1
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
2
|
Gopal A, Gangadaran P, Rajendran RL, Oh JM, Lee HW, Hong CM, Kalimuthu S, Han MH, Lee J, Ahn BC. Extracellular vesicle mimetics engineered from mesenchymal stem cells and curcumin promote fibrosis regression in a mouse model of thioacetamide-induced liver fibrosis. Regen Ther 2024; 26:911-921. [PMID: 39502438 PMCID: PMC11535984 DOI: 10.1016/j.reth.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Recent research suggests that advanced liver fibrosis could be reversed, but the therapeutic agents needed for the prevention of liver fibrosis remain to be elucidated. The beneficial effects of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) on liver fibrosis have been reported. However, the large-scale production of MSC-EVs remains challenging. The present study investigated the therapeutic effects of mouse MSC-derived EV mimetics (MEVMs) in combination with curcumin (antifibrotic compound) using a mouse model of thioacetamide-induced liver fibrosis. MEVMs were prepared through the serial extrusion of MSCs. These MEVMs were similar in size and morphology to the EVs. The biodistribution study showed that fluorescently labeled MEVMs predominantly accumulated in the liver. The establishment of liver fibrosis was confirmed via increased collagen (histology), liver fibrosis score, α-smooth muscle actin (α-SMA), and vimentin proteins levels. Treatment with MEVMs, curcumin, or their combination decreased the amount of collagen in liver tissues, with the antifibrotic effects of MEVMs being further confirmed by the liver fibrosis score. All treatments decreased the expression of collagen 1α, α-SMA, and vimentin. MEVMs showed superior effects than curcumin. Thus, MSC-derived EVMs could be a potential alternative for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pathology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Selim NM, Melk MM, Melek FR, Saleh DO, Sobeh M, El-Hawary SS. Phytochemical profiling and anti-fibrotic activities of Plumbago indica L. and Plumbago auriculata Lam. in thioacetamide-induced liver fibrosis in rats. Sci Rep 2022; 12:9864. [PMID: 35701526 PMCID: PMC9197831 DOI: 10.1038/s41598-022-13718-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed at investigating the chemical composition and the hepatoprotective activities of Plumbago indica L. and P. auriculata Lam. LC-MS/MS analyses for the hydroalcoholic extracts of the aerial parts of the two Plumbago species allowed the tentative identification of thirty and twenty-five compounds from P. indica and P. auriculata, respectively. The biochemical and histopathological alterations associated with thioacetamide (TAA)-induced liver fibrosis in rats were evaluated in vivo where rats received the two extracts at three different dose levels (100, 200 and 400 mg/kg p.o, daily) for 15 consecutive days with induction of hepatotoxicity by TAA (200 mg/kg/day, i.p.) at 14th and 15th days. Results of the present study showed a significant restoration in liver function biomarkers viz. alanine transaminase (ALT), aspartate transaminase (AST), gamma glutamyl transferase and total bilirubin. The liver homogenates exhibited increased levels of antioxidant biomarkers: reduced glutathione (GSH) and catalase (CAT), accompanied with decline in malondialdehyde (MDA). Furthermore, treated groups exhibited a significant suppression in liver inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6), and fibrotic biomarker: alpha smooth muscle relaxant. Histopathological examination of the liver showed normality of hepatocytes. Noteworthy, P. indica extract showed better hepatoprotective activity than P. auriculata, particularly at 200 mg/kg. To sum up, all these results indicated the hepatoprotective properties of both extracts, as well as their antifibrotic effect was evidenced by reduction in hepatic collagen deposition. However, additional experiments are required to isolate their individual secondary metabolites, assess the toxicity of the extracts and explore the involved mechanism of action.
Collapse
Affiliation(s)
- Nabil Mohamed Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt.
| | - Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt
| | - Dalia Osama Saleh
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, 43150, Benguerir, Morocco
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
4
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Jiang H, Zhang X, Yang W, Li M, Wang G, Luo Q. Ferrostatin-1 Ameliorates Liver Dysfunction via Reducing Iron in Thioacetamide-induced Acute Liver Injury in Mice. Front Pharmacol 2022; 13:869794. [PMID: 35496274 PMCID: PMC9039014 DOI: 10.3389/fphar.2022.869794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background and Aims: Hepatic iron overload always leads to oxidative stress, which has been found to be involved in the progression of liver disease. However, whether iron disorder is involved in acute liver disease and the further molecular mechanisms remain unclear. Methods: A mice model of acute liver injury (ALI) was established via intraperitoneal injection of thioacetamide (TAA) (250 mg/kg/day) for 3 consecutive days. Ferrostatin-1 (Fer-1) was administered intraperitoneally (2.5 μM/kg/day) starting 3 days before TAA treatment. Deferoxamine (DFO) was intraperitoneally injected (200 mg/kg/day) with TAA treatment for 3 days. We further observed the effect of Fer-1 on TAA model with high-iron diet feeding. ALI was confirmed using histological examination and liver function activity. Moreover, expressions of iron metabolism and ferroptosis proteins were measured by Western blot analysis. Results: The study revealed that the iron accumulation and ferroptosis contributed to TAA-induced ALI pathogenesis. TAA induced prominent inflammation and vacuolar degeneration in the liver as well as liver dysfunction. In addition, protein expression of the cystine/glutamate antiporter SLC7A11 (xCT) and glutathione peroxidase 4 (GPX4) was significantly decreased in the liver, while transferrin receptor 1 (TfR1), ferroportin (Fpn) and light chain of ferritin (Ft-L) expression levels were increased after TAA exposure. As the same efficiency as DFO, pre-administration of Fer-1 significantly decreased TAA-induced alterations in the plasma ALT, AST and LDH levels compared with the TAA group. Moreover, both Fer-1 and DFO suppressed TfR1, Fpn and Ft-L protein expression and decreased iron accumulation, but did not affect xCT or GPX4 expression in the liver. Both Fer-1and DFO prevented hepatic ferroptosis by reducing the iron content in the liver. Furthermore, Fer-1 also reduced iron and reversed liver dysfunction under iron overload conditions. Conclusion: These findings indicate a role of TAA-induced iron accumulation and ferroptosis in the pathogenesis of ALI model. The effect of Fer-1 was consistent with that of DFO, which prevented hepatic ferroptosis by reducing the iron content in the liver. Thus, Fer-1 might be a useful reagent to reverse liver dysfunction and decreasing the iron content of the liver may be a potential therapeutic strategy for ALI.
Collapse
Affiliation(s)
| | | | | | | | - Guohua Wang
- *Correspondence: Guohua Wang, ; Qianqian Luo,
| | | |
Collapse
|
6
|
Caliskan AR, Gul M, Yılmaz I, Otlu B, Uremis N, Uremis MM, Kilicaslan I, Gul S, Tikici D, Saglam O, Yalcin M, Demirel U, Harputluoglu M. Effects of larazotide acetate, a tight junction regulator, on the liver and intestinal damage in acute liver failure in rats. Hum Exp Toxicol 2021; 40:S693-S701. [PMID: 34791921 DOI: 10.1177/09603271211058882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM The epithelial cells are the strongest determinants of the physical intestinal barrier. Tight junctions (TJs) hold the epithelial cells together and allow for selective paracellular permeability. Larazotide acetate (LA) is a synthetic octapeptide that reduces TJ permeability by blocking zonulin receptors. In this study, we aimed to investigate the effects of LA, a TJ regulator, on the liver and intestinal histology in the model of acute liver failure (ALF) in rats. MATERIALS AND METHODS The thioacetamide (TAA) group received intraperitoneal (ip) injections of 300 mg/kg TAA for 3 days. The TAA+LA(dw) (drinking water) group received prophylactic 0.01 mg/mL LA orally for 7 days before the first dose of TAA. The LA(dw) group received 0.01 mg/mL LA orally. The TAA + LA(g) (gavage) group received prophylactic 0.01 mg/mL LA via oral gavage for 7 days before the first dose of TAA. The LA(g) group received 0.01 mg/mL LA via oral gavage. While liver tissue was evaluated only with light microscopy, intestinal samples were examined with light and electron microscopy. RESULTS Serum ammonia, AST, and ALT levels in the TAA group were significantly higher than in control groups (all p < 0.01). Serum ALT levels in the TAA + LA(dw) group were significantly lower than in the TAA group (p < 0.05). However, serum ammonia and ALT levels did not differ between the TAA and other groups. Serious liver damage in the TAA group was accompanied by marked intestinal damage. There was no significant difference between the TAA and TAA + LA(dw) groups and TAA and TAA + LA(g) groups for liver damage scores. However, intestinal damage scores significantly decreased in the TAA + LA(dw) group compared to the TAA group. In the TAA + LA(dw) group, fusion occurred between the surface epithelial cells of neighboring villi and connecting regions formed as epithelial bridges between the villi. CONCLUSION Our findings suggest that LA reduced intestinal damage by acting on TJs in the TAA-induced ALF model in rats.
