservation - Horticultural Science, University of Bonn, Auf dem Hügel 6, D-53121 Bonn, Germany
| | - Christa Lankes
- Institute of Crop Science and Resource Conservation - Horticultural Science, University of Bonn, Auf dem Hügel 6, D-53121 Bonn, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Benno F Zimmermann
- Institute of Nutrition and Food Sciences, University of Bonn, Römerstraße 164, D-53117 Bonn, Germany; Institut Prof. Dr. Georg Kurz GmbH, Eupener Str. 161, D-50933 Köln, Germany
| | - Georg Noga
- Institute of Crop Science and Resource Conservation - Horticultural Science, University of Bonn, Auf dem Hügel 6, D-53121 Bonn, Germany
| | - Mauricio Hunsche
- Institute of Crop Science and Resource Conservation - Horticultural Science, University of Bonn, Auf dem Hügel 6, D-53121 Bonn, Germany.
| |
Collapse
|
42
|
Groenbaek M, Jensen S, Neugart S, Schreiner M, Kidmose U, Kristensen HL. Influence of cultivar and fertilizer approach on curly kale (Brassica oleracea L. var. sabellica). 1. Genetic diversity reflected in agronomic characteristics and phytochemical concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11393-402. [PMID: 25335817 DOI: 10.1021/jf503096p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The objectives were to investigate if genetic diversity among field-grown traditional and F1 hybrid kale cultivars was reflected in different agronomic characteristics and consequently glucosinolate (GLS) and flavonoid glycoside concentration. This study evaluated how nitrogen and sulfur supply and biomass allocation modified phytochemicals in two experiments with combinations of three cultivars and four N and two S application levels. Results showed less growth, and higher N concentration in the traditional cultivar 'Tiara' was associated with increased indole and total GLSs compared to traditional 'Høj Amager Toftø' and F1 hybrid 'Reflex' cultivars, which exhibited higher yield, lower N concentration, and different biomass allocation. S application increased total GLS concentration, whereas aliphatic GLS percentage decreased when N application increased. Decrease of six 'Reflex' GLSs besides quercetin glycosides and total flavonoid glycosides with increased N indicated higher N responsiveness for 'Reflex'. In conclusion, differences in agronomic characteristics were reflected in diverse phytochemical composition.
Collapse
Affiliation(s)
- Marie Groenbaek
- Department of Food Science, Faculty of Science and Technology, Aarhus University , Kirstinebjergvej 10, Aarslev DK-5792, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Hectors K, Van Oevelen S, Geuns J, Guisez Y, Jansen MAK, Prinsen E. Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2014; 152:219-30. [PMID: 24517099 DOI: 10.1111/ppl.12168] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 01/14/2014] [Indexed: 05/02/2023]
Abstract
Plants respond to environmental stress by synthesizing a range of secondary metabolites for defense purposes. Here we report on the effect of chronic ultraviolet (UV) radiation on the accumulation of plant secondary metabolites in Arabidopsis thaliana leaves. In the natural environment, UV is a highly dynamic environmental parameter and therefore we hypothesized that plants are continuously readjusting levels of secondary metabolites. Our data show distinct kinetic profiles for accumulation of tocopherols, polyamines and flavonoids upon UV acclimation. The lipid-soluble antioxidant α-tocopherol accumulated fast and remained elevated. Polyamines accumulated fast and transiently. This fast response implies a role for α-tocopherol and polyamines in short-term UV response. In contrast, an additional sustained accumulation of flavonols took place. The distinct accumulation patterns of these secondary metabolites confirm that the UV acclimation process is a dynamic process, and indicates that commonly used single time-point analyses do not reveal the full extent of UV acclimation. We demonstrate that UV stimulates the accumulation of specific flavonol glycosides, i.e. kaempferol and (to a lesser extent) quercetin di- and triglycosides, all specifically rhamnosylated at position seven. All metabolites were identified by Ultra Performance Liquid Chromatography (UPLC)-coupled tandem mass spectrometry. Some of these flavonol glycosides reached steady-state levels in 3-4 days, while concentrations of others are still increasing after 12 days of UV exposure. A biochemical pathway for these glycosides is postulated involving 7-O-rhamnosylation for the synthesis of all eight metabolites identified. We postulate that this 7-O-rhamnosylation has an important function in UV acclimation.
Collapse
Affiliation(s)
- Kathleen Hectors
- Laboratory of Molecular Plant Physiology & Biotechnology, Department of Biology, University of Antwerp, Antwerpen, Belgium; Laboratory of Plant Growth & Development, Department of Biology, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Neugart S, Fiol M, Schreiner M, Rohn S, Zrenner R, Kroh LW, Krumbein A. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4054-62. [PMID: 24655223 DOI: 10.1021/jf4054066] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered.
