1
|
Xiang X, De K, Lin W, Feng T, Li F, Wei X. Effects of warming and nitrogen deposition on species and functional diversity of plant communities in the alpine meadow of Qinghai-Tibet Plateau. PLoS One 2025; 20:e0319581. [PMID: 40127083 PMCID: PMC11932474 DOI: 10.1371/journal.pone.0319581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Plant species and functional diversity play an important role in the stability and sustainability of grassland ecosystems. However, the changes and mechanisms of plant species and functional diversity under warming and nitrogen deposition are still unclear. In this study, we investigated the plant and soil characteristics of alpine meadows on the Qinghai-Tibet Plateau to explore the changes in species and functional diversity of plant communities under warming and nitrogen deposition, as well as their interrelationships and key determinants. The results showed that warming, nitrogen deposition, and their interactions had significant effects on plant species diversity (plant Shannon-Wiener index) and functional diversity (functional richness index, functional differentiation index, functional dispersion, and Rao's quadratic entropy index). With the increase of warming and nitrogen deposition, the Shannon-Wiener index of plants increased first and then decreased. The plant functional richness index, functional diversity index, functional dispersion index, and Rao's quadratic entropy index showed a decreasing trend. At the same time, with the increase in temperature and nitrogen deposition, the relationship between plant species diversity index and functional diversity index in the alpine meadow of Qinghai-Tibet Plateau gradually weakened. Redundancy analysis and structural equation modeling showed that both warming and nitrogen deposition had significant negative effects on the plant species diversity index and plant functional diversity index. Plant factors (Grasses importance value, leaf nitrogen weighted mean, specific leaf area-weighted mean, leaf area-weighted mean, and leaf weight weighted mean) and soil environmental factors (soil total nitrogen and soil carbon-nitrogen ratio) directly or indirectly affect plant community diversity under warming and nitrogen deposition.
Collapse
Affiliation(s)
- Xuemei Xiang
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Kejia De
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Weishan Lin
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Tingxu Feng
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Fei Li
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Xijie Wei
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
2
|
Villoslada M, Bergamo T, Kolari T, Erlandsson R, Korpelainen P, Räsänen A, Tahvanainen T, Tømmervik H, Virtanen T, Winquist E, Kumpula T. Leveraging synergies between UAV and Landsat 8 sensors to evaluate the impact of pale lichen biomass on land surface temperature in heath tundra ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178982. [PMID: 40024037 DOI: 10.1016/j.scitotenv.2025.178982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Pale terricolous lichens are a vital component of Arctic ecosystems, significantly contributing to carbon balance, energy regulation, and serving as a primary food source for reindeer. Their characteristically high albedo also impacts land surface temperature (LST) dynamics across various spatial scales. However, remote sensing of lichens is challenging due to their complex spectral signatures and large spatial variations in coverage and biomass even within local landscape scales. This study evaluates the influence of pale lichens on LST at local and landscape scales by integrating RGB, multispectral, and thermal infrared imagery from an Unmanned Aerial Vehicle (UAV) with multi-temporal Landsat 8 thermal data. An Extreme Gradient Boosting algorithm was employed to map pale lichen biomass, areal extent, and the occurrence of major plant functional types in the sub-arctic heath tundra landscape in the Jávrrešduottar and Sieiddečearru areas on the Finland-Norway border. Generalized Additive Models (GAMs) were used to elucidate the factors affecting LST. The UAV model accurately predicted pale lichen biomass (R2 0.63) and vascular vegetation cover (R2 0.70). GAMs revealed that pale lichens significantly influence thermal regimes, with increased biomass leading to decreased LST, an effect more pronounced at the landscape scale (deviance explained 47.26 % and 65.8 % for local and landscape models, respectively). Pale lichen biomass was identified as the second most important variable affecting LST at both scales, with elevation being the most important variable. This research demonstrates the capability of UAV-derived models to capture the heterogeneous and fine-scale structure of tundra ecosystems. Furthermore, it underscores the effectiveness of combining high spatial resolution UAV and high temporal resolution satellite platforms. Finally, this study highlights the pivotal role of pale lichens in Arctic thermal dynamics and showcases how advanced remote sensing techniques can be used for ecological monitoring and management.
Collapse
Affiliation(s)
- Miguel Villoslada
- Department of Geographical and Historical studies, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51006 Tartu, Estonia.
| | - Thaísa Bergamo
- Department of Geographical and Historical studies, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51006 Tartu, Estonia
| | - Tiina Kolari
- Centre de recherche sur la dynamique du système Terre (GEOTOP), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Rasmus Erlandsson
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway; Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Pasi Korpelainen
- Department of Geographical and Historical studies, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Aleksi Räsänen
- Geography Research Unit, University of Oulu, Oulu, Finland
| | - Teemu Tahvanainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Hans Tømmervik
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Tarmo Virtanen
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Emelie Winquist
- University Centre in Svalbard, P.O. Box 156, N-9171 Longyearbyen, Svalbard, Norway
| | - Timo Kumpula
- Department of Geographical and Historical studies, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
3
|
Brancaleoni L, Gerdol R, Mondoni A, Orsenigo S, Scramoncin L, Lambertini C, Cianferoni C, Abeli T. Complex Responses to Climate Warming of Arctic-Alpine Plant Populations From Different Geographic Provenance. Ecol Evol 2025; 15:e71146. [PMID: 40109556 PMCID: PMC11922575 DOI: 10.1002/ece3.71146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
The distribution of 'cold-adapted' plant species is expected to undergo severe range loss in the near future. Species distribution models predicting species' future distribution often do not integrate species ability to respond to environmental factors through genetic traits or phenotypic plasticity. This especially applies to arctic-alpine species whose present-day range is strongly fragmented because of the cyclic vicissitudes they experienced during the Ice Age. We cultivated plants from four European populations of the arctic-alpine species Viscaria alpina from different geographic provenances. Two of the populations were from northern high-latitude regions in Scandinavia; the remaining two populations were from southern mid-latitude mountains. In both areas, one population was from a colder site and the other from a warmer site. We cultivated the plants in controlled thermal conditions with two treatments, one mimicking temperature conditions at the warmest site and the other adding 2 day-temperature peaks mimicking short-term heat waves. At the end of the experiment, we measured growth in length and mortality of all plants along with a set of ecophysiological variables. We also assessed phylogeographic variation in the four populations based on plastid-DNA sequences. The plants from northern provenances grew more than those from the southern provenances. The plants of all populations performed overall well, in terms of growth rate and ecophysiology, under the heat spell, with the plants of the Swedish population exhibiting the highest phenotypic plasticity. Such a pattern was associated with the highest genetic variation in the Swedish population. Mortality of the plants cultivated under warm temperatures was overall low, but mortality strongly increased in the plants exposed to the heat spell. We conclude that plants of V. alpina populations from different geographic provenances are generally able to cope with scenarios resulting from global warming, but drought hampers resilience to heat waves through increased mortality.
