1
|
Wang D, Wang W, Jiang S, Ma H, Lian H, Meng F, Liu J, Cui M, You J, Liu C, Zhao D, Hu F, Liu D, Li C. Regulation of depression-related behaviors by GABAergic neurons in the lateral septum through periaqueductal gray neuronal projections. J Psychiatr Res 2021; 137:202-214. [PMID: 33691232 DOI: 10.1016/j.jpsychires.2021.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Major depressive disorder (MDD) is a serious and widespread mental illness worldwide. The abnormality of neuronal networks may contribute to the etiology of MDD. However, the neural connections underlying the main symptoms of MDD need further elucidation. Here, we found that GABAergic neurons in the lateral septum (LS) were activated by chronic unpredictable stress (CUS), with increased numbers of ΔFosB-labeled neurons. LS neuronal activity was modulated using a chemogenetic approach. Activation of LS neurons caused a depressive phenotype, as shown by increased immobility in the forced swim test, and induced increased susceptibility to subthreshold chronic stress, as indicated by decreased female urine sniffing time and preference for sucrose in depression-related behavior detection, whereas suppression of LS neuronal activity induced an antidepressant effect under basal and stressed conditions. Moreover, we found that the LS showed strong neuronal projections to the dorsal periaqueductal gray (dPAG); activation of dPAG-projecting GABAergic neurons in the LS produced the same depressive behaviors and stress susceptibility as induced by the activation of the majority of LS GABAergic neurons. Finally, we found that activation of neuronal fibers in the dPAG derived from the LS showed depression-related behaviors, as suggested by the decreased female urine sniffing time and sucrose preference in female urine sniffing and sucrose preference tests respectively. Our findings indicate that LS is a key depression-controlling nucleus, and that the LS-PAG projection is an essential effector circuit for morbidity and treatment in depression.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingjing You
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengai Hu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
2
|
Cross-tolerance between nitric oxide synthase inhibition and atypical antipsychotics modify nicotinamide-adenine-dinucleotide phosphate-diaphorase activity in mouse lateral striatum. Behav Pharmacol 2019; 30:67-78. [PMID: 29664745 DOI: 10.1097/fbp.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous research indicates that the subchronic administration of NG-nitro-L-arginine (L-NOARG) produces tolerance to haloperidol-induced catalepsy in Swiss mice. The present study aimed to further investigate whether intermittent subchronic systemic administration of L-NOARG induces tolerance to the cataleptic effects of haloperidol as well as olanzapine or clozapine (Clz) in C57Bl mice after subchronic administration for 5 consecutive days. Striatal FosB protein expression was measured in an attempt to gain further insights into striatal mechanisms in antipsychotic-induced extrapyramidal symptoms side effects. An nicotinamide-adenine-dinucleotide phosphate-diaphorase histochemical reaction was also used to investigate whether tolerance could induce changes in the number of nitric oxide synthase-active neurons. Subchronic administration of all antipsychotics produced catalepsy, but cross-tolerance was observed only between L-NOARG (15 mg/kg, intraperitoneally) and Clz (20 mg/kg, intraperitoneally). This cross-tolerance effect was accompanied by decreased FosB protein expression in the dorsal striatum and the nucleus accumbens shell region, and reduced icotinamide-adenine-dinucleotide phosphate-diaphorase activity in the dorsal and ventral lateral striatum. Overall, these results suggest that interference with the formation of nitric oxide, mainly in the dorsal and ventral lateral-striatal regions, appears to improve the cataleptic effects induced by antipsychotics acting as antagonists of low-affinity dopamine D2 receptor, such as Clz.
Collapse
|
3
|
Clozapine impact on FosB/ΔFosB expression in stress preconditioned rats: response to a novel stressor. Endocr Regul 2019; 53:83-92. [PMID: 31517626 DOI: 10.2478/enr-2019-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Prolonged treatment with neuroleptics has been shown to induce FosB/ΔFosB expression in several brain regions including the medial prefrontal cortex, dorsomedial and dorsolateral striatum, ventrolateral and dorsolateral septum, nucleus accumbens shell and core, and the hypothalamic paraventricular nucleus (PVN). Some of these regions are known to be also stress responsive. This study was designed to determine whether repeated clozapine (CLZ) administration for 7 consecutive days to Wistar rats may modify FosB/ΔFosB expression in the above-mentioned brain areas induced by acute stress or novel stressor that followed 13-day chronic mild stress preconditioning. METHODS Following experimental groups were used: unstressed animals treated with vehicle/ CLZ for 7 days; 7-day vehicle/CLZ-treated animals on the last day exposed to acute stress - forced swimming (FSW); and animals preconditioned with stress for 13 days treated from the 8th day with vehicle/CLZ and on the 14th day exposed to novel stress - FSW. RESULTS In the unstressed animals CLZ markedly increased FosB/ΔFosB immunoreactivity in the ventrolateral septum and PVN. FSW elevated FosB/ΔFosB expression in the medial prefrontal cortex, striatum, and septum. CLZ markedly potentiated the effect of the FSW on FosB/ΔFosB expression in the PVN, but suppressed it in the dorsomedial striatum. Novel stress with stress preconditioning increased FosB/ΔFosB immunoreactivity in the prefrontal cortex, striatum, ventrolateral septum, and the PVN. In the nucleus accumbens the effect of the novel stressor was potentiated by CLZ. CONCLUSION Our data indicate that CLZ may modulate the acute as well as novel stress effects on FosB/ΔFosB expression but its effect differs within the individual brain regions.
Collapse
|
4
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
5
|
Majercikova Z, Horvathova L, Osacka J, Pecenak J, Kiss A. Impact of repeated asenapine treatment on FosB/ΔFosB expression in the forebrain structures under normal conditions and mild stress preconditioning in the rat. Brain Res Bull 2016; 127:29-37. [PMID: 27542594 DOI: 10.1016/j.brainresbull.2016.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 12/30/2022]
Abstract
Long-term effect of asenapine (ASE), an atypical antipsychotic drug, on FosB/ΔFosB quantitative variations in the striatum, septum, nucleus accumbens, and prefrontal cortex, was light microscopically evaluated in normal rats and rats preconditioned with chronic unpredictable mild stress (CMS). CMS included restraint, social isolation, crowding, swimming, and cold. The rats were exposed to CMS for 21 days. From the 7th day of CMS, the rats were injected subcutaneously with saline (300μl/rat) or ASE (0.3mg/kg b.w.), twice a day for 14 days. On the 22nd day, i.e. 16-18h after the last treatment, the animals were perfused with fixative and the brains cut into 30μm thick coronal sections. FosB/ΔFosB protein was immunohistochemically visualized by avidin-biotin peroxidase complex (ABC). Four groups of animals were investigated: control+vehicle, control+ASE, CMS+vehicle, and CMS+ASE. Repeated ASE treatment significantly increased the amount of FosB/ΔFosB immunostained cell nuclei in the dorsolateral and dorsomedial striatum and the shell of the nucleus accumbens, followed by strVM and coACC, as assessed by numerical analysis in both total (different size for each structure) and unified (equal size for each structure) brain sectors. The effect of ASE was significantly lowered by CMS preconditioning only in the dorsolateral striatum, dorsomedial striatum, and the shell of the nucleus accumbens, indicated by both total and unified calculations. Although, highest FosB/ΔFosB expression was seen in the prefrontal cortex and lowest in the dorsolateral and ventrolateral septum, no differences between the groups occurred. CMS itself did not affect FosB/ΔFosB expression level. These findings demonstrate for the first time that repeated administration of ASE may result in eliciting of long-lasting FosB/ΔFosB-like transcription factors that could mediate some of the persistent and region-specific changes in brain function, interconnected with chronic drug exposure. However, it cannot be excluded that the impact of repeated ASE exposure might be influenced by an ambient stressogen leverage.
