1
|
Schönberg J, Borlak J. miRNA biomarkers to predict risk of primary non-function of fatty allografts and drug induced acute liver failures. Mol Cell Biochem 2025; 480:2573-2593. [PMID: 39424772 PMCID: PMC11961548 DOI: 10.1007/s11010-024-05129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Primary non-function (PNF) of an allograft defines an irreversible graft failure and although rare, constitutes a life-threatening condition that requires high-urgency re-transplantation. Equally, drug induced acute liver failures (ALF) are seldom but the rapid loss of hepatic function may require orthotropic liver transplantation (OLT). Recently, we reported the development of a rodent PNF-disease model of fatty allografts and showed that a dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of PNF. Based on findings from the rat PNF-disease model, we selected 15 miRNA-biomarker candidates for clinical validation and performed RT-qPCRs in well-documented PNF cases following OLT of fatty allografts. To assess specificity and selectivity, we compared their regulation in pre- and intraoperative liver biopsies and pre- and post-operative blood samples of patients undergoing elective hepatobiliary surgery. Additionally, we assessed their regulation in drug induced ALF. We confirmed clinical relevance for 11 PNF-associated miRNAs and found expression of miRNA-27b-3p, miRNA-122-3p, miRNA-125a-5p, miRNA-125b-5p and miRNA-192-5p to correlate with the hepatic steatosis grades. Furthermore, we demonstrate selectivity and specificity for the biomarker candidates with opposite regulation of let-7b-5p, miRNA-122-5p, miRNA-125b-5p and miRNA-194-5p in blood samples of patients following successful OLTs and/or liver resection. Moreover, by considering findings from 21 independent ALF-studies, we observed nine PNF-associated miRNAs regulated in common. We report miRNAs highly regulated in PNF and ALF, and their common regulation in different diseases broadens the perspective as biomarker candidates. Our study warrants independent confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Juliette Schönberg
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Lim B, Domsch K, Mall M, Lohmann I. Canalizing cell fate by transcriptional repression. Mol Syst Biol 2024; 20:144-161. [PMID: 38302581 PMCID: PMC10912439 DOI: 10.1038/s44320-024-00014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
Precision in the establishment and maintenance of cellular identities is crucial for the development of multicellular organisms and requires tight regulation of gene expression. While extensive research has focused on understanding cell type-specific gene activation, the complex mechanisms underlying the transcriptional repression of alternative fates are not fully understood. Here, we provide an overview of the repressive mechanisms involved in cell fate regulation. We discuss the molecular machinery responsible for suppressing alternative fates and highlight the crucial role of sequence-specific transcription factors (TFs) in this process. Depletion of these TFs can result in unwanted gene expression and increased cellular plasticity. We suggest that these TFs recruit cell type-specific repressive complexes to their cis-regulatory elements, enabling them to modulate chromatin accessibility in a context-dependent manner. This modulation effectively suppresses master regulators of alternative fate programs and their downstream targets. The modularity and dynamic behavior of these repressive complexes enables a limited number of repressors to canalize and maintain major and minor cell fate decisions at different stages of development.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany.
| |
Collapse
|
3
|
Sun B, Shen Y, Chen S, Shi Z, Li H, Miao X. A novel transcriptional repressor complex MYB22-TOPLESS-HDAC1 promotes rice resistance to brown planthopper by repressing F3'H expression. THE NEW PHYTOLOGIST 2023; 239:720-738. [PMID: 37149887 DOI: 10.1111/nph.18958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
The brown planthopper (BPH) is the most destructive pest of rice. The MYB transcription factors are vital for rice immunity, but most are activators. Although MYB22 positively regulates rice resistance to BPH and has an EAR motif associated with active repression, it remains unclear whether it is a transcriptional repressor affecting rice-BPH interaction. Genetic analyses revealed that MYB22 regulates rice resistance to BPH via its EAR motif. Several biochemical experiments (e.g. transient transcription assay, Y2H, LCA, and BiFC) indicated that MYB22 is a transcriptional repressor that interacts with the corepressor TOPLESS via its EAR motif and recruits HDAC1 to form a tripartite complex. Flavonoid-3'-hydroxylase (F3'H) is a flavonoid biosynthesis pathway-related gene that negatively regulates rice resistance to BPH. Based on a bioinformatics analysis and the results of EMSA and transient transcription assays, MYB22 can bind directly to the F3'H promoter and repress gene expression along with TOPLESS and HDAC1. We revealed a transcriptional regulatory mechanism influencing the rice-BPH interaction that differs from previously reported mechanisms. Specifically, MYB22-TOPLESS-HDAC1 is a novel transcriptional repressor complex with components that synergistically and positively regulate rice resistance to BPH through the transcriptional repression of F3'H.
Collapse
Affiliation(s)
- Bo Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenying Shi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
4
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
5
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
6
|
Zhao J, Gao S, Guo Y, Xu Q, Liu M, Zhang C, Cheng M, Zhao X, Schinckel AP, Zhou B. Functionally Antagonistic Transcription Factors IRF1 and IRF2 Regulate the Transcription of the Dopamine Receptor D2 Gene Associated with Aggressive Behavior of Weaned Pigs. BIOLOGY 2022; 11:biology11010135. [PMID: 35053133 PMCID: PMC8773180 DOI: 10.3390/biology11010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Aggressive behavior has negative effects on animal welfare and growth performance in pigs. The dopamine receptor D2 (DRD2) has a critical neuromodulator role in the dopamine signal pathway within the brain to control behavior. A functional single-nucleotide polymorphism (SNP), rs1110730503, in the promoter region of the porcine DRD2 gene was identified, which affects aggressive behavior in pigs. A chromatin immunoprecipitation (ChIP) assay was used to identify the interactions between interferon regulatory factor 1 (IRF1) and IRF2 with the DRD2 gene. The overexpression or knockdown of these two transcription factors in porcine kidney-15 (PK15) and porcine neuronal cells (PNCs) indicate that the binding of IRF1 to DRD2 promotes the transcription of the DRD2 gene, but the binding of IRF2 to the DRD2 gene inhibits its transcription. Furthermore, IRF1 and IRF2 are functionally antagonistic to each other. The downregulation of DRD2 or upregulation of IRF2 increased the apoptosis rate of porcine neuroglial cells. Taken together, we found that transcriptional factors IRF1 and IRF2 have vital roles in regulating the transcription of the DRD2 gene, and rs1110730503 (−915A/T) is a functional SNP that influences IRF2 binding to the promoter of the DRD2 gene. These findings will provide further insight towards controlling aggressive behavior in pigs.