Collapse
Affiliation(s)
- Lisa Brancaleoni
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Renato Gerdol
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Andrea Mondoni
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
| | - Simone Orsenigo
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
| | - Lisa Scramoncin
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | | | - Chiara Cianferoni
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
| | - Thomas Abeli
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
| |
Collapse
|
4
|
Neigh CSR, Montesano PM, Sexton JO, Wooten M, Wagner W, Feng M, Carvalhais N, Calle L, Carroll ML. Russian forests show strong potential for young forest growth. COMMUNICATIONS EARTH & ENVIRONMENT 2025; 6:71. [PMID: 39897659 PMCID: PMC11782080 DOI: 10.1038/s43247-025-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Climate warming has improved conditions for boreal forest growth, yet the region's fate as a carbon sink of aboveground biomass remains uncertain. Forest height is a powerful predictor of aboveground forest biomass, and access to spatially detailed height-age relationships could improve the understanding of carbon dynamics in this ecosystem. The capacity of land to grow trees, defined in forestry as site index, was estimated by analyzing recent measurements of canopy height against a chronosequence of forest stand age derived from the historical satellite record. Forest-height estimates were then subtracted from the predicted site index to estimate height-age growth potential across the region. Russia, which comprised 73% of the forest change domain, had strong departures from model expectation of 2.4-4.8 ± 3.8 m for the 75th and 90th percentiles. Combining satellite observations revealed a large young forest growth sink if allowed to recover from disturbance.
Collapse
Affiliation(s)
| | - Paul M. Montesano
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- ADNET Systems Inc., Bethesda, MD USA
| | | | - Margaret Wooten
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Science Systems Applications Inc., Lanham, MD USA
| | - William Wagner
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Science Systems Applications Inc., Lanham, MD USA
| | - Min Feng
- terraPulse Inc., North Potomac, MD USA
| | | | - Leonardo Calle
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- University of Maryland, College Park, MD USA
| | | |
Collapse
|
5
|
Blanc-Betes E, Welker JM, Gomez-Casanovas N, DeLucia EH, Peñuelas J, de Oliveira ED, Gonzalez-Meler MA. Strong legacies of emerging trends in winter precipitation on the carbon-climate feedback from Arctic tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178246. [PMID: 39808895 DOI: 10.1016/j.scitotenv.2024.178246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO2 and CH4) of C fluxes and derived climate forcing (i.e. GWP, global warming potential) from Arctic tundra under future precipitation scenarios remain unresolved. Here, we investigated the impacts of 18 years of shallow (SS, -15-30 %) and deeper (IS, +20-45 %; DS, +70-100 %) snow depth on ecosystem C fluxes and GWP in moist acidic tundra over the growing season. The response of Arctic tundra C fluxes to snow accumulation was markedly non-linear. Both shallow- and deeper- winter snow decreased Arctic tundra CO2 emissions relative to ambient (AS), ultimately reducing ecosystem C losses over the growing season. Gross primary productivity (GPP) increased with moderate increases in snow depth and decreased with further snow accumulation closely following transitions in shrub abundance. Photosynthetic uptake, however, was tightly regulated by canopy structure and plant respiration (Raut) to GPP ratio was highly conserved despite substantial transformations of plant community across snow treatments revealing a prominent role of heterotrophic respiration (Rhet) in driving net ecosystem exchange. Consistently, ecosystem C gains responded to constraints on Rhet by temperature limitation within colder soils at SS, and by snow- and thaw-induced increases in soil-water content (SWC) that promoted anaerobic decomposition and dampened the temperature sensitivity of Rhet at IS and DS. Greater CH4 emissions from wetter soils, however, increased the global warming potential (GWP) of Arctic tundra emissions at IS and DS despite decreases in C losses. Overall, our findings indicate the potential of Arctic tussock tundra to reduce C losses over the growing season but also to significantly contribute to the ecosystem GWP under emerging trends in winter precipitation.
Collapse
Affiliation(s)
- Elena Blanc-Betes
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jeffrey M Welker
- UArctic, Ecology and Genetics Research Unit, University of Oulu, Finland; Department of Biological Sciences, University of Alaska, Anchorage, Anchorage, AK 99501, USA
| | - Nuria Gomez-Casanovas
- Texas A&M AgriLife Research Center, Vernon, Texas A&M University, TX 76384, USA; Rangeland, Wildlife & Fisheries Management Department, Texas A&M University, TX 77843, USA
| | - Evan H DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | | | - Miquel A Gonzalez-Meler
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Wang Y, Sun Y, Wang Q, Fu P, Liu Y, Wang F, Meng F. Exploring the spatial heterogeneity of soil organic carbon and the influence of coastal factors: A case study in the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178234. [PMID: 39740627 DOI: 10.1016/j.scitotenv.2024.178234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Terrestrial ecosystems have vital impacts on soil carbon sequestration, but under disturbances from anthropogenic activities, the typical indicator combinations of SOC distribution in coastal areas remain unclear. On the basis of surface soil sampling and calculations of related eco-environmental indices in the Yellow River Delta (YRD), we performed geostatistical analysis combined with Spearman's correlation analysis, principal component analysis (PCA), and hierarchical clustering analysis (HCA) to explore the spatial heterogeneity of soil organic carbon (SOC) and influential spatiotemporal factors. Overall, the results revealed that in the seaward direction of the Yellow River, the SOC concentration decreased from west to east, with a low mean value of 5.57 g·kg-1. We selected nine indicators that significantly influenced the SOC distribution among four types of coastal factors, namely, land cover, soil components, geographical conditions and anthropogenic activities. On the basis of these results, potential anthropogenic interventions that can increase SOC sequestration are presented: the coverage of saline-alkali-tolerant plant types should be increased, especially in bare areas on the east coast and in saline-alkali land, forests, and grassland, and soil fertility in agricultural areas should be maintained to improve the carbon sequestration capacity of surface vegetation. Herein, we present new insights for exploring the dynamic impacts of ecosystem factors on terrestrial soil carbon and present targeted sequestration strategies in areas with intense sea-land interactions.
Collapse
Affiliation(s)
- Youxiao Wang
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yingjun Sun
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
| | - Qi Wang
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
| | - Pingjie Fu
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
| | - Yaohui Liu
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
| | - Fang Wang
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
| | - Fei Meng
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
7
|
Schwieger S, Dorrepaal E, Petit Bon M, Vandvik V, le Roux E, Strack M, Yang Y, Venn S, van den Hoogen J, Valiño F, Thomas HJD, Te Beest M, Suzuki S, Petraglia A, Myers-Smith IH, Munir TM, Michelsen A, Løkken JO, Li Q, Koike T, Klanderud K, Karr EH, Jónsdóttir IS, Hollister RD, Hofgaard A, Hassan IA, Genxu W, Filippova N, Crowther TW, Clark K, Christiansen CT, Casanova-Katny A, Carbognani M, Bokhorst S, Björnsdóttir K, Asplund J, Althuizen I, Alonso R, Alatalo J, Agathokleous E, Aerts R, Sarneel JM. Environmental Conditions Modulate Warming Effects on Plant Litter Decomposition Globally. Ecol Lett 2025; 28:e70026. [PMID: 39737672 DOI: 10.1111/ele.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/25/2024] [Accepted: 10/13/2024] [Indexed: 01/01/2025]
Abstract
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.2° of warming is required for a significant increase in decomposition. Overall, warming did not have a significant effect on decomposition at a global scale. However, we found that warming reduced decomposition in warmer, low-moisture areas, while it slightly increased decomposition in colder regions, although this increase was not significant. This is particularly relevant given the past decade's global warming trend at higher latitudes where a large proportion of terrestrial carbon is stored. Future changes in vegetation towards plants with lower litter quality, which we show were likely to be more sensitive to warming, could increase carbon release and reduce the amount of organic matter building up in the soil. Our findings highlight how the interplay between warming, environmental conditions, and litter characteristics improves predictions of warming's impact on ecosystem processes, emphasising the importance of considering context-specific factors.