Collapse
Affiliation(s)
- Zuzana Majercikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Jan Pecenak
- Department of Psychiatry, Faculty of Medicine in Bratislava, Comenius University, Mickiewiczova 13, 81369 Bratislava, Slovakia
| | - Alexander Kiss
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia.
| |
Collapse
|
6
|
Pereira A, Zhang B, Malcolm P, Sugiharto-Winarno A, Sundram S. Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor. BMC Neurosci 2014; 15:30. [PMID: 24552586 PMCID: PMC3936900 DOI: 10.1186/1471-2202-15-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 01/04/2023] Open
Abstract
Background Signaling pathways outside dopamine D2 receptor antagonism may govern the variable clinical profile of antipsychotic drugs (APD) in schizophrenia. One postulated mechanism causal to APD action may regulate synaptic plasticity and neuronal connectivity via the extracellular signal-regulated kinase (ERK) cascade that links G-protein coupled receptors (GPCR) and ErbB growth factor signaling, systems disturbed in schizophrenia. This was based upon our finding that the low D2 receptor affinity APD clozapine induced initial down-regulation and delayed epidermal growth factor receptor (EGFR or ErbB1) mediated activation of the cortical and striatal ERK response in vivo distinct from olanzapine or haloperidol. Here we map whether the second generation atypical APDs aripiprazole and quetiapine affect the EGFR-ERK pathway and its substrates p90RSK and c-Fos in mouse brain, given their divergent agonist and antagonist properties on dopaminergic transmission, respectively. Results In prefrontal cortex, aripiprazole triggered triphasic ERK phosphorylation that was EGFR-independent but had no significant effect in striatum. Conversely quetiapine did not alter cortical ERK signaling but elevated striatal ERK levels in an EGFR-dependent manner. Induction of ERK by aripiprazole did not affect p90RSK signaling but quetiapine decreased RSK phosphorylation within 1-hour of administration. The transcription factor c-Fos by comparison was a direct target of ERK phosphorylation induced by aripiprazole in cortex and quetiapine in striatum with protein levels in temporal alignment with that of ERK. Conclusions These data indicate that aripiprazole and quetiapine signal to specific nuclear targets of ERK, which for quetiapine occurs via an EGFR-linked mechanism, possibly indicating involvement of this system in its action.
Collapse
Affiliation(s)
- Avril Pereira
- Department of Molecular Psychopharmacology, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, At Genetics Lane on Royal Parade, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
7
|
Abbott CC, Jaramillo A, Wilcox CE, Hamilton DA. Antipsychotic drug effects in schizophrenia: a review of longitudinal FMRI investigations and neural interpretations. Curr Med Chem 2014; 20:428-37. [PMID: 23157635 DOI: 10.2174/0929867311320030014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/10/2012] [Accepted: 09/26/2012] [Indexed: 12/11/2022]
Abstract
The evidence that antipsychotics improve brain function and reduce symptoms in schizophrenia is unmistakable, but how antipsychotics change brain function is poorly understood, especially within neuronal systems. In this review, we investigated the hypothesized normalization of the functional magnetic resonance imaging (fMRI) blood oxygen level dependent signal in the context of antipsychotic treatment. First, we conducted a systematic PubMed search to identify eight fMRI investigations that met the following inclusion criteria: case-control, longitudinal design; pre- and post-treatment contrasts with a healthy comparison group; and antipsychotic-free or antipsychotic-naive patients with schizophrenia at the start of the investigation. We hypothesized that aberrant activation patterns or connectivity between patients with schizophrenia and healthy comparisons at the first imaging assessment would no longer be apparent or "normalize" at the second imaging assessment. The included studies differed by analysis method and fMRI task but demonstrated normalization of fMRI activation or connectivity during the treatment interval. Second, we reviewed putative mechanisms from animal studies that support normalization of the BOLD signal in schizophrenia. We provided several neuronal-based interpretations of these changes of the BOLD signal that may be attributable to long-term antipsychotic administration.
Collapse
Affiliation(s)
- C C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
8
|
Activation of a ΔFOSB dependent gene expression pattern in the dorsolateral prefrontal cortex of patients with major depressive disorder. J Affect Disord 2011; 133:174-8. [PMID: 21616539 DOI: 10.1016/j.jad.2011.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/24/2011] [Accepted: 04/21/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND A ΔFOSB mediated transcriptional response in the nucleus accumbens (NAc) is induced by chronic social stress in rodent and a 50% down-regulation of ΔFOSB has been also reported in the NAc of eight depressed subjects. To evaluate the role of ΔFOSB in the prefrontal cortex which is critically involved in negative cognitive bias associated with major depressive disorder (MDD) we have quantified the mRNA levels of ΔFOSB and of five of its major target genes in the Brodmann area 46 from 24 patients with MDD (11 with psychotic symptoms) and 12 controls. METHOD Expression of the six genes has been quantified by a real-time quantitative PCR method: ΔFOSB, GRIA2 (encoding the GluR2 subunit of the AMPA receptor), SPARCL1 (encoding hevin), SG3 (encoding the secretogranin III), PCP4 (encoding the Purkinje cell protein 4), ATP6V0C (encoding a subunit of the lysosomal ATPase). RESULTS Expression of ΔFOSB and GRIA2 was significantly up-regulated (≈ 1.60) in the BA 46 of MDD patients. Overexpression of SCG3 and PCP4 was restricted to psychotic subjects. The mRNA levels of GRIA2, SCG3 and PCP4 were strongly correlated in the depressed group. LIMITATIONS All the patients were treated by antidepressants and the number of subjects in each subgroup was rather small. CONCLUSIONS Induction of a ΔFOSB mediated transcriptional pattern in the prefrontal cortex is opposite to the down-regulation observed in the NAc. The major consequence might be a shift in the excitability of the glutamatergic synapses which depends on GluR2 (high in the NAc and low in the BA 46).