Collapse
Affiliation(s)
- Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Xianle Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
- Correspondence:
| |
Collapse
|
7
|
Zeng D, Teixeira da Silva JA, Zhang M, Yu Z, Si C, Zhao C, Dai G, He C, Duan J. Genome-Wide Identification and Analysis of the APETALA2 (AP2) Transcription Factor in Dendrobium officinale. Int J Mol Sci 2021; 22:5221. [PMID: 34069261 PMCID: PMC8156592 DOI: 10.3390/ijms22105221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- College of Life Sciences, University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- College of Life Sciences, University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
| | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- College of Life Sciences, University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guangyi Dai
- Opening Public Laboratory, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Yin X, Zhang Y, Zhang L, Wang B, Zhao Y, Irfan M, Chen L, Feng Y. Regulation of MYB Transcription Factors of Anthocyanin Synthesis in Lily Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:761668. [PMID: 34925411 PMCID: PMC8672200 DOI: 10.3389/fpls.2021.761668] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Flower color is the decisive factor that affects the commercial value of ornamental flowers. Therefore, it is important to study the regulation of flower color formation in lily to discover the positive and negative factors that regulate this important trait. In this study, MYB transcription factors (TFs) were characterized to understand the regulatory mechanism of anthocyanin biosynthesis in lily. Two R2R3-MYB TFs, LvMYB5, and LvMYB1, were found to regulate anthocyanin biosynthesis in lily flowers. LvMYB5, which has an activation motif, belongs to the SG6 MYB protein subgroup of Arabidopsis thaliana. Transient expression of LvMYB5 indicated that LvMYB5 can promote coloration in Nicotiana benthamiana leaves, and that expression of LvMYB5 increases the expression levels of NbCHS, NbDFR, and NbANS. VIGS experiments in lily petals showed that the accumulation of anthocyanins was reduced when LvMYB5 was silenced. Luciferase assays showed that LvMYB5 can promote anthocyanin synthesis by activating the ANS gene promoter. Therefore, LvMYB5 plays an important role in flower coloration in lily. In addition, the transient expression experiment provided preliminary evidence that LvMYB1 (an R2R3-MYB TF) inhibits anthocyanin synthesis in lily flowers. The discovery of activating and inhibitory factors related to anthocyanin biosynthesis in lily provides a theoretical basis for improving flower color through genetic engineering. The results of our study provide a new direction for the further study of the mechanisms of flower color formation in lilies.
Collapse
Affiliation(s)
- Xiaojuan Yin
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Yibing Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Baohua Wang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yidi Zhao
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Lijing Chen, ;
| | - Yulong Feng
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Yulong Feng, ;
| |
Collapse
|
9
|
A celery transcriptional repressor AgERF8 negatively modulates abscisic acid and salt tolerance. Mol Genet Genomics 2020; 296:179-192. [PMID: 33130909 DOI: 10.1007/s00438-020-01738-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Ethylene response factors (ERFs) widely exist in plants and have been reported to be an important regulator of plant abiotic stress. Celery, a common economic vegetable of Apiaceae, contains lots of ERF transcription factors (TFs) with various functions. AP2/ERF TFs play positive or negative roles in plant growth and stress response. Here, AgERF8, a gene encoding EAR-type AP2/ERF TF, was identified. The AgERF8 mRNA accumulated in response to both abscisic acid (ABA) signaling and salt treatment. AgERF8 was proving to be a nucleus-located protein and could bind to GCC-box. The overexpression of AgERF8 in Arabidopsis repressed the transcription of downstream genes, AtBGL and AtBCH. Arabidopsis overexpressing AgERF8 gene showed inhibited root growth under ABA and NaCl treatments. AgERF8 transgenic lines showed low tolerance to ABA and salt stress than wild-type plants. Low increment in SOD and POD activities, increased accumulation of MDA, and significantly decreased plant fresh weights and chlorophyll levels were detected in AgERF8 hosting lines after treated with ABA and NaCl. Furthermore, the overexpression of AgERF8 also inhibited the levels of ascorbic acid and antioxidant-related genes (AtCAT1, AtSOD1, AtPOD, AtSOS1, AtAPX1, and AtP5CS1) expression in transgenic Arabidopsis. This finding indicated that AgERF8 negatively affected the resistance of transgenic Arabidopsis to ABA and salt stress through regulating downstream genes expression and relevant physiological changes. It will provide a potential sight to further understand the functions of ERF TFs in celery.
Collapse
|
10
|
Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer 2020; 6:392-406. [PMID: 32348735 DOI: 10.1016/j.trecan.2020.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable epigenetic modification that contributes to the spatiotemporal regulation of gene expression. The manner in which DNA methylation contributes to transcriptional control is dependent on the biological context, including physiological state and the properties of the DNA itself. Classically, dense promoter DNA methylation is associated with transcriptional repression. However, growing evidence suggests that this association may not always hold true, and promoter hypermethylation now also appears to be associated with high transcriptional activity. Furthermore, in a selection of contexts, increasing levels of promoter methylation correlate directly with increased gene expression. These findings postulate a context-dependent model whereby epigenetic contributions to transcriptional regulation occur in a more complex and dynamic manner. We present current evidence documenting promoter hypermethylation and high levels of gene expression, offer insights into the possible mechanisms by which this occurs, and discuss the potential implications for both research and clinical applications.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Swapnoleena Sen
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand.
| |
Collapse
|
11
|
Singh P, Mathew IE, Verma A, Tyagi AK, Agarwal P. Analysis of Rice Proteins with DLN Repressor Motif/S. Int J Mol Sci 2019; 20:ijms20071600. [PMID: 30935059 PMCID: PMC6479872 DOI: 10.3390/ijms20071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation includes both activation and repression of downstream genes. In plants, a well-established class of repressors are proteins with an ERF-associated amphiphilic repression/EAR domain. They contain either DLNxxP or LxLxL as the identifying hexapeptide motif. In rice (Oryza sativa), we have identified a total of 266 DLN repressor proteins, with the former motif and its modifications thereof comprising 227 transcription factors and 39 transcriptional regulators. Apart from DLNxxP motif conservation, DLNxP and DLNxxxP motifs with variable numbers/positions of proline and those without any proline conservation have been identified. Most of the DLN repressome proteins have a single DLN motif, with higher relative percentage in the C-terminal region. We have designed a simple yeast-based experiment wherein a DLN motif can successfully cause strong repression of downstream reporter genes, when fused to a transcriptional activator of rice or yeast. The DLN hexapeptide motif is essential for repression, and at least two “DLN” residues cause maximal repression. Comparatively, rice has more DLN repressor encoding genes than Arabidopsis, and DLNSPP motif from rice is 40% stronger than the known Arabidopsis SRDX motif. The study reports a straightforward assay to analyze repressor activity, along with the identification of a strong DLN repressor from rice.
Collapse
Affiliation(s)
- Purnima Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Ankit Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, South Campus Delhi University, New Delhi-110021, India.
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
12
|
Wang L, Qiao H. New Insights in Transcriptional Regulation of the Ethylene Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:790. [PMID: 31275338 PMCID: PMC6591485 DOI: 10.3389/fpls.2019.00790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/31/2019] [Indexed: 05/19/2023]
Abstract
As any living organisms, plants must respond to a wide variety of environmental stimuli. Plant hormones regulate almost all aspects of plant growth and development. Among all the plant hormones, ethylene is the only gaseous plant hormone that plays pleiotropic roles in plant growth, plant development and stress responses. Transcription regulation is one main mechanism by which a cell orchestrates gene activity. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Here we review the progress of transcription regulation in the ethylene response.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Hong Qiao,
| |
Collapse
|
13
|
Lebar T, Verbič A, Ljubetič A, Jerala R. Polarized displacement by transcription activator-like effectors for regulatory circuits. Nat Chem Biol 2019; 15:80-87. [PMID: 30455466 DOI: 10.1038/s41589-018-0163-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023]
Abstract
The interplay between DNA-binding proteins plays an important role in transcriptional regulation and could increase the precision and complexity of designed regulatory circuits. Here we show that a transcription activator-like effector (TALE) can displace another TALE protein from DNA in a highly polarized manner, displacing only the 3'- but not 5'-bound overlapping or adjacent TALE. We propose that the polarized displacement by TALEs is based on its multipartite nature of binding to DNA. The polarized TALE displacement provides strategies for the specific regulation of gene expression, for construction of all two-input Boolean genetic logic circuits based on the robust propagation of the displacement across multiple neighboring sites, for displacement of zinc finger-based transcription factors and for suppression of Cas9-gRNA-mediated genome cleavage, enriching the synthetic biology toolbox and contributing to the understanding of the underlying principles of the facilitated displacement.