Collapse
Affiliation(s)
- Sarah Schwieger
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Ellen Dorrepaal
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Matteo Petit Bon
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
- Department of Arctic and Marine Biology, Faculty of Biosciences Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
- Department of Wildland Resources, Quinney College of Natural Resources and Ecology Center, Utah State University, Logan, Utah, USA
| | - Vigdis Vandvik
- Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Maria Strack
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | - Yan Yang
- Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chengdu, People's Republic of China
| | - Susanna Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institut für Integrative Biologie, Zürich, Switzerland
| | - Fernando Valiño
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, Madrid, Spain
| | - Haydn J D Thomas
- Department of Geosciences, University of Edinburgh, Edinburgh, Scotland
| | - Mariska Te Beest
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
- Copernicus Institute for Sustainable Development, Utrecht University, Utrecht, The Netherlands
- South African Environmental Observation Network (SAEON), Grasslands, Forests and Wetlands Node, Montrose, South Africa
| | - Satoshi Suzuki
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Isla H Myers-Smith
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- School of GeoSciences, Kings Buildings, University of Edinburgh, Edinburgh, Scotland
| | | | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Qi Li
- Chinese Academy of Sciences, Institute of Applied Ecology, Shenyang, China
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Ellen Haakonsen Karr
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | | | - Robert D Hollister
- Biology Department, Grand Valley State University, Allendale, Michigan, USA
| | | | - Ibrahim A Hassan
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wang Genxu
- Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chengdu, People's Republic of China
| | | | - Thomas W Crowther
- Department of Environmental Systems Science, Institut für Integrative Biologie, Zürich, Switzerland
| | - Karin Clark
- Cumulative Effects at Government of the Northwest Territories, Yellowknife, Northwest Territories, Canada
| | - Casper T Christiansen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Angelica Casanova-Katny
- Department of Environmental Sciences, Natural Resources Faculty, Catholic University of Temuco, Temuco, Chile
- Núcleo de Estudios Ambientales, NEA, Natural Resources Faculty, Catholic University of Temuco, Temuco, Chile
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stef Bokhorst
- Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Katrín Björnsdóttir
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Asplund
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Inge Althuizen
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Rocío Alonso
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, Madrid, Spain
| | - Juha Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Evgenios Agathokleous
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, Jiangsu, People's Republic of China
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, People's Republic of China
| | - Rien Aerts
- Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Judith M Sarneel
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Wu Z, Wang W, Zhu W, Zhang P, Chang R, Wang G. Shrub ecosystem structure in response to anthropogenic climate change: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176202. [PMID: 39265690 DOI: 10.1016/j.scitotenv.2024.176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anthropogenic warming is predicted to alter ecological boundaries in energy-limited shrub ecosystems. Yet we still lack a sound understanding of the structural changes that shrub ecosystems are undergoing on a global scale and the factors driving them. To that end, here we collected studies of shrub dynamics from 227 sites worldwide to conduct a quantitative review, including the rate of advancing shrubline (their upslope shift), the rates of shrub cover and recruitment changes. Our results revealed that shrub expanded (e.g. shrubline shifts, shrub cover and recruitment increase) at the vast majority of sites (84 %); in contrast, they remained stable in 10 % of sites and descended at just 6 % of them. The mean global shift rate of shrubline was 1.22 m/year, being significantly faster in subarctic (> 60°N) than temperate (< 60°N) regions, and likewise more quickly in wet (total annual precipitation >400 mm) than dry (total annual precipitation <400 mm) areas; the annual change rates of shrub cover and recruitment increased by 0.89 % and 2.02 %. Shrubs communities have expanded rapidly in response to ongoing climate warming. The combination of autumn precipitation and winter temperature largely contributed to the general shift rates of shrubline, while the shrub cover and recruitment were mainly affected by summer temperature and precipitation in both spring and autumn. Furthermore, the site-specific pace of their expansion probably depends on a combination of local climatic and non-climatic drivers (such as fine-scale environmental conditions, disturbance, their interactions, and dispersal limitation). The increase of shrub distribution may alter the function and albedo of the ecosystems at high-latitude and -elevation regions, resulting in the feedback on climate.
Collapse
Affiliation(s)
- Zhehong Wu
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Wang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Wanze Zhu
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ruiying Chang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Rocha B, Pinho P, Giordani P, Concostrina-Zubiri L, Vieira G, Pina P, Branquinho C, Matos P. Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic. Curr Biol 2024; 34:4884-4893.e4. [PMID: 39357515 DOI: 10.1016/j.cub.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Maritime Antarctica's harsh abiotic conditions forged simple terrestrial ecosystems, mostly constituted of bryophytes, lichens, and vascular plants. Though biotic interactions are, together with abiotic factors, thought to help shape this ecosystem, influencing species' distribution and, indirectly, mediating their response to climate, the importance of these interactions is still fairly unknown. We modeled current and future abundance patterns of bryophytes, lichens, and vascular plants, accounting for biotic interactions and abiotic drivers, along a climatic gradient in maritime Antarctica. The influence of regional climate and other drivers was modeled using structural equation models, with and without biotic interactions. Models with biotic interactions performed better; the one offering higher ecological support was used to estimate current and future spatial distributions of vegetation. Results suggest that plants are confined to lower elevations, negatively impacting bryophytes and lichens, whereas at higher elevations both climate and other drivers influence bryophytes and lichens. Our findings strongly support the use of biotic interactions to predict the spatial distribution of Antarctic vegetation.
