1
|
Podvalny E, Sanchez-Romero R, Cole MW. Functionality of arousal-regulating brain circuitry at rest predicts human cognitive abilities. Cereb Cortex 2024; 34:bhae192. [PMID: 38745558 DOI: 10.1093/cercor/bhae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.
Collapse
Affiliation(s)
- Ella Podvalny
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, United States
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, United States
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, United States
| |
Collapse
|
2
|
Podvalny E, Sanchez-Romero R, Cole MW. Functionality of arousal-regulating brain circuitry at rest predicts human cognitive abilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574917. [PMID: 38617344 PMCID: PMC11014470 DOI: 10.1101/2024.01.09.574917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which in turn modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (N=149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.
Collapse
Affiliation(s)
- Ella Podvalny
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Atypical Auditory Brainstem Response and Protein Expression Aberrations Related to ASD and Hearing Loss in the Adnp Haploinsufficient Mouse Brain. Neurochem Res 2019; 44:1494-1507. [PMID: 30659505 DOI: 10.1007/s11064-019-02723-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Abstract
Autism is a wide spread neurodevelopmental disorder with growing morbidity rates, affecting more boys than girls worldwide. Activity-dependent neuroprotective protein (ADNP) was recently recognized as a leading gene accounted for 0.17% of autism spectrum disorder (ASD) cases globally. Respectively, mutations in the human ADNP gene (ADNP syndrome), cause multi-system body dysfunctions with apparent ASD-related traits, commencing as early as childhood. The Adnp haploinsufficient (Adnp+/-) mouse model was researched before in relations to Alzheimer's disease and autism. Adnp+/- mice suffer from deficient social memory, vocal and motor impediments, irregular tooth eruption and short stature, all of which corresponds with reported phenotypes in patients with the ADNP syndrome. Recently, a more elaborated description of the ADNP syndrome was published, presenting impediments such as hearing disabilities in > 10% of the studied children. Irregular auditory brainstem response (ABR) has been connected to ASD-related cases and has been suggested as a potential hallmark for autism, allowing diagnosis of ASD risk and early intervention. Herein, we present detriment hearing in the Adnp+/- mice with atypical ABR and significant protein expression irregularities that coincides with ASD and hearing loss studies in the brain.
Collapse
|
4
|
Haidarliu S, Ahissar E, Saraf-Sinik I. A self-adjusting head holder without ear-bars for guinea pigs. J Physiol Sci 2018; 68:875-880. [PMID: 29680978 PMCID: PMC10717020 DOI: 10.1007/s12576-018-0613-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
A self-adjusting head holder is designed to allow stable fixation and precise positioning (anterior-posterior, pitch, and roll) of guinea pig head in stereotaxic devices. These are achieved with no use of ear-bars. It is thus easy to use, preferable for studies of the auditory system, and for avoiding tissue damage of the ear in general. This head holder can accommodate various head sizes and is thus adapted for males and females of a large range of body weights, as confirmed for guinea pigs of 360-940 g. Moreover, this head holder is easy and cost-effective to manufacture, making it accessible for any lab. Here, we present background and mechanical rationale, the technical specifications, and step-by-step manufacturing instructions for the stainless-steel and the plastic MRI-compatible versions of our self-adjusting head holder.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Ehud Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Inbar Saraf-Sinik
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
5
|
Edeline JM. Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices. Front Behav Neurosci 2012; 6:45. [PMID: 22866031 PMCID: PMC3407859 DOI: 10.3389/fnbeh.2012.00045] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/03/2012] [Indexed: 02/01/2023] Open
Abstract
Over the last two decades, a vast literature has described the influence of neuromodulatory systems on the responses of sensory cortex neurons (review in Gu, 2002; Edeline, 2003; Weinberger, 2003; Metherate, 2004, 2011). At the single cell level, facilitation of evoked responses, increases in signal-to-noise ratio, and improved functional properties of sensory cortex neurons have been reported in the visual, auditory, and somatosensory modality. At the map level, massive cortical reorganizations have been described when repeated activation of a neuromodulatory system are associated with a particular sensory stimulus. In reviewing our knowledge concerning the way the noradrenergic and cholinergic system control sensory cortices, I will point out that the differences between the protocols used to reveal these effects most likely reflect different assumptions concerning the role of the neuromodulators. More importantly, a gap still exists between the descriptions of neuromodulatory effects and the concepts that are currently applied to decipher the neural code operating in sensory cortices. Key examples that bring this gap into focus are the concept of cell assemblies and the role played by the spike timing precision (i.e., by the temporal organization of spike trains at the millisecond time-scale) which are now recognized as essential in sensory physiology but are rarely considered in experiments describing the role of neuromodulators in sensory cortices. Thus, I will suggest that several lines of research, particularly in the field of computational neurosciences, should help us to go beyond traditional approaches and, ultimately, to understand how neuromodulators impact on the cortical mechanisms underlying our perceptual abilities.
