1
|
He S, Li G, Zhang J, Ding Y, Wu H, Xie J, Wu H, Yang Z. The effect of environmental factors on the genetic differentiation of Cucurbita ficifolia populations based on whole-genome resequencing. BMC PLANT BIOLOGY 2023; 23:647. [PMID: 38102604 PMCID: PMC10722772 DOI: 10.1186/s12870-023-04602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Cucurbita ficifolia is one of the squash species most resistant to fungal pathogens, and has especially high resistance to melon Fusarium wilt. This species is therefore an important germplasm resource for the breeding of squash and melon cultivars. RESULTS Whole-genome resequencing of 223 individuals from 32 populations in Yunnan Province, the main cucurbit production area in China, was performed and 3,855,120 single-nucleotide polymorphisms (SNPs) and 1,361,000 InDels were obtained. SNP analysis suggested that levels of genetic diversity in C. ficifolia were high, but that different populations showed no significant genetic differentiation or geographical structure, and that individual C. ficifolia plants with fruit rinds of a similar color did not form independent clusters. A Mantel test conducted in combination with geographical distance and environmental factors suggested that genetic distance was not correlated with geographical distance, but had a significant correlation with environmental distance. Further associations between the genetic data and five environmental factors were analyzed using whole-genome association analysis. SNPs associated with each environmental factor were investigated and genes 250 kb upstream and downstream from associated SNPs were annotated. Overall, 15 marker-trait-associated SNPs (MTAs) and 293 genes under environmental selection were identified. The identified genes were involved in cell membrane lipid metabolism, macromolecular complexes, catalytic activity and other related aspects. Ecological niche modeling was used to simulate the distribution of C. ficifolia across time, from the present and into the future. We found that the area suitable for C. ficifolia changed with the changing climate in different periods. CONCLUSIONS Resequencing of the C. ficifolia accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs identified in this study suggest that environmental factors mediated the formation of the population structure of C. ficifolia in China. These SNPs and Indels might also contribute to the variation in important pathways of genes for important agronomic traits such as yield, disease resistance and stress tolerance. Moreover, the genome resequencing data and the genetic markers identified from 223 accessions provide insight into the genetic variation of the C. ficifolia germplasm and will facilitate a broad range of genetic studies.
Collapse
Affiliation(s)
- Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Gengyun Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yumei Ding
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hongzhi Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junjun Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hang Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Semchenko M, Xue P, Leigh T. Functional diversity and identity of plant genotypes regulate rhizodeposition and soil microbial activity. THE NEW PHYTOLOGIST 2021; 232:776-787. [PMID: 34235741 DOI: 10.1111/nph.17604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Our understanding of the linkages between plant diversity and soil carbon and nutrient cycling is primarily derived from studies at the species level, while the importance and mechanisms of diversity effects at the genotype level are poorly understood. Here we examine how genotypic diversity and identity, and associated variation in functional traits, within a common grass species, Anthoxanthum odoratum, modified rhizodeposition, soil microbial activity and litter decomposition. Root litter quality was not significantly affected by plant genotypic diversity, but decomposition was enhanced in soils with the legacy of higher genotypic diversity. Plant genotypic diversity and identity modified rhizodeposition and associated microbial activity via two independent pathways. Plant genotypic diversity enhanced soil functioning via positive effects on variation in specific leaf area and total rhizodeposition. Genotype identity affected both rhizodeposit quantity and quality, and these effects were mediated by differences in mean specific leaf area, shoot mass and plant height. Rhizodeposition was more strongly predicted by aboveground than belowground traits, suggesting strong linkages between photosynthesis and root exudation. Our study demonstrates that functional diversity and identity of plant genotypes modulates belowground carbon supply and quality, representing an important but overlooked pathway by which biodiversity affects ecosystem functioning.
Collapse
Affiliation(s)
- Marina Semchenko
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Piao Xue
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8902, Japan
| | - Tomas Leigh
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
3
|
Bunmee K, Thaenkham U, Saralamba N, Ponlawat A, Zhong D, Cui L, Sattabongkot J, Sriwichai P. Population genetic structure of the malaria vector Anopheles minimus in Thailand based on mitochondrial DNA markers. Parasit Vectors 2021; 14:496. [PMID: 34565456 PMCID: PMC8474755 DOI: 10.1186/s13071-021-04998-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The malaria vector Anopheles minimus has been influenced by external stresses affecting the survival rate and vectorial capacity of the population. Since An. minimus habitats have continuously undergone ecological changes, this study aimed to determine the population genetic structure and the potential gene flow among the An. minimus populations in Thailand. METHODS Anopheles minimus was collected from five malaria transmission areas in Thailand using Centers for Disease Control and Prevention (CDC) light traps. Seventy-nine females from those populations were used as representative samples. The partial mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit II (COII) and cytochrome b (Cytb) gene sequences were amplified and analyzed to identify species and determine the current population genetic structure. For the past population, we determined the population genetic structure from the 60 deposited COII sequences in GenBank of An. minimus collected from Thailand 20 years ago. RESULTS The current populations of An. minimus were genetically divided into two lineages, A and B. Lineage A has high haplotype diversity under gene flow similar to the population in the past. Neutrality tests suggested population expansion of An. minimus, with the detection of abundant rare mutations in all populations, which tend to arise from negative selection. CONCLUSIONS This study revealed that the population genetic structure of An. minimus lineage A was similar between the past and present populations, indicating high adaptability of the species. There was substantial gene flow between the eastern and western An. minimus populations without detection of significant gene flow barriers.