Collapse
Affiliation(s)
- Ali Riza Caliskan
- Department of Gastroenterology, 162296Adiyaman Training and Research Hospital, Adiyaman, Turkey
| | - Mehmet Gul
- Department of Histology and Embryology, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| | - Ismet Yılmaz
- Department of Pharmacology, Faculty of Pharmacy, 37520Inonu University, Malatya, Turkey
| | - Baris Otlu
- Department of Microbiology, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| | - Nuray Uremis
- Department of Biochemistry, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| | - Muhammed Mehdi Uremis
- Department of Biochemistry, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| | - Ilkay Kilicaslan
- Department of Microbiology, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| | - Semir Gul
- Department of Histology and Embryology, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| | - Deniz Tikici
- Department of General Surgery, Faculty of Medicine, 64244Mersin University, Mersin, Turkey
| | - Osman Saglam
- Department of Gastroenterology, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| | - Muhammed Yalcin
- Department of Internal Medicine, 506082Malatya Training and Research Hospital, Malatya, Turkey
| | - Ulvi Demirel
- Department of Gastroenterology, Faculty of Medicine, 37510Fırat University, Elazig, Turkey
| | - Murat Harputluoglu
- Department of Gastroenterology, Faculty of Medicine, 218498Inonu University, Malatya, Turkey
| |
Collapse
|
7
|
Frozandeh F, Shahrokhi N, Khaksari M, Amiresmaili S, AsadiKaram G, Shahrokhi N, Iranpour M. Evaluation of the protective effect of curcumin on encephalopathy caused by intrahepatic and extrahepatic damage in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:760-766. [PMID: 34630953 PMCID: PMC8487601 DOI: 10.22038/ijbms.2021.53171.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/08/2021] [Indexed: 11/21/2022]
Abstract
Objective(s): Along with increased intracranial pressure (ICP) and brain damage, brain edema is the most common cause of death in patients with hepatic encephalopathy. Curcumin can pass the blood-brain barrier and possesses anti-inflammatory and anti-oxidant properties. This study focuses on the curcumin protective effect on intrahepatic and extrahepatic damage in the brain. Materials and Methods: One hundred and forty-four male Albino N-Mary rats were randomly divided into 2 main groups: intrahepatic injury group and extrahepatic cholestasis group. In intra-hepatic injury group intrahepatic damage was induced by intraperitoneal (IP) injection of acetaminophen (500 mg/kg) [19] and included four subgroups: 1. Sham, 2. Acetaminophen (APAP), 3. Normal saline (Veh) which was used as curcumin solvent, and 4. Curcumin (CMN). In extrahepatic cholestasis group intrahepatic damage was caused by common bile duct litigation (BDL) and included four subgroups: 1. Sham, 2. BDL, 3. Vehicle (Veh), and 4. Curcumin (CMN). In both groups, 72 hr after induction of cholestasis, brain water content, blood-brain barrier permeability, serum ammonia, and histopathological indicators were examined and ICP was measured every 24 hr for three days. Results: The results showed that curcumin reduced brain edema, ICP, serum ammonia, and blood-brain barrier permeability after extrahepatic and intrahepatic damage. The maximum effect of curcumin on ICP was observed 72 hr after the injection. Conclusion: According to our findings, it seems that curcumin is an effective therapeutic intervention for treating encephalopathy caused by extrahepatic and intrahepatic damage.
Collapse
Affiliation(s)
- Forouzan Frozandeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Gholamreza AsadiKaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nava Shahrokhi
- Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Hajipour S, Farbood Y, Dianat M, Rashno M, Khorsandi LS, Sarkaki A. Thymoquinone improves cognitive and hippocampal long-term potentiation deficits due to hepatic encephalopathy in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:881-891. [PMID: 34712417 PMCID: PMC8528250 DOI: 10.22038/ijbms.2021.52824.11913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that causes brain disturbances. Thymoquinone (TQ) has a wide spectrum of activities such as antioxidant, anti-inflammatory, and anticancer. This study aimed to evaluate the effects of TQ on spatial memory and hippocampal long-term potentiation (LTP) in rats with thioacetamide (TAA)-induced liver injury and hepatic encephalopathy. MATERIALS AND METHODS Adult male Wistar rats were divided into six groups randomly: 1) Control; 2) HE, received TAA (200 mg/kg); 3-5) Treated groups (HE+TQ5, HE+TQ10, and HE+TQ20). TQ (5, 10, and 20 mg/kg) was injected intraperitoneally (IP) for 12 consecutive days from day 18 to 29. Subsequently, spatial memory performance was evaluated by the Morris water maze paradigm and hippocampal LTP was recorded from the dentate gyrus (DG) region. Activity levels of Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in the hippocampal tissue. RESULTS Data showed that the hippocampal content of MDA was increased while SOD activities were decreased in TAA-induced HE. TQ treatment significantly improved spatial memory and LTP. Moreover, TQ restored the levels of MDA and SOD activities in the hippocampal tissue in HE rats. CONCLUSION Our data confirm that TQ could attenuate cognitive impairment and improve LTP deficit by modulating the oxidative stress parameters in this model of HE, which leads to impairment of spatial cognition and LTP deficit. Thus, these results suggest that TQ may be a promising agent with positive therapeutic effects against liver failure and HE defects.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of
| | | | - Alireza Sarkaki
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University
| |
Collapse
|
9
|
Farashbandi AL, Shariati M, Mokhtari M. Comparing the Protective Effects of Curcumin and Ursodeoxycholic Acid after Ethanol-Induced Hepatotoxicity in Rat Liver. Ethiop J Health Sci 2021; 31:673-682. [PMID: 34483625 PMCID: PMC8365490 DOI: 10.4314/ejhs.v31i3.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alcohol consumption can cause hepatitis and long-term cirrhosis of the liver. The aim of this study was to evaluate the protective effects of curcumin (CUR) and ursodeoxycholic acid (UDCA) alone and together in the prevention and treatment of liver damage caused by overuse of ethanol. METHODS Adult Wistar rats were divided into 8 groups of 5, including the control group and various combinations of ethanol, CUR and UDCA groups. Twenty-eight days after the oral treatment, serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and Arginase I (ArgI) as well as serum levels of Albumin (Alb), total protein (TP) and Blood Urea Nitrogen (BUN) were measured, and liver tissue was evaluated histopathologically. RESULTS The solo administration of CUR, UDCA and CUR+UDCA had no effect on the blood parameters and liver tissue compared to the control group (p>0.05). The solo administration of CUR and UDCA in ethanol-treated rats significantly reduced ALT, AST, ALP, GGT, ArgI and BUN levels (p<0.05), while the solo administration increased Alb and TP levels compared to the ethanol group (p<0.05). In these groups, a significant decrease in cell necrosis and local inflammation of hepatocytes was observed, and the liver damage was mild. However, co-administration of ethanol, CUR and UDCA made significantly greater decrease in ALT, AST, ALP, GGT, ArgI and BUN levels (p>0.05), while the co-administration greatly increased Alb and TP levels compared to the ethanol group (p<0.05). Histopathologically, a decrease in structural changes in liver tissue and inflammation was observed, resulting in the improvement of liver tissue. CONCLUSION The solo administration of CUR and UDCA could reduce ethanol-induced liver damage in rats and improve liver's serum and blood parameters. However, the coadministration of CUR and UDCA has a greater efficacy.
Collapse
Affiliation(s)
| | - Mehrdad Shariati
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mokhtar Mokhtari
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
10
|
Li S, Liu R, Wei G, Guo G, Yu H, Zhang Y, Ishfaq M, Fazilani SA, Zhang X. Curcumin protects against Aflatoxin B1-induced liver injury in broilers via the modulation of long non-coding RNA expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111725. [PMID: 33396056 DOI: 10.1016/j.ecoenv.2020.111725] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic and carcinogenic agent. Curcumin possesses potential anti-inflammatory, anti-oxidative and hepatoprotective effects. However, the role of LncRNAs in the protective mechanisms of curcumin against AFB1-induced liver damage is still elusive. Experimental broilers were randomly divided into 1) control group, 2) AFB1 group (1 mg/kg feed), 3) cur + AFB1 group (1 mg/kg AFB1 plus 300 mg/kg curcumin diet) and 4) curcumin group (300 mg/kg curcumin diet). Liver transcriptome analyses and qPCR were performed to identify shifts in genes expression. In addition, histopathological assessment and oxidant status were determined. Dietary AFB1 caused hepatic morphological injury, significantly increased the production of ROS, decreased liver antioxidant enzymes activities and induced inflammation and apoptosis. However, dietary curcumin partially attenuated the abnormal morphological changes, oxidative stress, and apoptosis in liver tissues. Transcriptional profiling results showed that 34 LncRNAs and 717 mRNAs were differentially expressed with AFB1 and curcumin co-treatment in livers of broilers. Analysis of the LncRNA-mRNA network, GO and KEGG enrichment data suggested that oxidative stress, inflammation and apoptosis pathway were crucial in curcumin's alleviating AFB1-induced liver damage. In conclusion, curcumin prevented AFB1-induced oxidative stress, inflammation and apoptosis through LncRNAs. These results provide new insights for unveiling the protective mechanisms of curcumin against AFB1-induced liver damage.