Collapse
Affiliation(s)
- Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Yang SD, Ahn SH, Kim JI. 3-Oxoacid CoA transferase 1 as a therapeutic target gene for cisplatin-resistant ovarian cancer. Oncol Lett 2017; 15:2611-2618. [PMID: 29434981 DOI: 10.3892/ol.2017.7560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/03/2017] [Indexed: 01/28/2023] Open
Abstract
Ovarian cancer (OC) is the second leading cause of mortality from gynecological malignancies and has the highest mortality rate worldwide. As it is commonly asymptomatic during the early stages of the disease, >70% of patients with OC are diagnosed at advanced stages with metastasis. Despite treatment methods, including optimal debulking surgery and chemotherapy with the platinum-based drug cisplatin, OC recurrence is often inevitable, with an overall 5-year survival rate of 45%, mostly due to the steady development of cisplatin resistance. To identify genes involved in cisplatin resistance, the present study determined the half-maximal inhibitory concentrations of eight different OC cell lines and classified them into two groups (sensitive and resistant). mRNA expression was analyzed with GeneChip Human Gene 1.0 ST Arrays, and DNA methylation profiles were evaluated with the HumanMethylation450 BeadChip. Using an integrated approach of analyzing gene expression levels and DNA methylation profiles simultaneously, 26 genes were selected that were differentially expressed and methylated between the resistant and sensitive groups. Among these 26 genes, 3-oxoacid CoA transferase 1 (OXCT1), which was demonstrated to be downregulated and hypermethylated at promoter CpGs in the cisplatin-resistant group compared with the cisplatin-sensitive group, was selected for further investigation. Treatment with a DNA methyltransferase inhibitor restored hypermethylation-mediated gene silencing of OXCT1 in the cisplatin-resistant group, but not in the cisplatin-sensitive group. Furthermore, overexpression of OXCT1 conferred sensitivity to cisplatin in OC cells. The results of the present study suggest that OXCT1 serves an important role in conferring cisplatin sensitivity, and may provide a potential therapeutic target for cisplatin chemotherapy in patients with recurrent OC.
Collapse
Affiliation(s)
- San-Duk Yang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - So Hee Ahn
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.,Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Republic of Korea
| |
Collapse
|
15
|
Kwon HK, Chen HM, Mathis D, Benoist C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat Immunol 2017; 18:1238-1248. [PMID: 28892470 PMCID: PMC5679728 DOI: 10.1038/ni.3835] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
FoxP3 conditions the transcriptional signature and functional facets of regulatory T cells (Treg cells). Its mechanism of action, whether as an activator or a repressor, has remained unclear. Here, chromatin analysis showed that FoxP3 bound active enhancer elements, not repressed chromatin, around loci over- or under-expressed in Treg cells. We evaluated the impact of a panel of FoxP3 mutants on its transcriptional activity and interactions with DNA, transcriptional cofactors and chromatin. Computational integration, confirmed by biochemical interaction and size analyses, showed that FoxP3 existed in distinct multimolecular complexes. It was active and primarily an activator when complexed with the transcriptional factors RELA, IKZF2 and KAT5. In contrast, FoxP3 was inactive when complexed with the histone methyltransferase EZH2 and transcription factors YY1 and IKZF3. The latter complex partitioned to a peripheral region of the nucleus, as shown by super-resolution microscopy. Thus, FoxP3 acts in multimodal fashion to directly activate or repress transcription, in a context- and partner-dependent manner, to govern Treg cell phenotypes.
Collapse
Affiliation(s)
- Ho-Keun Kwon
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Hui-Min Chen
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| |
Collapse
|
16
|
King C. Sensory Transduction and Subjective Experience: Expression of Eight Genes in Three Senses Suggests a Radical Model of Consciousness. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/bf03379922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Recent research into whole genome mapping of the mouse brain has made possible direct investigation of the brain expression of unusual genes. A search of the Allen Brain Atlas database has provided genetic and neuro-anatomical evidence for widespread specific expression in the brain of eight genes specific to sensory transduction, in vision, hearing and touch. A novel biophysical model is proposed for the function of these proteins, in generating the internal model of experiential reality.
Collapse
|
17
|
Abstract
This chapter considers some of the challenges in obtaining accurate and consistent estimates of neuronal population size in the mouse retina, in order to identify the genetic control of cell number through QTL mapping and candidate gene analysis. We first discuss a variety of best practices for analyzing large numbers of recombinant inbred strains of mice over the course of a year in order to amass a satisfactory dataset for QTL mapping. We then consider the relative merits of using average cell density versus estimated total cell number as the target trait to be assessed, and why estimates of heritability may differ for these two traits when studying the retina in whole-mount preparations. Using our dataset on cell number for 12 different retinal cell types across the AXB/BXA recombinant inbred strain set as an example, we briefly review the QTL identified and their relationship to one another. Finally, we discuss our strategies for parsing QTL in order to identify prospective candidate genes, and how those candidates may in turn be dissected to identify causal regulatory or coding variants. By identifying the genetic determinants of nerve cell number in this fashion, we can then explore their roles in modulating developmental processes that underlie the formation of the retinal architecture.
Collapse
|
18
|
Perrella G, Kaiserli E. Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants. THE NEW PHYTOLOGIST 2016; 212:908-919. [PMID: 27813089 PMCID: PMC5111779 DOI: 10.1111/nph.14269] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/14/2016] [Indexed: 05/24/2023]
Abstract
Light is a powerful stimulus regulating many aspects of plant development and phenotypic plasticity. Plants sense light through the action of specialized photoreceptor protein families that absorb different wavelengths and intensities of light. Recent discoveries in the area of photobiology have uncovered photoreversible changes in nuclear organization correlated with transcriptional regulation patterns that lead to de-etiolation and photoacclimation. Novel signalling components bridging photoreceptor activation with chromatin remodelling and regulation of gene expression have been discovered. Moreover, coregulated gene loci have been shown to relocate to the nuclear periphery in response to light. The study of photoinduced changes in nuclear architecture is a flourishing area leading to major discoveries that will allow us to better understand how highly conserved mechanisms underlying genomic reprogramming are triggered by environmental and endogenous stimuli. This review aims to discuss fundamental and innovative reports demonstrating how light triggers changes in chromatin and nuclear architecture during photomorphogenesis.
