1
|
Acevedo KL, Eaton E, Leite J, Zhao S, Chacon-Vargas K, McCarthy CM, Choi D, O’Donnell S, Gluck-Thaler E, Yu JH, Gibbons JG. Population Genomics of Aspergillus sojae is Shaped by the Food Environment. Genome Biol Evol 2025; 17:evaf067. [PMID: 40195023 PMCID: PMC12014904 DOI: 10.1093/gbe/evaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Traditional fermented foods often contain specialized microorganisms adapted to their unique environments. For example, the filamentous mold Aspergillus oryzae, used in saké fermentation, has evolved to thrive in starch-rich conditions compared to its wild ancestor, Aspergillus flavus. Similarly, Aspergillus sojae, used in soybean-based fermentations like miso and shochu, is hypothesized to have been domesticated from Aspergillus parasiticus. Here, we examined the effects of long-term A. sojae use in soybean fermentation on population structure, genome variation, and phenotypic traits. We analyzed 17 A. sojae and 24 A. parasiticus genomes (23 of which were sequenced for this study), alongside phenotypic traits of 9 isolates. Aspergillus sojae formed a distinct, low-diversity population, suggesting a recent clonal expansion. Interestingly, a population of A. parasiticus was more closely related to A. sojae than other A. parasiticus populations. Genome comparisons revealed loss-of-function mutations in A. sojae, notably in biosynthetic gene clusters encoding secondary metabolites, including the aflatoxin cluster. Interestingly though, A. sojae harbored a partial duplication of a siderophore biosynthetic cluster. Phenotypic assays showed A. sojae lacked aflatoxin production, while it was variable in A. parasiticus isolates. Additionally, certain A. sojae strains exhibited larger colony diameters under miso-like salt conditions. These findings support the hypothesis that A. parasiticus is the progenitor of A. sojae and that domestication significantly reduced genetic diversity. Future research should explore how wild and food-associated strains influence sensory attributes and microbial community dynamics in fermented soy products.
Collapse
Affiliation(s)
- Kimberly L Acevedo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Elizabeth Eaton
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Julia Leite
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shu Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Katherine Chacon-Vargas
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Colin M McCarthy
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Dasol Choi
- Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel O’Donnell
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Guan X, Martinez AR, Fernandez M, Molist F, Wells JM, Santos RR. The Mycotoxins T-2 and Deoxynivalenol Facilitate the Translocation of Streptococcus suis across Porcine Ileal Organoid Monolayers. Toxins (Basel) 2024; 16:382. [PMID: 39330840 PMCID: PMC11436090 DOI: 10.3390/toxins16090382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Mycotoxins have the potential to increase the risk of airway or intestinal infection due to their effects on epithelial integrity and function. The bacterium Streptococcus suis (S. suis) is often carried in pigs and can cause outbreaks of invasive disease, leading to sepsis and meningitis in postweaning piglets. In this study, we tested the effect of two Fusarium mycotoxins (deoxynivalenol (DON) and T-2) on the integrity of the intestinal epithelium and their interaction with S. suis. Porcine ileal organoids were exposed to DON and T-2 individually or in combination and co-cultured with or without S. suis. Both DON and T-2 were toxic for ileal organoid monolayers at a concentration of 1 µM but not S. suis, even at a higher concentration of 4 µM. To mimic sub-clinical exposures on farms, DON was tested at a concentration of 0.1 µM and T-2 at a concentration of 0.01 µM. The mycotoxins alone did not affect cell permeability, but in combination with S. suis there was an increase in epithelial permeability. Furthermore, DON and T-2 together decreased the transepithelial electrical resistance and increased bacterial translocation.
Collapse
Affiliation(s)
- Xiaonan Guan
- Schothorst Feed Research, 8212 NA Lelystad, The Netherlands (R.R.S.)
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, 6700 AH Wageningen, The Netherlands; (A.R.M.); (M.F.); (J.M.W.)
| | - Arabela R. Martinez
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, 6700 AH Wageningen, The Netherlands; (A.R.M.); (M.F.); (J.M.W.)
| | - Marcela Fernandez
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, 6700 AH Wageningen, The Netherlands; (A.R.M.); (M.F.); (J.M.W.)
| | - Francesc Molist
- Schothorst Feed Research, 8212 NA Lelystad, The Netherlands (R.R.S.)
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, 6700 AH Wageningen, The Netherlands; (A.R.M.); (M.F.); (J.M.W.)
| | - Regiane R. Santos
- Schothorst Feed Research, 8212 NA Lelystad, The Netherlands (R.R.S.)
| |
Collapse
|
3
|
Zjalic S, Markov K, Loncar J, Jakopovic Z, Beccaccioli M, Reverberi M. Biocontrol of Occurrence Ochratoxin A in Wine: A Review. Toxins (Basel) 2024; 16:277. [PMID: 38922171 PMCID: PMC11209579 DOI: 10.3390/toxins16060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.
Collapse
Affiliation(s)
- Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Jelena Loncar
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Zeljko Jakopovic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
4
|
Zha A, Tu R, Cui Z, Qi M, Liao S, Wang J, Tan B, Liao P. Baicalin-Zinc Complex Alleviates Inflammatory Responses and Hormone Profiles by Microbiome in Deoxynivalenol Induced Piglets. Front Nutr 2021; 8:738281. [PMID: 34692749 PMCID: PMC8534294 DOI: 10.3389/fnut.2021.738281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the beneficial effect of baicalin–zinc complex (BZN) on intestinal microorganisms in deoxynivalenol (DON)-challenged piglets and the association between intestinal microorganisms and host immunity and hormone secretion. Forty weaned piglets were randomly divided into four treatments with 10 piglets in each treatment: (1) control (Con) group (pigs fed basal diet); (2) DON group (pigs fed 4 mg DON/kg basal diet); (3) BZN group (pigs fed 0.5% BZN basal diet); and (4) DBZN group (pigs fed 4 mg DON/kg and 0.5% BZN basal diet). The experiment lasted for 14 days. The BZN supplementation in DON-contaminated diets changed the intestinal microbiota composition and increased intestinal microbial richness and diversity of piglets. The BZN supplementation in DON-contaminated diets also alleviated the inflammatory responses of piglets and modulated the secretion of hormones related to the growth axis. Moreover, microbiota composition was associated with inflammatory and hormone secretion. In conclusion, BZN alleviated inflammatory response and hormone secretion in piglets, which is associated with the intestinal microbiome.