Collapse
Affiliation(s)
- Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V. , Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Neugart S, Fiol M, Schreiner M, Rohn S, Zrenner R, Kroh LW, Krumbein A. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:161-8. [PMID: 23647885 DOI: 10.1016/j.plaphy.2013.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/04/2013] [Indexed: 05/22/2023]
Abstract
Kale (Brassica oleracea var. sabellica) contains a large number of naturally occurring structurally different non-acylated and acylated flavonol glycosides as well as hydroxycinnamic acid derivatives. The objective of this study was to determine the effect of low and moderate photosynthetic active radiation (PAR) and how these levels interact with low temperature in these phenolic compounds. Juvenile kale plants were treated with PAR levels from 200 to 800 μmol m(-2) s(-1) at 5 and 10 °C under defined conditions in climate chambers. Of the investigated 20 compounds, 11 and 17 compounds were influenced by PAR and temperature, respectively. In addition, an interaction between PAR and temperature was found for eight compounds. The response of the phenolic compounds to PAR was structure-dependent. While quercetin triglycosides increased with higher PAR at 5 and 10 °C, the kaempferol triglycosides exhibited the highest concentrations at 400 μmol m(-2) s(-1). In contrast, kaempferol diglycosides exhibited the highest concentrations at increased PAR levels of 600 and 800 μmol m(-2) s(-1) at 10 °C. However, key genes of flavonol biosynthesis were influenced by temperature but remained unaffected by PAR. Furthermore, there was no interaction between the PAR level and the low temperature in the response of hydroxycinnamic acid derivatives in kale with the exception of caffeoylquinic acid, which decreased with higher PAR levels of 600 and 800 μmol m(-2) s(-1) and at a lower temperature. In conclusion, PAR and its interaction with temperature could be a suitable tool for modifying the profile of phenolic compounds.
Collapse
Affiliation(s)
- Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Becker C, Kläring HP, Kroh LW, Krumbein A. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:154-60. [PMID: 23735845 DOI: 10.1016/j.plaphy.2013.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/09/2013] [Indexed: 05/03/2023]
Abstract
Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 μmol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates.
Collapse
Affiliation(s)
- Christine Becker
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| | | | | | | |
Collapse
|
47
|
Bernal M, Llorens L, Julkunen-Tiitto R, Badosa J, Verdaguer D. Altitudinal and seasonal changes of phenolic compounds in Buxus sempervirens leaves and cuticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:471-82. [PMID: 23845826 DOI: 10.1016/j.plaphy.2013.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/17/2013] [Indexed: 05/02/2023]
Abstract
The variation in the leaf content of phenolic compounds has been related to the UV-B changes of the environment in which plants grow. In this context, we aimed to investigate: a) whether the seasonal and altitudinal changes in the content of phenolic compounds of Buxus sempervirens L. leaves and cuticles could be related to the natural fluctuations in UV-B levels and b) the possible use of specific phenolic compounds as biomarkers of ambient UV-B levels. To achieve these goals we sampled, every three months during one year, leaves of B. sempervirens along an altitudinal gradient. At the lowest and the highest altitudes, we also conducted a UV-exclusion experiment to discern whether the observed changes could be attributed to the natural variation in UV-B. Results show that total phenolic content of leaves was lower in June than in the other sampling dates, which suggests a leaf ontogenic rather than a UV-B effect on the leaf content of these compounds. Regarding the elevational gradient, the overall amount of phenolic acids and neolignan of entire leaves increased with altitude while the total amount of flavonoids in leaf cuticles decreased. However, the lack of a significant effect of our UV-exclusion treatment on the content of these compounds suggests that the observed variations along the altitudinal gradient would respond to other factors rather than to UV-B. Concomitantly, we did not find any phenolic compound in leaves or cuticles of B. sempervirens that could be considered as a biomarker of ambient UV-B levels.
Collapse
Affiliation(s)
- M Bernal
- Environmental Sciences Department, Faculty of Sciences, University of Girona, C/Mª Aurèlia Capmany 69, 17071 Girona, Spain.
| | | | | | | | | |
Collapse
|
48
|
McCarthy AL, O'Callaghan YC, Neugart S, Piggott CO, Connolly A, Jansen MAK, Krumbein A, Schreiner M, FitzGerald RJ, O'Brien NM. The hydroxycinnamic acid content of barley and brewers' spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chem 2013; 141:2567-74. [PMID: 23870996 DOI: 10.1016/j.foodchem.2013.05.048] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/14/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022]
Abstract
The hydroxycinnamic acid (HA) content of starting barley for brewers' spent grains (BSG), whole BSG and phenolic extracts from BSG was measured using high performance liquid chromatography (HPLC) and correlated with antioxidant potential. The effect of BSG phenolic extracts on antioxidant activity of fruit beverages was also assessed (using the total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays). The concentration of HA present in barley extract and BSG was in the order of ferulic acid (FA), p-coumaric acid (p-CA) derivatives, FA derivatives, p-CA, caffeic acid (CA) and CA derivatives. Results suggested that brewing and roasting decreased the HA content. Antioxidant activity was significantly (P<0.05) correlated with caffeic acid (R(2)=0.8309) and total HA (R(2)=0.3942) concentrations. Addition of extracts to fruit beverages resulted in a significant (P<0.05) increase in antioxidant activity of cranberry juice, measured by the FRAP assay. In vitro digestion significantly (P<0.05) reduced TPC, DPPH and FRAP activity of the fruit beverages.
Collapse
Affiliation(s)
- Aoife L McCarthy
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jansen MAK, Bornman JF. UV-B radiation: from generic stressor to specific regulator. PHYSIOLOGIA PLANTARUM 2012; 145:501-4. [PMID: 22646504 DOI: 10.1111/j.1399-3054.2012.01656.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | | |
Collapse
|