Collapse
Affiliation(s)
- Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Gaoqiang Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Guifang Guo
- The Department of Chemical Drug Review, China Institute of Veterinary Drugs Control, Beijing 100081, PR China
| | - Hongxiao Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Yixin Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China
| | - Saqib Ali Fazilani
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China; Department of Veterinary Pharmacology and Toxicology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Shaheed Benazir Abad, Sakrand 67210, Pakistan
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, PR China.
| |
Collapse
|
11
|
Yang L, Bian X, Wu W, Lv L, Li Y, Ye J, Jiang X, Wang Q, Shi D, Fang D, Wu J, Wang K, Wang Q, Xia J, Xie J, Lu Y, Li L. Protective effect of Lactobacillus salivarius Li01 on thioacetamide-induced acute liver injury and hyperammonaemia. Microb Biotechnol 2020; 13:1860-1876. [PMID: 32652882 PMCID: PMC7533332 DOI: 10.1111/1751-7915.13629] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays pivotal roles in liver disease onset and progression. The protective effects of Lactobacillus salivarius Li01 on liver diseases have been reported. In this study, we aimed to detect the protective effect of L. salivarius Li01 on thioacetamide (TAA)-induced acute liver injury and hyperammonaemia. C57BL/6 mice were separated into three groups and given a gavage of L. salivarius Li01 or phosphate-buffered saline for 7 days. Acute liver injury and hyperammonaemia were induced with an intraperitoneal TAA injection. L. salivarius Li01 decreased mortality and serum transaminase levels and improved histological liver damage caused by TAA. Serum inflammatory cytokine and chemokine and lipopolysaccharide-binding protein (LBP) concentrations, nuclear factor κB (NFκB) pathway activation and macrophage and neutrophil infiltration into the liver were significantly alleviated by L. salivarius Li01. L. salivarius Li01 also reinforced gut barrier and reshaped the perturbed gut microbiota by upregulating Bacteroidetes and Akkermansia richness and downregulating Proteobacteria, Ruminococcaceae_UCG_014 and Helicobacter richness. Plasma and faecal ammonia levels declined noticeably in the Li01 group, accompanied by improvements in cognitive function, neuro-inflammation and relative brain-derived neurotrophic factor (BDNF) gene expression. Our results indicated that L. salivarius Li01 could be considered a potential probiotic in acute liver injury and hepatic encephalopathy (HE).
Collapse
Affiliation(s)
- Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jianzhong Ye
- The First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| |
Collapse
|
12
|
Abbas WT, Ibrahim TBED, Elgendy MY, Zaher MFA. Effect of Curcumin on Iron Toxicity and Bacterial Infection in Catfish (<i>Clarias gariepinus</i>). Pak J Biol Sci 2020; 22:510-517. [PMID: 31930829 DOI: 10.3923/pjbs.2019.510.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Iron is an essential element that involved in many vital physiological functions in fish, while excess iron concentration causes many toxic effects. Curcumin is a natural popular spice that used as a dietary supplementation and has iron chelating properties. This study was conducted to evaluate the effect of curcumin on iron toxicity in catfish (Clarias gariepinus). Also this study assess the antibacterial effect of curcumin against Vibrio anguillarum infection. MATERIALS AND METHODS Clarias gariepinus were orally exposed to low and high doses of curcumin (40, 80 mg kg-1 fish) for 3 weeks. Fish were then exposed to 25 mg L-1 of ferric chloride as a source of iron toxicity for another 3 weeks. Some hematological parameters (Total and differential white blood cells count, total red blood cells count, hemoglobin concentration and hematocrit %) and biochemical parameters (Serum ferritin, transferrin, ALT, AST, protein and albumin) were assessed before and after exposure to iron. Iron residues in gills, spleen, liver, kidney, abdominal fats, gonads and muscles were also determined. Moreover the determination of fish survivability after bacterial challenge with Vibrio anguillarum was recorded. RESULTS Iron caused decrease in total white blood cells count (WBCs), increase in ferritin level and elevation in liver function enzymes (ALT and AST). However, the pretreatment of fish with curcumin significantly increased WBCs, lymphocyte percentage, ferritin level and protein and albumin concentrations with significantly decreased transferrin, ALT and AST levels. Also there were significant decreases in iron concentration in serum, kidney, gonads and muscle in both low and high curcumin pretreated groups compared to Fe group. CONCLUSION Results indicated a modulatory effect of curcumin against iron toxicity in catfish, also curcumin had an immune-stimulant effect against Vibrio anguillarum infection.
Collapse
|
13
|
Sayan M, Karabulut D, Özdamar S. Assessment of the protective and therapeutic effect of melatonin against thioacetamide-induced acute liver damage. J Biochem Mol Toxicol 2020; 34:e22450. [PMID: 31967703 DOI: 10.1002/jbt.22450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Acute or chronic damage to the liver may occur through alcohol, drugs, viruses, genetic disorders, and toxicity. In this study, we planned to investigate the protective and therapeutic effects of melatonin (Mel) by causing damage to the liver with thioacetamide (TAA). Thirty-five rats were used. Group I: control group (seven pieces), group II: Mel group (seven pieces) the single dose on the first day of the experiment was 10 mg/kg, group III: TAA (seven pieces) 300 mg/kg with 24-hour intervals, two doses, group IV: Mel + TAA group (seven pieces) 10 mg/kg single dose Mel was applied 24 hours before TAA application, group V: TAA + Mel group (seven pieces) single dose (24th hour) of 10 mg/kg Mel was administered after TAA (300 mg/kg) two doses. The liver histology was evaluated. Apoptosis, autophagy, and necrosis markers in tissue were determined by immunohistochemistry. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in blood serum samples and transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) levels were determined in liver tissue. TAA affected histologically the classical lobule structure both in cell cords and sinusoids. Caspase-3, RIP3, and LC3 levels were increased in group III compared with the control group. TAA did not cause a statistically significant change in TNF-α level but decreased the TGF-β level significantly. AST and ALT levels were statistically significant in group II and V compared with group I, the ALP level was significant in group IV compared with group II. The results of this study showed that TAA caused significant damage to tissues and increased cell death, Mel was found to have more therapeutic than the protective effect on tissues.
Collapse
Affiliation(s)
- Meryem Sayan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Kayseri, Turkey
| |
Collapse
|
14
|
Nouri-Vaskeh M, Malek Mahdavi A, Afshan H, Alizadeh L, Zarei M. Effect of curcumin supplementation on disease severity in patients with liver cirrhosis: A randomized controlled trial. Phytother Res 2020; 34:1446-1454. [PMID: 32017253 DOI: 10.1002/ptr.6620] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
Abstract
Recent reports indicated that curcumin had beneficial effects in animal models of liver injury and cirrhosis. Current study aimed to investigate the effects of curcumin supplementation in patients with liver cirrhosis. In this randomized double-blind placebo-controlled trial, 70 patients with liver cirrhosis aged 20-70 years were randomly divided into two groups to receive 1,000 mg/day curcumin (n = 35) or placebo (n = 35) for 3 months. Model for end-stage liver disease (MELD) (i), MELD, MELD-Na, and Child-Pugh scores were used to assess the severity of cirrhosis. Sixty patients (29 in the curcumin group and 31 in the placebo group) completed the study. MELD(i) (15.55 ± 3.78 to 12.41 ± 3.07), MELD (15.31 ± 3.07 to 12.03 ± 2.79), MELD-Na (15.97 ± 4.02 to 13.55 ± 3.51), and Child-Pugh (7.17 ± 1.54 to 6.72 ± 1.31) scores decreased significantly in the curcumin group after 3-month intervention (p < .001, p < .001, p = .001, and p = .051, respectively), whereas they increased significantly in the placebo group (p < .001, p < .001, p < .001, p = .001, respectively). Significant differences were only observed between the two groups in MELD(i), MELD, MELD-Na, and Child-Pugh scores after 3-month intervention (p < .001 for all of them). In this pilot study, beneficial effects of curcumin supplementation were observed in decreasing disease activity scores and severity of cirrhosis in patients with cirrhosis.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Afshan
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Zarei
- Department of Pathology and Laboratory Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
16
|
Curcumin as a Therapeutic Strategy in Liver Diseases. Nutrients 2019; 11:nu11102498. [PMID: 31627369 PMCID: PMC6835576 DOI: 10.3390/nu11102498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
Liver diseases are classified as acute and chronic hepatic failures. In particular, chronic pathologies are the most common diseases in the World. Chronic pathologies of liver disease are the most common diseases in the world. There are many causes that induce a progressive and irreversible degeneration of the hepatic parenchyma, but, in general, they lead to the destruction of the normal balance between reactive oxygen stress (ROS) formation and ROS degradation within the liver. The prevalence of disabling diseases, including the hepatic diseases, is increasingly widespread, and it is important to find a safe, inexpensive, accessible and effective way to face this condition. Many recent studies have focused on different natural antioxidants, which could restore the physiological hepatic environment, thereby allowing the normal functioning of this organ. Natural products have been used to discover new leads for treating several diseases; among them, it is important to emphasize curcumin, which is a polyphenol obtained from Curcuma longa Linn, a plant naturally found throughout tropical and subtropical regions of the world.