Collapse
|
9
|
Prefrontal cortex and reversion of atropine-induced disruption of the degraded contingency effect by antipsychotic agents and N-desmethylclozapine in rats. Int J Neuropsychopharmacol 2010; 13:109-22. [PMID: 19531280 DOI: 10.1017/s1461145709990095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Interactive context processing is a cognitive ability that is altered in psychotic states, including schizophrenia. This deficit has been linked to prefrontal cortical dysfunction in humans. The degraded contingency effect (DCE) is a simple form of interactive context processing by which contextual information interferes with a target conditioned stimulus for control over conditioned responding. We have previously shown that the DCE was disrupted by the muscarinic receptor antagonist atropine and that this disruption was specifically restored by cholinergic drugs displaying an antipsychotic-like profile, such as physostigmine or xanomeline. The DCE was selectively associated with an increase in Fos immunoreactivity in the medial prefrontal cortex (mPFC), an increase that was not observed in the presence of atropine. Here, we set out to test the actions of typical, atypical and potential antipsychotics on atropine-induced disruption of the DCE and the related mPFC Fos-immunoreactivity profile. Low doses of haloperidol, olanzapine, clozapine and N-desmethylclozapine reversed atropine-induced disruption of the DCE, but with different dose-dependent curves (linear shapes for haloperidol and N-desmethylclozapine, inverted U shapes for olanzapine and clozapine). The level of Fos within the mPFC paralleled the pharmacological profile of the different drugs. Compared to contingent control groups, an increased level of Fos immunoreactivity within the mPFC was observed only with doses that reversed atropine-induced disruption of the DCE. These results suggest that the deficit of interactive context processing, which is a hallmark of psychotic states, might originate from a mere deficit of fundamental associative processes. This deficit might result from a cholinergic blockade of the PFC.
Collapse
|
10
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
11
|
Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, Dawant B, Meltzer HY. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology 2006; 31:1991-2001. [PMID: 16738543 DOI: 10.1038/sj.npp.1301108] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clozapine and quetiapine have a low incidence of extrapyramidal side effects at clinically effective doses, which appears to be related to their significantly lower occupancy of striatal dopamine D2 receptors (DA D2r) compared to typical antipsychotic drugs (APDs). Animal studies have indicated that clozapine and quetiapine produce selective effects on cortical and limbic regions of the brain and in particular on dopaminergic neurotransmission in these regions. Previous PET and SPECT studies have reported conflicting results regarding whether clozapine produces preferential occupancy of cortical DA D2r. To examine whether clozapine and/or quetiapine produce preferential occupancy of DA D2r in cortex and limbic regions, we studied the occupancy of putamenal, ventral striatal, thalamic, amygdala, substantia nigra, and temporal cortical DA D2r using PET with [18F]fallypride in six schizophrenic subjects receiving clozapine monotherapy and in seven schizophrenic subjects receiving quetiapine monotherapy. Doses were chosen clinically to minimize psychopathology at tolerable levels of side effects such as drowsiness. All had minimal positive symptoms at the time of the study. Regional receptor occupancies were estimated using mean regional DA D2r levels calculated for 10 off-medication schizophrenic subjects. Both clozapine and quetiapine produced lower levels of putamenal DA D2r occupancy than those reported for typical APDs, 47.8 and 33.5%, respectively. Clozapine produced preferential occupancy of temporal cortical vs putamenal DA D2r, 59.8% (p=0.05, corrected for multiple comparisons), and significantly lower levels of occupancy in the substantia nigra, 18.4% (p=0.0015, corrected for multiple comparisons). Quetiapine also produced preferential occupancy of temporal cortical DA D2r, 46.9% (p=0.03, corrected for multiple comparisons), but did not spare occupancy of substantia nigra DA D2r. The therapeutic effects of clozapine and quetiapine appear to be achieved at less than the 65% threshold for occupancy seen with typical APDs, consistent with the involvement of non-DA D2r mechanisms in at least partially mediating the therapeutic effects of these drugs. Preferential occupancy of cortical DA D2r, sparing occupancy of substantia nigra receptors, and non-DA D2r-mediated actions may contribute to the antipsychotic actions of these and other atypical APDs.
Collapse
Affiliation(s)
- Robert M Kessler
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Powell KJ, Binder TL, Hori S, Nakabeppu Y, Weinberger DR, Lipska BK, Robertson GS. Neonatal ventral hippocampal lesions produce an elevation of DeltaFosB-like protein(s) in the rodent neocortex. Neuropsychopharmacology 2006; 31:700-11. [PMID: 16132062 DOI: 10.1038/sj.npp.1300883] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rats that have sustained bilateral excitotoxic lesions of the ventral hippocampus (VH) as neonates develop behavioral abnormalities as adults (hyper-responsiveness to stress, diminished prepulse inhibition, and increased sensitivity to dopamine agonists), which resemble certain aspects of schizophrenia. Although this behavioral profile is thought to reflect dysregulation of the mesolimbic dopamine system, the precise neuroanatomical and neurochemical substrates that mediate the emergence of these abnormalities during brain maturation are unclear. In order to identify putative sites responsible for the development of behavioral abnormalities following neonatal lesions of the VH, we utilized the chronic neuronal activity marker DeltaFosB. By comparison to sham lesioned animals, bilateral destruction of the VH elevated DeltaFosB expression throughout the caudate putamen and neocortex of animals lesioned as neonates. These increases were not observed in rats lesioned as young-adults, suggesting that DeltaFosB induction in the cortex of neonatally lesioned rats may be related to altered cortical neurodevelopment. Accumulating evidence implicates DeltaFosB in mediation of the long-lasting effects of altered dopaminergic neurotransmission on behavior. The present findings are consistent with this proposal and suggest that elevated expression of DeltaFosB identifies overactive neurons that may contribute to the enhanced sensitivity to stress and dopaminergic agonists of rats that have sustained bilateral ventral hippocampal lesions as neonates.
Collapse
Affiliation(s)
- Kelly J Powell
- Department of Psychiatry and Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Perrotti LI, Bolaños CA, Choi KH, Russo SJ, Edwards S, Ulery PG, Wallace DL, Self DW, Nestler EJ, Barrot M. DeltaFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. Eur J Neurosci 2005; 21:2817-24. [PMID: 15926929 DOI: 10.1111/j.1460-9568.2005.04110.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcription factor deltaFosB is induced in the nucleus accumbens and dorsal striatum by chronic exposure to several drugs of abuse, and increasing evidence supports the possibility that this induction is involved in the addiction process. However, to date there has been no report of deltaFosB induction by drugs of abuse in the ventral tegmental area (VTA), which is also a critical brain reward region. In the present study, we used immunohistochemistry to demonstrate that chronic forced administration of cocaine induces deltaFosB in the rat VTA. This induction occurs selectively in a gamma-aminobutyric acid (GABA) cell population within the posterior tail of the VTA. A similar effect is seen after chronic cocaine self-administration. Induction of deltaFosB in the VTA occurs after psychostimulant treatment only: it is seen with both chronic cocaine and amphetamine, but not with chronic opiates or stress. The expression of deltaFosB appears to be mediated by dopamine systems, as repeated administration of a dopamine uptake inhibitor induced deltaFosB in the VTA, while administration of serotonin or norepinephrine uptake inhibitors failed to produce this effect. Time course analysis showed that, following 14 days of cocaine administration, deltaFosB persists in the VTA for almost 2 weeks after cocaine withdrawal. This accumulation and persistence may account for some of the long-lasting changes in the brain associated with chronic drug use. These results provide the first evidence of deltaFosB induction in a discrete population of GABA cells in the VTA, which may regulate the functioning of the brain's reward mechanisms.