Collapse
Affiliation(s)
- Andong Zha
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiqi Tu
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Zhijuan Cui
- Department of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ming Qi
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Simeng Liao
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bie Tan
- Department of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peng Liao
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Changsha, China
| |
Collapse
|
5
|
Gallo A, Ghilardelli F, Doupovec B, Faas J, Schatzmayr D, Masoero F. Kinetics of gas production in the presence of Fusarium mycotoxins in rumen fluid of lactating dairy cows. JDS COMMUNICATIONS 2021; 2:243-247. [PMID: 36338385 PMCID: PMC9623688 DOI: 10.3168/jdsc.2021-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 12/01/2022]
Abstract
Toxins produced by Fusarium can be commonly detected in ruminant diets. Deoxynivalenol and fumonisins in the diet interfere with rumen microbiota. The presence of a mycotoxin-deactivating product counteracted negative effects.
Little is known about the effects of Fusarium mycotoxins on the fermentation potential of rumen fluid sampled from lactating dairy cows ingesting diets contaminated at regular levels of these mycotoxins (i.e., contamination levels that can normally be found on dairy farms). In the current experiment, rumen donor animals received diets contaminated with both deoxynivalenol (DON) and fumonisins (FB) with or without a mycotoxin-deactivating product. The rumen fluid donor animals were 12 lactating Holstein dairy cows that received one of 3 experimental diets in agreement with a 3 × 3 Latin square design (3 periods and 3 treatments). The 3 diets were as follows: (1) a TMR contaminated with a regular level of Fusarium mycotoxins [340.5 ± 161.0 µg of DON/kg of dry matter (DM) and 127.9 ± 43.9 µg of FB/kg of DM; control diet, CTR], (2) a TMR contaminated with Fusarium mycotoxins at levels higher than CTR but below US and European Union guidelines (733.0 ± 213.6 µg of DON/kg of DM and 994.4 ± 323.2 µg of FB/kg of DM; MTX), and (3) the MTX diet (897.3 ± 230.4 µg of DON/kg of DM and 1,247.1 ± 370.2 µg of FB/kg of DM) supplemented with a mycotoxin-deactivator product (Mycofix, Biomin Holding GmbH; 35 g/animal per day; MDP). Each experimental period lasted 21 d, and rumen fluid was individually sampled from all cows on the last day of each intoxication period. Then, the 4 rumen fluids sampled from cows receiving the same experimental diets were pooled into a single rumen inoculum, which was used in the in vitro gas production test. For the gas production test, 3 different rumen inocula (i.e., CTR, MTX, and MDP) were buffered (buffer:rumen ratio of 2:1, vol/vol) and then used in 3 fermentation runs to evaluate gas production dynamics in the presence of 8 feeds (i.e., corn meal, barley meal, corn silage, sorghum silage, alfalfa hay, ryegrass hay, dry brewers barley grains, and dried distillers grains with solubles). The kinetic parameters of gas production and volatile fatty acid concentrations were evaluated at the end of fermentation. The block run (i.e., fermentation day) effect influenced all of the fermentative and kinetic parameters. Greater final volumes or rates of gas production over time were observed for MDP compared with MTX rumen inocula (i.e., 172.6 vs. 147.8 mL/g of organic matter or 0.078 vs. 0.063 h−1, respectively). However, the increase in rate of gas production was not consistent among tested feeds, meaning that a treatment by feed interaction was observed. Volatile fatty acid concentrations were not different among treatments, except for a slight increase of acetic acid in CTR compared with MTX (i.e., 71.0 vs. 67.9 mmol/L). This study showed that Fusarium-produced mycotoxins negatively affected the kinetics of gas production in feeds, whereas the presence of the mycotoxin-deactivator product in the diets of donor animals resulted in an increase in rumen fermentation potential, thus safeguarding the rumen environment.
Collapse
Affiliation(s)
- A. Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Corresponding author
| | - F. Ghilardelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - B. Doupovec
- Biomin Research Center, Technopark 1, 3430 Tulln, Austria
| | - J. Faas
- Biomin Research Center, Technopark 1, 3430 Tulln, Austria
| | - D. Schatzmayr
- Biomin Research Center, Technopark 1, 3430 Tulln, Austria
| | - F. Masoero
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
6
|
Ragoubi C, Quintieri L, Greco D, Mehrez A, Maatouk I, D’Ascanio V, Landoulsi A, Avantaggiato G. Mycotoxin Removal by Lactobacillus spp. and Their Application in Animal Liquid Feed. Toxins (Basel) 2021; 13:toxins13030185. [PMID: 33801544 PMCID: PMC8000088 DOI: 10.3390/toxins13030185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The removal of mycotoxins from contaminated feed using lactic acid bacteria (LAB) has been proposed as an inexpensive, safe, and promising mycotoxin decontamination strategy. In this study, viable and heat-inactivated L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells were investigated for their ability to remove aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), and deoxynivalenol (DON) from MRS medium and PBS buffer over a 24 h period at 37 °C. LAB decontamination activity was also assessed in a ZEA-contaminated liquid feed (LF). Residual mycotoxin concentrations were determined by UHPLC-FLD/DAD analysis. In PBS, viable L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells removed up to 57% and 30% of ZEA and DON, respectively, while AFB1 and OTA reductions were lower than 15%. In MRS, 28% and 33% of ZEA and AFB1 were removed, respectively; OTA and DON reductions were small (≤15%). Regardless of the medium, heat-inactivated cells produced significantly lower mycotoxin reductions than those obtained with viable cells. An adsorption mechanism was suggested to explain the reductions in AFB1 and OTA, while biodegradation could be responsible for the removal of ZEA and DON. Both viable LAB strains reduced ZEA by 23% in contaminated LF after 48 h of incubation. These findings suggest that LAB strains of L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T may be applied in the feed industry to reduce mycotoxin contamination.