Collapse
|
17
|
Ahmad MM, Rezk NA, Fawzy A, Sabry M. Protective effects of curcumin and silymarin against paracetamol induced hepatotoxicity in adult male albino rats. Gene 2019; 712:143966. [PMID: 31279711 DOI: 10.1016/j.gene.2019.143966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute paracetamol (PCM) toxicity is a clinical problem; can result in a serious liver injury that finally may progress to acute liver failure. Curcumin (CUR) is a prevalent natural compound that can maintain prooxidant/antioxidant balance and thus can help in liver protection; also, Silymarin (SL) is a traditional antioxidant herb, used to treat liver disorders through scavenging free radicals. This study aimed to illustrate the histological, biochemical and molecular changes induced by acute PCM overdose on rats' liver to elucidate the effectiveness of CUR compared to SL in alleviating such changes. MATERIALS AND METHODS Male Wister Albino rats were divided into 6 groups each comprising 23 rats: control group, curcumin (CUR) treated group received (100 mg CUR/ kg), silymarin treated group received (100 mg SL/kg) for 7 successive days. Paracetamol (PCM) exposed group administered a single dose of PCM (200 mg/kg orally on 8th day). PCM + CUR group and PCM + SL group pretreated with CUR and SL respectively for 7 days then received single PCM dose (200 mg/kg) on the 8th day. Blood and liver tissues were collected for biochemical, histopathological and immunohistochemical analyses using anti-p53 antibody. In addition, real time polymerase chain reaction (RT- PCR) was used to measure Bax, bcl2 and Peroxisome proliferator-activated receptor-gamma (PPAR γ) mRNA expression levels. RESULTS In the paracetamol overdose group, the liver architecture showed necrotic changes, hydropic degeneration, congestion and dilatation of central veins. This hepatocellular damage was confirmed by a significant increase of AST, ALT levels and by an apparent increase in the number of p53 stained cells. PCM toxicity showed significant elevation of total oxidant status (TOS), oxidant status index (OSI) and decreased total antioxidant capacity (TAC) compared to controls (p < 0.001). Gene expression analysis showed that PCM caused an elevation of bcl2 and a reduction of both Bax and PPARγ mRNA expression. The histological alternation in the liver architecture was markedly improved in (PCM + CUR) group compared to (PCM+ SL) group, with an obvious decrease in the number of P53 stained cells. CUR pretreatment inhibited the elevation of TOS and OSI as well as the reduction of TAC caused by PCM toxicity compared to (PCM + SL) group. CONCLUSION Both SL and CUR pretreatment prevented the toxic effects of PCM, but CUR is more effective than SL in ameliorating acute PCM induced hepatotoxicity.
Collapse
Affiliation(s)
- Marwa M Ahmad
- Anatomy Department, Faculty of Medicine, Zagazig University, Egypt
| | - Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt.
| | - Amal Fawzy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| | - Mohamed Sabry
- Anatomy Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
18
|
Heidari R, Arabnezhad MR, Ommati MM, Azarpira N, Ghodsimanesh E, Niknahad H. Boldine Supplementation Regulates Mitochondrial Function and Oxidative Stress in a Rat Model of Hepatotoxicity. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: The xenobiotics-induced liver injury is a clinical complication. Hence, finding new hepatoprotective strategies has clinical value. Oxidative stress and its subsequent complications are major mechanisms involved in xenobiotics-induced hepatotoxicity. Boldine is one of the most potent antioxidant molecules widely investigated for its protective properties in different experimental models. In the current study, the hepatoprotective properties of boldine and its potential mechanisms of hepatoprotection have been investigated. Methods: Rats received thioacetamide (TAA; 200 mg/kg, i.p) as a model of acute liver injury. Boldine (5, 10, 1nd 20 mg/kg; 24 hours intervals; oral) was administered as the hepatoprotective agent. Results: Liver injury was evident in TAA-treated animals (48 hours after TAA exposure) as a severe increase in serum level of liver injury biomarkers and histopathological alterations. Moreover, markers of oxidative stress were increased in liver tissue of TAA-treated rats. Assessment of mitochondrial indices of functionality revealed a significant decrease in mitochondrial dehydrogenases activity, the collapse of mitochondrial membrane potential, mitochondrial swelling and depletion of ATP content. It was found that boldine supplementation mitigated liver tissue markers of oxidative stress and improved mitochondrial indices of functionality in TAA-treated animals. Conclusion: The hepatoprotective properties of boldine might primarily rely on antioxidant and mitochondria protecting effects of this alkaloid.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Arabnezhad
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ghodsimanesh
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Aloin Inhibits Müller Cells Swelling in a Rat Model of Thioacetamide-Induced Hepatic Retinopathy. Molecules 2018; 23:molecules23112806. [PMID: 30380640 PMCID: PMC6278412 DOI: 10.3390/molecules23112806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022] Open
Abstract
Swelling of retinal Müller cells is implicated in retinal edema and neuronal degeneration. Müller cell swelling is observed in patients with liver failure and is referred to as hepatic retinopathy. In the present study, we evaluated the effects of aloin, an anthraquinone-C-glycoside present in various Aloe species, on Müller cell dysfunction in a rat model of thioacetamide (TAA)-induced hepatic retinopathy. Experimental hepatic retinopathy was induced by three injections of TAA (200 mg/kg/day, intraperitoneal injection) for 3 days in rats. After the last injection of TAA, aloin (50 and 100 mg/kg) was orally gavaged for 5 days. The effects of aloin on the liver injury, serum ammonia levels, Müller cell swelling, glial fibrillary acidic protein (GFAP) expression, and gene expression of Kir4.1 and aquaporin-4 were examined. TAA-injected rats exhibited liver failure and hyperammonemia. In the TAA-injected rats, Müller cell bodies were highly enlarged, and GFAP, an indicator of retinal stress, was highly expressed in the retinas, indicating a predominant Müller cell gliosis. However, administration of aloin suppressed liver injury as well as Müller cell swelling through the normalization of Kir4.1 and aquaporin-4 channels, which play a key role in potassium and water transport in Müller cells. These results indicate that aloin may be helpful to protect retinal injury associated with liver failure.
Collapse
|
20
|
Intararuchikul T, Teerapattarakan N, Rodsiri R, Tantisira M, Wohlgemuth G, Fiehn O, Tansawat R. Effects of Centella asiatica extract on antioxidant status and liver metabolome of rotenone-treated rats using GC-MS. Biomed Chromatogr 2018; 33:e4395. [PMID: 30242859 DOI: 10.1002/bmc.4395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/10/2023]
Abstract
Centella asiatica has been used as a culinary vegetable or medicinal herb. In this study, the hepatoprotective effect of the standardized extract of C. asiatica (ECa233) in rotenone-treated rats was examined using a GC-MS-based metabolomic approach. ECa233 contains >80% triterpenoids with a ratio of madecassoside to asiaticoside of 1.5(±0.5):1. Rats were randomly divided into three groups (with six rats/group): sham negative control, rotenone positive control and the ECa233 test group. Rats in the ECa233 group received 10 mg/kg ECa233 orally for 20 days, followed by 2.5 mg/kg intraperitoneal rotenone injection to induce toxicity before being sacrificed. Metabolomic analysis showed that supplementation of ECa233 protected rat liver against rotenone toxicity. Pipecolinic acid was one of the most important metabolites; its level was decreased in the rotenone group as compared with the control. Supplementation with ECa233 before administration of rotenone raised pipecolinic acid to levels intermediate between controls and rotenone alone. The metabolomics approach also helped discover a possible new genuine epimetabolite in the present work. Antioxidant tests revealed that ECa233 inhibited lipid peroxidation and increased catalase activities in liver tissue.