Collapse
Affiliation(s)
- Jean-Marc Edeline
- Centre de Neurosciences Paris-Sud, CNRS UMR 8195, Université Paris-Sud, Bâtiment Orsay Cedex, France
| |
Collapse
|
6
|
Cohen SJ. Gender differences in speech temporal patterns detected using lagged co-occurrence text-analysis of personal narratives. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2009; 38:111-127. [PMID: 19043784 DOI: 10.1007/s10936-008-9088-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 10/23/2008] [Indexed: 05/27/2023]
Abstract
This paper describes a novel methodology for the detection of speech patterns. Lagged co-occurrence analysis (LCA) utilizes the likelihood that a target word will be uttered in a certain position after a trigger word. Using this methodology, it is possible to uncover a statistically significant repetitive temporal patterns of word use, compared to a random choice of words. To demonstrate this new tool on autobiographical narratives, 200 subjects related each a 5-min story, and these stories were transcribed and subjected to LCA, using software written by the author. This study focuses on establishing the usefulness of LCA in psychological research by examining its associations with gender. The application of LCA to the corpus of personal narratives revealed significant differences in the temporal patterns of using the word "I" between male and female speakers. This finding is particularly demonstrative of the potential for studying speech temporal patterns using LCA, as men and women tend to utter the pronoun "I" in comparable frequencies. Specifically, LCA of the personal narratives showed that, on average, men tended to have shorter interval between their use of the pronoun, while women speak longer between two subsequent utterances of the pronoun. The results of this study are discussed in light of psycholinguistic factors governing male and female speech communities.
Collapse
Affiliation(s)
- Shuki J Cohen
- Psychology Department, John Jay College of Criminal Justice, New York, NY 10019, USA.
| |
Collapse
|
7
|
Wallace MN, Palmer AR. Laminar differences in the response properties of cells in the primary auditory cortex. Exp Brain Res 2007; 184:179-91. [PMID: 17828392 DOI: 10.1007/s00221-007-1092-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/31/2007] [Indexed: 11/25/2022]
Abstract
In visual and somatosensory cortex there are important functional differences between layers. Although it is difficult to identify laminar borders in the primary auditory cortex (AI) laminar differences in functional processing are still present. We have used electrodes inserted orthogonal to the cortical surface to compare the response properties of cells in all six layers of AI in anaesthetised guinea pigs. Cells were stimulated with short tone pips and two conspecific vocalizations. When frequency response areas were measured for 248 units the tuning bandwidth was broader for units in the deep layers. The mean Q (10) value for tuning in layers IV-VI was significantly smaller (Mann-Whitney test P < 0.001) than for layers I-III. When response latencies were measured, the shortest latencies were found in layer V and the mean latency in this layer was shorter than in any of the more superficial layers (I-IV) when compared with a Tukey analysis of variance (P < 0.005). There were also laminar differences in the best threshold with layer V having the highest mean value. The mean best threshold for layer V (32.7 dB SPL) was significantly different from the means for layers II (25.5 dB SPL) and III (26.3 dB SPL). The responses to two vocalizations also varied between layers: the response to the first phrase of a chutter was smaller and about 10 ms later in the deep layers than in layers II and III. By contrast, the response to an example of whistle was stronger in the deep layers. These results are consistent with a model of AI that involves separate inputs to different layers and descending outputs from layers V/VI (to thalamus and brainstem) that are different from the output from layers II/III (to ipsilateral cortex).