Collapse
Affiliation(s)
- Chaima Ragoubi
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Donato Greco
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Amel Mehrez
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Imed Maatouk
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
| | - Ahmed Landoulsi
- Risques liés aux Stress Environnement aux, Lute et Prévention, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia; (C.R.); (A.M.); (I.M.); (A.L.)
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.Q.); (D.G.); (V.D.)
- Correspondence:
| |
Collapse
|
7
|
Izco M, Vettorazzi A, de Toro M, Sáenz Y, Alvarez-Erviti L. Oral Sub-chronic Ochratoxin A Exposure Induces Gut Microbiota Alterations in Mice. Toxins (Basel) 2021; 13:106. [PMID: 33535685 PMCID: PMC7912851 DOI: 10.3390/toxins13020106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
Gut microbiota plays crucial roles in maintaining host health. External factors, such as diet, medicines, and environmental toxins, influence the composition of gut microbiota. Ochratoxin A (OTA) is one of the most prevalent and relevant mycotoxins and is a highly abundant food and animal feed contaminant. In the present study, we aimed to investigate OTA gut microbiome toxicity in mice sub-chronically exposed to low doses of OTA (0.21, 0.5, and 1.5 mg/kg body weight) by daily oral gavage for 28 days. Fecal microbiota from control and OTA-treated mice was analyzed using 16S ribosomal RNA (rRNA) gene sequencing followed by metagenomics. OTA exposure caused marked changes in gut microbial community structure, including the decrease in the diversity of fecal microbiota and the relative abundance of Firmicutes, as well as the increase in the relative abundance of Bacteroidetes at the phylum level. At the family level, six bacterial families (unclassified Bacteroidales, Porphyromonadaceae, unclassified Cyanobacteria, Streptococcaceae, Enterobacteriaceae, Ruminococcaceae) were significantly altered by OTA exposure. Interestingly, OTA-induced changes were observed in the lower-dose OTA groups, while high-dose OTA group microbiota was similar to control group. Our results demonstrated that sub-chronic exposure at low doses of OTA alters the structure and diversity of the gut microbial community.
Collapse
Affiliation(s)
- María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Ariane Vettorazzi
- MITOX Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maria de Toro
- Center for Biomedical Research of La Rioja (CIBIR), Genomics and Bioinformatics Core Facility, 26006 Logroño, Spain;
| | - Yolanda Sáenz
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain;
| |
Collapse
|
8
|
Ben Salah-Abbès J, Belgacem H, Ezzdini K, Abdel-Wahhab MA, Abbès S. Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03. Toxicon 2020; 175:28-35. [PMID: 31830485 DOI: 10.1016/j.toxicon.2019.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/17/2023]
Abstract
The present study was conducted to determine the abilities of the living Lactobacillus plantarum MON03 cells to degrade Zearalenone (ZEN) in liquid medium, and to elucidate the preventive effect in ZEN-contaminated balb/c mice showing kidney damage. The DNA fragmentation, Bcl-2 and Bax gene expression, caspase-3 activity, mRNA level of inflammation-regulating cytokines and histology of kidney tissues were examined. Female Balb/c mice were divided into four groups (10/group) and treated daily for 2 wk by oral gavage with lactic acid bacteria (L. plantarum MON03) 2 × 109 CFU/L, ~2 mg/kg only, ZEN (40 mg/kg BW) only, ZEN (40 mg/kg BW) + lactic acid bacteria (L. plantarum MON03, 2 × 109 CFU/L, ~2 mg/kg). Control group received vehicle. At the end of experiment, the kidney was collected for the determination of DNA fragmentation, Bcl-2 and Bax gene expression,caspase-3 activity, Malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) content, as well as for any alterations in expression of total antioxidant activity (TAC) and mRNA levels of inflammation-regulating cytokines (e.g., IL-10, IL-6, TNF-alpha). The results indicated that, kidney cells exposure to ZEN led to increased caspase-3 activity, MDA, and IL-10, IL-6, TNF-alpha and Bax mRNA levels, but decreased TAC content and down-regulated expression of GSH-Px and CAT and Bcl-2 mRNA. Co-treatment with ZEN plus LP suppressed the levels of DNA fragmentation; normalized kidney MDA and increased CAT levels, up-regulated expression of GSH-Px and CAT, and normalized mRNA levels of the analyzed cytokines. It's concluded that ZEN might have toxic effects in kidney. Further, it can be seen that use of LP induced protective effects against the oxidative stress and kidney toxicity of ZEN in part through adhesion (and so likely diminished bioavailability).