Collapse
Affiliation(s)
- Linda I Perrotti
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maheux J, Ethier I, Rouillard C, Lévesque D. Induction patterns of transcription factors of the nur family (nurr1, nur77, and nor-1) by typical and atypical antipsychotics in the mouse brain: implication for their mechanism of action. J Pharmacol Exp Ther 2005; 313:460-73. [PMID: 15615863 DOI: 10.1124/jpet.104.080184] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monitoring gene expression has been intensively used to identify neurobiological and neuroanatomical substrates associated with administration of antipsychotic drugs. Transcription factors of the Nur family (Nurr1, Nur77, and Nor-1) are orphan nuclear receptors that have been recently associated with dopamine neurotransmission. Nurr1 is involved in midbrain dopamine neuron development. Nur77 and Nor-1 are expressed in dopaminoceptive areas such as the striatum, nucleus accumbens, and prefrontal cortex. To better understand the relationship between Nur and antipsychotic drug effects, we conducted a comprehensive evaluation of the effect of various typical and atypical antipsychotic drugs on the modulation of Nur mRNA levels. We show that differential patterns of Nur expression can be obtained with typical and atypical antipsychotic drugs. Modulation of Nur77 and Nor-1 mRNA expression by antipsychotics can be used to calculate an index that is predictive of the typical or atypical profile of antipsychotic drugs. Inductions of Nur by anti-psychotic drugs are correlated with dopamine D2 receptor in the striatum and D2 and D3 receptor subtypes in the nucleus accumbens. The 5-hydroxytryptamine 2A/D2 affinity ratio of antipsychotics can also predict these patterns of inductions. In addition to classical gene patterns induced in the striatal complex (striatum, accumbens) and cortex, most antipsychotic drugs tested strongly induced Nur77, Nor-1, and increased Nurr1 mRNA levels in the substantia nigra and ventral tegmental area. These data suggest that typical and atypical antipsychotic drugs might induce in multiple brain regions distinct Nur-dependent transcriptional activities, which may contribute to their pharmacological effects.
Collapse
MESH Headings
- Animals
- Antipsychotic Agents/pharmacology
- Autoradiography
- Brain Chemistry/drug effects
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- Densitometry
- Enkephalins/physiology
- In Situ Hybridization
- Mice
- Mice, Inbred C57BL
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D3
- Receptors, Neurotransmitter/drug effects
- Receptors, Steroid/biosynthesis
- Receptors, Steroid/drug effects
- Receptors, Steroid/genetics
- Receptors, Thyroid Hormone
- Transcription Factors/biosynthesis
- Transcription Factors/drug effects
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jérôme Maheux
- Neuroscience Unit, Centre de Recherche du Centre Hospitalier de l'Université Laval, Centre Hospitalier Universitaire du Québec, Québec, Canada
| | | | | | | |
Collapse
|
15
|
Robertson GS, Lee CJ, Sridhar K, Nakabeppu Y, Cheng M, Wang YM, Caron MG. Clozapine-, but not haloperidol-, induced increases in ΔFosB-like immunoreactivity are completely blocked in the striatum of mice lacking D3 dopamine receptors. Eur J Neurosci 2004; 20:3189-94. [PMID: 15579174 DOI: 10.1111/j.1460-9568.2004.03774.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of anatomical and pharmacological evidence, we have proposed that D3 receptor antagonism plays a role in the mediation of clozapine-, but not haloperidol-, induced immediate-early gene expression in the striatum. To test this hypothesis directly, we compared the effects of repeated administration of vehicle (8 mL/kg/day), clozapine (20 mg/kg/day) and haloperidol (2 mg/kg/day) for 17 days on expression of deltaFosB-like immunoreactivity (deltaFosB-Ir) in the island of Calleja major, nucleus accumbens and caudate-putamen of wild-type C57Bl6 (WT) and D3 receptor knockout (D3KO) mice. In vehicle-treated mice, the number of deltaFosB-Ir neurons in the nucleus accumbens was greater in D3KO than in WT mice. This finding is consistent with results implicating D3 receptor activation in the tonic inhibition of this limbic structure. Unlike rats, clozapine significantly increased the number of deltaFosB-Ir neurons in both the nucleus accumbens and the caudate-putamen of WT mice albeit to a lesser extent in the caudate-putamen than nucleus accumbens. Similar to rats, however, deltaFosB-Ir in the island of Calleja major of WT mice was elevated by clozapine but not by haloperidol. In the nucleus accumbens and caudate-putamen, haloperidol produced similar increases in deltaFosB-Ir in WT and D3KO mice. By contrast, clozapine-induced increases in deltaFosB-Ir in the island of Calleja major, nucleus accumbens and caudate-putamen of WT mice were absent in D3KO mice. These findings, which indicate that D3 receptor blockade is essential for clozapine-induced increases in striatal deltaFosB-Ir, suggest that D3 receptor antagonism may contribute to the unique therapeutic profile of this atypical antipsychotic.
Collapse
Affiliation(s)
- George S Robertson
- Department of Psychiatry, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for neuropsychiatry. ACTA ACUST UNITED AC 2004; 46:71-117. [PMID: 15297155 DOI: 10.1016/j.brainresrev.2004.04.009] [Citation(s) in RCA: 402] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
Substantial evidence indicates that the lateral septum (LS) plays a critical role in regulating processes related to mood and motivation. This review presents findings from the basic neuroscience literature and from some clinically oriented research, drawing from behavioral, neuroanatomical, electrophysiological, and molecular studies in support of such a role, and articulates models and hypotheses intended to advance our understanding of these functions. Neuroanatomically, the LS is connected with numerous regions known to regulate affect, such as the hippocampus, amygdala, and hypothalamus. Through its connections with the mesocorticolimbic dopamine system, the LS regulates motivation, both by stimulating the activity of midbrain dopamine neurons and regulating the consequences of this activity on the ventral striatum. Evidence that LS function could impact processes related to schizophrenia and other psychotic spectrum disorders, such as alterations in LS function following administration of antipsychotics and psychotomimetics in animals, will also be presented. The LS can also diminish or enable fear responding when its neural activity is stimulated or inhibited, respectively, perhaps through its projections to the hypothalamus. It also regulates behavioral manifestations of depression, with antidepressants stimulating the activity of LS neurons, and depression-like phenotypes corresponding to blunted activity of LS neurons; serotonin likely plays a key role in modulating these functions by influencing the responsiveness of the LS to hippocampal input. In conclusion, a better understanding of the LS may provide important and useful information in the pursuit of better treatments for a wide range of psychiatric conditions typified by disregulation of affective functions.