Collapse
Affiliation(s)
- Thidarat Intararuchikul
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Narudol Teerapattarakan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Mayuree Tantisira
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Gert Wohlgemuth
- NIH West Coast Metabolomics Center, University of California Davis, CA, USA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, CA, USA.,Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rossarin Tansawat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Erekat N, Al-Jarrah A, Shotar A, Al-Hourani Z. Hepatic Upregulation of Tumor Necrosis Factor Alpha and Activation of Nuclear Factor Kappa B Following Methyl Methacrylate Administration in the Rat. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.889.895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Heidari R, Niknahad H, Sadeghi A, Mohammadi H, Ghanbarinejad V, Ommati MM, Hosseini A, Azarpira N, Khodaei F, Farshad O, Rashidi E, Siavashpour A, Najibi A, Ahmadi A, Jamshidzadeh A. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed Pharmacother 2018; 103:75-86. [DOI: 10.1016/j.biopha.2018.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/29/2022] Open
|
23
|
Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R, Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018; 10:855. [PMID: 29966389 PMCID: PMC6073929 DOI: 10.3390/nu10070855] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress has been considered a key causing factor of liver damage induced by a variety of agents, including alcohol, drugs, viral infections, environmental pollutants and dietary components, which in turn results in progression of liver injury, non-alcoholic steatohepatitis, non-alcoholic liver disease, liver fibrosis and cirrhosis. During the past 30 years and even after the major progress in the liver disease management, millions of people worldwide still suffer from an acute or chronic liver condition. Curcumin is one of the most commonly used indigenous molecules endowed by various shielding functionalities that protects the liver. The aim of the present study is to comprehensively review pharmacological effects and molecular mechanisms, as well as clinical evidence, of curcumin as a lead compound in the prevention and treatment of oxidative associated liver diseases. For this purpose, electronic databases including “Scopus,” “PubMed,” “Science Direct” and “Cochrane library” were extensively searched with the keywords “curcumin or curcuminoids” and “hepatoprotective or hepatotoxicity or liver” along with “oxidative or oxidant.” Results showed that curcumin exerts remarkable protective and therapeutic effects of oxidative associated liver diseases through various cellular and molecular mechanisms. Those mechanisms include suppressing the proinflammatory cytokines, lipid perodixation products, PI3K/Akt and hepatic stellate cells activation, as well as ameliorating cellular responses to oxidative stress such as the expression of Nrf2, SOD, CAT, GSH, GPx and GR. Taking together, curcumin itself acts as a free radical scavenger over the activity of different kinds of ROS via its phenolic, β-diketone and methoxy group. Further clinical studies are still needed in order to recognize the structure-activity relationships and molecular mechanisms of curcumin in oxidative associated liver diseases.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mahdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Ilias Marmouzi
- Laboratory of Pharmacology and Toxicology Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco.
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia.
| | - Rozita Naseri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baghyatollah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Roja Rahimi
- Department of Persian Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|
24
|
Cao S, Zheng B, Chen T, Chang X, Yin B, Huang Z, Shuai P, Han L. Semen Brassicae ameliorates hepatic fibrosis by regulating transforming growth factor-β1/Smad, nuclear factor-κB, and AKT signaling pathways in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1205-1213. [PMID: 29785090 PMCID: PMC5955013 DOI: 10.2147/dddt.s155053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose There is no effective treatment for liver fibrosis, which is a common phase during the progression of many chronic liver diseases to cirrhosis. Previous studies found that Semen Brassicae therapy can effectively improve the clinical symptoms of patients with asthma, allergic rhinitis, and chronic lung diseases; however, its effects on liver fibrosis in rats and its possible mechanisms of action remain unclear. Methods Rats were injected intraperitoneally with 4% thioacetamide aqueous solution (5 mL·kg−1) at a dose of 200 mg·kg−1 twice a week for 8 consecutive weeks to establish the liver fibrosis model and were then treated with different concentrations of Semen Brassicae extract. After Semen Brassicae treatment, the morphology of the liver tissue was analyzed using hematoxylin and eosin and Masson’s trichrome staining, and liver index and liver fibrosis grade were calculated. Thereafter, the levels of collagen-I, collagen-III, α-SMA, transforming growth factor (TGF)-β1, p-Smad 2/3, Smad 2/3, Smad4, NF-κB-p65, p-NF-κB-p65, IL-1β, IL-6, AKT, and p-AKT were determined using Western blotting. Results Compared with the untreated model group, the Semen Brassicae-treated group showed significantly decreased liver function indices; expression levels of collagen-I, collagen-III, and α-SMA; and hepatic fibrosis. Further studies also showed that the expression of TGF-β1, Smad4, p-Smad 2/3/Smad 2/3, p-NF-κB-p65/NF-κB-p65, IL-1β, IL-6, and p-AKT/AKT significantly decreased after the treatment. Conclusion These results indicate that Semen Brassicae exhibits an anti-hepatic fibrosis effect, and the underlying mechanism of action may be related to the regulation of TGF-β1/Smad, NF-κB, and AKT signaling pathways and the reduction of extracellular matrix deposition.
Collapse
Affiliation(s)
- Si Cao
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.,Gannan Medical University, Ganzhou, Jiangxi, China
| | - Baoping Zheng
- Department of Chinese Medicine, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tao Chen
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinfeng Chang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bao Yin
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihua Huang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ping Shuai
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Limin Han
- Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
25
|
Saad RA, EL-Bab MF, Shalaby AA. Attenuation of acute and chronic liver injury by melatonin in rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2013.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramadan A. Saad
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Fath EL-Bab
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abir A. Shalaby
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
The beneficial effects of curcumin in cirrhotic rats with portal hypertension. Biosci Rep 2017; 37:BSR20171015. [PMID: 29162665 PMCID: PMC6435472 DOI: 10.1042/bsr20171015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 12/11/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
In liver cirrhosis with portal hypertension, the uneven distribution of vasoactive substances leads to increased intrahepatic vascular resistance and splanchnic vasodilatation. Angiogenesis also induces increased portal inflow and portosystemic collaterals. The collaterals may induce lethal complications such as gastroesophageal variceal hemorrhage, but the therapeutic effect of vasoconstrictors is still suboptimal due to poor collateral vasoresponsivenss. Curcumin has aroused much attention for its antifibrosis, vasoactive, and anti-angiogenesis actions. However, whether it affects the aforementioned aspects is unknown. Liver cirrhosis was induced by common bile duct ligation (CBDL) in Sprague-Dawley rats. Sham-operated rats were controls. CBDL and sham rats were randomly allocated to receive curcumin (600 mg/kg per day) or vehicle since the 15th day after BDL. On the 29th day, portal hypertension related parameters were surveyed. Portosystemic collateral in situ perfusion was performed to evaluate vascular activity. Chronic curcumin treatment decreased portal pressure (PP), cardiac index (CI) and increased systemic vascular resistance (SVR) in cirrhotic rats. In splanchnic system, curcumin decreased superior mesenteric artery (SMA) flow and increased SMA resistance. Mesenteric angiogenesis was attenuated by curcumin. Acute administration of curcumin significantly induced splanchnic vasoconstriction. The mesenteric protein expressions of p-endothelial nitric oxide synthase (eNOS), cyclooxygenase (COX) 2 (COX2), vascular endothelial growth factor (VEGF), p-VEGF receptor 2 (VEGFR2), and p-Erk were down-regulated. In collateral system, curcumin decreased portosystemic shunting and induced vasoconstriction. In conclusion, chronic curcumin administration in cirrhotic rats ameliorated portal hypertension related hemodynamic derangements and portosystemic collaterals. Curcumin also attenuated splanchnic hyperdynamic circulation by inducing vasoconstriction through inhibition of eNOS activation and by decreasing mesenteric angiogenesis via VEGF pathway blockade.
Collapse
|
27
|
Hu RW, Carey EJ, Lindor KD, Tabibian JH. Curcumin in Hepatobiliary Disease: Pharmacotherapeutic Properties and Emerging Potential Clinical Applications. Ann Hepatol 2017; 16:835-841. [PMID: 29055920 DOI: 10.5604/01.3001.0010.5273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Curcumin, an aromatic phytoextract from the turmeric (Curcuma longa) rhizome, has been used for centuries for a variety of purposes, not the least of which is medicinal. A growing body of evidence suggests that curcumin has a broad range of potentially therapeutic pharmacological properties, including anti-inflammatory, anti-fibrotic, and anti-neoplastic effects, among others. Clinical applications of curcumin have been hampered by quality control concerns and limited oral bioavailability, although novel formulations appear to have largely overcome these issues. Recent in vitro and in vivo studies have found that curcumin's cytoprotective and other biological activities may play a role in an array of benign and malignant hepatobiliary conditions, including but not limited to non-alcoholic fatty liver disease, cholestatic liver disease (e.g. primary sclerosing cholangitis), and cholangiocarcinoma. Here we provide an overview of fundamental principles, recent discoveries, and potential clinical hepatobiliary applications of this pleiotropic phytocompound.