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Khawla Ezzdini
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
9
|
Zheng W, Ji X, Zhang Q, Yao W. Intestinal Microbiota Ecological Response to Oral Administrations of Hydrogen-Rich Water and Lactulose in Female Piglets Fed a Fusarium Toxin-Contaminated Diet. Toxins (Basel) 2018; 10:E246. [PMID: 29914163 PMCID: PMC6024725 DOI: 10.3390/toxins10060246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023] Open
Abstract
The objective of the current experiment was to explore the intestinal microbiota ecological response to oral administrations of hydrogen-rich water (HRW) and lactulose (LAC) in female piglets fed a Fusarium mycotoxin-contaminated diet. A total of 24 individually-housed female piglets (Landrace × large × white; initial average body weight, 7.25 ± 1.02 kg) were randomly assigned to receive four treatments (six pigs/treatment): uncontaminated basal diet (negative control, NC), mycotoxin-contaminated diet (MC), MC diet + HRW (MC + HRW), and MC diet + LAC (MC + LAC) for 25 days. Hydrogen levels in the mucosa of different intestine segments were measured at the end of the experiment. Fecal scoring and diarrhea rate were recorded every day during the whole period of the experiment. Short-chain fatty acids (SCFAs) profiles in the digesta of the foregut and hindgut samples were assayed. The populations of selected bacteria and denaturing gradient gel electrophoresis (DGGE) profiles of total bacteria and methanogenic Archaea were also evaluated. Results showed that Fusarium mycotoxins not only reduced the hydrogen levels in the caecum but also shifted the SCFAs production, and populations and communities of microbiota. HRW treatment increased the hydrogen levels of the stomach and duodenum. HRW and LAC groups also had higher colon and caecum hydrogen levels than the MC group. Both HRW and LAC protected against the mycotoxin-contaminated diet-induced higher diarrhea rate and lower SCFA production in the digesta of the colon and caecum. In addition, the DGGE profile results indicated that HRW and LAC might shift the pathways of hydrogen-utilization bacteria, and change the diversity of intestine microbiota. Moreover, HRW and LAC administrations reversed the mycotoxin-contaminated diet-induced changing of the populations of Escherichia coli (E. coli) and Bifidobacterium in ileum digesta and hydrogen-utilizing bacteria in colon digesta.
Collapse
Affiliation(s)
- Weijiang Zheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xu Ji
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen Yao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|
10
|
Fumonisin-Exposure Impairs Age-Related Ecological Succession of Bacterial Species in Weaned Pig Gut Microbiota. Toxins (Basel) 2018; 10:toxins10060230. [PMID: 29874877 PMCID: PMC6024561 DOI: 10.3390/toxins10060230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Pigs are highly affected by dietary mycotoxin contamination and particularly by fumonisin. The effects of fumonisin on pig intestinal health are well documented, but little is known regarding its impact on gut microbiota. We investigate the effects of the fumonisin (FB1, 12 mg/kg feed) on the fecal microbiota of piglets (n = 6) after 0, 8, 15, 22, and 29 days of exposure. A control group of six piglets received a diet free of FB1. Bacterial community diversity, structure and taxonomic composition were carried out by V3–V4 16S rRNA gene sequencing. Exposure to FB1 decreases the diversity index, and shifts and constrains the structure and the composition of the bacterial community. This takes place as early as after 15 days of exposure and is at a maximum after 22 days of exposure. Compared to control, FB1 alters the ecological succession of fecal microbiota species toward higher levels of Lactobacillus and lower levels of the Lachnospiraceae and Veillonellaceae families, and particularly OTUs (Operational Taxonomic Units) of the genera Mitsuokella, Faecalibacterium and Roseburia. In conclusion, FB1 shifts and constrains age-related evolution of microbiota. The direct or indirect contribution of FB1 microbiota alteration in the global host response to FB1 toxicity remains to be investigated.
Collapse
|
11
|
Abstract
Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum, we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi, we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium, we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks.IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including the rhizosphere. Many of these organisms are notorious as economically devastating plant pathogens, but little is known about how they communicate chemically with each other. Here, we uncover a conserved antagonistic communication between the widespread bacterial wilt pathogen Ralstonia solanacearum and plant-pathogenic fungi from disparate genera, Fusarium and Botrytis Exposure of Fusarium fujikuroi to the bacterial lipopeptide ralsolamycin resulted in production of the antibacterial metabolite bikaverin specifically in fungal tissues invaded by Ralstonia Remarkably, ralsolamycin induction of bikaverin was conserved in a Botrytis cinerea isolate carrying a horizontally transferred bikaverin gene cluster. These results indicate that horizontally transferred gene clusters may carry regulatory prompts that contribute to conserved fitness functions in polymicrobial environments.
Collapse
|
12
|
De Gelder L, Audenaert K, Willems B, Schelfhout K, De Saeger S, De Boevre M. Processing of mycotoxin contaminated waste streams through anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:122-128. [PMID: 29033019 DOI: 10.1016/j.wasman.2017.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Food and feed stocks heavily contaminated with mycotoxins are rendered unfit for consumption and therefore discarded as waste. Due to the lack of guidelines and in accordance with the prudent avoidance principle, these waste streams are often incinerated. For better valorization, these streams could be used as input for anaerobic digestion. However, the degradation of multiple mycotoxins during anaerobic digestion and their effect on the methane production is currently unknown. In batch tests spiked with mycotoxins, aflatoxin B1, ochratoxin A, deoxynivalenol, zearalenone and T-2 toxin were degraded for more than 90%. For mesophile and thermophile digestion respectively, fumonisin B1 was degraded for 70% and 85%, and most ergot alkaloids for 64% and 98%. Neither biogas production, nor methane production were influenced by the presence of the mycotoxins. Subsequently, semi-continuous reactors fed with contaminated maize resulted in more than 99% degradation for all mycotoxins after 1.8 hydraulic retention time with stable biogas production and process parameters. This study shows that mycotoxin contaminated organic waste can be safely valorized to methane while the digestate is void of mycotoxin residues.