Collapse
Affiliation(s)
- Teige P Sheehan
- Department of Psychology, Brown University, P.O. Box 1853, Providence, RI 02912, USA.
| | | | | |
Collapse
|
17
|
Grande C, Zhu H, Martin AB, Lee M, Ortiz O, Hiroi N, Moratalla R. Chronic treatment with atypical neuroleptics induces striosomal FosB/DeltaFosB expression in rats. Biol Psychiatry 2004; 55:457-63. [PMID: 15023572 DOI: 10.1016/j.biopsych.2003.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 08/13/2003] [Accepted: 08/15/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND Studies have shown that neuroleptics regulate expression of the transcription factor FosB/DeltaFosB in the striatum, including the accumbens and caudate-putamen; however, the striatum is also divided into another structural dimension, the striosome and matrix compartments. The precise distribution of FosB/DeltaFosB induced by chronic neuroleptics in these striatal compartments is poorly understood. METHODS Rats received either single acute injections or chronic injections of clozapine (0 or 20 mg/kg, intraperitoneally [IP]), olanzapine (0 or 5 mg/kg, IP), or haloperidol (0 or 1.5 mg/kg, IP) for 25 days. The levels and compartmental distribution of FosB/DeltaFosB were examined. RESULTS Chronic clozapine induced clustered FosB/DeltaFosB expression within striosomes of the caudate-putamen. This pattern was due to increased levels of FosB/DeltaFosB in striosomes within the ventrolateral caudate-putamen and reduced levels of basal FosB/DeltaFosB in the matrix in the entire caudate-putamen. In contrast, chronic haloperidol increased FosB/DeltaFosB equally within the matrix and striosomes throughout the entire caudate-putamen. Chronic olanzapine induced an intermediate pattern. CONCLUSIONS The relative absence of FosB/DeltaFosB expression in the matrix correlates with the lack of parkinsonism of atypical neuroleptics. Expression of FosB/DeltaFosB in the matrix may contribute to parkinsonism of typical neuroleptics.
Collapse
Affiliation(s)
- Cristina Grande
- Cajal Institute (CG, ABM, OO, RM), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
This paper reviews the evidence that antipsychotic drugs induce neuroplasticity. We outline how the synaptic changes induced by the antipsychotic drug haloperidol may help our understanding of the mechanism of action of antipsychotic drugs in general, and how they may help to elucidate the neurobiology of schizophrenia. Studies have provided compelling evidence that haloperidol induces anatomical and molecular changes in the striatum. Anatomical changes have been documented at the level of regional brain volume, synapse morphology, and synapse number. At the molecular level, haloperidol has been shown to cause phosphorylation of proteins and to induce gene expression. The molecular responses to conventional antipsychotic drugs are predominantly observed in the striatum and nucleus accumbens, whereas atypical antipsychotic drugs have a subtler and more widespread impact. We conclude that the ability of antipsychotic drugs to induce anatomical and molecular changes in the brain may be relevant for their antipsychotic properties. The delayed therapeutic action of antipsychotic drugs, together with their promotion of neuroplasticity suggests that modification of synaptic connections by antipsychotic drugs is important for their mode of action. The concept of schizophrenia as a disorder of synaptic organization will benefit from a better understanding of the synaptic changes induced by antipsychotic drugs.
Collapse
Affiliation(s)
- C Konradi
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
19
|
Rodríguez JJ, Garcia DR, Nakabeppu Y, Pickel VM. Enhancement of laminar FosB expression in frontal cortex of rats receiving long chronic clozapine administration. Exp Neurol 2001; 168:392-401. [PMID: 11259127 DOI: 10.1006/exnr.2000.7612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The frontal cortex (FrC) and cingulate cortex (CgC) are critical sites for normal cognitive function, as well as cognitive dysfunction in schizophrenia. Thus, modulation of synaptic transmission within these cortical areas may, in part, account for the therapeutic actions of antipsychotic drugs such as haloperidol and clozapine. FosB and DeltaFosB are immediate-early gene (IEG) products sensitive to changes in response to chronic neuroleptic drug administration. We quantitatively examine whether there are light microscopic regional and/or laminar variations in FosB or DeltaFosB in the FrC or CgC of normal adult rats, or animals receiving 6 months administration of either drinking water clozapine, or depot haloperidol. Only animals receiving chronic haloperidol developed vacuous chewing movements, the equivalent of tardive dyskinesia in humans. In control animals, the deep and superficial layers of the FrC showed a higher area density of FosB, but not DeltaFosB immunoreactive cells than the medial layers of FrC or any of the CgC layers. In animals receiving clozapine, but not haloperidol there was increase in the area density of FosB immunoreactive neurons in all FrC layers, but the major increase occurs in medial layers. These findings suggest that FosB expression identifies those FrC neurons that are most active during normal waking behaviors and are further activated following chronic administration of atypical neuroleptics without motor side effects. The results also indicate that the actions of clozapine are attributed in large part to modulation of the output of frontal cortical pyramidal neurons residing in the medial layers.
Collapse
Affiliation(s)
- J J Rodríguez
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
20
|
Rodríguez JJ, Garcia DR, Nakabeppu Y, Pickel VM. FosB in rat striatum: normal regional distribution and enhanced expression after 6-month haloperidol administration. Synapse 2001; 39:122-32. [PMID: 11180499 DOI: 10.1002/1098-2396(200102)39:2<122::aid-syn3>3.0.co;2-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Subcortical motor nuclei show differential expression of FosB immediate early gene products and specifically deltaFosB after short (8, 19, or 21 days) chronic exposure to typical and atypical neuroleptics represented by haloperidol and clozapine, respectively. We quantitatively examined whether there are light microscopic regional variations in area density of FosB or the truncated deltaFosB in several motor-related nuclei of adult rats receiving vehicle or long chronic (6 months) administration of either depot haloperidol or clozapine in their drinking water. In control animals the dorsomedial and ventromedial caudate-putamen nucleus (CPN) had a significantly higher density of FosB-immunoreactive cells than the dorsolateral and ventrolateral regions. The nucleus accumbens (NAc) core also serving motor functions had a higher basal expression than the limbic shell region in control animals. The mediolateral gradient in area density of FosB-labeled cells was maintained in animals receiving either haloperidol or clozapine. In animals receiving haloperidol, but not clozapine, however, there was a regionally selective increase in the area density of only FosB-immunoreactive neurons in the dorsolateral and ventrolateral CPN and in both the core and shell of the NAc. Only the animals receiving chronic haloperidol showed vacuous chewing movements, the animal equivalent of tardive dyskinesia in humans. Our results suggest that, whereas the medial striatal neurons are activated under basal conditions, long chronic haloperidol induced FosB expression more exclusively in the lateral CPN and NAc core, implicating these regions specifically in the motor side effects of this drug.