Collapse
Affiliation(s)
- Giorgio Perrella
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
19
|
Kobayashi K, Suzuki T, Iwata E, Magyar Z, Bögre L, Ito M. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes. Transcription 2016; 6:106-11. [PMID: 26556011 DOI: 10.1080/21541264.2015.1109746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- a Graduate School of Bioagricultural Sciences; Nagoya University ; Chikusa , Nagoya , Japan
| | - Toshiya Suzuki
- a Graduate School of Bioagricultural Sciences; Nagoya University ; Chikusa , Nagoya , Japan.,b JST; CREST ; Chikusa , Nagoya , Japan
| | - Eriko Iwata
- a Graduate School of Bioagricultural Sciences; Nagoya University ; Chikusa , Nagoya , Japan
| | - Zoltán Magyar
- c Institute of Plant Biology; Biological Research Centre ; Szeged , Hungary.,d Royal Holloway; University of London; School of Biological Sciences ; Egham , Surrey , UK
| | - László Bögre
- d Royal Holloway; University of London; School of Biological Sciences ; Egham , Surrey , UK
| | - Masaki Ito
- a Graduate School of Bioagricultural Sciences; Nagoya University ; Chikusa , Nagoya , Japan.,b JST; CREST ; Chikusa , Nagoya , Japan
| |
Collapse
|
20
|
Reese BE, Keeley PW. Genomic control of neuronal demographics in the retina. Prog Retin Eye Res 2016; 55:246-259. [PMID: 27492954 DOI: 10.1016/j.preteyeres.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
The mature retinal architecture is composed of various types of neuron, each population differing in size and constrained to particular layers, wherein the cells achieve a characteristic patterning in their local organization. These demographic features of retinal nerve cell populations are each complex traits controlled by multiple genes affecting different processes during development, and their genetic determinants can be dissected by correlating variation in these traits with their genomic architecture across recombinant-inbred mouse strains. Using such a resource, we consider how the variation in the numbers of twelve different types of retinal neuron are independent of one another, including those sharing transcriptional regulation as well as those that are synaptically-connected, each mapping to distinct genomic loci. Using the populations of two retinal interneurons, the horizontal cells and the cholinergic amacrine cells, we present in further detail examples where the variation in neuronal number, as well as the variation in mosaic patterning or in laminar positioning, each maps to discrete genomic loci where allelic variants modulating these features must be present. At those loci, we identify candidate genes which, when rendered non-functional, alter those very demographic properties, and in turn, we identify candidate coding or regulatory variants that alter protein structure or gene expression, respectively, being prospective contributors to the variation in phenotype. This forward-genetic approach provides an alternative means for dissecting the molecular genetic control of neuronal population dynamics, with each genomic locus serving as a causal anchor from which we may ultimately understand the developmental principles responsible for the control of those traits.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
21
|
Roychoudhuri R, Clever D, Li P, Wakabayashi Y, Quinn KM, Klebanoff CA, Ji Y, Sukumar M, Eil RL, Yu Z, Spolski R, Palmer DC, Pan JH, Patel SJ, Macallan DC, Fabozzi G, Shih HY, Kanno Y, Muto A, Zhu J, Gattinoni L, O'Shea JJ, Okkenhaug K, Igarashi K, Leonard WJ, Restifo NP. BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers. Nat Immunol 2016; 17:851-860. [PMID: 27158840 PMCID: PMC4918801 DOI: 10.1038/ni.3441] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/16/2016] [Indexed: 12/14/2022]
Abstract
T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.
Collapse
Affiliation(s)
- Rahul Roychoudhuri
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - David Clever
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
- Medical Scientist Training Program, Ohio State University College of Medicine, Columbus, OH., USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | | | - Kylie M Quinn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD., USA
| | | | - Yun Ji
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | | | - Robert L Eil
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Zhiya Yu
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | - Douglas C Palmer
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Jenny H Pan
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Shashank J Patel
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Derek C Macallan
- Institute for Infection & Immunity, St. George's University of London, London, UK
| | - Giulia Fabozzi
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Jun Zhu
- Systems Biology Center, NHLBI, NIH, Bethesda, MD., USA
| | - Luca Gattinoni
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | - Nicholas P Restifo
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| |
Collapse
|
22
|
Functional Analysis and Characterization of Differential Coexpression Networks. Sci Rep 2015; 5:13295. [PMID: 26282208 PMCID: PMC4539605 DOI: 10.1038/srep13295] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/27/2015] [Indexed: 01/10/2023] Open
Abstract
Differential coexpression analysis is emerging as a complement to conventional differential gene expression analysis. The identified differential coexpression links can be assembled into a differential coexpression network (DCEN) in response to environmental stresses or genetic changes. Differential coexpression analyses have been successfully used to identify condition-specific modules; however, the structural properties and biological significance of general DCENs have not been well investigated. Here, we analyzed two independent Saccharomyces cerevisiae DCENs constructed from large-scale time-course gene expression profiles in response to different situations. Topological analyses show that DCENs are tree-like networks possessing scale-free characteristics, but not small-world. Functional analyses indicate that differentially coexpressed gene pairs in DCEN tend to link different biological processes, achieving complementary or synergistic effects. Furthermore, the gene pairs lacking common transcription factors are sensitive to perturbation and hence lead to differential coexpression. Based on these observations, we integrated transcriptional regulatory information into DCEN and identified transcription factors that might cause differential coexpression by gain or loss of activation in response to different situations. Collectively, our results not only uncover the unique structural characteristics of DCEN but also provide new insights into interpretation of DCEN to reveal its biological significance and infer the underlying gene regulatory dynamics.
Collapse
|
23
|
Tripathi S, Christie KR, Balakrishnan R, Huntley R, Hill DP, Thommesen L, Blake JA, Kuiper M, Lægreid A. Gene Ontology annotation of sequence-specific DNA binding transcription factors: setting the stage for a large-scale curation effort. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat062. [PMID: 23981286 PMCID: PMC3753819 DOI: 10.1093/database/bat062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Transcription factors control which information in a genome becomes transcribed to produce RNAs that function in the biological systems of cells and organisms. Reliable and comprehensive information about transcription factors is invaluable for large-scale network-based studies. However, existing transcription factor knowledge bases are still lacking in well-documented functional information. Here, we provide guidelines for a curation strategy, which constitutes a robust framework for using the controlled vocabularies defined by the Gene Ontology Consortium to annotate specific DNA binding transcription factors (DbTFs) based on experimental evidence reported in literature. Our standardized protocol and workflow for annotating specific DNA binding RNA polymerase II transcription factors is designed to document high-quality and decisive evidence from valid experimental methods. Within a collaborative biocuration effort involving the user community, we are now in the process of exhaustively annotating the full repertoire of human, mouse and rat proteins that qualify as DbTFs in as much as they are experimentally documented in the biomedical literature today. The completion of this task will significantly enrich Gene Ontology-based information resources for the research community. Database URL:www.tfcheckpoint.org
Collapse
Affiliation(s)
- Sushil Tripathi
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu X, Tang D, Li M, Wang K, Cheng Z. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. PLANT PHYSIOLOGY 2013; 161:317-29. [PMID: 23124325 PMCID: PMC3532263 DOI: 10.1104/pp.112.208496] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/01/2012] [Indexed: 05/18/2023]
Abstract
Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and leaf angle by controlling the adaxial growth of tiller node and lamina joint. LPA1 was also found to affect shoot gravitropism. Expression pattern analysis suggested that LPA1 influences plant architecture by affecting the gravitropism of leaf sheath pulvinus and lamina joint. However, LPA1 only influences gravity perception or signal transduction in coleoptile gravitropism by regulating the sedimentation rate of amyloplasts, distinct from the actions of LAZY1. LPA1 encodes a plant-specific INDETERMINATE DOMAIN protein and defines a novel subfamily of 28 INDETERMINATE DOMAIN proteins with several unique conserved features. LPA1 is localized in the nucleus and functions as an active transcriptional repressor, an activity mainly conferred by a conserved ethylene response factor-associated amphiphilic repression-like motif. Further analysis suggests that LPA1 participates in a complicated transcriptional and protein interaction network and has evolved novel functions distinct from SGR5. This study not only facilitates the understanding of gravitropism mechanisms but also generates a useful genetic material for rice breeding.
Collapse
|
25
|
Roh K, Safaei FRP, Hespanha JP, Proulx SR. Evolution of transcription networks in response to temporal fluctuations. Evolution 2012; 67:1091-104. [PMID: 23550758 DOI: 10.1111/evo.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organisms respond to changes in their environment over a wide range of biological and temporal scales. Such phenotypic plasticity can involve developmental, behavioral, physiological, and genetic shifts. The adaptive value of a plastic response is known to depend on the nature of the information that is available to the organism as well as the direct and indirect costs of the plastic response. We modeled the dynamic process of simple gene regulatory networks as they responded to temporal fluctuations in environmental conditions. We simulated the evolution of networks to determine when genes that function solely as transcription factors, with no direct function of their own, are beneficial to the function of the network. When there is perfect information about the environment and there is no timing information to be extracted then there is no advantage to adding pure transcription factor genes to the network. In contrast, when there is either timing information that can be extracted or only indirect information about the current state of the environment then additional transcription factor genes improve the evolved network fitness.