Collapse
Affiliation(s)
- Bernardo Rocha
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro Pinho
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | | | - Laura Concostrina-Zubiri
- Instituto de Hidráulica Ambiental de la Universidad de Cantabria "IHCantabria" Parque Científi co y Tecnológico de Cantabria Isabel Torres, 15, 39011 Santander, Spain
| | - Gonçalo Vieira
- Centro de Estudos Geográficos, Laboratório Associado TERRA, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, 1600-276 Lisboa, Portugal; POLAR2E - Colégio de Ciências Polares e Ambientes Extremos, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Pedro Pina
- Departamento de Ciências da Terra, Universidade de Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Branquinho
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paula Matos
- Centro de Estudos Geográficos, Laboratório Associado TERRA, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, 1600-276 Lisboa, Portugal
| |
Collapse
|
10
|
Post E, Higgins RC, Bøving PS, John C, Post M, Kerby JT. Large herbivores link plant phenology and abundance in Arctic tundra. PNAS NEXUS 2024; 3:pgae454. [PMID: 39588322 PMCID: PMC11586670 DOI: 10.1093/pnasnexus/pgae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Plant phenological dynamics have been well studied in relation to abiotic conditions and climate change, but comparatively poorly studied in relation to herbivory. In contrast, plant abundance dynamics have been well studied in relation to abiotic conditions and herbivory, but poorly studied in relation to phenology. Consequently, the contribution of herbivory to plant phenological dynamics and therefrom to plant abundance dynamics remains obscure. We conducted a 9-year herbivore exclusion experiment to investigate whether herbivory might link plant phenological and abundance dynamics in arctic tundra. From 2009 to 2017, we monitored annual green-up timing and abundance of nine plant taxa, including deciduous shrubs, forbs, and graminoids, on plots that were either grazed or experimentally exclosed from herbivory by caribou (Rangifer tarandus) and muskoxen (Ovibos moschatus). In 62% of cases, green-up occurred earlier under herbivory, and in 75% of cases abundance was greater under herbivory, compared to green-up and abundance under herbivore exclusion. Moreover, taxa that responded to herbivory with earlier green-up also had comparatively greater abundance later in the growing season. Conversely, taxa that responded to herbivory with delayed green-up exhibited comparatively lower abundance later in the growing season. Hence, well-documented influences of large herbivores on plant abundance and community composition in arctic tundra may relate, at least to some extent, to influences of herbivory on plant phenology. We recommend that ongoing and future assessments of the contribution of herbivores to plant abundance and community responses to climate change, especially in the Arctic, should also consider impacts of herbivores on plant phenology.
Collapse
Affiliation(s)
- Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - R Conor Higgins
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
- Yolo County Resource Conservation District, 221 W Court St., Suite 1, Woodland, CA 95695, USA
| | - Pernille Sporon Bøving
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Christian John
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Mason Post
- Brotman Baty Institute, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey T Kerby
- Department of Geography, Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER, United Kingdom
| |
Collapse
|
11
|
Koranda M, Michelsen A. Microbial nitrogen transformations in tundra soil depend on interactive effects of seasonality and plant functional types. BIOGEOCHEMISTRY 2024; 167:1391-1408. [PMID: 39552784 PMCID: PMC11564215 DOI: 10.1007/s10533-024-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/16/2024] [Indexed: 11/19/2024]
Abstract
Nitrogen (N) cycling in organic tundra soil is characterised by pronounced seasonal dynamics and strong influence of the dominant plant functional types. Such patterns in soil N-cycling have mostly been investigated by the analysis of soil N-pools and net N mineralisation rates, which, however, yield little information on soil N-fluxes. In this study we investigated microbial gross N-transformations, as well as concentrations of plant available N-forms in soils under two dominant plant functional types in tundra heath, dwarf shrubs and mosses, in subarctic Northern Sweden. We collected organic soil under three dwarf shrub species of distinct growth form and three moss species in early and late growing season. Our results showed that moss sites were characterised by significantly higher microbial N-cycling rates and soil N-availability than shrub sites. Protein depolymerisation, the greatest soil N-flux, as well as gross nitrification rates generally did not vary significantly between early and late growing season, whereas gross N mineralisation rates and inorganic N availability markedly dropped in late summer at most sites. The magnitude of the seasonal changes in N-cycling, however, clearly differed among plant functional types, indicating interactive effects of seasonality and plant species on soil N-cycling. Our study highlights that the spatial variation and seasonal dynamics of microbial N transformations and soil N availability in tundra heath are intimately linked with the distinct influence of plant functional types on soil microbial activity and the plant species-specific patterns of nutrient uptake and carbon assimilation. This suggests potential strong impacts of future global change-induced shifts in plant community composition on soil N-cycling in tundra ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01176-6.
Collapse
Affiliation(s)
- Marianne Koranda
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, 1350 Copenhagen, Denmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, 1350 Copenhagen, Denmark
| |
Collapse
|
12
|
Ma F, Zhang G, Zhang J, Luo X, Liao L, Wang H, Tang X, Yi Z. Isoprenoid emissions from Schima superba and Cunninghamia lanceolata: Their responses to elevated temperature by two warming facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172669. [PMID: 38677435 DOI: 10.1016/j.scitotenv.2024.172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Isoprenoids (including isoprene (ISO) and monoterpenes (MTs)) are the majority of biogenic volatile organic compounds (BVOCs) which are important carbon-containing secondary metabolites biosynthesized by organisms, especially plant in terrestrial ecosystem. Results of the warming effects on isoprenoid emissions vary within species and warming facilities, and thus conclusions remain controversial. In this study, two typical subtropical tree species seedlings of Schima superba and Cunninghamia lanceolata were cultivated under three conditions, namely no warming (CK) and two warming facilities (with infrared radiators (IR) and heating wires (HW)) in open top chamber (OTC), and the isoprenoid emissions were measured with preconcentor-GC-MS system after warming for one, two and four months. The results showed that the isoprenoid emissions from S. superba and C. lanceolata exhibited uniformity in response to two warming facilities. IR and HW both stimulated isoprenoid emissions in two plants after one month of treatment, with increased ratios of 16.3 % and 72.5 % for S. superba, and 2.47 and 5.96 times for C. lanceolata. However, the emissions were suppressed after four months, with more pronounced effect for HW. The variation in isoprenoid emissions was primarily associated with the levels of Pn, Tr, monoterpene synthase (MTPS) activity. C. lanceolata predominantly released MTs (mainly α-pinene, α-terpene, γ-terpene, and limonene), with 39.7 % to 99.6 % of the total isoprenoid but ISO was only a very minor constituent. For S. superba, MTs constituted 24.7 % to 96.1 % of total isoprenoid. It is noteworthy that HW generated a greater disturbance to physiology activity in plants. Our study provided more comprehensive and more convincing support for integrating temperature-elevation experiments of different ecosystems and assessing response and adaptation of forest carbon cycle to global warming.
Collapse
Affiliation(s)
- Fangyuan Ma
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Geye Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junchuan Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xinyue Luo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lulu Liao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Xinghao Tang
- Fujian Academy of Forestry Science, Fuzhou 350012, China
| | - Zhigang Yi
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
13
|
Quan Q, He N, Zhang R, Wang J, Luo Y, Ma F, Pan J, Wang R, Liu C, Zhang J, Wang Y, Song B, Li Z, Zhou Q, Yu G, Niu S. Plant height as an indicator for alpine carbon sequestration and ecosystem response to warming. NATURE PLANTS 2024; 10:890-900. [PMID: 38755277 PMCID: PMC11208140 DOI: 10.1038/s41477-024-01705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Growing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP). Along a 1,500 km transect on the Plateau, taller plant community promoted NEP and soil carbon through associated chlorophyll content and other photosynthetic traits at the community level. Overall, plant community height as a dominant trait is associated with species composition and regulates ecosystem C sequestration in the high-elevation biome. This trait-based association provides new insights into predicting the direction, magnitude and sensitivity of ecosystem C fluxes in response to climate warming.