Collapse
Affiliation(s)
- J J Rodríguez
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Numerous chronic perturbations have been shown to induce highly stable isoforms of the transcription factor deltaFosB in the brain in a region-specific manner. This review examines the functional consequences of the induction of deltaFosB in particular neuronal populations as well as its possible role in behavioral abnormalities such as drug addiction and movement disorders.
Collapse
Affiliation(s)
- M B Kelz
- Department of Anesthesiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
22
|
Beaudry G, Langlois MC, Weppe I, Rouillard C, Lévesque D. Contrasting patterns and cellular specificity of transcriptional regulation of the nuclear receptor nerve growth factor-inducible B by haloperidol and clozapine in the rat forebrain. J Neurochem 2000; 75:1694-702. [PMID: 10987852 DOI: 10.1046/j.1471-4159.2000.0751694.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to investigate the possible involvement of members of the nuclear receptor family of transcription factors in the effects of antipsychotic drugs used in the treatment of schizophrenia. We have identified, using RT-PCR screening, an important modulation of nerve growth factor-inducible B (NGFI-B) mRNA levels by typical and atypical neuroleptics in the rat forebrain. NGFI-B, a member of the nuclear receptor family, can be observed in target structures of dopaminergic pathways. Using in situ hybridization, we also demonstrate that typical and atypical antipsychotics induced contrasting patterns of expression of NGFI-B after both acute and chronic administration. An acute treatment with clozapine or haloperidol induces high NGFI-B mRNA levels in the prefrontal and cingulate cortices and in the nucleus accumbens shell. However, haloperidol, but not clozapine, dramatically increases NGFI-B expression in the dorsolateral striatum. In contrast, chronic treatment with clozapine reduces NGFI-B expression below basal levels in the rat forebrain, whereas haloperidol still induces high NGFI-B mRNA levels in the dorsolateral striatum. Finally, using a double in situ hybridization technique, we show that acute administration of both neuroleptics increases NGFI-B expression in neurotensin-containing neurons in the nucleus accumbens shell, whereas the effects of haloperidol in the dorsolateral striatum are mainly observed in enkephalin-containing neurons. These results are the first demonstration that members of the nuclear receptor family of transcription factors could play an important role in the effects of antipsychotic drugs.
Collapse
Affiliation(s)
- G Beaudry
- Unité de Neuroscience, Centre de Recherche du Centre Hospitalier Universitaire du Québec, and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
23
|
Rushlow WJ, Rajakumar B, Flumerfelt BA, Naus CC, Rajakumar N. Changes in CArG-binding protein A expression levels following injection(s) of the D1-dopamine agonist SKF-82958 in the intact and 6-hydroxydopamine-lesioned rat. Neuroscience 2000; 98:69-78. [PMID: 10858613 DOI: 10.1016/s0306-4522(00)00104-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We recently characterized the rat brain homolog of mouse muscle CArG-binding protein A initially identified in C2 myogenic cells and showed an inverse temporal correlation between increased expression levels of this messenger RNA, c-fos and zif268 messenger RNA levels following the addition of nerve growth factor to PC12 cells. In addition, we found an inverse correlation between c-Fos protein and CArG-binding protein A messenger RNA levels in the lateral caudate-putamen of rats treated acutely and chronically with the D2 receptor antagonist fluphenazine (phenothiozine typical psychotic). To determine whether D1 receptor stimulation is also capable of inducing CArG-binding protein A up-regulation, drug naive or dopamine-depleted (i.e. 6-hydroxydopamine-lesioned) D1 hypersensitized rats (i.e. rats given repeated daily injections of SKF-82958 for 14days) were acutely injected with the D1 agonist SKF-82958 and examined using a combination of in situ hybridization for CArG binding protein A and immunocytochemistry for c-Fos. Both acutely treated animals and dopamine-depleted hypersensitized animals showed increases in CArG-binding protein A. Moderate increases were found in the medial caudate-putamen and nucleus accumbens core and shell regions following acute treatment whereas large increases in CArG-binding protein A expression levels were found in the medial and lateral caudate-putamen and the shell and core of the nucleus accumbens following hypersensitization. No change in CArG-binding protein A expression level was found in the dopamine-depleted, drug naive animals relative to controls. Regions of the basal ganglia where increases in CArG-binding protein A were detected following each treatment correlated perfectly with c-Fos protein induction. The results demonstrate that CArG-binding protein A responds to SKF-82958 and that the changes in CArG-binding protein A match perfectly with the pattern of c-Fos induction induced by the D1 agonist.
Collapse
Affiliation(s)
- W J Rushlow
- Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, London, Canada.
| | | | | | | | | |
Collapse
|
24
|
Kasper S, Müller-Spahn F. Review of quetiapine and its clinical applications in schizophrenia. Expert Opin Pharmacother 2000; 1:783-801. [PMID: 11249516 DOI: 10.1517/14656566.1.4.783] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Preclinical studies have shown that quetiapine (Seroquel, AstraZeneca) is an atypical antipsychotic with many similarities to clozapine. Both placebo-controlled and comparative studies in patients with schizophrenia have demonstrated that quetiapine has long-term efficacy in both positive and negative domains, as well as beneficial effects on affective and cognitive symptoms. Comparative clinical studies confirm that quetiapine is at least as effective as the standard antipsychotics, chlorpromazine and haloperidol and response rates with quetiapine are similar to those reported with other atypical antipychotics. Quetiapine has also demonstrated superior efficacy to haloperidol in partially responsive patients, who can be particularly difficult to treat. Quetiapine has a wide clinical dosing range (150-750 mg/day), although doses of 400 mg or above should be used in patients who do not fully respond to lower doses of the drug. Quetiapine is generally well tolerated with no requirement for routine ECG or blood monitoring and it has minimal effects on weight. Uniquely among other first-line atypical antipsychotics, quetiapine is associated with a placebo-level incidence of EPS and an indistinguishable effect from placebo on plasma prolactin at all doses. Thus, clinicians can confidently increase the dose of quetiapine, without increasing the risk of EPS or hyperprolactinaemia. A number of studies have also shown that quetiapine is well-tolerated and effective in patients who are particularly susceptible to EPS, including elderly and adolescent patients and those with pre-existing dopaminergic pathology, such as Alzheimer's disease and Parkinson's disease. The consistent efficacy in treating all schizophrenic domains and good tolerability, particularly placebo-level EPS, make quetiapine acceptable to patients, as demonstrated in a survey of patient satisfaction. Thus quetiapine is a suitable first-line therapy for the treatment of schizophrenia and psychosis.