Collapse
Affiliation(s)
- M N Wallace
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
8
|
Weinberger NM. Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learn Mem 2007; 14:1-16. [PMID: 17202426 PMCID: PMC3601844 DOI: 10.1101/lm.421807] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Historically, sensory systems have been largely ignored as potential loci of information storage in the neurobiology of learning and memory. They continued to be relegated to the role of "sensory analyzers" despite consistent findings of associatively induced enhancement of responses in primary sensory cortices to behaviorally important signal stimuli, such as conditioned stimuli (CS), during classical conditioning. This disregard may have been promoted by the fact that the brain was interrogated using only one or two stimuli, e.g., a CS(+) sometimes with a CS(-), providing little insight into the specificity of neural plasticity. This review describes a novel approach that synthesizes the basic experimental designs of the experimental psychology of learning with that of sensory neurophysiology. By probing the brain with a large stimulus set before and after learning, this unified method has revealed that associative processes produce highly specific changes in the receptive fields of cells in the primary auditory cortex (A1). This associative representational plasticity (ARP) selectively facilitates responses to tonal CSs at the expense of other frequencies, producing tuning shifts toward and to the CS and expanded representation of CS frequencies in the tonotopic map of A1. ARPs have the major characteristics of associative memory: They are highly specific, discriminative, rapidly acquired, exhibit consolidation over hours and days, and can be retained indefinitely. Evidence to date suggests that ARPs encode the level of acquired behavioral importance of stimuli. The nucleus basalis cholinergic system is sufficient both for the induction of ARPs and the induction of specific auditory memory. Investigation of ARPs has attracted workers with diverse backgrounds, often resulting in behavioral approaches that yield data that are difficult to interpret. The advantages of studying associative representational plasticity are emphasized, as is the need for greater behavioral sophistication.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA.
| |
Collapse
|
9
|
Thiele A, Delicato LS, Roberts MJ, Gieselmann MA. A novel electrode-pipette design for simultaneous recording of extracellular spikes and iontophoretic drug application in awake behaving monkeys. J Neurosci Methods 2006; 158:207-11. [PMID: 16843532 PMCID: PMC2666830 DOI: 10.1016/j.jneumeth.2006.05.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 05/28/2006] [Accepted: 05/29/2006] [Indexed: 11/10/2022]
Abstract
We developed a novel design of an electrode–pipette combination (EPC) which allows access to brain structures in awake behaving primates without the need for guide tubes or to mechanically open the dura prior to electrode insertion. The EPC consists of an etched tungsten in glass electrode flanked by two pipettes which allow for local and highly controlled iontophoretic administration of neuroactive substances. These EPCs have excellent single cell isolation properties and are sturdy enough to penetrate the primate dura for up to 8 weeks following either a craniotomy or a dura scrape (i.e. even after substantial built up of fibrous scar tissue). We show that the EPCs can be used to selectively manipulate the cholinergic system in primate V1 during passive fixation and while animals perform an attentionally demanding task.
Collapse
Affiliation(s)
- A Thiele
- Department of Psychology, Henry Wellcome Building, University of Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | |
Collapse
|
10
|
Prasad S, Quijano J. Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring. Biosens Bioelectron 2006; 21:1219-29. [PMID: 15990287 DOI: 10.1016/j.bios.2005.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/12/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022]
Abstract
Integration of micro and nanofabrication techniques with biotechnology has resulted in the development of in vitro analytical and diagnostic tools for biomedical applications. The focus of such technology has primarily been on therapeutic and sensing applications. The long-term integration of cells with inorganic materials provides the basis for novel sensing platforms. This paper describes the creation of, nanoporous, biocompatible, alumina membranes as a platform for incorporation into a cell based device targeted for in situ recording of cellular electrical activity variations due to the changes associated with the surrounding microenvironments more specifically due to the effect of therapeutic drugs. Studies described herein focus on the interaction of nanoporous alumina substrates embedded in silicon, patterned with cells of interest. The cells that have been used to develop the in vitro test platform are primary hippocampal neurons. Demonstrated here, is the fidelity of such a system in terms of determination of cell viability, proliferation, and functionality. The response of the cells to the "drug" molecules is electro-optically characterized in an in situ manner. The capability of such, micro fabricated nanoporous membranes as in vitro drug testing platforms, is first theoretically estimated using two dimensional finite element modeling of the diffusion of the molecules of interest through the nanoporous substrate using CFDRC. It is then experimentally established, using glucose and immunoglobulin G (IgG).