Collapse
Affiliation(s)
- L De Gelder
- Laboratory for Environmental Biotechnology, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, BE-9000 Ghent, Belgium.
| | - K Audenaert
- Laboratory of Applied Mycology and Phenotyping, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, BE-9000 Ghent, Belgium
| | - B Willems
- Innolab CVBA, Derbystraat 223, BE-9000 Ghent, Belgium
| | - K Schelfhout
- OVAM, Stationsstraat 110, BE-2800 Mechelen, Belgium
| | - S De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - M De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| |
Collapse
|
13
|
Zeng Y, Zeng D, Zhang Y, Ni XQ, Wang J, Jian P, Zhou Y, Li Y, Yin ZQ, Pan KC, Jing B. Lactobacillus plantarumBS22 promotes gut microbial homeostasis in broiler chickens exposed to aflatoxin B1. J Anim Physiol Anim Nutr (Berl) 2017; 102:e449-e459. [DOI: 10.1111/jpn.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/15/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Zeng
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - D. Zeng
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - Y. Zhang
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - X. Q. Ni
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - J. Wang
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - P. Jian
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - Y. Zhou
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - Y. Li
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - Z. Q. Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - K. C. Pan
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| | - B. Jing
- Animal Microecology Institute; College of Veterinary Medicine; Sichuan Agricultural University; Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province; Sichuan Agricultural University; Sichuan China
| |
Collapse
|
14
|
Jarolim K, Del Favero G, Ellmer D, Stark TD, Hofmann T, Sulyok M, Humpf HU, Marko D. Dual effectiveness of Alternaria but not Fusarium mycotoxins against human topoisomerase II and bacterial gyrase. Arch Toxicol 2016; 91:2007-2016. [PMID: 27682608 PMCID: PMC5364253 DOI: 10.1007/s00204-016-1855-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
Abstract
Type II DNA-topoisomerases (topo II) play a crucial role in the maintenance of DNA topology. Previously, fungi of the Alternaria genus were found to produce mycotoxins that target human topo II. These results implied the question why a fungus should produce secondary metabolites that target a human enzyme. In the current work, the homology between human topo II and its bacterial equivalent, gyrase, served as basis to study a potential dual inhibition of both enzymes by mycotoxins. A total of 15 secondary metabolites produced by fungi of the genera Alternaria and Fusarium were assessed for their impact on topo II of human and bacterial origin in the decatenation and the supercoiling assay, respectively. In line with the theory of dual topo II inhibition, six of the tested Alternaria mycotoxins were active against both enzymes, the dibenzo-α-pyrones alternariol (AOH) and alternariol monomethyl ether (AME), as well as the perylene-quinones altertoxin I (ATX I) and II (ATX II), alterperylenol (ALP) and stemphyltoxin III (STTX III). The Alternaria metabolites altersetin (ALN), macrosporin (MAC), altenusine (ALS) and pyrenophorol (PYR) impaired the function of human topo II, but did not show any effect on gyrase. The potency to inhibit topo II activity declined in the row STTX III (initial inhibitory concentration 10 µM) > AOH (25 µM) = AME (25 µM) = ALS (25 µM) = ATX II (25 µM) > ALN (50 µM) = ATX I (50 µM) > ALP (75 µM) = PYR (75 µM) > MAC (150 µM). Inhibition of gyrase activity was most pronounced for AOH and AME (initial inhibitory concentration 10 µM) followed by ATX II (25 µM) > ATX I = ALP = STTX III (50 µM). In contrast, none of the investigated Fusarium mycotoxins deoxynivalenol (DON), fumonisin B1, fusarin C and moniliformin, as well as the Alternaria metabolite tentoxin, had any impact on the activity of neither human nor bacterial topo II.
Collapse
Affiliation(s)
- Katharina Jarolim
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Doris Ellmer
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354, Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354, Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354, Freising, Germany
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), 3430, Tulln, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Pierron A, Alassane-Kpembi I, Oswald IP. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Manag 2016; 2:21. [PMID: 28405447 PMCID: PMC5382503 DOI: 10.1186/s40813-016-0041-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are secondary metabolites of fungi that grow on a variety of substrates. Due to their high consumption of cereals and their sensitivity, pigs are highly impacted by the presence of mycotoxins. At the European level, regulations and recommendations exist for several mycotoxins in pig feed. Among these toxins, fumonisin B1 (FB1), and deoxynivalenol (DON) have a great impact on the intestine and the immune system. Indeed, the intestine is the first barrier to food contaminants and can be exposed to high concentrations of mycotoxins upon ingestion of contaminated feed. FB1 and DON alter the intestinal barrier, impair the immune response, reduce feed intake and weight gain. Their presence in feed increases the translocation of bacteria; mycotoxins can also impair the immune response and enhance the susceptibility to infectious diseases. In conclusion, because of their effect on the intestine, FB1 and DON are a major threat to pig health, welfare and performance.