Collapse
Affiliation(s)
- Kamonchanok Bunmee
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Alongkot Ponlawat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| | - Liwang Cui
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Barria AM, Zamorano D, Parada A, Labra FA, Estay SA, Bacigalupe LD. The Importance of Intraspecific Variation for Niche Differentiation and Species Distribution Models: The Ecologically Diverse Frog Pleurodema thaul as Study Case. Evol Biol 2020. [DOI: 10.1007/s11692-020-09510-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Ergon Å, Skøt L, Sæther VE, Rognli OA. Allele Frequency Changes Provide Evidence for Selection and Identification of Candidate Loci for Survival in Red Clover ( Trifolium pratense L.). FRONTIERS IN PLANT SCIENCE 2019; 10:718. [PMID: 31244867 PMCID: PMC6580991 DOI: 10.3389/fpls.2019.00718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/15/2019] [Indexed: 06/01/2023]
Abstract
Survivor populations of red clover (Trifolium pratense L.) from plots in a field experiment in southern Norway were genetically characterized using genotyping by sequencing, and compared with the original population and each other. Genetic differentiation between populations was characterized on the basis of allele frequencies of single nucleotide polymorphisms (SNPs), using principal component analysis. SNPs that had been under selection, i.e., SNPs with significantly different allele frequencies in survivor populations relative to the original population, or between survivor populations that had received different treatments, were identified by analysis of F ST values, using BayeScan and a simple and stringent F ST-based test utilizing replicate populations from the field experiment. In addition, we tested the possibility of pooling DNA samples prior to sequencing, and pooling leaf samples prior to DNA extraction and sequencing, followed by allele frequency estimation on the basis of number of variant reads. Overall, survivor populations were more different from each other than from the original population, indicating random changes in allele frequency, selection in response to local variation in conditions between plots in the field experiment, or sampling error. However, some differentiation was observed between plots sown as pure stands or species mixtures, plots sown at different densities, and plots subjected to different harvesting regimes. Allele frequencies could be accurately estimated from pooled DNA, and SNPs under selection could be identified when leaf samples were pooled prior to DNA extraction. However, substantial sampling error required replicate populations and/or a high number of sampled individuals. We identified a number of chromosomal loci that had been under selection in pure stand plots relative to the original sown population, and loci that had been under differential selection in pure stands of red clover vs. red clover grown in species mixtures. These are all candidate loci for establishment success or persistence in red clover.
Collapse
Affiliation(s)
- Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Leif Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Vegard Eriksen Sæther
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Yang M, Xu C, Duchesne P, Ma Q, Yin G, Fang Y, Lu F, Zhang W. Landscape genetic structure of Scirpus mariqueter reveals a putatively adaptive differentiation under strong gene flow in estuaries. Ecol Evol 2019; 9:3059-3074. [PMID: 30962881 PMCID: PMC6434575 DOI: 10.1002/ece3.4793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Estuarine organisms grow in highly heterogeneous habitats, and their genetic differentiation is driven by selective and neutral processes as well as population colonization history. However, the relative importance of the processes that underlie genetic structure is still puzzling. Scirpus mariqueter is a perennial grass almost limited in the Changjiang River estuary and its adjacent Qiantang River estuary. Here, using amplified fragment length polymorphism (AFLP), a moderate-high level of genetic differentiation among populations (range F ST: 0.0310-0.3325) was showed despite large ongoing dispersal. FLOCK assigned all individuals to 13 clusters and revealed a complex genetic structure. Some genetic clusters were limited in peripheries compared with very mixing constitution in center populations, suggesting local adaptation was more likely to occur in peripheral populations. 21 candidate outliers under positive selection were detected, and further, the differentiation patterns correlated with geographic distance, salinity difference, and colonization history were analyzed with or without the outliers. Combined results of AMOVA and IBD based on different dataset, it was found that the effects of geographic distance and population colonization history on isolation seemed to be promoted by divergent selection. However, none-liner IBE pattern indicates the effects of salinity were overwhelmed by spatial distance or other ecological processes in certain areas and also suggests that salinity was not the only selective factor driving population differentiation. These results together indicate that geographic distance, salinity difference, and colonization history co-contributed in shaping the genetic structure of S. mariqueter and that their relative importance was correlated with spatial scale and environment gradient.