Collapse
Affiliation(s)
- Shalini Prasad
- Biomedical Microdevices and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW 4th Avenue, Portland, OR 97201, USA.
| | | |
Collapse
|
11
|
Mahlke C, Wallhäusser-Franke E. Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hear Res 2004; 195:17-34. [PMID: 15350276 DOI: 10.1016/j.heares.2004.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 03/03/2004] [Indexed: 11/29/2022]
Abstract
Distributions of arg3.1 and c-fos immunoreactive neurons (IRN) in gerbil auditory cortex (AC) and amygdala showed characteristic differences when comparing systemic application of the tinnitus-eliciting drug salicylate with acoustic stimulation or saline injections. In AC, arg3.1 IRN induced by stimulation focused in regions corresponding to the frequency content of the stimulus. Injections of salicylate (350 mg/kg body weight) led to accumulation of arg3.1 IRN in the high frequency domain, while saline injections produced a diffuse distribution. After all treatments, c-fos IRN outnumbered arg3.1 IRN in AC and showed a broad distribution. In subcortical auditory structures arg3.1 IRN were absent in all but one brain. In ventral cochlear nucleus, c-fos IRN were always found after stimulation and often also after saline injections, whereas none were present when injecting salicylate. Similarly, in inferior colliculus, numbers of c-fos IRN were lowest after salicylate injections. In the amygdala, c-fos and arg3.1 IRN were increased substantially after salicylate injections compared to auditory stimulation or saline injections. In particular in its central nucleus, c-fos and arg3.1 IRN were found exclusively after the tinnitus-inducing treatment, suggesting that coactivation of the AC and the amygdala may by an essential feature of tinnitus-related activation.
Collapse
Affiliation(s)
- C Mahlke
- Department of Neuoracoustics, Institute of Zoology, Darmstadt University of Technology, Darmstadt, Germany.
| | | |
Collapse
|
12
|
Experience-Dependent Response Plasticity in the Auditory Cortex: Issues, Characteristics, Mechanisms, and Functions. PLASTICITY OF THE AUDITORY SYSTEM 2004. [DOI: 10.1007/978-1-4757-4219-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Edeline JM. The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 2003; 153:554-72. [PMID: 14517594 DOI: 10.1007/s00221-003-1608-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 06/14/2003] [Indexed: 11/26/2022]
Abstract
The goal of this review is twofold. First, it aims to describe the dynamic regulation that constantly shapes the receptive fields (RFs) and maps in the thalamo-cortical sensory systems of undrugged animals. Second, it aims to discuss several important issues that remain unresolved at the intersection between behavioral neurosciences and sensory physiology. A first section presents the RF modulations observed when an undrugged animal spontaneously shifts from waking to slow-wave sleep or to paradoxical sleep (also called REM sleep). A second section shows that, in contrast with the general changes described in the first section, behavioral training can induce selective effects which favor the stimulus that has acquired significance during learning. A third section reviews the effects triggered by two major neuromodulators of the thalamo-cortical system--acetylcholine and noradrenaline--which are traditionally involved both in the switch of vigilance states and in learning experiences. The conclusion argues that because the receptive fields and maps of an awake animal are continuously modulated from minute to minute, learning-induced sensory plasticity can be viewed as a "crystallization" of the receptive fields and maps in one of the multiple possible states. Studying the interplays between neuromodulators can help understanding the neurobiological foundations of this dynamic regulation.
Collapse
Affiliation(s)
- Jean-Marc Edeline
- Laboratoire de Neurobiologie de l'Apprentissage de la Mémoire et de la Communication, Université Paris-Sud, UMR 8620, Bat 446, 91405 Orsay, France.