Collapse
Affiliation(s)
- Kyoungmin Roh
- Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | | | | | | |
Collapse
|
26
|
Ojuka EO, Goyaram V, Smith JAH. The role of CaMKII in regulating GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab 2012; 303:E322-31. [PMID: 22496345 DOI: 10.1152/ajpendo.00091.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractile activity during physical exercise induces an increase in GLUT4 expression in skeletal muscle, helping to improve glucose transport capacity and insulin sensitivity. An important mechanism by which exercise upregulates GLUT4 is through the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in response to elevated levels of cytosolic Ca(2+) during muscle contraction. This review discusses the mechanism by which Ca(2+) activates CaMKII, explains research techniques currently used to alter CaMK activity in cells, and highlights various exercise models and pharmacological agents that have been used to provide evidence that CaMKII plays an important role in regulating GLUT4 expression. With regard to transcriptional mechanisms, the key research studies that identified myocyte enhancer factor 2 (MEF2) and GLUT4 enhancer factor as the major transcription factors regulating glut4 gene expression, together with their binding domains, are underlined. Experimental evidence showing that CaMK activation induces hyperacetylation of histones in the vicinity of the MEF2 domain and increases MEF2 binding to its cis element to influence MEF2-dependent Glut4 gene expression are also given along with data suggesting that p300 might be involved in acetylating histones on the Glut4 gene. Finally, an appraisal of the roles of other calcium- and non-calcium-dependent mechanisms, including the major HDAC kinases in GLUT4 expression, is also given.
Collapse
Affiliation(s)
- Edward O Ojuka
- University of Capetown/Medical Research Center Research Unit for Exercise Science & Sports Medicine, Department of Human Biology, Univeristy of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
27
|
Kiełbowicz-Matuk A. Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:78-85. [PMID: 22325868 DOI: 10.1016/j.plantsci.2011.11.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 05/18/2023]
Abstract
Abiotic and biotic stresses frequently impose constraints on plant distribution and affect agricultural productivity. Various aspects of the multiplicity and the complexity of stress responsive gene networks have been previously studied. Many of individual transcription factors in plants and their family classes that regulate the expression of several genes in responses to environmental stresses have been identified. One such class of transcription regulators is the C(2)H(2) class of zinc finger proteins. Numerous members of the C(2)H(2)-type zinc finger family have been shown to play diverse roles in the plant stress response and the hormone signal transduction. Transcription profiling analyses have demonstrated that the transcript level of many C(2)H(2)-type zinc finger proteins is elevated under different abiotic stress conditions such as low temperature, salt, drought, osmotic stress and oxidative stress. Some C(2)H(2)-type proteins are additionally involved in the biotic stress signaling pathway. Moreover, it has been reported that overexpression of some C(2)H(2)-type zinc finger protein genes resulted in both the activation of some stress-related genes and enhanced tolerance to various stresses. Current genetic studies have focused on possible interactions between different zinc finger transcription factors during stresses to regulate transcription. This review highlights the role of the C(2)H(2) class of the zinc finger proteins in regulating abiotic and biotic stress tolerance in the plants.
Collapse
|
28
|
Sathyan KM, Shen Z, Tripathi V, Prasanth KV, Prasanth SG. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J Cell Sci 2012; 124:3149-63. [PMID: 21914818 DOI: 10.1242/jcs.086603] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.
Collapse
Affiliation(s)
- Kizhakke M Sathyan
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
29
|
Ekici M, Keim A, Rössler OG, Hohl M, Thiel G. Chromatin structure and expression of the AMPA receptor subunit Glur2 in human glioma cells: Major regulatory role of REST and Sp1. J Cell Biochem 2012; 113:528-43. [DOI: 10.1002/jcb.23376] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Favre D, Niederhauser G, Fahmi D, Plaisance V, Brajkovic S, Beeler N, Allagnat F, Haefliger JA, Regazzi R, Waeber G, Abderrahmani A. Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets. Diabetologia 2011; 54:2337-46. [PMID: 21547497 PMCID: PMC3149674 DOI: 10.1007/s00125-011-2165-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/01/2011] [Indexed: 02/03/2023]
Abstract
AIMS/HYPOTHESIS Pro-atherogenic and pro-oxidant, oxidised LDL trigger adverse effects on pancreatic beta cells, possibly contributing to diabetes progression. Because oxidised LDL diminish the expression of genes regulated by the inducible cAMP early repressor (ICER), we investigated the involvement of this transcription factor and of oxidative stress in beta cell failure elicited by oxidised LDL. METHODS Isolated human and rat islets, and insulin-secreting cells were cultured with human native or oxidised LDL or with hydrogen peroxide. The expression of genes was determined by quantitative real-time PCR and western blotting. Insulin secretion was monitored by EIA kit. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS Exposure of beta cell lines and islets to oxidised LDL, but not to native LDL raised the abundance of ICER. Induction of this repressor by the modified LDL compromised the expression of important beta cell genes, including insulin and anti-apoptotic islet brain 1, as well as of genes coding for key components of the secretory machinery. This led to hampering of insulin production and secretion, and of cell survival. Silencing of this transcription factor by RNA interference restored the expression of its target genes and alleviated beta cell dysfunction and death triggered by oxidised LDL. Induction of ICER was stimulated by oxidative stress, whereas antioxidant treatment with N-acetylcysteine or HDL prevented the rise of ICER elicited by oxidised LDL and restored beta cell functions. CONCLUSIONS/INTERPRETATION Induction of ICER links oxidative stress to beta cell failure caused by oxidised LDL and can be effectively abrogated by antioxidant treatment.
Collapse
Affiliation(s)
- D. Favre
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - G. Niederhauser
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - D. Fahmi
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - V. Plaisance
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - S. Brajkovic
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - N. Beeler
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - F. Allagnat
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
| | - J. A. Haefliger
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
| | - R. Regazzi
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - G. Waeber
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
| | - A. Abderrahmani
- Service of Internal Medicine, CHUV-Hospital, Lausanne, Switzerland
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
- CNRS-UMR-8199, Université Lille Nord de France, UDSL, Lille, France
| |
Collapse
|
31
|
Sucharov CC, Dockstader K, Nunley K, McKinsey TA, Bristow M. β-Adrenergic receptor stimulation and activation of protein kinase A protect against α1-adrenergic-mediated phosphorylation of protein kinase D and histone deacetylase 5. J Card Fail 2011; 17:592-600. [PMID: 21703532 DOI: 10.1016/j.cardfail.2011.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/11/2011] [Accepted: 03/07/2011] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Chronic activation of β(1)-adrenergic receptor (β(1)-AR) signaling can have deleterious effects on the heart, and animal models overexpressing β(1)-ARs develop a dilated cardiomyopathy and heart failure. In the classic β-AR pathway, receptor occupancy by an agonist results in increased cyclic adenosine monophosphate (cAMP) levels and activation of protein kinase A (PKA). However, the role of PKA-dependent signaling in the development and progression of cardiomyopathies and heart failure is controversial, because β-AR signal transduction is generally desensitized in the failing heart and PKA activity is not increased. METHODS AND RESULTS Neonatal rat ventricular myocytes were acutely (15 minutes) or chronically (48 hours) treated with isoproterenol, and phosphorylation of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) was measured. Acute β(1)-AR stimulation or expression of constitutively active (CA) PKA reduced α(1)-adrenergic-mediated phosphorylation of HDAC5 and PKD by activation of a phosphatase. Overexpression of CA-PKA also reduced α(1)-adrenergic-mediated increased expression of contractile protein fetal isoforms and promoted repression of adult isoforms, but had no effect on α(1)-adrenergic-mediated cellular hypertrophy. CONCLUSIONS These data indicate that the PKA-dependent arm of β-AR signaling can be antihypertrophic and presumably beneficial, through dephosphorylation of PKD and HDAC5 and reduction of hypertrophic fetal isoform gene expression.