Collapse
Affiliation(s)
- S Kasper
- Department of General Psychiatry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
25
|
Atkins JB, Chlan-Fourney J, Nye HE, Hiroi N, Carlezon WA, Nestler EJ. Region-specific induction of deltaFosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse 1999; 33:118-28. [PMID: 10400890 DOI: 10.1002/(sici)1098-2396(199908)33:2<118::aid-syn2>3.0.co;2-l] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whereas acute administration of many types of stimuli induces c-Fos and related proteins in brain, recent work has shown that chronic perturbations cause the region-specific accumulation of novel Fos-like proteins of 35-37 kD. These proteins, termed chronic FRAs (Fos-related antigens), have recently been shown to be isoforms of DeltaFosB, which accumulate in brain due to their enhanced stability. In the present study, we sought to extend earlier findings that documented the effects of acute administration of antipsychotic drugs (APDs) on induction of Fos-like proteins by investigating the ability of typical and aytpical APDs, after chronic administration, to induce these DeltaFosB isoforms in several brain regions implicated in the clinical actions of these agents. By Western blotting we found that chronic administration of the typical APD, haloperidol, dramatically induces DeltaFosB in caudate-putamen (CP), a brain region associated with the extrapyramidal side effects of this drug. A smaller induction was seen in the nucleus accumbens (NAc) and prefrontal cortex (PFC), brain regions associated with the antipsychotic effects of the drug. In contrast, chronic administration of the prototype atypical APD clozapine failed to significantly increase levels of DeltaFosB in any of the three brain regions, and even tended to reduce DeltaFosB levels in the NAc. Two putative atypical APDs, risperidone and olanzapine, produced small but still significant increases in the levels of DeltaFosB in CP, but not NAc or PFC. Studies with selective receptor antagonists suggested that induction of DeltaFosB in CP and NAc is most dependent on antagonism of D2-D3 dopamine receptors, with antagonism of D1-like receptors most involved in the PFC. Immunohistochemical analysis confirmed the greater induction of DeltaFosB in CP by typical versus atypical APDs, with no significant induction seen in PFC with either class of APD. Together, these findings demonstrate that repeated administration of APDs results in the induction of long-lasting Fos-like transcription factors that could mediate some of the persistent and region-specific changes in brain function associated with chronic drug exposure. Synapse 33:118-128, 1999.
Collapse
Affiliation(s)
- J B Atkins
- Laboratory of Molecular Psychiatry and Center for Genes and Behavior, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | | | | | | | | | | |
Collapse
|
26
|
Nestler EJ, Kelz MB, Chen J. DeltaFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res 1999; 835:10-7. [PMID: 10448191 DOI: 10.1016/s0006-8993(98)01191-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DeltaFosB, a member of the Fos family of transcription factors, is derived from the fosB gene via alternative splicing. Just as c-Fos and many other Fos family members are induced rapidly and transiently in specific brain regions in response to many types of acute perturbations, novel isoforms of DeltaFosB accumulate in a region-specific manner in brain uniquely in response to many types of chronic perturbations, including repeated administration of drugs of abuse or of antidepressant or antipsychotic treatments. Importantly, once induced, these DeltaFosB isoforms persist in brain for relatively long periods due to their extraordinary stability. Mice lacking the fosB gene show abnormal biochemical and behavioral responses to chronic administration of drugs of abuse or antidepressant treatments, consistent with an important role for DeltaFosB in mediating long-term adaptations in the brain. More definitive evidence to support this hypothesis has recently been provided by inducible transgenic mice, wherein biochemical and behavioral changes, which mimic the chronic drug-treated state, are seen upon overexpression of DeltaFosB in specific brain regions. This evolving work supports the view that DeltaFosB functions as a type of 'molecular switch' that gradually converts acute responses into relatively stable adaptations that underlie long-term neural and behavioral plasticity to repeated stimuli.
Collapse
Affiliation(s)
- E J Nestler
- Laboratory of Molecular Psychiatry and Center for Genes and Behavior Yale University School of Medicine and Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06508, USA.
| | | | | |
Collapse
|
27
|
Sams-Dodd F. Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Rev Neurosci 1999; 10:59-90. [PMID: 10356992 DOI: 10.1515/revneuro.1999.10.1.59] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phencyclidine (PCP) is a hallucinogenic drug that can mimic several aspects of the schizophrenic symptomatology in healthy volunteers. In a series of studies PCP was administered to rats to determine whether it was possible to develop an animal model of the positive and negative symptoms of schizophrenia. The rats were tested in the social interaction test and it was found that PCP dose-dependently induces stereotyped behaviour and social withdrawal, which may correspond to certain aspects of the positive and negative symptoms, respectively. The effects of PCP could be reduced selectively by antipsychotic drug treatment, whereas drugs lacking antipsychotic effects did not alleviate the PCP-induced behaviours. Together these findings indicate that PCP effects in the rat social interaction test may be a model of the positive and negative symptoms of schizophrenia with face and predictive validity and that it may be useful for the evaluation of novel antipsychotic compounds.
Collapse
Affiliation(s)
- F Sams-Dodd
- Pharmacological Research, H. Lundbeck A/S, Valby, Denmark
| |
Collapse
|
28
|
Ballard TM, McAllister KH. Acutely administered clozapine does not modify naloxone-induced withdrawal jumping in morphine-dependent mice. Pharmacol Biochem Behav 1999; 62:285-90. [PMID: 9972695 DOI: 10.1016/s0091-3057(98)00141-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A direct comparison of the effects of clozapine and haloperidol upon naloxone-induced withdrawal jumping was investigated in morphine-dependent mice, as this syndrome may provide a behavioral baseline to differentiate between the two neuroleptics. Neither clozapine ((0.03-3.0 mg/kg s.c., n=9-10) nor haloperidol (0.01-04).1 mg/kg s.c., n=9-10) affected withdrawal jumping precipitated by 0.1 or 15.0 mg/kg i.p. naloxone in morphine-dependent mice. Measurement of locomotor activity immediately prior to naloxone administration revealed a dose-dependent reduction in activity by both compounds, indicating pharmacological effects at the time of naloxone-induced withdrawal. Clonidine (0.02-0.5 mg/kg s.c., n=9-10) also had no affect upon withdrawal jumping, although reductions in locomotor activity prior to naloxone administration were detected. There is no difference in the effects of acutely administered clozapine and haloperidol upon naloxone-precipitated withdrawal jumping in morphine-dependent mice.
Collapse
|
29
|
Vahid-Ansari F, Leenen FH. Pattern of neuronal activation in rats with CHF after myocardial infarction. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H2140-6. [PMID: 9843814 DOI: 10.1152/ajpheart.1998.275.6.h2140] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify neuronal populations possibly contributing to the sympathetic hyperactivity in rats with congestive heart failure (CHF) after myocardial infarction (MI), immunohistochemical detection of Fra-like immunoreactivity (Fra-LI) was used as a marker of long-term neuronal activation. In adult Wistar rats, 2 and 4 wk after left coronary artery ligation, left ventricular (LV) peak systolic pressure and LV end-diastolic pressure were measured, immediately followed by transcardial perfusion and removal of the heart and brain. The brains were processed using an antibody that recognizes Fos, FosB, Fra-1, and Fra-2 for the detection of Fra-LI and using an antibody that only recognizes Fos-like immunoreactivity (Fos-LI). At both 2 and 4 wk after large MI, LV peak systolic pressure was significantly decreased and LV end-diastolic pressure increased. At 2 wk post-MI or sham surgery, Fra-LI was observed in several areas of either group but was significantly higher in the MI versus the sham group in the magnocellular division of the paraventricular nucleus (PVN), supraoptic nucleus (SON), subfornical organ, and caudal part of the nucleus of the solitary tract. At 4 wk after large MI, Fra-LI was clearly detected in the parvocellular and magnocellular divisions of the PVN, SON, and locus ceruleus. Modest expression was noted in these nuclei in rats with small MI, whereas Fra-like positive immunoreactive neurons were barely detectable in the sham group 4 wk postsurgery. In these nuclei, the extent of expression of Fra-LI correlated significantly with the LV end-diastolic pressure. Fos-LI was only noted in the cerebral cortex. These results indicate clear activation of neurons as identified by Fra-LI in specific cardiovascular control centers in rats with CHF 2 and 4 wk post-MI.