| |
Collapse
|
14
|
Devilbiss DM, Waterhouse BD. Determination and quantification of pharmacological, physiological, or behavioral manipulations on ensembles of simultaneously recorded neurons in functionally related neural circuits. J Neurosci Methods 2002; 121:181-98. [PMID: 12468008 DOI: 10.1016/s0165-0270(02)00263-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present report describes methods for evaluating the impact of physiological, pharmacological or behavioral manipulations on simultaneously recorded single neurons within a functional sensory network of the awake, freely moving rat. Surgical techniques were developed to implant a subcutaneous electrode at the base of a single facial whisker (mystacial vibrissae) so that uniform electrical stimuli could be routinely delivered to a discrete region of the whisker pad in the awake and freely moving animal. Multi-channel extracellular recording was used to monitor the spike train activity from ensembles of single neurons in whisker-related regions of the thalamus and neocortex. Algorithms were developed to verify the stability of individual cell recordings during extended experimental sessions. Additional analysis procedures and criteria were established for identifying and evaluating the treatment-specific changes in single neuron discharge patterns that are likely to occur under these experimental conditions. Finally, analyses for evaluating the impact of experimental manipulations on sensory representations distributed over populations of neurons are discussed. The development of these techniques has provided us with the means to investigate the influence of systemically administered drugs or broadly projecting monoamine pathways on single neurons and local circuits within primary sensory networks of the awake or anesthetized mammalian brain.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Neurobiology and Anatomy, MCP-Hahnemann University, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
15
|
Khokhlova VN, Merzhanova GK, Dolbakyan EE. Network activity in neurons of the motor and prefrontal areas of the cortex in trained cats in conditions of systemic administration of m-cholinoreceptor blockers. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:631-42. [PMID: 12469892 DOI: 10.1023/a:1020465829338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experiments on five cats already trained to an operant conditioned food-procuring reflex to light were used to study the network activity of cells in the frontal and motor areas of the cortex accompanying disruption of conditioned reflex behavior in conditions of systemic administration of m-cholinoreceptor blockers. The activity of cortical neurons and their network properties were assessed using auto- and cross-correlation histograms. Doses of central m-cholinoreceptor blockers (the non-selective blocker scopolamine and the relatively selective m1-cholinoreceptor blocker trihexyphenidyl) disrupted performance of the operant motor reflex but had no effect on the appearance of contextual behavior and responses to switching on of the conditioned signal (standing up, elevating the paw). This was accompanied by 1) changes in the patterns of neuron activity in the moor and frontal areas of the cortex, with increases in train, rhythmic, and rhythmic train activity in cortical cells; 2) appearance of synchronicity in the operation of cortical neurons; 3) decreases in the numbers of direct interneuronal connections in the motor and frontal areas of the cortex and in the numbers of connections between these structures.
Collapse
Affiliation(s)
- V N Khokhlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
16
|
Ego-Stengel V, Shulz DE, Haidarliu S, Sosnik R, Ahissar E. Acetylcholine-dependent induction and expression of functional plasticity in the barrel cortex of the adult rat. J Neurophysiol 2001; 86:422-37. [PMID: 11431522 DOI: 10.1152/jn.2001.86.1.422] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The involvement of acetylcholine (ACh) in the induction of neuronal sensory plasticity is well documented. Recently we demonstrated in the somatosensory cortex of the anesthetized rat that ACh is also involved in the expression of neuronal plasticity. Pairing stimulation of the principal whisker at a fixed temporal frequency with ACh iontophoresis induced potentiations of response that required re-application of ACh to be expressed. Here we fully characterize this phenomenon and extend it to stimulation of adjacent whiskers. We show that these ACh-dependent potentiations are cumulative and reversible. When several sensori-cholinergic pairings were applied consecutively with stimulation of the principal whisker, the response at the paired frequency was further increased, demonstrating a cumulative process that could reach saturation levels. The potentiations were specific to the stimulus frequency: if the successive pairings were done at different frequencies, then the potentiation caused by the first pairing was depotentiated, whereas the response to the newly paired frequency was potentiated. During testing, the potentiation of response did not develop immediately on the presentation of the paired frequency during application of ACh: the analysis of the kinetics of the effect indicates that this process requires the sequential presentation of several trains of stimulation at the paired frequency to be expressed. We present evidence that a plasticity with similar characteristics can be induced for responses to stimulation of an adjacent whisker, suggesting that this potentiation could participate in receptive field spatial reorganizations. The spatial and temporal properties of the ACh-dependent plasticity presented here impose specific constraints on the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- V Ego-Stengel