Collapse
Affiliation(s)
- Mei Yang
- College of AgricultureYangtze UniversityJingzhouChina
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Coastal Ecosystems Research Station of the Yangtze River EstuaryFudan UniversityShanghaiChina
| | - Chengyuan Xu
- School of Health, Medical and Applied SciencesCentral Queensland UniversityBundabergQueenslandAustralia
| | | | - Qiang Ma
- Shanghai Chongming Dongtan National Nature ReserveShanghaiChina
| | - Ganqiang Yin
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Coastal Ecosystems Research Station of the Yangtze River EstuaryFudan UniversityShanghaiChina
| | - Yang Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Coastal Ecosystems Research Station of the Yangtze River EstuaryFudan UniversityShanghaiChina
| | - Fan Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Coastal Ecosystems Research Station of the Yangtze River EstuaryFudan UniversityShanghaiChina
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Coastal Ecosystems Research Station of the Yangtze River EstuaryFudan UniversityShanghaiChina
| |
Collapse
|
7
|
de Fraga R, Lima AP, Magnusson WE, Ferrão M, Stow AJ. Contrasting Patterns of Gene Flow for Amazonian Snakes That Actively Forage and Those That Wait in Ambush. J Hered 2017; 108:524-534. [DOI: 10.1093/jhered/esx051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/18/2017] [Indexed: 02/05/2023] Open
|
8
|
Ward D, Kirkman K, Tsvuura Z. An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PLoS One 2017; 12:e0177208. [PMID: 28493915 PMCID: PMC5426719 DOI: 10.1371/journal.pone.0177208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
We compared the results of a long-term (65 years) experiment in a South African grassland with the world's longest-running ecological experiment, the Park Grass study at Rothamsted, U.K. The climate is warm and humid in South Africa and cool and temperate in England. The African grassland has been fertilized with two forms of nitrogen applied at four levels, phosphorus and lime in a crossed design in 96 plots. In 1951, about 84% of plant cover consisted of Themeda triandra, Tristachya leucothrix and Setaria nigrirostris. Currently, the dominant species are Panicum maximum, Setaria sphacelata and Eragrostis curvula, making up 71% of total biomass. As in the Park Grass experiment, we found a significant (additive) interaction effect on ANPP of nitrogen and phosphorus, and a (marginally significant) negative correlation between ANPP and species richness. Unlike the Park Grass experiment, there was no correlation between ANPP and species richness when pH was included as a covariate. There was also a significant negative effect of nitrogen amount and nitrogen form and a positive effect of lime on species richness and species diversity. Soil pH had an important effect on species richness. Liming was insufficient to balance the negative effects on species richness of nitrogen fertilization. There was a significant effect of pH on biomass of three abundant species. There were also significant effects of light on the biomass of four species, with only Panicum maximum having a negative response to light. In all of the abundant species, adding total species richness and ANPP to the model increased the amount of variance explained. The biomass of Eragrostis curvula and P. maximum were negatively correlated with species richness while three other abundant species increased with species richness, suggesting that competition and facilitation were active. Consistent with the results from the Park Grass and other long-term fertilization experiments of grasslands, we found a positive effect of soil pH and a negative effect of nitrogen amount on species richness, a more acutely negative effect on species richness of acidic ammonium sulphate fertilizer than limestone ammonium nitrate, a negative relationship between species richness and biomass, and a positive effect on species richness of lime interacting with nitrogen.
Collapse
Affiliation(s)
- David Ward
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Kevin Kirkman
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Zivanai Tsvuura
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| |
Collapse
|
9
|
Bilska K, Szczecińska M. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations. PeerJ 2016; 4:e2504. [PMID: 27833793 PMCID: PMC5101595 DOI: 10.7717/peerj.2504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population's ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population's adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). METHODS The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. RESULTS SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and Φ PT for SSR (20%) and Φ PT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. CONCLUSIONS The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Huang W, Zhao X, Zhao X, Li Y, Lian J. Effects of environmental factors on genetic diversity of Caragana microphylla in Horqin Sandy Land, northeast China. Ecol Evol 2016; 6:8256-8266. [PMID: 27878093 PMCID: PMC5108275 DOI: 10.1002/ece3.2549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Caragana microphylla (Leguminosae) is a dominant climax semishrub species in northern China. We evaluated genetic variation within and among populations sampled from three different environmental gradients in Horqin Sandy Land in northern China using intersimple sequence repeats markers and investigated the possible existence of relationships between genetic diversity and environmental factors. The results showed that C. microphylla have high genetic diversity, and environmental gradients affected genetic diversity of C. microphylla populations. Genetic diversity of all populations was affected by many environmental factors and as well correlated with warm index and soil Olsen phosphorus (SOP) concentration. These results have important implications for restoration and management of these degraded ecosystems in arid and semi‐arid areas.
Collapse
Affiliation(s)
- Wenda Huang
- Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Xin Zhao
- Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Jie Lian
- Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
11
|
Zhang YH, Wang IJ, Comes HP, Peng H, Qiu YX. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Sci Rep 2016; 6:24041. [PMID: 27137438 PMCID: PMC4853719 DOI: 10.1038/srep24041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels – phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important – climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors.
Collapse
Affiliation(s)
- Yong-Hua Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Hans Peter Comes
- Department of Ecology &Evolution, Salzburg University, A-5020 Salzburg, Austria
| | - Hua Peng
- Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ying-Xiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Storkey J, Macdonald A, Bell J, Clark I, Gregory A, Hawkins N, Hirsch P, Todman L, Whitmore A. The Unique Contribution of Rothamsted to Ecological Research at Large Temporal Scales. ADV ECOL RES 2016. [DOI: 10.1016/bs.aecr.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Barraclough TG. How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054030] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Theories of how species evolve in changing environments mostly consider single species in isolation or pairs of interacting species. Yet all organisms live in diverse communities containing many hundreds of species. This review discusses how species interactions influence the evolution of constituent species across whole communities. When species interactions are weak or inconsistent, evolutionary dynamics should be predictable by factors identified by single-species theory. Stronger species interactions, however, can alter evolutionary outcomes and either dampen or promote evolution of constituent species depending on the number of species and the distribution of interaction strengths across the interaction network. Genetic interactions, such as horizontal gene transfer, might also affect evolutionary outcomes. These evolutionary mechanisms in turn affect whole-community properties, such as the level of ecosystem functioning. Successful management of both ecosystems and focal species requires new understanding of evolutionary interactions across whole communities.