Collapse
Affiliation(s)
- F Vahid-Ansari
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | |
Collapse
|
30
|
Budzikowski AS, Vahid-Ansari F, Leenen FH. Chronic activation of brain areas by high-sodium diet in Dahl salt-sensitive rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H2046-52. [PMID: 9841531 DOI: 10.1152/ajpheart.1998.274.6.h2046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To map changes in neuronal activity in the brains of Dahl salt-sensitive (Dahl S) vs. salt-resistant (Dahl R) rats by high-sodium diet, we used immunohistochemical detection of Fra-like proteins as a marker for long-term neuronal activation. Compared with Dahl R rats during regular sodium intake, Dahl S rats showed modestly higher expression of Fra-like immunoreactivity (Fra-LI) in the supraoptic nucleus, anterior hypothalamic area (AHA), central gray, and nucleus of solitary tract (NTS) at 5,6, and 9 wk of age but clearly elevated Fra-LI in the magnocellular part of the paraventricular nucleus (PVN) at 6 wk of age (but not at 5 and 9 wk). In the median preoptic nucleus (MnPO) Fra-LI was lower at 9 wk of age and no differences were observed in the parvocellular PVN and subfornical organ in Dahl S vs. Dahl R rats on regular sodium intake. Compared with Dahl S rats on a regular-sodium diet, Dahl S rats on a high-sodium diet from 4 to 9 wk of age had significantly increased blood pressure and experienced transient activation of magnocellular PVN and MnPO and virtually no changes in the activity of the parvocellular PVN, AHA, and NTS. In contrast, Dahl R rats showed marked activation in the magnocellular PVN after 1 and 2 wk on a high-sodium diet compared with Dahl R rats on a regular-sodium diet. The present study demonstrates that Dahl S rats show differential activation of brain areas participating in regulation of osmotic and cardiovascular homeostasis during development of sodium-sensitive hypertension.
Collapse
Affiliation(s)
- A S Budzikowski
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4E9
| | | | | |
Collapse
|
31
|
Waddington JL, Scully PJ, O'Callaghan E. The new antipsychotics, and their potential for early intervention in schizophrenia. Schizophr Res 1997; 28:207-22. [PMID: 9468355 DOI: 10.1016/s0920-9964(97)00115-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over almost four decades, few fundamentally different antipsychotic drugs evolved to challenge classical neuroleptics as the mainstay of the pharmacotherapy of schizophrenia. However, the recent re-emergence of clozapine, together with the emergence of risperidone, portends an increasing number of new antipsychotics which are now either traversing the stages of regulatory approval or else well-advanced in clinical development. This article first evaluates the significance of clozapine and risperidone; it then reviews some of the new antipsychotics and how they might be classified vis-a-vis potential advantages for patients, outlines putative mechanisms and new therapeutic targets, and considers whether such agents may act on any disease process inherent to schizophrenia. One fundamental issue is the extent to which the new antipsychotics might shift materially the risk benefit balance towards intervention, not just at the earliest possible stage following the onset of psychosis but at a yet earlier, 'prodromal' phase of the disorder where there is a considerably greater likelihood of 'treating' behavioural disturbances that prove not to be the harbingers of psychotic illness.
Collapse
Affiliation(s)
- J L Waddington
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin.
| | | | | |
Collapse
|
32
|
Budzikowski AS, Vahid-Ansari F, Robertson GS, Leenen FH. Patterns of neuronal activation during development of sodium sensitive hypertension in SHR. Hypertension 1997; 30:1572-7. [PMID: 9403585 DOI: 10.1161/01.hyp.30.6.1572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of regular (RNa) or high (HNa) sodium diet for 3, 7, and 14 days on Fra-like immunoreactivity (Fra-LI) in the brains of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were examined using an antibody that recognizes all known members of the Fos family (Fos, Fos-B, Fra-1, and Fra-2). Two weeks of HNa significantly exacerbated hypertension in SHR but had no effects in WKY. On RNa, compared with WKY, SHR showed higher Fra-LI in the median preoptic nucleus, supraoptic nucleus, both parts of the paraventricular nucleus, nucleus of the solitary tract, and central gray. Fra-LI in the subfornical organ did not differ between the two strains. On RNa, Fra-LI in the anterior hypothalamic area could be detected only in WKY. In osmoregulatory areas, HNa diet increased Fra-LI in both SHR and WKY to comparable extents, but in the median preoptic nucleus, Fra-LI was increased to a greater extent in SHR. HNa produced smaller increases in the subfornical organ of SHR compared with WKY. In both the parvocellular and magnocellular paraventricular nuclei, increases in Fra-LI by HNa were more pronounced in SHR than in WKY. In the anterior hypothalamic area, Fra-LI could no longer be detected in WKY on HNa, whereas it appeared in SHR. HNa increased Fra-LI in the NTS and central gray to similar levels in WKY and SHR. These results indicate that WKY and SHR differ in the pattern of neuronal activation accompanying maturation on RNa. HNa activates neurons in a number of brain areas, and the pattern of these changes also differs between WKY and SHR.
Collapse
Affiliation(s)
- A S Budzikowski
- Hypertension Unit, University of Ottawa Heart Institute, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Abstract
Our current treatments for schizophrenia are, at best, palliative. With the exception of counseling those families with a known high risk for having schizophrenic offspring, no preventive measures are currently available. The not too distant future, however, promises to bring improvements in somatic treatments as well as the possible introduction of preventive measures. We are fully aware that current biological treatments work best when they are combined with psychosocial intervention, and expect that future biological treatments and preventions will also involve appropriate nonbiological considerations. Psychosocial treatments are covered elsewhere in this issue. Here we look at how modern genetics, pre- and perinatal factors, early and sustained intervention, and new medications are likely to decrease both the number of individuals with schizophrenia and the severity of the illness.
Collapse
Affiliation(s)
- R J Wyatt
- Neuropsychiatry Branch, NIMH Neuroscience Center, St. Elizabeth's Hospital, Washington DC 20032, USA
| | | | | |
Collapse
|