- Unité de Neurosciences Intégratives et Computationnelles, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
17
|
Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 2000; 95:933-52. [PMID: 10682701 DOI: 10.1016/s0306-4522(99)00487-x] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basal forebrain corticopetal neurons participate in the mediation of arousal, specific attentional functions and rapid eye movement sleep-associated dreaming. Recent studies on the afferent regulation of basal forebrain neurons by telencephalic and brainstem inputs have provided the basis for hypotheses which, collectively, propose that the involvement of basal forebrain corticopetal projections in arousal, attention and dreaming can be dissociated on the basis of their regulation via major afferent projections. While the processing underlying sustained, selective and divided attention performance depends on the integrity of the telencephalic afferent regulation of basal forebrain corticopetal neurons, arousal-induced attentional processing (i.e. stimulus detection, selection and processing as a result of a novel, highly salient, aversive or incentive stimuli) is mediated via the ability of brainstem ascending noradrenergic projections to the basal forebrain to activate or "recruit" these telencephalic afferent circuits of the basal forebrain. In rapid eye movement sleep, both the basal forebrain and thalamic cortiocopetal projections are stimulated by cholinergic afferents originating mainly from the pedunculopontine and laterodorsal tegmenta in the brainstem. Rapid eye movement sleep-associated dreaming is described as a form of hyperattentional processing, mediated by increased activity of cortical cholinergic inputs and their cortical interactions with activated thalamic efferents. In this context, long-standing speculations about the similarities between dreaming and psychotic cognition are substantiated by describing the role of an over(re)active cortical cholinergic input system in either condition. Finally, while determination of the afferent regulation of basal forebrain corticopetal neurons in different behavioral/cognitive states assists in defining the general cognitive functions of cortical acetylcholine, this research requires a specification of the precise anatomical organization of basal forebrain afferents and their interactions in the basal forebrain. Furthermore, the present hypotheses remain incomplete because of the paucity of data concerning the regulation and role of basal forebrain non-cholinergic, particularly GABAergic, efferents.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
18
|
Shulz DE, Sosnik R, Ego V, Haidarliu S, Ahissar E. A neuronal analogue of state-dependent learning. Nature 2000; 403:549-53. [PMID: 10676963 DOI: 10.1038/35000586] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
State-dependent learning is a phenomenon in which the retrieval of newly acquired information is possible only if the subject is in the same sensory context and physiological state as during the encoding phase. In spite of extensive behavioural and pharmacological characterization, no cellular counterpart of this phenomenon has been reported. Here we describe a neuronal analogue of state-dependent learning in which cortical neurons show an acetylcholine-dependent expression of an acetylcholine-induced functional plasticity. This was demonstrated on neurons of rat somatosensory 'barrel' cortex, whose tunings to the temporal frequency of whisker deflections were modified by cellular conditioning. Pairing whisker stimulation with acetylcholine applied iontophoretically yielded selective lasting modification of responses, the expression of which depended on the presence of exogenous acetylcholine. Administration of acetylcholine during testing revealed frequency-specific changes in response that were not expressed when tested without acetylcholine or when the muscarinic antagonist, atropine, was applied concomitantly. Our results suggest that both acquisition and recall can be controlled by the cortical release of acetylcholine.
Collapse
Affiliation(s)
- D E Shulz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
19
|
Haidarliu S, Sosnik R, Ahissar E. Simultaneous multi-site recordings and iontophoretic drug and dye applications along the trigeminal system of anesthetized rats. J Neurosci Methods 1999; 94:27-40. [PMID: 10638813 DOI: 10.1016/s0165-0270(99)00123-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A multi-electrode system that permits simultaneous recordings from multiple neurons and iontophoretic applications at two or three different brain sites during acute experiments is described. This system consists of two or three microdrive terminals, each of which includes four electrodes that can be moved independently and used for both extracellular recordings and microiontophoretic drug administration. Drug applications were performed during standard extracellular recordings of multiple single-units via specialized combined electrodes (CEs), which enable ejection of neuroactive substances and recording of neuronal activity from the same electrode. With this system, we were able to successfully record simultaneously from different levels (brainstem, thalamus, and cortex) of the vibrissal ascending pathway of the anesthetized rat. Herein, examples of simultaneous recordings from the brainstem and thalamus and from the thalamus and cortex are presented. An effect of iontophoretic applications of agonists and antagonists of metabotropic glutamate receptors (mGluRs) in the thalamus is demonstrated, and the extent of drug diffusion in the barrel cortex is demonstrated with biocytin. This new multi-electrode system will facilitate the study of transformations of sensory information acquired by the whiskers into cortical representations.