Collapse
Affiliation(s)
- Robert W Hu
- Department of Biology, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA Executive Vice Provost and Dean, College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - James H Tabibian
- Division of Gastroenterology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| |
Collapse
|
28
|
He L, Guo Y, Deng Y, Li C, Zuo C, Peng W. Involvement of protoporphyrin IX accumulation in the pathogenesis of isoniazid/rifampicin-induced liver injury: the prevention of curcumin. Xenobiotica 2017; 47:154-163. [PMID: 28118809 DOI: 10.3109/00498254.2016.1160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Combination of isoniazid (INH) and rifampicin (RFP) causes liver injury frequently among tuberculosis patients. However, mechanisms of the hepatotoxicity are not entirely understood. Protoporphyrin IX (PPIX) accumulation, as an endogenous hepatotoxin, resulting from isoniazid and rifampicin co-therapy (INH/RFP) has been reported in PXR-humanized mice. Aminolevulinic acid synthase1 (ALAS1), ferrochelatase (FECH) and breast cancer resistance protein (BCRP) play crucial roles in PPIX synthesis, metabolism and transport, respectively. Herein, this study focused on the role of INH/RFP in these processes. We observed PPIX accumulation in human hepatocytes (L-02) and mouse livers. FECH expression was initially found downregulated both in L-02 cells and mouse livers and expression levels of ALAS1 and BCRP were elevated in L-02 cells after INH/RFP treatment, indicating FECH inhibition and ALAS1 induction might confer a synergistic effect on PPIX accumulation. Additionally, our results revealed that curcumin alleviated INH/RFP-induced liver injury, declined PPIX levels and induced FECH expression in both L-02 cells and mice. In conclusion, our data provide a novel insight in the mechanism of INH/RFP-induced PPIX accumulation and evidence for understanding pathogenesis of INH/RFP-induced liver injury, and suggest that amelioration of PPIX accumulation might be involved in the protective effect of curcumin on INH/RFP-induced liver injury.
Collapse
Affiliation(s)
- Leiyan He
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Yaoxue Guo
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Ye Deng
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Chun Li
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Chengzi Zuo
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and
| | - Wenxing Peng
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and
| |
Collapse
|
29
|
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and Health. Molecules 2016; 21:264. [PMID: 26927041 PMCID: PMC6273481 DOI: 10.3390/molecules21030264] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
Nowadays, there are some molecules that have shown over the years a high capacity to act against relevant pathologies such as cardiovascular disease, neurodegenerative disorders or cancer. This article provides a brief review about the origin, bioavailability and new research on curcumin and synthetized derivatives. It examines the beneficial effects on health, delving into aspects such as cancer, cardiovascular effects, metabolic syndrome, antioxidant capacity, anti-inflammatory properties, and neurological, liver and respiratory disorders. Thanks to all these activities, curcumin is positioned as an interesting nutraceutical. This is the reason why it has been subjected to several modifications in its structure and administration form that have permitted an increase in bioavailability and effectiveness against different diseases, decreasing the mortality and morbidity associated to these pathologies.
Collapse
Affiliation(s)
- Mario Pulido-Moran
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| | - Jorge Moreno-Fernandez
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
- Departamento de Fisiología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
| | | | - Mcarmen Ramirez-Tortosa
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| |
Collapse
|
30
|
Won YS, Song JW, Lim JH, Lee MY, Moon OS, Kim HC, Son HY, Kwon HJ. Genetically obese (ob/ob) mice are resistant to the lethal effects of thioacetamide hepatotoxicity. Toxicol Appl Pharmacol 2016; 291:38-45. [DOI: 10.1016/j.taap.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 12/13/2022]
|
31
|
Abdel-Moneim AM, El-Toweissy MY, Ali AM, Awad Allah AAM, Darwish HS, Sadek IA. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model. Biol Trace Elem Res 2015; 168:206-20. [PMID: 25947936 DOI: 10.1007/s12011-015-0360-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 02/08/2023]
Abstract
This study aims to evaluate the protective role of curcumin (Curc) against hematological and biochemical changes, as well as renal pathologies induced by lead acetate [Pb (CH3COO)2·3H2O] treatment. Male albino rats were intraperitoneally treated with Pb(2+) (25 mg of lead acetate/kg b.w., once a day) alone or in combination with Curc (30 mg of Curc/kg b.w., twice a day) for 7 days. Exposure of rats to Pb(2+) caused significant decreases in hemoglobin (Hb) content, hematocrit (Ht) value, and platelet (Plt) count, while Pb(2+)-related leukocytosis was accompanied by absolute neutrophilia, monocytosis, lymphopenia, and eosinopenia. A significant rise in lipid peroxidation (LPO) and a marked drop of total antioxidant capacity (TAC) were evident in the kidney, liver, and serum of Pb(2+) group compared to that of control. Furthermore, significantly high levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), and a sharp drop in serum high-density lipoprotein (HDL-C) level were also seen in blood after injection of Pb(2+). Additionally, hepatorenal function tests were enhanced. Meanwhile, Pb(2+) produced marked histo-cytological alterations in the renal cortex. Co-administration of Curc to the Pb(2+)-treated animals restored most of the parameters mentioned above to near-normal levels/features. In conclusion, Curc appeared to be a promising agent for protection against Pb(2+)-induced toxicity.
Collapse
Affiliation(s)
- Ashraf M Abdel-Moneim
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Hassa, PO box 380, Saudi Arabia.
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mona Y El-Toweissy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
- Preparatory Year Program, King Faisal University, Al-Hassa, Saudi Arabia
| | - Awatef M Ali
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abd Allah M Awad Allah
- Biology and Geology Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Hanaa S Darwish
- Biology and Geology Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Ismail A Sadek
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Anbarasu C, Rajkapoor B, Bhat KS, Giridharan J, Amuthan AA, Satish K. Protective effect of Pisonia aculeata on thioacetamide induced hepatotoxicity in rats. Asian Pac J Trop Biomed 2015; 2:511-5. [PMID: 23569961 DOI: 10.1016/s2221-1691(12)60087-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/05/2011] [Accepted: 09/27/2011] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate the protective effect of Pisonia aculeata (P. aculeata) on thioacetamide induced hepatotoxicity in rats. METHODS Male Wistar rats were administered 250 or 500 mg/kg p.o. of P. aculeata extract for 21 days and simultaneously administered thioacetamide (TAA) 50 mg/kg bw s.c. 1 h after the respective assigned treatments every 72 h. At the end of all experimental methods, all the animals were sacrificed by cervical decapitation. Blood samples were collected. Serum was separated and analyzed for various biochemical parameters. RESULTS TAA induced a significant rise in aspartate amino transferase (AST), alanine amino transferase (ALT), alkaline phosphatase (ALP), total bilirubin, gamma glutamate transpeptidase (GGTP), lipid peroxidase (LPO) with a reduction of total protein, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione S-transferase (GST). Treatment of rats with different doses of plant extract (250 and 500 mg/kg) significantly (P<0.001) altered serum marker enzymes and antioxidant levels to near normal against TAA treated rats. The activity of the extract at a dose of 300 mg/kg was comparable to the standard drug, silymarin (50 mg/kg, p.o.). CONCLUSIONS It can be concluded that P. aculeata extract possesses a remarkable hepatoprotective and antioxidant activity against TAA induced hepatotoxicity. More research is required to derive an optimal therapeutic dose.
Collapse
Affiliation(s)
- C Anbarasu
- Department of Pharmacology, Karpagam University, Eachanari Post-641 021, Coimbatore, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
33
|
Ackerman Z, Pappo O, Link G, Glazer M, Grozovski M. Liver toxicity of thioacetamide is increased by hepatocellular iron overload. Biol Trace Elem Res 2015; 163:169-76. [PMID: 25161090 DOI: 10.1007/s12011-014-0110-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/18/2014] [Indexed: 01/26/2023]
Abstract
An increase in hepatic iron concentration might exacerbate liver injury. However, it is unknown whether hepatic iron overload may exacerbate acute liver injury from various toxins. Therefore, we evaluated how manipulations to increase hepatic iron concentration affected the extent of acute liver injury from thioacetamide. In this study, we used rats with either "normal" or increased hepatic iron concentration. Iron overload was induced by either providing excess iron in the diet or by injecting iron subcutaneously. Both routes of providing excess iron induced an increase in hepatic iron overload. Meanwhile, the subcutaneous route induced both hepatocellular and sinusoidal cell iron deposition; the oral route induced lesser degree of hepatic iron concentration and only hepatocellular iron overload. Thioacetamide administration to the rats with "normal" hepatic iron concentration induced hepatic cell necrosis and apoptosis associated with a remarkable increase in serum aminotransaminases and depletion of hepatic glutathione and other antioxidative indices. Thioacetamide administration to the iron-overloaded rats exacerbated the extent of liver injury only in the rats orally induced with iron overload. In the rats subcutaneously induced with iron overload, the extent of liver injury from thioacetamide was not different from that observed in the rats with "normal" iron overload. It was concluded that the outcome of thioacetamide-induced acute liver injury may depend on both the level of hepatic iron concentration and on the cellular distribution of iron. While isolated hepatocellular iron overload may exacerbate thioacetamide-induced acute liver injury, a combined hepatocellular and sinusoidal cell iron deposition, even at high hepatic iron concentration, had no such an effect.
Collapse
Affiliation(s)
- Zvi Ackerman
- Department of Medicine, Hadassah-Hebrew University Medical Center, Mount Scopus Campus, P.O. Box 24035, 91240, Jerusalem, Israel,
| | | | | | | | | |
Collapse
|
34
|
Stefanello ST, Flores da Rosa EJ, Dobrachinski F, Amaral GP, Rodrigues de Carvalho N, Almeida da Luz SC, Bender CR, Schwab RS, Dornelles L, Soares FAA. Effect of diselenide administration in thioacetamide-induced acute neurological and hepatic failure in mice. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00166d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepatic encephalopathy is a common complication of severe acute hepatic failure and has been associated with high short-term mortality rates.