Collapse
Affiliation(s)
- Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, PR China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Ruomeng Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yiheng Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Bing Song
- School of Resources and Environmental Engineering, Ludong University, Yantai, PR China
| | - Zhaolei Li
- College of Resources and Environment, Southwest University, Chongqing, PR China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China.
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
14
|
Cannone N, Malfasi F. Climate change triggered synchronous woody plants recruitment in the last two centuries in the treeline ecotone of the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170953. [PMID: 38365041 DOI: 10.1016/j.scitotenv.2024.170953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Climate change triggers several ecosystem responses, including woody plant encroachment. We analyse woody plant recruitment across the treeline ecotone (the forest-tundra ecotone) of the Northern Hemisphere (NH) over an extended period (1801-2010) and its relation with atmospheric CO2 and air temperature. We detected a synchronous trend of woody plant recruitment across the NH, indicating a major climatic and environmental change, triggered by a combination of CO2 fertilization and air temperature changes. The drivers of woody plant recruitment changed with time: CO2 fertilization was the main driver in the period 1801-1950, while air temperature was the main driver after 1950, despite the drastic acceleration of CO2 increase in the last decades. These data support the hypothesis that we are shifting from a fertilization-dominated to a warming-dominated period. The temporal patterns of woody plant recruitment are consistent with the occurrence of the 1980 regime shift, a major change occurred in the Earth's biophysical systems. Indeed, the recruitment drop promoted by the 1960s-1980s air cooling, was followed by an intensive recruitment increase triggered by the restart of air warming in the last decades. The largest sensitivity and fastest resilience of evergreen and Pinaceae to the restart of air warming allows to hypothesize that, among the woody plant functional and taxonomic groups, they could perform the largest expansion also in future decades.
Collapse
Affiliation(s)
- N Cannone
- Università degli Studi dell'Insubria, Dip. Scienze Teoriche e Applicate, Via J.H. Dunant 2, 21100 Varese, Italy; Climate Change Research Center, Insubria University, Via Sant'Abbondio 12, 22100 Como, Italy.
| | - F Malfasi
- Università degli Studi dell'Insubria, Dip. Scienza e Alta Tecnologia, Via Valleggio 11, 22100 Como, Italy; Climate Change Research Center, Insubria University, Via Sant'Abbondio 12, 22100 Como, Italy
| |
Collapse
|
15
|
Chen J, Chen X, Qian L, Zhang Y, Li B, Shi H, Sun L, Schöb C, Sun H. Degeneration of foundation cushion species induced by ecological constraints can cause massive changes in alpine plant communities. SCIENCE CHINA. LIFE SCIENCES 2024; 67:789-802. [PMID: 38057621 DOI: 10.1007/s11427-022-2383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/05/2023] [Indexed: 12/08/2023]
Abstract
Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity, but they are sensitive to climate change. The loss of cushion species can have broad consequences for associated biota. The potential plant community changes with the population dynamics of cushion plants remain, however, unclear. Using eight plant communities along a climatic and community successional gradient, we assessed cushion population dynamics, the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides. The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages. Reproductive functions are constrained by increasing associated beneficiary plants; subsequent seedling establishment is constrained by temperature, water and light availability, extreme climate events, and interspecific competition; strong competitive exclusion may accelerate mortality and degeneration of cushion populations. Along with cushion dynamics, species composition, abundance and community structure gradually change. Once cushion plants completely degenerate, previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges. Climate warming may accelerate the degeneration process of A. polytrichoides. Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems. The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.
Collapse
Affiliation(s)
- Jianguo Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xufang Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lishen Qian
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yazhou Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650500, China
| | - Honghua Shi
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Christian Schöb
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, 28933, Spain.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
16
|
Ronk A, Boldgiv B, Casper BB, Liancourt P. Leaf trait plasticity reveals interactive effects of temporally disjunct grazing and warming on plant communities. Oecologia 2024; 204:833-843. [PMID: 38573499 PMCID: PMC11062997 DOI: 10.1007/s00442-024-05540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Changes in climate and grazing intensity influence plant-community compositions and their functional structure. Yet, little is known about their possible interactive effects when climate change mainly has consequences during the growing season and grazing occurs off growing season (dormant season grazing). We examined the contribution of trait plasticity to the immediate responses in the functional structure of plant community due to the interplay between these two temporally disjunct drivers. We conducted a field experiment in the northern Mongolian steppe, where climate was manipulated by open-top chambers (OTCs) for two growing seasons, increasing temperature and decreasing soil moisture (i.e., increased aridity), and grazing was excluded for one dormant season between these two growing seasons. We calculated the community-weighted mean (CWM) and the functional diversity (FD) of six leaf traits. Based on a variance partitioning approach, we evaluated how much of the responses in CWM and FD to OTCs and dormant season grazing occur through plasticity. The interactive effect of OTCs and the dormant season grazing were detected only after considering the role of trait plasticity. Overall, OTCs influenced the responses in CWM more than in FD, but the effects of OTCs were much less pronounced where dormant season grazing occurred. Thus, warming (together with decreased soil moisture) and the elimination of dormant season grazing could interact to impact the functional trait structure of plant communities through trait plasticity. Climate change effects should be considered in the context of altered land use, even if temporally disjunct.
Collapse
Affiliation(s)
- Argo Ronk
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| | - Bazartseren Boldgiv
- Department of Biology, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Brenda B Casper
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| | - Pierre Liancourt
- Department of Botany, State Museum of Natural History Stuttgart, Stuttgart, Germany.
- Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Thakur D, Altman J, Jandová V, Fibich P, Münzbergová Z, Doležal J. Global warming alters Himalayan alpine shrub growth dynamics and climate sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170252. [PMID: 38253093 DOI: 10.1016/j.scitotenv.2024.170252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Global climate change is having significant effects on plant growth patterns and mountain plants can be particularly vulnerable to accelerated warming. Rising temperatures are releasing plants from cold limitation, such as at high elevations and latitudes, but can also induce drought limitation, as documented for trees from lower elevations and latitudes. Here we test these predictions using a unique natural experiment with Himalayan alpine shrub Rhododendron anthopogon and its growth responses to changing climate over a large portion of its latitudinal and elevational ranges, including steep precipitation and temperature gradients. We determined growth dynamics during the last three decades, representing period of accelerated warming, using annual radial growth increments for nine populations growing on both wet and warm southern localities and drier and cold northern localities in the Himalayas along elevation gradients encompassing the lower and upper species range limits. A significant growth increase over past decades was observed after controlling for confounding effect of shrub age and microsites. However, the magnitude of increase varied among populations. Particularly, populations situated in the lower elevation of the northernmost (cold and dry) locality exhibited most substantial growth enhancement. The relationship between growth variability and climate varied among populations, with the populations from the coldest location displaying the strongest responsiveness to increasing minimum temperatures during July. Minimum temperatures of April and August were the most important factor limiting the growth across most populations. Potential warming-induced drought limitation had no significant impact on growth variation in any part of the species geographic range. Overall, our findings indicate that plant growth is continuously increasing in recent decades and growth-climate relationships are not consistent across populations, with populations from the coldest and wettest localities showing stronger responses. The observed patterns suggest that dwarf-shrubs benefit from ongoing warming, leading to increased shrubification of high elevation alpine ecosystems.