Collapse
Affiliation(s)
- Timothy G. Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, United Kingdom
| |
Collapse
|
14
|
Gould B, Geber M. Lack of adaptation from standing genetic variation despite the presence of putatively adaptive alleles in introduced sweet vernal grass (Anthoxanthum odoratum). J Evol Biol 2015; 29:178-87. [PMID: 26468961 DOI: 10.1111/jeb.12773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Abstract
Population genetic theory predicts that the availability of appropriate standing genetic variation should facilitate rapid evolution when species are introduced to new environments. However, few tests of rapid evolution have been paired with empirical surveys for the presence of previously identified adaptive genetic variants in natural populations. In this study, we examined local adaptation to soil Al toxicity in the introduced range of sweet vernal grass (Anthoxanthum odoratum), and we genotyped populations for the presence of Al tolerance alleles previously identified at the long-term ecological Park Grass Experiment (PGE, Harpenden, UK) in the species native range. We found that markers associated with Al tolerance at the PGE were present at appreciable frequency in introduced populations. Despite this, there was no strong evidence of local adaptation to soil Al toxicity among populations. Populations demonstrated significantly different intrinsic root growth rates in the absence of Al. This suggests that selection on correlated root growth traits may constrain the ability of populations to evolve significantly different root growth responses to Al. Our results demonstrate that genotype-phenotype associations may differ substantially between the native and introduced parts of a species range and that adaptive alleles from a native species range may not necessarily promote phenotypic differentiation in the introduced range.
Collapse
Affiliation(s)
- B Gould
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - M Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Gould B, McCouch S, Geber M. De Novo Transcriptome Assembly and Identification of Gene Candidates for Rapid Evolution of Soil Al Tolerance in Anthoxanthum odoratum at the Long-Term Park Grass Experiment. PLoS One 2015; 10:e0124424. [PMID: 26148203 PMCID: PMC4493143 DOI: 10.1371/journal.pone.0124424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE) provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE), cell wall modification (OsSTAR1), and internal Al detoxification (OsNRAT1) in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE.
Collapse
Affiliation(s)
- Billie Gould
- Department of Plant Biology, Plant Biology Laboratories, Michigan State University, East Lansing, MI 48824, United States of America
| | - Susan McCouch
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall Tower Rd, Ithaca, NY 14853, United States of America
| | - Monica Geber
- Department of Plant Breeding and Genetics, Cornell University, Emerson Hall Tower Rd, Ithaca, NY 14853, United States of America
| |
Collapse
|
16
|
Manthey JD, Moyle RG. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Mol Ecol 2015; 24:3628-38. [DOI: 10.1111/mec.13258] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph D. Manthey
- Biodiversity Institute and Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| |
Collapse
|
17
|
Ortego J, Bonal R, Muñoz A, Espelta JM. Living on the edge: the role of geography and environment in structuring genetic variation in the southernmost populations of a tropical oak. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:676-683. [PMID: 25284378 DOI: 10.1111/plb.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 06/03/2023]
Abstract
Understanding the factors determining genetic diversity and structure in peripheral populations is a long-standing goal of evolutionary biogeography, yet little empirical information is available for tropical species. In this study, we combine information from nuclear microsatellite markers and niche modelling to analyse the factors structuring genetic variation across the southernmost populations of the tropical oak Quercus segoviensis. First, we tested the hypothesis that genetic variability decreases with population isolation and increases with local habitat suitability and stability since the Last Glacial Maximum (LGM). Second, we employed a recently developed multiple matrix regression with randomisation (MMRR) approach to study the factors associated with genetic divergence among the studied populations and test the relative contribution of environmental and geographic isolation to contemporary patterns of genetic differentiation. We found that genetic diversity was negatively correlated with average genetic differentiation with other populations, indicating that isolation and limited gene flow have contributed to erode genetic variability in some populations. Considering the relatively small size of the study area (<120 km), analyses of genetic structure indicate a remarkable inter-population genetic differentiation. Environmental dissimilarity and differences in current and past climate niche suitability and their additive effects were not associated with genetic differentiation after controlling for geographic distance, indicating that local climate does not contribute to explain spatial patterns of genetic structure. Overall, our data indicate that geographic isolation, but not current or past climate, is the main factor determining contemporary patterns of genetic diversity and structure within the southernmost peripheral populations of this tropical oak.
Collapse
Affiliation(s)
- J Ortego
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Estación Biológica de Doñana, Seville, Spain; Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | | | | | | |
Collapse
|
18
|
von Wettberg EJB, Vance W, Rowland DL. The Park Grass Experiment and next-generation approaches: local adaptation of sweet vernal grass revisited. Mol Ecol 2014; 23:5931-3. [PMID: 25532867 DOI: 10.1111/mec.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
Long-term ecological experiments provide unique opportunities to observe the effects of natural selection. The Park Grass Experiment at Rothamsted Experiment Station in Hertfordshire, UK, is the longest running ecological experiment that incorporates fertilization treatments and has been ongoing since 1856. In the 1970s, local adaptation was observed in the grass Anthoxanthum odoratum to the elevated soil aluminium levels of the fertilized plots. Gould et al. (2014) have utilized this system to reevaluate the extent of local adaptation, first documented nearly 45 years ago (Snaydon), and to use emerging molecular approaches to identify candidate genes for the adaptation. From their work, they identify several plausible candidate loci for aluminium tolerance. This work shows the power of long-term field-based trials in a scientific age concentrated on rapidly emerging molecular techniques often utilized in short, narrowly focused laboratory or controlled environment experiments. The current study clearly illustrates the benefits gained by combining these molecular approaches within long-term monitoring experiments that can be regularly revisited in a changing world and used to address questions on evolutionary scales.