Collapse
Affiliation(s)
- Carmen C Sucharov
- Division of Cardiology, School of Medicine, University of Colorado Denver, Health Sciences Center Campus, Aurora, Colorado 80045, USA.
| | | | | | | | | |
Collapse
|
32
|
Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer. J Hematol Oncol 2011; 4:17. [PMID: 21507255 PMCID: PMC3108377 DOI: 10.1186/1756-8722-4-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/20/2011] [Indexed: 12/23/2022] Open
Abstract
Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors.
Collapse
|
33
|
Kagale S, Rozwadowski K. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 2011; 6:141-6. [PMID: 20935498 DOI: 10.4161/epi.6.2.13627] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.
Collapse
Affiliation(s)
- Sateesh Kagale
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
34
|
Pan IC, Li CW, Su RC, Cheng CP, Lin CS, Chan MT. Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato. PLANTA 2010; 232:1075-86. [PMID: 20697739 DOI: 10.1007/s00425-010-1235-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/16/2010] [Indexed: 05/25/2023]
Abstract
Ethylene-responsive transcription factors (ERFs) bind specifically to cis-acting DNA regulatory elements such as GCC boxes and play an important role in the regulation of defense- and stress-related genes in plants. In contrast to other ERFs, class II ERFs contain an ERF-associated amphiphilic repression (EAR) domain and act as GCC-mediated transcriptional repressors. In this study, SlERF3, a class II ERF was isolated from tomato and characterized. To examine whether the EAR motif of class II ERF proteins participates in ERF-mediated functions in plants, the EAR domain was deleted to generate SlERF3ΔRD. We show that SlERF3ΔRD protein retains the character of a transcription factor and becomes a GCC-mediated transcriptional activator. Constitutive expression of full-length SlERF3 in tomato severely suppressed growth and, as a result, no transgenic plants were obtained. However, no apparent effects on growth and development of SlERF3ΔRD transgenic plants were observed. Overexpression of SlERF3ΔRD in transgenic tomato induced expression of pathogenesis-related protein genes such as PR1, PR2 and PR5, and enhanced tolerance to Ralstonia solanacearum. Furthermore, transgenic Arabidopsis and tomatoes constitutively expressing SlERF3ΔRD exhibited reduced levels of membrane lipid peroxidation and enhanced tolerance to salt stress. In comparison with wild-type plants grown under stress conditions, transgenic SlERF3ΔRD tomatoes produced more flowers, fruits, and seeds. This study illustrates a gene-enhancing tolerance to both biotic and abiotic stresses in transgenic plants with the deletion of a repressor domain. Our findings suggest that class II ERF proteins may find important use in crop improvement or genetic engineering to increase stress tolerance in plants.
Collapse
Affiliation(s)
- I-Chun Pan
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression. Mol Cell 2010; 38:29-40. [PMID: 20385087 PMCID: PMC3566586 DOI: 10.1016/j.molcel.2010.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/10/2009] [Accepted: 02/21/2010] [Indexed: 12/28/2022]
Abstract
Transcriptional control is exerted by the antagonistic activities of activator and repressor proteins. In Saccharomyces cerevisiae, transcription factor complexes containing the MADS box protein Mcm1p are key regulators of cell cycle-dependent transcription at both the G2/M and M/G1 transitions. The homeodomain repressor protein Yox1p acts in a complex with Mcm1p to control the timing of gene expression. Here, we show that Yox1p interacts with Mcm1p through a motif located N terminally to its homeodomain. Yox1p functions as a transcriptional repressor by competing with the forkhead transcription activator protein Fkh2p for binding to Mcm1p through protein-protein interactions at promoters of a subset of Mcm1p-regulated genes. Importantly, this competition is not through binding the same DNA site that is commonly observed. Thus, this study describes a different mechanism for determining the timing of cell cycle-dependent gene expression that involves competition between short peptide motifs in repressor and activator proteins for interaction with a common binding partner.
Collapse
|
36
|
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. THE PLANT CELL 2010; 22:1249-63. [PMID: 20388856 PMCID: PMC2879754 DOI: 10.1105/tpc.108.064048] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis thaliana NAC domain transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) acts as a master regulator of xylem vessel differentiation. To understand the mechanism by which VND7 regulates xylem vessel differentiation, we used a yeast two-hybrid system to screen for proteins that interact with VND7 and identified cDNAs encoding two NAC domain proteins, VND-INTERACTING1 (VNI1) and VNI2. Binding assays demonstrated that VNI2 effectively interacts with VND7 and the VND family proteins, VND1-5, as well as with other NAC domain proteins at lower affinity. VNI2 is expressed in both xylem and phloem cells in roots and inflorescence stems. The expression of VNI2 overlaps with that of VND7 in elongating vessel precursors in roots. VNI2 contains a predicted PEST motif and a C-terminally truncated VNI2 protein, which lacks part of the PEST motif, is more stable than full-length VNI2. Transient reporter assays showed that VNI2 is a transcriptional repressor and can repress the expression of vessel-specific genes regulated by VND7. Expression of C-terminally truncated VNI2 under the control of the VND7 promoter inhibited the normal development of xylem vessels in roots and aerial organs. These data suggest that VNI2 regulates xylem cell specification as a transcriptional repressor that interacts with VND proteins and possibly also with other NAC domain proteins.
Collapse
Affiliation(s)
- Masatoshi Yamaguchi
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
| | - Nobutaka Mitsuda
- Research Institute of Genome-Based Biofactory, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Minoru Kubo
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Masaru Ohme-Takagi
- Research Institute of Genome-Based Biofactory, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Demura
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
- Address correspondence to
| |
Collapse
|
37
|
Dong CJ, Liu JY. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC PLANT BIOLOGY 2010; 10:47. [PMID: 20230648 PMCID: PMC2848764 DOI: 10.1186/1471-2229-10-47] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/16/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants respond to abiotic stress through complex regulation of transcription, including both transcriptional activation and repression. Dehydration-responsive-element binding protein (DREB)-type transcription factors are well known to play important roles in adaptation to abiotic stress. The mechanisms by which DREB-type transcription factors activate stress-induced gene expression have been relatively well studied. However, little is known about how DREB-type transcriptional repressors modulate plant stress responses. In this study, we report the functional analysis of RAP2.1, a DREB-type transcriptional repressor. RESULTS RAP2.1 possesses an APETALA2 (AP2) domain that binds to dehydration-responsive elements (DREs) and an ERF-associated amphiphilic repression (EAR) motif, as the repression domain located at the C-terminus of the protein. Expression of RAP2.1 is strongly induced by drought and cold stress via an ABA-independent pathway. Arabidopsis plants overexpressing RAP2.1 show enhanced sensitivity to cold and drought stresses, while rap2.1-1 and rap2.1-2 T-DNA insertion alleles result in reduced sensitivity to these stresses. The reduced stress sensitivity of the plant containing the rap2.1 allele can be genetically complemented by the expression of RAP2.1, but not by the expression of EAR-motif-mutated RAP2.1. Furthermore, chromatin immunoprecipitation (ChIP) analysis has identified Responsive to desiccation/Cold-regulated (RD/COR) genes as downstream targets of RAP2.1 in vivo. Stress-induced expression of the RD/COR genes is repressed by overexpression of RAP2.1 and is increased in plants expressing the rap2.1 allele. In addition, RAP2.1 can negatively regulate its own expression by binding to DREs present in its own promoter. Our data suggest that RAP2.1 acts as a negative transcriptional regulator in defence responses to cold and drought stress in Arabidopsis. CONCLUSIONS A hypothetical model for the role of RAP2.1 in modulating plant responses to cold and drought is proposed in this study. It appears that RAP2.1 acts as a negative "subregulon" of DREB-type activators and is involved in the precise regulation of expression of stress-related genes, acting to keep stress responses under tight control.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Kagale S, Links MG, Rozwadowski K. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1109-34. [PMID: 20097792 PMCID: PMC2832246 DOI: 10.1104/pp.109.151704] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.