Collapse
|
35
|
Devaraj VC, Krishna BG, Viswanatha GL, Kamath JV, Kumar S. Hepatoprotective activity of Hepax-a polyherbal formulation. Asian Pac J Trop Biomed 2014; 1:142-6. [PMID: 23569745 DOI: 10.1016/s2221-1691(11)60013-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 02/27/2011] [Accepted: 03/20/2011] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To evaluate the hepatoprotective potential of Hepax, a polyherbal formulation, against three experimentally induced hepatotoxicity models in rats. METHODS Hepatoprotective activity of Hepax was studied against three experimentally induced hepatotoxicity models, namely, carbon tetrachloride (CCl4), paracetamol and thiocetamide induced hepatotoxicity in rats. RESULTS Administration of hepatotoxins (CCl4, paracetamol and thiocetamide) showed significant morphological, biochemical and histological deteriorations in the liver of experimental animals. Pretreatment with Hepax had significant protection against hepatic damage by maintaining the morphological parameters (liver weight and liver weight to organ weight ratio) within normal range and normalizing the elevated levels of biochemical parameters (SGPT, SGOT, ALP and total bilirubin), which were evidently showed in histopathological study. CONCLUSIONS The Hepax has highly significant hepatoprotective effect at 100 and 200 mg/kg, p.o. on the liver of all the three experimental animal models.
Collapse
Affiliation(s)
- V C Devaraj
- Department of Pharmacology, Krupanidhi College of Pharmacy, Bangalore, India
| | | | | | | | | |
Collapse
|
36
|
Hismiogullari AA, Hismiogullari SE, Karaca O, Sunay FB, Paksoy S, Can M, Kus I, Seyrek K, Yavuz O. The protective effect of curcumin administration on carbon tetrachloride (CCl4)-induced nephrotoxicity in rats. Pharmacol Rep 2014; 67:410-6. [PMID: 25933946 DOI: 10.1016/j.pharep.2014.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of the present study was to examine the protective effect of curcumin (CUR) on carbon tetrachloride (CCl4)-induced nephrotoxicity to evaluate the detailed mechanisms by which CUR exerts its protective action. METHODS Thirty male Wistar-Albino rats weighing 250-300 g were randomly divided into three groups: administrations of olive oil (control, po), CCl4 (0.5mg/kg in olive oil sc) every other day for 3 weeks, and CCl4 (0.5mg/kg in olive oil sc) plus CUR (200mg/kg) every day for 3 weeks. RESULTS Administration of CCl4 significantly (p<0.001) increased the levels of renal function test such as creatinine and blood urea nitrogen (BUN). Furthermore, treatment of CCl4 significantly elevated the oxidant status of renal tissues while decreasing its anti-oxidant status (p<0.001). CUR displayed a renal protective effect as evident by significant decrease in inflammation and apoptosis during histopathological examination. The administration of CCl4 resulted in an increase in malondialdehyde (MDA) production due to an increase in membrane lipid peroxidation; however, the administration of CUR attenuated this, probably via its antioxidant and free radical scavenging properties. CONCLUSION The finding of our study indicates that CUR may have an important role to play in protecting the kidney from oxidative insult.
Collapse
Affiliation(s)
- Adnan A Hismiogullari
- Department of Medical Biochemistry, School of Medicine, Balikesir University, Balikesir, Turkey.
| | - Sahver E Hismiogullari
- Department of Pharmacology and Toxicology, School of Veterinary Medicine, Balkesir University, Balikesir, Turkey
| | - Omur Karaca
- Department of Anatomy, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Fatma B Sunay
- Department of Histology and Embryology, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Serpil Paksoy
- Department of Pathology, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Mehmet Can
- Department of Anatomy, School of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Iter Kus
- Department of Anatomy, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Kamil Seyrek
- Department of Medical Biochemistry, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Ozlem Yavuz
- Department of Medical Biochemistry, School of Medicine, Balikesir University, Balikesir, Turkey
| |
Collapse
|
37
|
Singh S, Mondal P, Trigun SK. Acute liver failure in rats activates glutamine-glutamate cycle but declines antioxidant enzymes to induce oxidative stress in cerebral cortex and cerebellum. PLoS One 2014; 9:e95855. [PMID: 24755687 PMCID: PMC3995888 DOI: 10.1371/journal.pone.0095855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/01/2014] [Indexed: 01/28/2023] Open
Abstract
Background and Purpose Liver dysfunction led hyperammonemia (HA) causes a nervous system disorder; hepatic encephalopathy (HE). In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF). Methods ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS) and glutaminase (GA), the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats. Results The ALF rats showed significantly increased levels of ammonia in the blood (HA) but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats. Conclusion ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.
Collapse
Affiliation(s)
- Santosh Singh
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Papia Mondal
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Surendra K. Trigun
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
38
|
Nurrochmad A, Margono SA, Sardjiman, Hakim AR, Ernawati, Kurniawati E, Fatmawati E. Hepatoprotective and antioxidant activity of pentagamavunon-0 against carbon tetrachloride-induced hepatic injury in rats. ASIAN PAC J TROP MED 2014; 6:438-42. [PMID: 23711702 DOI: 10.1016/s1995-7645(13)60070-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/15/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the hepatoprotective and antioxidant activity of pentagamavunon-0(PGV-0) against CCl4-induced hepatic injury in rats. METHODS The groups of animals were administered with PGV-0 at the doses 2.5, 5, 10, and 20 mg/kg b.w., p.o. once in a day for 6 days and at day 7 the animals were administrated with carbon tetrachloride (CCl) (20%, 2 mL/kg b.w. in liquid paraffin (i.p.). The effect of PGV-0 on serum transaminase (SGPT), alkaline phosphates (ALP) and total bilirubin were determined in CCl4-induced hepatotoxicity in rats. Further, the effects of PGV-0 on glutathione (GSH) content, catalase (CAT) and NO free radical scavenging activity also were investigated. RESULTS The results demonstrated that PGV-0 significantly reduced the activity of SGPT, serum ALP and total bilirubin in CCl4 induced rat hepatotoxicity. PGV-0 has effect on the antioxidant and free radical defense system. It prevented the depletion level of GSH and decrease activity of CAT in CCl4-induced liver injury in rats. PGV-0 also demonstrated the free radical scavenger effects on NO free radical scavenging activity with ES value of 32.32 μM. CONCLUSION All of our findings suggests that PGV-0 could protect the liver cells from CCl4-induced liver damages and the mechanism may through the antioxidative effect of PGV-0 to prevent the accumulation of free radicals and protect the liver damage.
Collapse
Affiliation(s)
- Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Gadjah Mada University, Sekip Utara Yogyakarta-55281, Indonesia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Induction of chemokines and cytokines before neutrophils and macrophage recruitment in different regions of rat liver after TAA administration. J Transl Med 2014; 94:235-47. [PMID: 24276236 DOI: 10.1038/labinvest.2013.134] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022] Open
Abstract
Single-dose thioacetamide (TAA) administration induces inflammation and acute liver damage. The mechanism of inflammatory cell recruitment in the liver is still unclear. The aim of this study was to examine the sequence and recruitment of inflammatory cells in different liver regions in relation to CXC- and CC-chemokine and cytokine expression during acute liver injury. Single-dose TAA was administered to rats intraperitoneally, and animals were killed at different time points thereafter. Serum and liver tissue were taken and frozen immediately. Tissue was used for immunostaining cryostat sections, RNA, and protein extraction. RT-PCR and western blotting were performed for RNA and protein analysis, respectively. An early increase (3 h) in CXCL8/IL-8 levels was measured followed by a marked release in MCP1/CCL2 (24 h) serum levels after TAA administration compared with controls. Similarly, an early increase in specific RNA of hepatic chemokines CXCL1/KC and CXCL8/IL-8 was found at 3 h, followed by an upregulation of CXCL5/LIX (6 h), CXCL2/MIP-2 (12 h), and MCP1/CCL2 gene expression at 24-48 h. Further, an induction of pro-inflammatory cytokines IFN-γ and IL-1β followed by IL-6 and TNF-α was observed with a maximum at 12 h. The magnitude of increase in gene expression of TNF-α and MCP1/CCL2 was the highest among all cytokines and chemokines, respectively. By means of immunohistochemistry, an early (12-24 h) increase in the number of only neutrophil granulocytes (NGs) attached to and around portal vessel walls was observed, followed by increased numbers of mononuclear phagocytes (24-48 h) along the sinusoids. Treatment of the human monocytic cell line U-937 with TNF-α increased the gene expression of CXCL1/KC, CXCL8/IL-8, and MCP1/CCL2. Conversely, adding of infliximab (IFX) to the culture medium inhibited this upregulation significantly. In conclusion, single-dose TAA administration induces a sequence of events with a defined upregulation of gene expression of inflammatory chemokines and cytokines and a transient accumulation of NGs within the portal area and macrophages along the sinusoids throughout the liver. Periportal inflammation seems to precede hepatocellular damage.