Collapse
Affiliation(s)
- Eric J B von Wettberg
- Department of Biological Sciences and International Center for Tropical Botany, 11200 SW 8th Street, OE 167 Biological Sciences, Florida International University, Miami, FL, 33199, USA; Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL, 33156, USA
| | | | | |
Collapse
|
19
|
Gould B, McCouch S, Geber M. Variation in soil aluminium tolerance genes is associated with local adaptation to soils at the Park Grass Experiment. Mol Ecol 2014; 23:6058-72. [DOI: 10.1111/mec.12893] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Billie Gould
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks St. Toronto ON M4K 2J8 Canada
| | - Susan McCouch
- Department of Ecology and Evolutionary Biology; Cornell University; Corson Hall Tower Rd Ithaca NY 14853 USA
| | - Monica Geber
- Department of Plant Breeding and Genetics; Cornell University; Emerson Hall Tower Rd Ithaca NY 14853 USA
| |
Collapse
|
20
|
Pannell JR, Fields PD. Evolution in subdivided plant populations: concepts, recent advances and future directions. THE NEW PHYTOLOGIST 2014; 201:417-432. [PMID: 24111698 DOI: 10.1111/nph.12495] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/07/2013] [Indexed: 05/14/2023]
Abstract
Research into the evolution of subdivided plant populations has long involved the study of phenotypic variation across plant geographic ranges and the genetic details underlying that variation. Genetic polymorphism at different marker loci has also allowed us to infer the long- and short-term histories of gene flow within and among populations, including range expansions and colonization-extinction dynamics. However, the advent of affordable genome-wide sequences for large numbers of individuals is opening up new possibilities for the study of subdivided populations. In this review, we consider what the new tools and technologies may allow us to do. In particular, we encourage researchers to look beyond the description of variation and to use genomic tools to address new hypotheses, or old ones afresh. Because subdivided plant populations are complex structures, we caution researchers away from adopting simplistic interpretations of their data, and to consider the patterns they observe in terms of the population genetic processes that have given rise to them; here, the genealogical framework of the coalescent will continue to be conceptually and analytically useful.
Collapse
Affiliation(s)
- John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Peter D Fields
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904-4328, USA
| |
Collapse
|
21
|
Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 2013; 22:5983-99. [DOI: 10.1111/mec.12561] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Luisa Orsini
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 Leuven 3000 Belgium
| | - Joost Vanoverbeke
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 Leuven 3000 Belgium
| | - Ine Swillen
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 Leuven 3000 Belgium
| | - Joachim Mergeay
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 Leuven 3000 Belgium
- Research Institute for Nature and Forest; Gaverstraat 4 Geraardsbergen B-9500 Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 Leuven 3000 Belgium
| |
Collapse
|
22
|
Westberg E, Ohali S, Shevelevich A, Fine P, Barazani O. Environmental effects on molecular and phenotypic variation in populations of Eruca sativa across a steep climatic gradient. Ecol Evol 2013; 3:2471-84. [PMID: 24567822 PMCID: PMC3930051 DOI: 10.1002/ece3.646] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 02/01/2023] Open
Abstract
In Israel Eruca sativa has a geographically narrow distribution across a steep climatic gradient that ranges from mesic Mediterranean to hot desert environments. These conditions offer an opportunity to study the influence of the environment on intraspecific genetic variation. For this, we combined an analysis of neutral genetic markers with a phenotypic evaluation in common-garden experiments, and environmental characterization of populations that included climatic and edaphic parameters, as well as geographic distribution. A Bayesian clustering of individuals from nine representative populations based on amplified fragment length polymorphism (AFLP) divided the populations into a southern and a northern geographic cluster, with one admixed population at the geographic border between them. Linear mixed models, with cluster added as a grouping factor, revealed no clear effects of environment or geography on genetic distances, but this may be due to a strong association of geography and environment with genetic clusters. However, environmental factors accounted for part of the phenotypic variation observed in the common-garden experiments. In addition, candidate loci for selection were identified by association with environmental parameters and by two outlier methods. One locus, identified by all three methods, also showed an association with trichome density and herbivore damage, in net-house and field experiments, respectively. Accordingly, we propose that because trichomes are directly linked to defense against both herbivores and excess radiation, they could potentially be related to adaptive variation in these populations. These results demonstrate the value of combining environmental and phenotypic data with a detailed genetic survey when studying adaptation in plant populations. This article describes the use of several types of data to estimate the influence of the environment on intraspecific genetic variation in populations originating from a steep climatic gradient. In addition to molecular marker data, we made use of phenotypic evaluation from common garden experiments, and a broad GIS based environmental data with edaphic information gathered in the field. This study, among others, lead to the identification of an outlier locus with an association to trichome formation and herbivore defense, and its ecological adaptive value is discussed.