Collapse
Affiliation(s)
- Dinesh Thakur
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia.
| | - Jan Altman
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czechia
| | - Veronika Jandová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia; Department of Botany, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czechia
| | - Pavel Fibich
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia; Department of Botany, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czechia
| | - Zuzana Münzbergová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia; Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czechia
| | - Jiří Doležal
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia; Department of Botany, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czechia
| |
Collapse
|
18
|
Hupperts SF, Islam KS, Gundale MJ, Kardol P, Sundqvist MK. Warming influences carbon and nitrogen assimilation between a widespread Ericaceous shrub and root-associated fungi. THE NEW PHYTOLOGIST 2024; 241:1062-1073. [PMID: 37950517 DOI: 10.1111/nph.19384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
High-latitude ecosystems are warming faster than other biomes and are often dominated by a ground layer of Ericaceous shrubs, which can respond positively to warming. The carbon-for-nitrogen (C-for-N) exchange between Ericaceous shrubs and root-associated fungi may underlie shrub responses to warming, but has been understudied. In a glasshouse setting, we examined the effects of warming on the C-for-N exchange between the Ericaceous shrub Empetrum nigrum ssp. hermaphroditum and its root-associated fungi. We applied different 13 C and 15 N isotope labels, including a simple organic N form (glycine) and a complex organic N form (moss litter) and quantified their assimilation into soil, plant biomass, and root fungal biomass pools. We found that warming lowered the amount of 13 C partitioned to root-associated fungi per unit of glycine 15 N assimilated by E. nigrum, but only in the short term. By contrast, warming increased the amount of 13 C partitioned to root-associated fungi per unit of moss 15 N assimilated by E. nigrum. Our study suggests that climate warming affects the short-term exchange of C and N between a widespread Ericaceous shrub and root-associated fungi. Furthermore, while most isotope tracing studies use labile N sources, we demonstrate that a ubiquitous recalcitrant N source may produce contrasting results.
Collapse
Affiliation(s)
- Stefan F Hupperts
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Kazi Samiul Islam
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| | - Maja K Sundqvist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| |
Collapse
|
19
|
Ndah FA, Maljanen M, Kasurinen A, Rinnan R, Michelsen A, Kotilainen T, Kivimäenpää M. Acclimation of subarctic vegetation to warming and increased cloudiness. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10130. [PMID: 38323130 PMCID: PMC10840376 DOI: 10.1002/pei3.10130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024]
Abstract
Subarctic ecosystems are exposed to elevated temperatures and increased cloudiness in a changing climate with potentially important effects on vegetation structure, composition, and ecosystem functioning. We investigated the individual and combined effects of warming and increased cloudiness on vegetation greenness and cover in mesocosms from two tundra and one palsa mire ecosystems kept under strict environmental control in climate chambers. We also investigated leaf anatomical and biochemical traits of four dominant vascular plant species (Empetrum hermaphroditum, Vaccinium myrtillus, Vaccinium vitis-idaea, and Rubus chamaemorus). Vegetation greenness increased in response to warming in all sites and in response to increased cloudiness in the tundra sites but without associated increases in vegetation cover or biomass, except that E. hermaphroditum biomass increased under warming. The combined warming and increased cloudiness treatment had an additive effect on vegetation greenness in all sites. It also increased the cover of graminoids and forbs in one of the tundra sites. Warming increased leaf dry mass per area of V. myrtillus and R. chamaemorus, and glandular trichome density of V. myrtillus and decreased spongy intercellular space of E. hermaphroditum and V. vitis-idaea. Increased cloudiness decreased leaf dry mass per area of V. myrtillus, palisade thickness of E. hermaphroditum, and stomata density of E. hermaphroditum and V. vitis-idaea, and increased leaf area and epidermis thickness of V. myrtillus, leaf shape index and nitrogen of E. hermaphroditum, and palisade intercellular space of V. vitis-idaea. The combined treatment caused thinner leaves and decreased leaf carbon for V. myrtillus, and increased leaf chlorophyll of E. hermaphroditum. We show that under future warmer increased cloudiness conditions in the Subarctic (as simulated in our experiment), vegetation composition and distribution will change, mostly dominated by graminoids and forbs. These changes will depend on the responses of leaf anatomical and biochemical traits and will likely impact carbon gain and primary productivity and abiotic and biotic stress tolerance.
Collapse
Affiliation(s)
- Flobert A. Ndah
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Marja Maljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Anne Kasurinen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Volatile Interactions (VOLT), Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | | | - Minna Kivimäenpää
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
- Natural Resources Institute FinlandSuonenjokiFinland
| |
Collapse
|
20
|
Jonsson H, Olofsson J, Blume-Werry G, Klaminder J. Cascading effects of earthworm invasion increase graminoid density and rodent grazing intensities. Ecology 2024; 105:e4212. [PMID: 37996966 DOI: 10.1002/ecy.4212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Human-mediated dispersal of non-native earthworms can cause substantial changes to the functioning and composition of ecosystems previously earthworm-free. Some of these earthworm species have the potential to "geoengineer" soils and increase plant nitrogen (N) uptake. Yet the possible consequences of increased plant N concentrations on rodent grazing remains poorly understood. In this study, we present findings from a common garden experiment with two tundra communities, meadow (forb dominated) and heath (shrub dominated), half of them subjected to 4 years of earthworm presence (Lumbricus spp. and Aporrectodea spp.). Within four summers, our earthworm treatment changed plant community composition by increasing graminoid density by, on average, 94% in the heath vegetation and by 49% in the meadow. Rodent winter grazing was more intense on plants growing in soils with earthworms, an effect that coincided with higher N concentrations in plants, indicating a higher palatability. Even though earthworms reduced soil moisture, plant community productivity, as indicated by vegetation greenness (normalized difference vegetation index), was not negatively impacted. We conclude that earthworm-induced changes in plant composition and trophic interactions may fundamentally alter the functioning of tundra ecosystems.
Collapse
Affiliation(s)
- Hanna Jonsson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Johan Olofsson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Gesche Blume-Werry
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Wu GL, Zhao J. Warming positively promoted community appearance restoration of the degraded alpine meadow although accompanied by topsoil drying. Oecologia 2024; 204:25-34. [PMID: 38060002 DOI: 10.1007/s00442-023-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
On-going climate warming is threatening the ecological function of grassland ecosystems. However, whether warming has positive effects on community microhabitats and appearance, especially in degraded grasslands, remains elusive. To address this issue, we conducted a 2-year field experiment on the severely degraded alpine meadow and undegraded alpine meadow with no warming and warming treatments. Community coverage and height in degraded meadow significantly increased under warming, while these changes were not significant in undegraded meadow. Two-year warming increased the community height of degraded meadow and undegraded meadow by 56.55% and 10.99%, respectively. Warming also increased community coverage by 41.88% in degraded meadow and decreased community coverage by 3.01% in undegraded meadow. Moreover, the response of topsoil temperature to warming was stronger in degraded meadow (6.89%) than in undegraded meadow (- 0.26%), while the negative response of topsoil moisture to warming was weaker in degraded meadow (- 13.95%) than in undegraded meadow (- 20.00%). The SEMs further demonstrated that warming had positive effects on topsoil temperature and community height, while had negative effects on topsoil moisture both in degraded and undegraded meadows. Our results confirm that warming-induced soil drying is an important pathway affecting the community appearance in alpine meadows. These findings highlight that warming has positive effects on community height and coverage and is particularly effective in improving community coverage appearance in severely degraded alpine meadow with topsoil drying.