Collapse
|
40
|
Farjam M, Mehrabani D, Abbassnia F, Tanideh N, Imanieh MH, Pakbaz S, Ashraf MJ, Panjehshahin MR, Dehdab S. The healing effect of Curcuma longa on liver in experimental acute hepatic encephalopathy of rat. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
Ali Hussei S, El-Said Az M, Kamal El-S S. Protective Effect of Curcumin on Antioxidant Defense System and Oxidative Stress in Liver Tissue of Iron Overloading Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajcn.2014.1.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction. Food Chem Toxicol 2013; 61:28-35. [DOI: 10.1016/j.fct.2013.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 12/21/2022]
|
43
|
Protective role of antioxidants on thioacetamide-induced acute hepatic encephalopathy: Biochemical and Ultrastructural study. Tissue Cell 2013; 45:350-62. [DOI: 10.1016/j.tice.2013.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/25/2013] [Accepted: 06/03/2013] [Indexed: 01/09/2023]
|
44
|
Hepatoprotective potentials of aqueous extract of Convolvulus pluricaulis against thioacetamide induced liver damage in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.biomag.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
|
46
|
Cutrin JC, Crich SG, Burghelea D, Dastrù W, Aime S. Curcumin/Gd loaded apoferritin: a novel "theranostic" agent to prevent hepatocellular damage in toxic induced acute hepatitis. Mol Pharm 2013; 10:2079-85. [PMID: 23548053 DOI: 10.1021/mp3006177] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apoferritin has been exploited to deliver simultaneously therapeutic and imaging agents (loaded into its internal cavity) to hepatocytes as this protein is efficiently taken up from blood by hepatocyte scavenger receptor class A type 5 via the ferritin transporting route. To this purpose the protein has been loaded with the magnetic resonance imaging (MRI) contrast agent GdHPDO3A and curcumin, a polyphenolic substance endowed with multiple pharmacological actions, namely: antioxidant, anti-inflammatory, antineoplastic. Curcumin and GdHPDO3A loaded apoferritin has been used with the aim to attenuate the thioacetamide-induced hepatitis together with the evaluation by MRI of drug delivery efficiency. Mice pretreated by intraperitoneal administration showed significantly attenuated hepatic injury as assessed by measuring alanine aminotransferase (ALT) activity in plasma and by histology assessment. The encapsulation of curcumin inside the apoferritin cavity significantly increases its stability and bioavailability while maintaining its therapeutic anti-inflammatory properties.
Collapse
Affiliation(s)
- Juan Carlos Cutrin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| | | | | | | | | |
Collapse
|
47
|
Kim SW, Ha KC, Choi EK, Jung SY, Kim MG, Kwon DY, Yang HJ, Kim MJ, Kang HJ, Back HI, Kim SY, Park SH, Baek HY, Kim YJ, Lee JY, Chae SW. The effectiveness of fermented turmeric powder in subjects with elevated alanine transaminase levels: a randomised controlled study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:58. [PMID: 23497020 PMCID: PMC3600681 DOI: 10.1186/1472-6882-13-58] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/25/2013] [Indexed: 02/02/2023]
Abstract
Background Previous animal studies have shown that Curcuma longa (turmeric) improves liver function. Turmeric may thus be a promising ingredient in functional foods aimed at improving liver function. The purpose of the study is to investigate the hepatoprotective effect of fermented turmeric powder (FTP) on liver function in subjects with elevated alanine transaminase (ALT) levels. Methods A randomised, double-blind, placebo-controlled trial was conducted between November 2010 and April 2012 at the clinical trial center for functional foods of the Chonbuk National University Hospital. The trial included 60 subjects, 20 years old and above, who were diagnosed mild to moderate elevated ALT levels between 40 IU/L and 200 IU/L. Sixty subjects were randomised to receive FTP 3.0 g per day or placebo 3.0 g per day for 12 weeks. The treatment group received two capsules of FTP three times a day after meals, for 12 weeks. The primary efficacy endpoint was change in the ALT levels in the two groups. The secondary efficacy endpoints included its effect on aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), total bilirubin (TB), and lipid profiles. Safety was assessed throughout the study using ongoing laboratory tests. Adverse events (AEs) were also recorded. Results Sixty subjects were randomised in the study (30 into the FTP group, 30 into the placebo group), and among them, twelve subjects were excluded from the analysis for protocol violation, adverse events or consent withdrawal. The two groups did not differ in baseline characteristics. After 12 weeks of treatment, 48 subjects were evaluated. Of the 48 subjects, 26 randomly received FTP capsules and 22 received placebo. The FTP group showed a significant reduction in ALT levels after 12 weeks of treatment compared with the placebo group (p = 0.019). There was also observed that the serum AST levels were significantly reduce in the FTP group than placebo group (p = 0.02). The GGT levels showed a tendency to decrease, while the serum alkaline phosphatase (ALP), TB, and lipids levels were not modified. There were no reported severe AEs during this study, or abnormalities observed on blood glucose, total protein, albumin, blood urea nitrogen (BUN), and creatinine levels. Conclusion The data of this trial indicate that FTP is effective and safe, generally well-tolerated without severe AEs, in the treatment of subjects with elevated ALT levels over a 12 weeks period. Trial registration ClinicalTrials.gov: http://NCT01634256
Collapse
|
48
|
Allopurinol ameliorates thioacetamide-induced acute liver failure by regulating cellular redox-sensitive transcription factors in rats. Inflammation 2013; 35:1549-57. [PMID: 22535497 DOI: 10.1007/s10753-012-9470-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress plays important role in the development of acute liver failure. In this study, we investigated effects of allopurinol (AP) upon thioacetamide (TAA)-induced liver injury and the potential mechanisms leading to amelioration in inflammation with AP treatment. Acute liver failure was induced by intraperitoneal administration of TAA (300 mg/kg/day for 2 days). Thirty-five rats were divided into five groups as control (group 1), TAA (group 2), TAA + 25AP (group 3), TAA + 50 AP (group 4), and TAA + 100AP (group 5). The number of animals in each group was seven. At the end of the study, histopathological, biochemical, and western blot analysis were done. TAA treatment significantly increased serum levels of aminotransferases, liver malondialdehyde (MDA), nuclear factor-kappa B (NF-қB ), activator protein-1 (AP-1), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) levels, and the necro-inflammation scores. Nevertheless, nuclear factor E2-related factor-2 and heme oxygenase-1 (HO-1) expressions in the liver were decreased by TAA. AP treatment significantly lowered the serum levels of aminotransferases (P < 0.01) and liver MDA, NF-κB, AP-1, TNF-α, COX-2, and IL-6 expressions (P < 0.05). Moreover, AP restored the liver Nrf2 and HO-1 expressions and improved the necro-inflammation scores significantly. AP improves oxidative stress-induced liver damage by regulating cellular redox-sensitive transcriptor factors and expression of pro-inflammatory and antioxidant defense mechanisms. AP probably exerts these beneficiary features by its free radical scavenging ability in a dose-dependent manner.
Collapse
|
49
|
Vera-Ramirez L, Pérez-Lopez P, Varela-Lopez A, Ramirez-Tortosa M, Battino M, Quiles JL. Curcumin and liver disease. Biofactors 2013; 39:88-100. [PMID: 23303639 DOI: 10.1002/biof.1057] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
Liver diseases pose a major medical problem worldwide and a wide variety of herbs have been studied for the management of liver-related diseases. In this respect, curcumin has long been used in traditional medicine, and in recent years it has been the object of increasing research interest. In combating liver diseases, it seems clear that curcumin exerts a hypolipidic effect, which prevents the fatty acid accumulation in the hepatocytes that may result from metabolic imbalances, and which may cause nonalcoholic steatohepatitis. Another crucial protective activity of curcumin, not only in the context of chronic liver diseases but also regarding carcinogenesis and other age-related processes, is its potent antioxidant activity, which affects multiple processes and signaling pathways. The effects of curcumin on NF-κβ are crucial to our understanding of the potent hepatoprotective role of this herb-derived micronutrient. Because curcumin is a micronutrient that is closely related to cellular redox balance, its properties and activity give rise to a series of molecular reactions that in every case and biological situation affect the mitochondria.
Collapse
Affiliation(s)
- Laura Vera-Ramirez
- GENyO Center Pfizer-University of Granada & Andalusian Government Centre for Genomics & Oncology, Granada, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Abbasi MH, Akhtar T, Malik IA, Fatima S, Khawar B, Mujeeb KA, Mustafa G, Hussain S, Iqbal J, Sheikh N. Acute and Chronic Toxicity of Thioacteamide and Alterations in Blood Cell Indices in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.41032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|