Collapse
Affiliation(s)
- Erik Westberg
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization50250, Bet Dagan, Israel
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität MainzD-55099, Mainz, Germany
| | - Shachar Ohali
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization50250, Bet Dagan, Israel
| | - Anatoly Shevelevich
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization50250, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem76100, Rehovot, Israel
| | - Pinchas Fine
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization50250, Bet Dagan, Israel
| | - Oz Barazani
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization50250, Bet Dagan, Israel
| |
Collapse
|
23
|
Audigeos D, Brousseau L, Traissac S, Scotti-Saintagne C, Scotti I. Molecular divergence in tropical tree populations occupying environmental mosaics. J Evol Biol 2013; 26:529-44. [PMID: 23286313 DOI: 10.1111/jeb.12069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/12/2012] [Accepted: 10/31/2012] [Indexed: 11/30/2022]
Abstract
Unveiling the genetic basis of local adaptation to environmental variation is a major goal in molecular ecology. In rugged landscapes characterized by environmental mosaics, living populations and communities can experience steep ecological gradients over very short geographical distances. In lowland tropical forests, interspecific divergence in edaphic specialization (for seasonally flooded bottomlands and seasonally dry terra firme soils) has been proven by ecological studies on adaptive traits. Some species are nevertheless capable of covering the entire span of the gradient; intraspecific variation for adaptation to contrasting conditions may explain the distribution of such ecological generalists. We investigated whether local divergence happens at small spatial scales in two stands of Eperua falcata (Fabaceae), a widespread tree species of the Guiana Shield. We investigated Single Nucleotide Polymorphisms (SNP) and sequence divergence as well as spatial genetic structure (SGS) at four genes putatively involved in stress response and three genes with unknown function. Significant genetic differentiation was observed among sub-populations within stands, and eight SNP loci showed patterns compatible with disruptive selection. SGS analysis showed genetic turnover along the gradients at three loci, and at least one haplotype was found to be in repulsion with one habitat. Taken together, these results suggest genetic differentiation at small spatial scale in spite of gene flow. We hypothesize that heterogeneous environments may cause molecular divergence, possibly associated to local adaptation in E. falcata.
Collapse
Affiliation(s)
- D Audigeos
- INRA UMR 0745 EcoFoG ('Ecologie des forêts de Guyane'), Campus Agronomique, Kourou, French Guiana, (France)
| | | | | | | | | |
Collapse
|
24
|
References. Mol Ecol 2012. [DOI: 10.1002/9780470979365.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Joost S, Kalbermatten M, Bezault E, Seehausen O. Use of qualitative environmental and phenotypic variables in the context of allele distribution models: detecting signatures of selection in the genome of Lake Victoria cichlids. Methods Mol Biol 2012; 888:295-314. [PMID: 22665288 DOI: 10.1007/978-1-61779-870-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
When searching for loci possibly under selection in the genome, an alternative to population genetics theoretical models is to establish allele distribution models (ADM) for each locus to directly correlate allelic frequencies and environmental variables such as precipitation, temperature, or sun radiation. Such an approach implementing multiple logistic regression models in parallel was implemented within a computing program named MATSAM: . Recently, this application was improved in order to support qualitative environmental predictors as well as to permit the identification of associations between genomic variation and individual phenotypes, allowing the detection of loci involved in the genetic architecture of polymorphic characters. Here, we present the corresponding methodological developments and compare the results produced by software implementing population genetics theoretical models (DFDIST: and BAYESCAN: ) and ADM (MATSAM: ) in an empirical context to detect signatures of genomic divergence associated with speciation in Lake Victoria cichlid fishes.
Collapse
Affiliation(s)
- Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), Institute of Environmental Engineering (IIE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | | | |
Collapse
|
26
|
Ortego J, Riordan EC, Gugger PF, Sork VL. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 2012; 21:3210-23. [PMID: 22548448 DOI: 10.1111/j.1365-294x.2012.05591.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding how specific environmental factors shape gene flow while disentangling their importance relative to the effects of geographical isolation is a major question in evolutionary biology and a specific goal of landscape genetics. Here, we combine information from nuclear microsatellite markers and ecological niche modelling to study the association between climate and spatial genetic structure and variability in Engelmann oak (Quercus engelmannii), a wind-pollinated species with high potential for gene flow. We first test whether genetic diversity is associated with climatic niche suitability and stability since the Last Glacial Maximum (LGM). Second, we use causal modelling to analyse the potential influence of climatic factors (current and LGM niche suitability) and altitude in the observed patterns of genetic structure. We found that genetic diversity is negatively associated with local climatic stability since the LGM, which may be due to higher immigration rates in unstable patches during favourable climatic periods and/or temporally varying selection. Analyses of spatial genetic structure revealed the presence of three main genetic clusters, a pattern that is mainly driven by two highly differentiated populations located in the northern edge of the species distribution range. After controlling for geographic distance, causal modelling analyses showed that genetic relatedness decreases with the environmental divergence among sampling sites estimated as altitude and current and LGM niche suitability. Natural selection against nonlocal genotypes and/or asynchrony in reproductive phenology may explain this pattern. Overall, this study suggests that local environmental conditions can shape patterns of genetic structure and variability even in species with high potential for gene flow and relatively small distribution ranges.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, CA 90095-7239, USA.