Collapse
Affiliation(s)
- Alix Pierron
- ToxAlim Research Centre in Food Toxicology, INRA, UMR 1331, ENVT, INP Purpan, 180 chemin de Tournefeuille, BP93173, 31027 Toulouse, Cedex 03 France.,BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Imourana Alassane-Kpembi
- ToxAlim Research Centre in Food Toxicology, INRA, UMR 1331, ENVT, INP Purpan, 180 chemin de Tournefeuille, BP93173, 31027 Toulouse, Cedex 03 France
| | - Isabelle P Oswald
- ToxAlim Research Centre in Food Toxicology, INRA, UMR 1331, ENVT, INP Purpan, 180 chemin de Tournefeuille, BP93173, 31027 Toulouse, Cedex 03 France
| |
Collapse
|
16
|
Ryerse IA, Hooft JM, Bureau DP, Hayes MA, Lumsden JS. Purified deoxynivalenol or feed restriction reduces mortality in rainbow trout, Oncorhynchus mykiss (Walbaum), with experimental bacterial coldwater disease but biologically relevant concentrations of deoxynivalenol do not impair the growth of Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2015; 38:809-819. [PMID: 25160820 DOI: 10.1111/jfd.12295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 06/03/2023]
Abstract
Diets containing deoxynivalenol (DON) were fed to rainbow trout Oncorhynchus mykiss (Walbaum) for 4 weeks followed by experimental infection (intraperitoneal) with Flavobacterium psychrophilum (4.1 × 10(6) colony-forming units [CFU] mL(-1) ). Mortality of rainbow trout fed either 6.4 mg kg(-1) DON or trout pair-fed the control diet was significantly reduced (P < 0.05) in comparison with trout fed the control diet to apparent satiation (<0.1 mg kg(-1) DON). In a second experiment, trout were fed one of three experimental diets; a control diet, a diet produced with corn naturally contaminated with DON (3.3 mg kg(-1) DON) or a diet containing purified DON (3.8 mg kg(-1) ); however, these fish were not experimentally infected. The presence of DON resulted in significant reduction (P < 0.0001) in feed intake as well as weight gain after 4 weeks. Respiratory burst of head-kidney leucocytes isolated from rainbow trout fed diets containing purified DON (3.8 mg kg(-1) ) was significantly higher (P < 0.05) at 35 day post-exposure compared with controls. The antimicrobial activity of DON was examined by subjecting F. psychrophilum in vitro to serial dilutions of the chemical. Complete inhibition occurred at a concentration of 75 mg L(-1) DON, but no effect was observed below this concentration (0-30 mg L(-1) ).
Collapse
Affiliation(s)
- I A Ryerse
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - J M Hooft
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada
| | - D P Bureau
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada
| | - M A Hayes
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - J S Lumsden
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Kim W, Park CM, Park JJ, Akamatsu HO, Peever TL, Xian M, Gang DR, Vandemark G, Chen W. Functional Analyses of the Diels-Alderase Gene sol5 of Ascochyta rabiei and Alternaria solani Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:482-96. [PMID: 25372118 DOI: 10.1094/mpmi-08-14-0234-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ascochyta rabiei and Alternaria solani, the causal agents of Ascochyta blight of chickpea (Cicer arietinum) and early blight of potato (Solanum tuberosum), respectively, produce a set of phytotoxic compounds including solanapyrones A, B, and C. Although both the phytotoxicity of solanapyrones and their universal production among field isolates have been documented, the role of solanapyrones in pathogenicity is not well understood. Here, we report the functional characterization of the sol5 gene, which encodes a Diels-Alderase that catalyzes the final step of solanapyrone biosynthesis. Deletion of sol5 in both Ascochyta rabiei and Alternaria solani completely prevented production of solanapyrones and led to accumulation of the immediate precursor compound, prosolanapyrone II-diol, which is not toxic to plants. Deletion of sol5 did not negatively affect growth rate or spore production in vitro, and led to overexpression of the other solanapyrone biosynthesis genes, suggesting a possible feedback regulation mechanism. Phytotoxicity tests showed that solanapyrone A is highly toxic to several legume species and Arabidopsis thaliana. Despite the apparent phytotoxicity of solanapyrone A, pathogenicity tests showed that solanapyrone-minus mutants of Ascochyta rabiei and Alternaria solani were equally virulent as their corresponding wild-type progenitors, suggesting that solanapyrones are not required for pathogenicity.
Collapse
|
18
|
Abbès S, Ben Salah-Abbès J, Jebali R, Younes RB, Oueslati R. Interaction of aflatoxin B1and fumonisin B1in mice causes immunotoxicity and oxidative stress: Possible protective role using lactic acid bacteria. J Immunotoxicol 2015; 13:46-54. [DOI: 10.3109/1547691x.2014.997905] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Kim W, Park CM, Park JJ, Akamatsu HO, Peever TL, Xian M, Gang DR, Vandemark G, Chen W. Functional Analyses of the Diels-Alderase Gene sol5 of Ascochyta rabiei and Alternaria solani Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:1-15. [PMID: 27839072 DOI: 10.1094/mpmi-08-14-0234-r.testissue] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ascochyta rabiei and Alternaria solani, the causal agents of Ascochyta blight of chickpea (Cicer arietinum) and early blight of potato (Solanum tuberosum), respectively, produce a set of phytotoxic compounds including solanapyrones A, B, and C. Although both the phytotoxicity of solanapyrones and their universal production among field isolates have been documented, the role of solanapyrones in pathogenicity is not well understood. Here, we report the functional characterization of the sol5 gene, which encodes a Diels-Alderase that catalyzes the final step of solanapyrone biosynthesis. Deletion of sol5 in both Ascochyta rabiei and Alternaria solani completely prevented production of solanapyrones and led to accumulation of the immediate precursor compound, prosolanapyrone II-diol, which is not toxic to plants. Deletion of sol5 did not negatively affect growth rate or spore production in vitro, and led to overexpression of the other solanapyrone biosynthesis genes, suggesting a possible feedback regulation mechanism. Phytotoxicity tests showed that solanapyrone A is highly toxic to several legume species and Arabidopsis thaliana. Despite the apparent phytotoxicity of solanapyrone A, pathogenicity tests showed that solanapyrone-minus mutants of Ascochyta rabiei and Alternaria solani were equally virulent as their corresponding wild-type progenitors, suggesting that solanapyrones are not required for pathogenicity.