Collapse
|
39
|
Bhattacharya S, Conolly RB, Kaminski NE, Thomas RS, Andersen ME, Zhang Q. A bistable switch underlying B-cell differentiation and its disruption by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2010; 115:51-65. [PMID: 20123757 DOI: 10.1093/toxsci/kfq035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The differentiation of B cells into antibody-secreting plasma cells upon antigen stimulation, a crucial step in the humoral immune response, is disrupted by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Several key regulatory proteins in the B-cell transcriptional network have been identified, with two coupled mutually repressive feedback loops among the three transcription factors B-cell lymphoma 6 (Bcl-6), B lymphocyte-induced maturation protein 1(Blimp-1), and paired box 5 (Pax5) forming the core of the network. However, the precise mechanisms underlying B-cell differentiation and its disruption by TCDD are not fully understood. Here we show with a computational systems biology model that coupling of the two feedback loops at the Blimp-1 node, through parallel inhibition of Blimp-1 gene activation by Bcl-6 and repression of Blimp-1 gene deactivation by Pax5, can generate a bistable switch capable of directing B cells to differentiate into plasma cells. We also use bifurcation analysis to propose that TCDD may suppress the B-cell to plasma cell differentiation process by raising the threshold dose of antigens such as lipopolysaccharide required to trigger the bistable switch. Our model further predicts that high doses of TCDD may render the switch reversible, thus causing plasma cells to lose immune function and dedifferentiate to a B cell-like state. The immunotoxic implications of these predictions are twofold. First, TCDD and related compounds would disrupt the initiation of the humoral immune response by reducing the proportion of B cells that respond to antigen and differentiate into antibody-secreting plasma cells. Second, TCDD may also disrupt the maintenance of the immune response by depleting the pool of available plasma cells through dedifferentiation.
Collapse
Affiliation(s)
- Sudin Bhattacharya
- Division of Computational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Joughin BA, Cheung E, Karuturi RKM, Saez-Rodriguez J, Lauffenburger DA, Liu ET. Cellular Regulatory Networks. SYSTEMS BIOMEDICINE 2010:57-108. [DOI: 10.1016/b978-0-12-372550-9.00004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Kidokoro S, Yamaguchi-Shinozaki K, Tamaoki M, Arakawa K, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Ikeda A, Yamaguchi J. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. JOURNAL OF PLANT RESEARCH 2009; 122:633-43. [PMID: 19618250 DOI: 10.1007/s10265-009-0252-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/04/2009] [Indexed: 05/20/2023]
Abstract
Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Tomokazu Tsutsui
- Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guerriero G, Martin N, Golovko A, Sundström JF, Rask L, Ezcurra I. The RY/Sph element mediates transcriptional repression of maturation genes from late maturation to early seedling growth. THE NEW PHYTOLOGIST 2009; 184:552-565. [PMID: 19659659 DOI: 10.1111/j.1469-8137.2009.02977.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In orthodox seeds, the transcriptional activator ABI3 regulates two major stages in embryo maturation: a mid-maturation (MAT) stage leading to accumulation of storage compounds, and a late maturation (LEA) stage leading to quiescence and desiccation tolerance. Our aim was to elucidate mechanisms for transcriptional shutdown of MAT genes during late maturation, to better understand phase transition between MAT and LEA stages. Using transgenic and transient approaches in Nicotiana, we examined activities of two ABI3-dependent reporter genes driven by multimeric RY and abscisic acid response elements (ABREs) from a Brassica napus napin gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA binding. Expression of RY peaks during mid-maturation and drops during late maturation, mimicking the MAT gene program, and in Arabidopsis thaliana RY elements are over-represented in MAT, but not in LEA, genes. The ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C phosphatase, and by a repressor of maturation genes, VAL1/HSI2. The RY element mediates repression of MAT genes, and we propose that transcriptional shutdown of the MAT program during late maturation involves inhibition of ABI3 DNA binding by dephosphorylation. Later, during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements.
Collapse
Affiliation(s)
- Gea Guerriero
- KTH Biotechnology, Swedish Center of Biomimetic Fiber Engineering, AlbaNova, SE-106 91, Stockholm, Sweden
| | - Nathalie Martin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23, Uppsala; Sweden
| | - Anna Golovko
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23, Uppsala; Sweden
| | - Jens F Sundström
- Department of Plant Biology and Forest Genetics, SLU, Box 7080, SE-750 07, Uppsala, Sweden
| | - Lars Rask
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23, Uppsala; Sweden
| | - Ines Ezcurra
- KTH Biotechnology, Swedish Center of Biomimetic Fiber Engineering, AlbaNova, SE-106 91, Stockholm, Sweden
| |
Collapse
|
43
|
Krogan NT, Long JA. Why so repressed? Turning off transcription during plant growth and development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:628-36. [PMID: 19700365 PMCID: PMC2757442 DOI: 10.1016/j.pbi.2009.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/18/2009] [Accepted: 07/21/2009] [Indexed: 05/20/2023]
Abstract
To ensure correct patterns of gene expression, eukaryotes use a variety of strategies to repress transcription. The transcriptional regulators mediating this repression can be broadly categorized as either passive or active repressors. While passive repressors rely on mechanisms such as steric hindrance of transcriptional activators to repress gene expression, active repressors display inherent repressive abilities commonly conferred by discrete repression domains. Recent studies have indicated that both categories of regulators function in a variety of plant processes, including hormone signal transduction, developmental pathways, and response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Naden T Krogan
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
44
|
Ku WC, Chiu SK, Chen YJ, Huang HH, Wu WG, Chen YJ. Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2. Mol Cell Proteomics 2009; 8:2034-50. [PMID: 19505873 PMCID: PMC2742435 DOI: 10.1074/mcp.m900013-mcp200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 05/26/2009] [Indexed: 01/13/2023] Open
Abstract
Transcription factor activating enhancer-binding protein 4 (AP-4) is a basic helix-loop-helix protein that binds to E-box elements. AP-4 has received increasing attention for its regulatory role in cell growth and development, including transcriptional repression of the human homolog of murine double minute 2 (HDM2), an important oncoprotein controlling cell growth and survival, by an unknown mechanism. Here we demonstrate that AP-4 binds to an E-box located in the HDM2-P2 promoter and represses HDM2 transcription in a p53-independent manner. Incremental truncations of AP-4 revealed that the C-terminal Gln/Pro-rich domain was essential for transcriptional repression of HDM2. To further delineate the molecular mechanism(s) of AP-4 transcriptional control and its potential implications, we used DNA-affinity purification followed by complementary quantitative proteomics, cICAT and iTRAQ labeling methods, to identify a previously unknown E-box-bound AP-4 protein complex containing 75 putative components. The two labeling methods complementarily quantified differentially AP-4-enriched proteins, including the most significant recruitment of DNA damage response proteins, followed by transcription factors, transcriptional repressors/corepressors, and histone-modifying proteins. Specific interaction of AP-4 with CCCTC binding factor, stimulatory protein 1, and histone deacetylase 1 (an AP-4 corepressor) was validated using AP-4 truncation mutants. Importantly, inclusion of trichostatin A did not alleviate AP-4-mediated repression of HDM2 transcription, suggesting a previously unidentified histone deacetylase-independent repression mechanism. In contrast, the complementary quantitative proteomics study suggested that transcription repression occurs via coordination of AP-4 with other transcription factors, histone methyltransferases, and/or a nucleosome remodeling SWI.SNF complex. In addition to previously known functions of AP-4, our data suggest that AP-4 participates in a transcriptional-regulating complex at the HDM2-P2 promoter in response to DNA damage.