| | | | | | | |
Collapse
|
27
|
Herrera CM. Genomic scan as a tool for assessing the genetic component of phenotypic variance in wild populations. Methods Mol Biol 2012; 888:315-29. [PMID: 22665289 DOI: 10.1007/978-1-61779-870-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Methods for estimating quantitative trait heritability in wild populations have been developed in recent years which take advantage of the increased availability of genetic markers to reconstruct pedigrees or estimate relatedness between individuals, but their application to real-world data is not exempt from difficulties. This chapter describes a recent marker-based technique which, by adopting a genomic scan approach and focusing on the relationship between phenotypes and genotypes at the individual level, avoids the problems inherent to marker-based estimators of relatedness. This method allows the quantification of the genetic component of phenotypic variance ("degree of genetic determination" or "heritability in the broad sense") in wild populations and is applicable whenever phenotypic trait values and multilocus data for a large number of genetic markers (e.g., amplified fragment length polymorphisms, AFLPs) are simultaneously available for a sample of individuals from the same population. The method proceeds by first identifying those markers whose variation across individuals is significantly correlated with individual phenotypic differences ("adaptive loci"). The proportion of phenotypic variance in the sample that is statistically accounted for by individual differences in adaptive loci is then estimated by fitting a linear model to the data, with trait value as the dependent variable and scores of adaptive loci as independent ones. The method can be easily extended to accommodate quantitative or qualitative information on biologically relevant features of the environment experienced by each sampled individual, in which case estimates of the environmental and genotype × environment components of phenotypic variance can also be obtained.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de La Cartuja, Sevilla, Spain.
| |
Collapse
|
28
|
Freeland JR, Biss P, Silvertown J. Contrasting patterns of pollen and seed flow influence the spatial genetic structure of sweet vernal grass (Anthoxanthum odoratum) populations. ACTA ACUST UNITED AC 2011; 103:28-35. [PMID: 22003195 DOI: 10.1093/jhered/esr111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The spatial genetic structure of plant populations is determined by a combination of gene flow, genetic drift, and natural selection. Gene flow in most plants can result from either seed or pollen dispersal, but detailed investigations of pollen and seed flow among populations that have diverged following local adaptation are lacking. In this study, we compared pollen and seed flow among 10 populations of sweet vernal grass (Anthoxanthum odoratum) on the Park Grass Experiment. Overall, estimates of genetic differentiation that were based on chloroplast DNA (cpDNA) and, which therefore resulted primarily from seed flow, were lower (average F(ST) = 0.058) than previously published estimates that were based on nuclear DNA (average F(ST) = 0.095). Unlike nuclear DNA, cpDNA showed no pattern of isolation by adaptation; cpDNA differentiation was, however, inversely correlated with the number of additions (nutrients and lime) that each plot had received. We suggest that natural selection is restricting pollen flow among plots, whereas nutrient additions are increasing seed flow and genetic diversity by facilitating the successful germination and growth of immigrant seeds. This study highlights the importance of considering all potential gene flow mechanisms when investigating determinants of spatial genetic structure, and cautions against the widespread assumption that pollen flow is more important than seed flow for population connectivity in wind-pollinated species.
Collapse
Affiliation(s)
- Joanna R Freeland
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | | | |
Collapse
|
29
|
Blanton RE, Blank WA, Costa JM, Carmo TM, Reis EA, Silva LK, Barbosa LM, Test MR, Reis MG. Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int J Parasitol 2011; 41:1093-9. [PMID: 21784077 DOI: 10.1016/j.ijpara.2011.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Praziquantel has been used to treat schistosome infections since 1979 and currently is the only chemotherapeutic agent in production for this purpose, raising concerns about the potential for the emergence of drug resistance. In practice, 10-20% of infected patients will continue to excrete eggs after treatment. It is not understood to what degree this represents selection of a resistant population or incomplete elimination due to the presence of immature worms at the time of treatment. We used a population genetics approach to test whether or not persistent Schistosomamansoni parasites were drawn from the same population as susceptible parasites. In this study, stool samples were collected from 96% of individuals in two small Brazilian communities (populations 482 and 367) and examined for S.mansoni eggs. The combined prevalence of S.mansoni infections in the villages was 41%. Total egg DNA was extracted from each sample and was genotyped at 15 microsatellite markers. Day-to-day variation of the infrapopulation from an individual human host was low (median differentiation using Jost's D=0.010), so that a single stool was representative of the genotypes present in stool eggs, at least in the short term. Average pairwise analysis of D among all pre-treatment infrapopulations suggested moderate differentiation (mean D=0.082 and 0.122 for the two villages), whereas the pre-treatment component population differentiation between the two communities was 0.047. The differentiation of the component population remaining after treatment from the fully susceptible component population was low (mean D=0.007 and 0.020 for the two villages), suggesting that the persistent parasites were not selected by praziquantel treatment. We will continue to follow these communities for evidence of selection or changes in population structure.
Collapse
Affiliation(s)
- Ronald E Blanton
- Case Western Reserve University, Centre for Global Health and Diseases, Wolstein Research Building, 2301 Cornell Road, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kirk H, Freeland JR. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 2011; 12:3966-88. [PMID: 21747718 PMCID: PMC3131602 DOI: 10.3390/ijms12063966] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022] Open
Abstract
The field of molecular ecology has expanded enormously in the past two decades, largely because of the growing ease with which neutral molecular genetic data can be obtained from virtually any taxonomic group. However, there is also a growing awareness that neutral molecular data can provide only partial insight into parameters such as genetic diversity, local adaptation, evolutionary potential, effective population size, and taxonomic designations. Here we review some of the applications of neutral versus adaptive markers in molecular ecology, discuss some of the advantages that can be obtained by supplementing studies of molecular ecology with data from non-neutral molecular markers, and summarize new methods that are enabling researchers to generate data from genes that are under selection.