Collapse
Affiliation(s)
| | | | - Jeong-Jin Park
- 3 Institute of Biological Chemistry, Washington State University, Pullman 99164, U.S.A.; and
| | | | | | | | - David R Gang
- 3 Institute of Biological Chemistry, Washington State University, Pullman 99164, U.S.A.; and
| | - George Vandemark
- 1 Department of Plant Pathology
- 4 United States Department of Agriculture-Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman
| | - Weidong Chen
- 1 Department of Plant Pathology
- 4 United States Department of Agriculture-Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman
| |
Collapse
|
20
|
Piotrowska M. The adsorption of ochratoxin a by lactobacillus species. Toxins (Basel) 2014; 6:2826-39. [PMID: 25247265 PMCID: PMC4179162 DOI: 10.3390/toxins6092826] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to examine ochratoxin A (OTA) binding by three lactic acid bacteria (LAB) species: Lactobacillus plantarum, L. brevis, and L. sanfranciscensis. Experiments were conducted using MRS medium and PBS buffer contaminated with 1000 ng/mL OTA and inoculated with live or thermally inactivated bacterial biomass at a concentration of 1 or 5 mg dry weight/mL. It was found that, depending on the strain and biomass density, live bacterial cells reduced OTA content by 16.9% to 35% in MRS medium and by 14.8% to 26.4% in PBS after 24 h of contact. OTA binding was higher in the case of thermally inactivated bacterial biomass (46.2% to 59.8%). The process is very rapid: OTA was removed from PBS as early as after 30 min of contact. The binding of the toxin by cells was partially reversible under the treatment by water and 1 M HCl. The results show that OTA is adsorbed to the surface structures of the cell wall, which is promoted not only by the hydrophobic properties of the cell wall, but also by electron donor-acceptor and Lewis acid-base interactions.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| |
Collapse
|
21
|
Guo M, Huang K, Chen S, Qi X, He X, Cheng WH, Luo Y, Xia K, Xu W. Combination of metagenomics and culture-based methods to study the interaction between ochratoxin a and gut microbiota. Toxicol Sci 2014; 141:314-23. [PMID: 24973096 PMCID: PMC4833112 DOI: 10.1093/toxsci/kfu128] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota represent an important bridge between environmental substances and host metabolism. Here we reported a comprehensive study of gut microbiota interaction with ochratoxin A (OTA), a major food-contaminating mycotoxin, using the combination of metagenomics and culture-based methods. Rats were given OTA (0, 70, or 210 μg/kg body weight) by gavage and fecal samples were collected at day 0 and day 28. Bacterial genomic DNA was extracted from the fecal samples and both 16S rRNA and shotgun sequencing (two main methods of metagenomics) were performed. The results indicated OTA treatment decreased the within-subject diversity of the gut microbiota, and the relative abundance of Lactobacillus increased considerably. Changes in functional genes of gut microbiota including signal transduction, carbohydrate transport, transposase, amino acid transport system, and mismatch repair were observed. To further understand the biological sense of increased Lactobacillus, Lactobacillus selective medium was used to isolate Lactobacillus species from fecal samples, and a strain with 99.8% 16S rRNA similarity with Lactobacillus plantarum strain PFK2 was obtained. Thin-layer chromatography showed that this strain could absorb but not degrade OTA, which was in agreement with the result in metagenomics that no genes related to OTA degradation increased. In conclusion, combination of metagenomics and culture-based methods can be a new strategy to study intestinal toxicity of toxins and find applicable bacterial strains for detoxification. When it comes to OTA, this kind of mycotoxin can cause compositional and functional changes of gut microbiota, and Lactobacillus are key genus to detoxify OTA in vivo.
Collapse
Affiliation(s)
- Mingzhang Guo
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Siyuan Chen
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Xiaozhe Qi
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Xiaoyun He
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, Mississippi State, Mississippi 39762
| | - Yunbo Luo
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Kai Xia
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| |
Collapse
|
22
|
Piotrowska M, Sliżewska K, Nowak A, Zielonka L, Zakowska Z, Gajęcka M, Gajęcki M. The effect of experimental fusarium mycotoxicosis on microbiota diversity in porcine ascending colon contents. Toxins (Basel) 2014; 6:2064-81. [PMID: 25025709 PMCID: PMC4113742 DOI: 10.3390/toxins6072064] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
The objective of the study was to determine the effect of exposure of pigs to the Fusarium mycotoxins zearalenone (ZEN) and deoxynivalenol (DON), administered together and separately, on the colon microbiota. An experiment was conducted for 42 days on gilts, randomly assigned to four groups and administered either ZEN, DON, ZEN+DON, or a placebo. The number of aerobic mesophilic bacteria, yeasts, molds, anaerobic Clostridium perfringens, fecal streptococci, Enterobacteriaceae, Escherichia coli, and lactic acid bacteria (LAB) were determined in the contents of the ascending colon. The influence of mycotoxins on the functional diversity of the colonic microbiota was assessed using EcoPlate tests (Biolog). Analysis revealed the predominance of LAB in all groups of pigs. Zearalenone, administered separately and together with DON, was found to have an adverse effect on mesophilic aerobic bacteria, but only after long exposure to this mycotoxin. During the six weeks of the experiment, the concentration of C. perfringens, E. coli, and other bacteria in the family Enterobacteriaceae was most considerably reduced in the experimental groups exposed to zearalenone, both separately and together with DON. Mycotoxins also affected the functional biodiversity of microorganisms. Both Shannon’s diversity index and the number of catabolized substrates in Biolog plate (the R index) were much higher in the group subjected to mixed mycotoxicosis.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Katarzyna Sliżewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Lukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| | - Zofia Zakowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| | - Maciej Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| |
Collapse
|
23
|
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 2014; 32:1180-204. [PMID: 24651031 DOI: 10.1016/j.biotechadv.2014.03.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 02/08/2023]
Abstract
Microorganisms have a long track record as important sources of novel bioactive natural products, particularly in the field of drug discovery. While microbes have been shown to biosynthesize a wide array of molecules, recent advances in genome sequencing have revealed that such organisms have the potential to yield even more structurally diverse secondary metabolites. Thus, many microbial gene clusters may be silent under standard laboratory growth conditions. In the last ten years, several methods have been developed to aid in the activation of these cryptic biosynthetic pathways. In addition to the techniques that demand prior knowledge of the genome sequences of the studied microorganisms, several genome sequence-independent tools have been developed. One of these approaches is microorganism co-culture, involving the cultivation of two or more microorganisms in the same confined environment. Microorganism co-culture is inspired by the natural microbe communities that are omnipresent in nature. Within these communities, microbes interact through signaling or defense molecules. Such compounds, produced dynamically, are of potential interest as new leads for drug discovery. Microorganism co-culture can be achieved in either solid or liquid media and has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. Because of the complexity of microbial extracts, advanced analytical methods (e.g., mass spectrometry methods and metabolomics) are key for the successful detection and identification of co-culture-induced metabolites. This review focuses on co-culture studies that aim to increase the diversity of metabolites obtained from microbes. The various strategies are summarized with a special emphasis on the multiple methods of performing co-culture experiments. The analytical approaches for studying these interaction phenomena are discussed, and the chemical diversity and biological activity observed among the induced metabolites are described.