Collapse
Affiliation(s)
- Gao-Lin Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A & F University, No 26, Xinong Road, Yangling, 712100, Shaanxi, China.
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling, 712100, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Jingxue Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
22
|
Gałka M, Diaconu AC, Cwanek A, Hedenäs L, Knorr KH, Kołaczek P, Łokas E, Obremska M, Swindles GT, Feurdean A. Climate-induced hydrological fluctuations shape Arctic Alaskan peatland plant communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167381. [PMID: 37769738 DOI: 10.1016/j.scitotenv.2023.167381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Rapidly increasing temperatures in high-latitude regions are causing major changes in wetland ecosystems. To assess the impact of concomitant hydroclimatic fluctuations, mineral deposition, and autogenous succession on the rate and direction of changing arctic plant communities in Arctic Alaska, we conducted detailed palaeoecological analyses using plant macrofossil, pollen, testate amoebae, elemental analyses, and radiocarbon and lead (210Pb) dating on two replicate monoliths from a peatland that developed in a river valley on the northern foothills of the Books Range. We observed an expansion of Sphagnum populations and vascular plants preferring dry habitats, such as Sphagnum warnstorfii, Sphagnum teres/squarrosum, Polytrichum strictum, Aulacomnium palustre and Salix sp., in recent decades between 2000 and 2015 CE, triggered by an increase in temperature and deepening water tables. Deepening peatland water tables became accentuated over the last two decades, when it reached its lowest point in the last 700 years. Conversely, a higher water-table between ca. 1500 and 1950 CE led to a recession of Sphagnum communities and an expansion of sedges. The almost continuous supply of mineral matter during this time led to a dominance of minerotrophic plant communities, although with varying species composition throughout the study period. The replicate cores show similar patterns, but nuanced differences are also visible, depicting fine spatial scale differences particularly in peat-forming plant distribution and the different timings of their presence. In conclusion, our study provides valuable insights into the impact of hydroclimatic fluctuations on peatland vegetation in Arctic Alaska, highlighting their tendency to dry out in recent decades. It also highlights the importance of river valley peatlands in paleoenvironmental reconstructions.
Collapse
Affiliation(s)
- Mariusz Gałka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, Banacha 1/3, 90-237 Łodz, Poland.
| | | | - Anna Cwanek
- Department of Mass Spectrometry, The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Lars Hedenäs
- Swedish Museum of Natural History, Department of Botany, Stockholm, Sweden
| | - Klaus-Holger Knorr
- University of Münster, Institute of Landscape Ecology, Ecohydrology & Biogeochemistry Group, Heisenbergstr 2, 48149 Münster, Germany
| | - Piotr Kołaczek
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland
| | - Edyta Łokas
- Department of Mass Spectrometry, The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Milena Obremska
- Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Graeme T Swindles
- Geography, School of Natural and Built Environment, Queen's University Belfast, Belfast, UK; Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Angelica Feurdean
- Babes-Bolyai University, Department of Geology, Cluj-Napoca, Romania; Goethe University, Institute of Physical Geography, Frankfurt am Main, Germany
| |
Collapse
|
23
|
van Beest FM, Schmidt NM, Stewart L, Hansen LH, Michelsen A, Mosbacher JB, Gilbert H, Le Roux G, Hansson SV. Geochemical landscapes as drivers of wildlife reproductive success: Insights from a high-Arctic ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166567. [PMID: 37633375 DOI: 10.1016/j.scitotenv.2023.166567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The bioavailability of essential and non-essential elements in vegetation is expected to influence the performance of free-ranging terrestrial herbivores. However, attempts to relate the use of geochemical landscapes by animal populations directly to reproductive output are currently lacking. Here we measured concentrations of 14 essential and non-essential elements in soil and vegetation samples collected in the Zackenberg valley, northeast Greenland, and linked these to environmental conditions to spatially predict and map geochemical landscapes. We then used long-term (1996-2021) survey data of muskoxen (Ovibos moschatus) to quantify annual variation in the relative use of essential and non-essential elements in vegetated sites and their relationship to calf recruitment the following year. Results showed that the relative use of the geochemical landscape by muskoxen varied substantially between years and differed among elements. Selection for vegetated sites with higher levels of the essential elements N, Cu, Se, and Mo was positively linked to annual calf recruitment. In contrast, selection for vegetated sites with higher concentrations of the non-essential elements As and Pb was negatively correlated to annual calf recruitment. Based on the concentrations measured in our study, we found no apparent associations between annual calf recruitment and levels of C, Mn, Co, Zn, Cd, Ba, Hg, and C:N ratio in the vegetation. We conclude that the spatial distribution and access to essential and non-essential elements are important drivers of reproductive output in muskoxen, which may also apply to other wildlife populations. The value of geochemical landscapes to assess habitat-performance relationships is likely to increase under future environmental change.
Collapse
Affiliation(s)
- Floris M van Beest
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark.
| | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Lærke Stewart
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800 Bø, Norway
| | - Lars H Hansen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Hugo Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| | - Sophia V Hansson
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| |
Collapse
|
24
|
Lu X, Hooten MB, Raiho AM, Swanson DK, Roland CA, Stehn SE. Latent trajectory models for spatio-temporal dynamics in Alaskan ecosystems. Biometrics 2023; 79:3664-3675. [PMID: 36715694 DOI: 10.1111/biom.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
The Alaskan landscape has undergone substantial changes in recent decades, most notably the expansion of shrubs and trees across the Arctic. We developed a Bayesian hierarchical model to quantify the impact of climate change on the structural transformation of ecosystems using remotely sensed imagery. We used latent trajectory processes to model dynamic state probabilities that evolve annually, from which we derived transition probabilities between ecotypes. Our latent trajectory model accommodates temporal irregularity in survey intervals and uses spatio-temporally heterogeneous climate drivers to infer rates of land cover transitions. We characterized multi-scale spatial correlation induced by plot and subplot arrangements in our study system. We also developed a Pólya-Gamma sampling strategy to improve computation. Our model facilitates inference on the response of ecosystems to shifts in the climate and can be used to predict future land cover transitions under various climate scenarios.