Collapse
Affiliation(s)
- Wei-Chi Ku
- From the ‡Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- §Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sung-Kay Chiu
- ¶Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yi-Ju Chen
- ‖Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Hung Huang
- ‖Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Guey Wu
- From the ‡Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- §Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Ju Chen
- From the ‡Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- **Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, and
- ‡‡Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
45
|
Mayer SI, Willars GB, Nishida E, Thiel G. Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs. J Cell Biochem 2009; 105:1267-78. [PMID: 18814180 DOI: 10.1002/jcb.21927] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimulation of gonadotropin-releasing hormone (GnRH) receptors with the GnRH analogue buserelin enhances expression of the zinc finger transcription factor Egr-1 in a pituitary gonadotroph cell line. The signaling cascade is blocked by overexpression of MAP kinase phosphatase-1 that dephosphorylates extracellular signal-regulated protein kinase in the nucleus. Chromatin immunoprecipitation experiments revealed that the phosphorylated form of Elk-1, a key regulator of gene transcription driven by serum response element (SRE), binds to the 5'-upstream region of the Egr-1 gene in buserelin-stimulated gonadotrophs. Expression of a dominant-negative mutant of Elk-1 completely blocked Egr-1 expression, indicating that Elk-1 connects the intracellular signaling cascade elicited by activation of GnRH receptors with transcription of the Egr-1 gene. GnRH receptor activation additionally induced the phosphorylation of CREB, which in its phosphorylated form bound to the Egr-1 gene. Expression of a dominant-negative mutant of CREB reduced GnRH receptor-induced upregulation of Egr-1 expression, indicating that CREB plays a role in the signaling pathway that regulates Egr-1 expression in gonadotrophs. We further identified the genes encoding basic fibroblast growth factor, tumor necrosis factor alpha, and transforming growth factor beta as bona fide target genes of Egr-1 in gonadotrophs. The analysis of gonadotroph cells that express--in addition to GnRH receptors--muscarinic M(3) acetylcholine receptors revealed that the nuclear events connecting GnRH receptors and muscarinic M(3) acetylcholine receptors with the Egr-1 gene are indistinguishable.
Collapse
Affiliation(s)
- Sabine I Mayer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
46
|
Polev DE, Nosova YK, Krukovskaya LL, Baranova AV, Kozlov AP. Expression of transcripts corresponding to cluster Hs.633957 in human healthy and tumor tissues. Mol Biol 2009. [DOI: 10.1134/s0026893309010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Chou CJ, Herman D, Gottesfeld JM. Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J Biol Chem 2008; 283:35402-9. [PMID: 18953021 DOI: 10.1074/jbc.m807045200] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors, including various benzamides and hydroxamates, are currently in clinical development for a broad range of human diseases, including cancer and neurodegenerative diseases. We recently reported the identification of a family of benzamide-type HDAC inhibitors that are relatively non-toxic compared with the hydroxamates. Members of this class of compounds have shown efficacy in cell-based and mouse models for the neurodegenerative diseases Friedreich ataxia and Huntington disease. Considerable differences in IC(50) values for the various HDAC enzymes have been reported for many of the HDAC inhibitors, leading to confusion as to the HDAC isotype specificities of these compounds. Here we show that a benzamide HDAC inhibitor, a pimelic diphenylamide (106), is a class I HDAC inhibitor, demonstrating no activity against class II HDACs. 106 is a slow, tight-binding inhibitor of HDACs 1, 2, and 3, although inhibition for these enzymes occurs through different mechanisms. Inhibitor 106 also has preference toward HDAC3 with K(i) of approximately 14 nm, 15 times lower than the K(i) for HDAC1. In comparison, the hydroxamate suberoylanilide hydroxamic acid does not discriminate between these enzymes and exhibits a fast-on/fast-off inhibitory mechanism. These observations may explain a paradox involving the relative activities of pimelic diphenylamides versus hydroxamates as gene activators.
Collapse
Affiliation(s)
- C James Chou
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
48
|
Affiliation(s)
- G Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, Hamburg, Germany
| | | |
Collapse
|
49
|
Dixit V, Juliano RL. Selective killing of Smad4-negative tumor cells via a designed repressor strategy. Mol Pharmacol 2008; 74:289-97. [PMID: 18426856 PMCID: PMC2561925 DOI: 10.1124/mol.108.046953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Smad4 is a key tumor suppressor that is frequently deleted or inactive in pancreatic and colon tumors. In this report, we describe an approach for attaining selective killing of Smad4-deficient tumor cells. Using a vector system involving a designed repressor with zinc finger binding domains and the herpes simplex virus thymidine kinase (HSV-TK) "suicide gene," we demonstrate Smad4-responsive regulation of HSV-TK expression and consequent altered susceptibility to the prodrug ganciclovir (GCV). In pancreatic tumor cell lines stably transfected with the vector system, a robust differential of HSV-TK expression and GCV toxicity was attained depending on the presence or absence of cotransfected Smad4. In matched colon tumor cell lines lacking Smad4 or expressing physiological levels of Smad4, an adenoviral version of the vector system attained a significant degree of preferential killing of Smad4-negative tumor cells in response to GCV. These findings demonstrate the possibility of achieving selective killing of pancreatic and colon cells depending on their Smad4 status.
Collapse
Affiliation(s)
- Vidula Dixit
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | | |
Collapse
|
50
|
Ekici M, Hohl M, Schuit F, Martínez-Serrano A, Thiel G. Transcription of genes encoding synaptic vesicle proteins in human neural stem cells: chromatin accessibility, histone methylation pattern, and the essential role of rest. J Biol Chem 2008; 283:9257-68. [PMID: 18234667 PMCID: PMC2431030 DOI: 10.1074/jbc.m709388200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/29/2008] [Indexed: 11/06/2022] Open
Abstract
Human HNSC.100 neural stem cells up-regulate expression of GFAP following withdrawal of mitogens. Activation of the ERK signaling pathway prevented the up-regulation of GFAP expression. Incubation of cells with retinoic acid in the absence of mitogens enhanced basal neuronal differentiation that was accompanied by an up-regulation of neuronal gene expression and a down-regulation of GFAP and nestin expression. Retinoic acid treatment changed the histone code of neuronal genes encoding synapsin I, synaptophysin, and synaptotagmins II, IV, and VII from a transcriptionally inactive (methylation of lysine residue 9 of histone 3) to a transcriptionally active state (methylation of lysine residue 4 of histone 3). In contrast, the chromatin structure of the GFAP gene is transformed from a transcriptionally active state in unstimulated neural stem cells to a transcriptionally inactive state in retinoic acid-stimulated cells. Additionally, retinoic acid treatment reduced the binding of histone deacetylase-1 and REST to neuronal genes. The inhibition of histone deacetylase activity induced expression of genes encoding synaptic vesicle proteins in unstimulated neural stem cells. Similarly, neuronal gene transcription was enhanced following expression of a mutant of REST that contained a transcriptional activation domain. These data indicate that in undifferentiated human neural stem cells, neuronal genes encoding synaptic vesicle proteins are accessible for the REST mutant and are sensitive to enhanced histone acetylation.
Collapse
Affiliation(s)
- Myriam Ekici
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Homburg, Germany
| | | | | | | | | |
Collapse
|