Collapse
Affiliation(s)
- S Haidarliu
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
20
|
Waite JJ, Holschneider DP, Scremin OU. Selective immunotoxin-induced cholinergic deafferentation alters blood flow distribution in the cerebral cortex. Brain Res 1999; 818:1-11. [PMID: 9914432 DOI: 10.1016/s0006-8993(98)01174-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adult rats received intracerebroventricular (i.c.v.) administration of either phosphate buffer (PBS) or 192 IgG-saporin (Toxin), 3.6 micrograms rat-1, a cholinergic immunotoxin. Six to eight weeks later, the animals received a continuous intravenous (i.v.) infusion of either physostigmine (4.2 micrograms kg-1 min-1) or saline, followed by measurement of cerebral cortical blood flow (CBF) with the autoradiographic Iodo-14C-antipyrine methodology in four groups of animals: Toxin i.c.v.+saline i.v. (n=9), Toxin i.c.v.+physostigmine i.v. (n=6), PBS i.c.v.+saline i.v. (n=6) and PBS i.c.v. +physostigmine i.v. (n=6). Choline acetyltransferase activity (ChAT) was assessed with Fonnum's method in samples of cortical tissue adjacent to the sites of CBF measurement. ChAT decreased in all regions of the Toxin groups when compared to PBS (% decrease: hippocampus=93%, neocortex=80-84%, entorhinal-piriform cortex=42%, amygdala=28%). CBF decreased globally in Toxin+SAL, most severely in posterior parietal and temporal regions (24-40% decrease from PBS+saline). Physostigmine enhanced CBF predominantly in these same areas both in PBS and Toxin animals although to a lesser extent in the latter. Our results demonstrate the importance of cholinergic mechanisms in the control of CBF. The similarity between the topography of CBF decrease following administration of the immunotoxin to that observed in Alzheimer's disease suggests that the CBF pattern observed in this disease may be the result of cholinergic deafferentation.
Collapse
Affiliation(s)
- J J Waite
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
21
|
Ahissar E, Abeles M, Ahissar M, Haidarliu S, Vaadia E. Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology 1998; 37:633-55. [PMID: 9705003 DOI: 10.1016/s0028-3908(98)00068-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, the necessary conditions, including those related to behavior, for lasting modifications to occur in correlated activity ('functional plasticity') were examined in the behaving monkey. Previously, in-vitro studies of neuronal plasticity yielded important information about possible mechanisms of synaptic plasticity, but could not be used to test their functionality in the intact, behaving brain. In-vivo studies usually focused on analysis of the responsiveness of single cells, but did not examine interactions between pairs of neurons. In this study, we combined the two approaches. This was achieved by recording extracellularly and simultaneously the spike activity of several single cells in the auditory cortex of the behaving monkey. The efficacy of neuronal interactions was estimated by measuring the correlation between firing times of pairs of single neurons. Using acoustic stimuli, a version of cellular conditioning was applied when the monkey performed an auditory discrimination task and when it did not. We found that: (i) functional plasticity is a function of the change in correlation, and not of the correlation or covariance per se, and (ii) functional plasticity depends critically on behavior. During behavior, an increase in the correlation caused a short-lasting strengthening of the neuronal coupling efficacy, and a decrease caused a short-lasting weakening. These findings indicate that neuronal plasticity in the auditory cortex obeys a version of Hebb's associative rule under strong behavioral control, as predicted by Thorndike's "Law of Effect".
Collapse
Affiliation(s)
- E Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
22
|
Ahissar E, Haidarliu S, Zacksenhouse M. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. Proc Natl Acad Sci U S A 1997; 94:11633-8. [PMID: 9326662 PMCID: PMC23560 DOI: 10.1073/pnas.94.21.11633] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The temporally encoded information obtained by vibrissal touch could be decoded "passively," involving only input-driven elements, or "actively," utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies ( approximately 10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic "relay" neurons function as phase "comparators" that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.
Collapse
Affiliation(s)
- E Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|