Collapse
Affiliation(s)
- Heather Kirk
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| | - Joanna R. Freeland
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| |
Collapse
|
31
|
DOUGLAS NORMANA, WALL WADEA, XIANG QIUYUNJENNY, HOFFMANN WILLIAMA, WENTWORTH THOMASR, GRAY JANETB, HOHMANN MATTHEWG. Recent vicariance and the origin of the rare, edaphically specialized Sandhills lily, Lilium pyrophilum (Liliaceae): evidence from phylogenetic and coalescent analyses. Mol Ecol 2011; 20:2901-15. [DOI: 10.1111/j.1365-294x.2011.05151.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Blank WA, Liu SF, Prasad J, Blanton RE. Host mouse strain is not selective for a laboratory adapted strain of Schistosoma mansoni. J Parasitol 2011; 97:518-21. [PMID: 21506771 PMCID: PMC3882756 DOI: 10.1645/ge-2671.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We genotyped pooled adult worms of Schistosoma mansoni from infected CF1, C57BL/6, BALB/c, and BALB/c interferon gamma knockout mice in order to establish if mouse strain differences selected for parasite genotypes. We also compared differentiation in eggs collected from liver and intestines to determine if there was differential distribution of parasite strains in the vertebrate host that might account for any genotype selection. We found that mouse strains with differing immune responses did not differ in resistance to infection and did not select for parasite genotypes. Schistosoma mansoni egg allele frequencies were also equally distributed in tissues and the difference between adult and egg allele frequencies was negligible.
Collapse
Affiliation(s)
- Walter A Blank
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
33
|
Michalet R, Xiao S, Touzard B, Smith DS, Cavieres LA, Callaway RM, Whitham TG. Phenotypic variation in nurse traits and community feedbacks define an alpine community. Ecol Lett 2011; 14:433-43. [PMID: 21366815 DOI: 10.1111/j.1461-0248.2011.01605.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Much is known about facilitation, but virtually nothing about the underlying genetic and evolutionary consequences of this important interaction. We assessed the potential of phenotypic differences in facilitative effects of a foundation species to determine the composition of an Alpine community in Arizona. Two phenotypes of Geum rossii occur along a gradient of disturbance, with 'tight' competitive cushions in stable conditions and 'loose' facilitative cushions in disturbed conditions. A common-garden study suggested that field-based traits may have a genetic basis. Field experiments showed that the reproductive fitness of G. rossii cushions decreased with increasing facilitation. Finally, using a dual-lattice model we showed that including the cost and benefit of facilitation may contribute to the co-occurrence of genotypes with contrasting facilitative effects. Our results indicate that changes in community composition due to phenotypic differences in facilitative effects of a foundation species may in turn affect selective pressures on the foundation species.
Collapse
Affiliation(s)
- Richard Michalet
- University Bordeaux 1, UMR INRA 1202 BIOGECO, 33405 Talence, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Silvertown J, Tallowin J, Stevens C, Power SA, Morgan V, Emmett B, Hester A, Grime PJ, Morecroft M, Buxton R, Poulton P, Jinks R, Bardgett R. Environmental myopia: a diagnosis and a remedy. Trends Ecol Evol 2010; 25:556-61. [DOI: 10.1016/j.tree.2010.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
35
|
PÉREZ-FIGUEROA A, GARCÍA-PEREIRA MJ, SAURA M, ROLÁN-ALVAREZ E, CABALLERO A. Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 2010; 23:2267-2276. [DOI: 10.1111/j.1420-9101.2010.02093.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Soro A, Field J, Bridge C, Cardinal SC, Paxton RJ. Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus. Mol Ecol 2010; 19:3351-63. [PMID: 20666996 DOI: 10.1111/j.1365-294x.2010.04753.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eusociality is widely considered a major evolutionary transition. The socially polymorphic sweat bee Halictus rubicundus, solitary in cooler regions of its Holarctic range and eusocial in warmer parts, is an excellent model organism to address this transition, and specifically the question of whether sociality is associated with a strong barrier to gene flow between phenotypically divergent populations. Mitochondrial DNA (COI) from specimens collected across the British Isles, where both solitary and social phenotypes are represented, displayed limited variation, but placed all specimens in the same European lineage; haplotype network analysis failed to differentiate solitary and social lineages. Microsatellite genetic variability was high and enabled us to quantify genetic differentiation among populations and social phenotypes across Great Britain and Ireland. Results from conceptually different analyses consistently showed greater genetic differentiation between geographically distant populations, independently of their social phenotype, suggesting that the two social forms are not reproductively isolated. A landscape genetic approach revealed significant isolation by distance (Mantel test r = 0.622, P < 0.001). The Irish Sea acts as physical barrier to gene flow (partial Mantel test r = 0.453, P < 0.01), indicating that geography, rather than expression of solitary or social behaviour (partial Mantel test r = -0.238, P = 0.053), had a significant effect on the genetic structure of H. rubicundus across the British Isles. Although we cannot reject the hypothesis of a genetic underpinning to differences in solitary and eusocial phenotypes, our data clearly demonstrate a lack of reproductive isolation between the two social forms.
Collapse
Affiliation(s)
- A Soro
- School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
| | | | | | | | | |
Collapse
|