Collapse
Affiliation(s)
- Samuel Bertrand
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; Groupe Mer, Molécules, Santé-EA 2160, Faculté des Sciences pharmaceutiques et biologiques, Université de Nantes, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 01, France
| | - Nadine Bohni
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Sylvain Schnee
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Olivier Schumpp
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Katia Gindro
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
24
|
Park SH, Do KH, Choi HJ, Kim J, Kim KH, Park J, Oh CG, Moon Y. Novel regulatory action of ribosomal inactivation on epithelial Nod2-linked proinflammatory signals in two convergent ATF3-associated pathways. THE JOURNAL OF IMMUNOLOGY 2013; 191:5170-81. [PMID: 24098051 DOI: 10.4049/jimmunol.1301145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to excessive nucleotide-binding oligomerization domain-containing protein 2 (Nod2) stimulation caused by mucosal bacterial components, gut epithelia need to activate regulatory machinery to maintain epithelial homeostasis. Activating transcription factor 3 (ATF3) is a representative regulator in the negative feedback loop that modulates TLR-associated inflammatory responses. In the current study, the regulatory effects of ribosomal stress-induced ATF3 on Nod2-stimulated proinflammatory signals were assessed. Ribosomal inactivation caused persistent ATF3 expression that in turn suppressed proinflammatory chemokine production facilitated by Nod2. Decreased chemokine production was due to attenuation of Nod2-activated NF-κB and early growth response protein 1 (EGR-1) signals by ATF3. However, the underlying molecular mechanisms involve two convergent regulatory pathways. Although ATF3 induced by ribosomal inactivation regulated Nod2-induced EGR-1 expression epigenetically through the recruitment of histone deacetylase 1, NF-κB regulation was associated with posttranscriptional regulation by ATF3 rather than epigenetic modification. ATF3 induced by ribosomal inactivation led to the destabilization of p65 mRNA caused by nuclear entrapment of transcript-stabilizing human Ag R protein via direct interaction with ATF3. These findings demonstrate that ribosomal stress-induced ATF3 is a critical regulator in the convergent pathways between EGR-1 and NF-κB, which contributes to the suppression of Nod2-activated proinflammatory gene expression.
Collapse
Affiliation(s)
- Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Moon Y. Cellular alterations of mucosal integrity by ribotoxins: Mechanistic implications of environmentally-linked epithelial inflammatory diseases. Toxicon 2012; 59:192-204. [DOI: 10.1016/j.toxicon.2011.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/20/2011] [Accepted: 11/10/2011] [Indexed: 01/01/2023]
|
26
|
Yunus AW, Razzazi-Fazeli E, Bohm J. Aflatoxin B(1) in affecting broiler's performance, immunity, and gastrointestinal tract: a review of history and contemporary issues. Toxins (Basel) 2011; 3:566-90. [PMID: 22069726 PMCID: PMC3202846 DOI: 10.3390/toxins3060566] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B(1) is a common contaminant of poultry feeds in tropical and subtropical climates. Research during the last five decades has well established the negative effects of the mycotoxin on health of poultry. However, the last ten years of relevant data have accentuated the potential of low levels of aflatoxin B(1) to deteriorate broiler performance. In this regard, any attempt to establish a dose-effect relationship between aflatoxin B(1) level and broiler performance is also complicated due to differences in types of broilers and length of exposure to the mycotoxin in different studies. Contrary to the prevalent notion regarding literature saturation with respect to aflatoxicosis of chicken, many areas of aflatoxicosis still need to be explored. Literature regarding effects of the mycotoxin on the gastrointestinal tract in this regard is particular scanty and non-conclusive. In addition to these issues, the metabolism of aflatoxin B(1) and recently proposed hypotheses regarding biphasic effects of the mycotoxin in broilers are briefly discussed.
Collapse
Affiliation(s)
- Agha W. Yunus
- Institute of Animal Nutrition, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - E. Razzazi-Fazeli
- VetCore Facility for Research, Proteomics Unit, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Josef Bohm
- Institute of Animal Nutrition, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| |
Collapse
|
27
|
Strobel E, Seeling K, Tebbe CC. Diversity responses of rumen microbial communities to Fusarium-contaminated feed, evaluated with rumen simulating technology. Environ Microbiol 2008; 10:483-96. [DOI: 10.1111/j.1462-2920.2007.01469.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Böhm J, Grajewski J, Asperger H, Cecon B, Rabus B, Razzazi E. Study on biodegradation of some A- and B-trichothecenes and ochratoxin A by use of probiotic microorganisms. Mycotoxin Res 2000; 16 Suppl 1:70-4. [DOI: 10.1007/bf02942985] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|