Collapse
Affiliation(s)
- Xinyi Lu
- Department of Statistics, Colorado State University, Fort Collins, Colorado, USA
| | - Mevin B Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ann M Raiho
- The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, Maryland, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
| | | | - Carl A Roland
- Denali National Park and Preserve, Denali Park, Alaska, USA
- Central Alaska Network Inventory and Monitoring Program, Fairbanks, Alaska, USA
| | - Sarah E Stehn
- Denali National Park and Preserve, Denali Park, Alaska, USA
- Central Alaska Network Inventory and Monitoring Program, Fairbanks, Alaska, USA
| |
Collapse
|
25
|
Cheng M, Song J, Li W, Zhao Y, Zhang G, Chen Y, Gao H. Potentilla parvifolia strongly influenced soil microbial community and environmental effect along an altitudinal gradient in central Qilian Mountains in western China. Ecol Evol 2023; 13:e10685. [PMID: 38020704 PMCID: PMC10645544 DOI: 10.1002/ece3.10685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The Qilian Mountains (QLMs) form an important ecological security barrier in western China and a priority area for biodiversity conservation. Potentilla parvifolia is a widespread species in the mid-high altitudes of the QLMs and has continuously migrated to higher altitudes in recent years. Understanding the effects of P. parvifolia on microbial community characteristics is important for exploring future changes in soil biogeochemical processes in the QLMs. This study found that P. parvifolia has profound effects on the community structure and ecological functions of soil microorganisms. The stability and complexity of the root zone microbial co-occurrence network were significantly higher than those of bare soils. There was a distinct altitudinal gradient in the effect of P. parvifolia on soil microbial community characteristics. At an elevation of 3204 m, P. parvifolia promoted the accumulation of carbon, nitrogen, and phosphorus and increased sucrase activity and soil C/N while significantly improving the community richness index of fungi (p < .05) compared with that of bacteria and the relative abundance of Ascomycota. The alpha diversity of fungi in the root zone soil of P. parvifolia was also significantly increased at 3550 m altitude. Furthermore, the community similarity distance matrix of fungi showed an evident separation at 3204 m. However, at an altitude of 3750 m, P. parvifolia mainly affected the bacterial community. Potentilla parvifolia increased the bacterial community richness. This is in agreement with the findings based on the functional prediction that P. parvifolia favors the growth and enrichment of denitrifying communities at 3550 and 3750 m. The results provide a scientific basis for predicting the evolutionary trends of the effects of P. parvifolia on soil microbial communities and functions and have important implications for ecological governance in the QLMs.
Collapse
Affiliation(s)
- Miaomiao Cheng
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Jinge Song
- School of StomatologyLanzhou UniversityLanzhouChina
| | - Weikun Li
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Yiming Zhao
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and EngineeringLanzhouChina
| | - Yong Chen
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Haining Gao
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
| |
Collapse
|
26
|
Ermokhina KA, Terskaia AI, Ivleva TY, Dudov SV, Zemlianskii VА, Telyatnikov MY, Khitun OV, Troeva EI, Koroleva NE, Abdulmanova SY. The High-Low Arctic boundary: How is it determined and where is it located? Ecol Evol 2023; 13:e10545. [PMID: 37780086 PMCID: PMC10539046 DOI: 10.1002/ece3.10545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/15/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Geobotanical subdivision of landcover is a baseline for many studies. The High-Low Arctic boundary is considered to be of fundamental natural importance. The wide application of different delimitation schemes in various ecological studies and climatic scenarios raises the following questions: (i) What are the common criteria to define the High and Low Arctic? (ii) Could human impact significantly change the distribution of the delimitation criteria? (iii) Is the widely accepted temperature criterion still relevant given ongoing climate change? and (iv) Could we locate the High-Low Arctic boundary by mapping these criteria derived from modern open remote sensing and climatic data? Researchers rely on common criteria for geobotanical delimitation of the Arctic. Unified circumpolar criteria are based on the structure of vegetation cover and climate, while regional specifics are reflected in the floral composition. However, the published delimitation schemes vary greatly. The disagreement in the location of geobotanical boundaries across the studies manifests in poorly comparable results. While maintaining the common principles of geobotanical subdivision, we derived the boundary between the High and Low Arctic using the most up-to-date field data and modern techniques: species distribution modeling, radar, thermal and optical satellite imagery processing, and climatic data analysis. The position of the High-Low Arctic boundary in Western Siberia was clarified and mapped. The new boundary is located 50-100 km further north compared to all the previously presented ones. Long-term anthropogenic press contributes to a change in the vegetation structure but does not noticeably affect key species ranges. A previously specified climatic criterion for the High-Low Arctic boundary accepted in scientific literature has not coincided with the boundary in Western Siberia for over 70 years. The High-Low Arctic boundary is distinctly reflected in biodiversity distribution. The presented approach is appropriate for accurate mapping of the High-Low Arctic boundary in the circumpolar extent.
Collapse
Affiliation(s)
- Ksenia A. Ermokhina
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
| | - Anna I. Terskaia
- Faculty of Space ResearchLomonosov Moscow State UniversityMoscowRussia
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Tatiana Yu. Ivleva
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
| | - Sergey V. Dudov
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Vitalii А. Zemlianskii
- University of ZurichDepartment of Evolutionary Biology and Environmental StudiesZurichSwitzerland
| | | | - Olga V. Khitun
- Komarov Botanical Institute Russian Academy of SciencesSt.‐PetersburgRussia
| | - Elena I. Troeva
- Institute for Biological Problems of CryolithozoneSB of Russian Academy of SciencesYakutskRussia
| | - Natalia E. Koroleva
- Polar‐Alpine Botanical Garden‐InstituteKola Scientific Centre of the Russian Academy of SciencesKirovskRussia
| | - Svetlana Yu. Abdulmanova
- Institute of Plant and Animal Ecology Ural Branch of Russian Academy of SciencesArctic research StationLabytnangiRussia
| |
Collapse
|
27
|
Vandvik V, Halbritter AH, Althuizen IHJ, Christiansen CT, Henn JJ, Jónsdóttir IS, Klanderud K, Macias-Fauria M, Malhi Y, Maitner BS, Michaletz S, Roos RE, Telford RJ, Bass P, Björnsdóttir K, Bustamante LLV, Chmurzynski A, Chen S, Haugum SV, Kemppinen J, Lepley K, Li Y, Linabury M, Matos IS, Neto-Bradley BM, Ng M, Niittynen P, Östman S, Pánková K, Roth N, Castorena M, Spiegel M, Thomson E, Vågenes AS, Enquist BJ. Plant traits and associated data from a warming experiment, a seabird colony, and along elevation in Svalbard. Sci Data 2023; 10:578. [PMID: 37666874 PMCID: PMC10477187 DOI: 10.1038/s41597-023-02467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.
Collapse
Affiliation(s)
- Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.
| | - Aud H Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Inge H J Althuizen
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
- NORCE, Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway
| | | | - Jonathan J Henn
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, USA
| | | | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Brian Salvin Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Sean Michaletz
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ruben E Roos
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Richard J Telford
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Polly Bass
- Department of Ethnobotany, University of Alaska, Fairbanks, Canada
| | | | | | - Adam Chmurzynski
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Shuli Chen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Siri Vatsø Haugum
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | | | - Kai Lepley
- School of Geography, Development and Environment, University of Arizona, Tucson, USA
| | - Yaoqi Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Mary Linabury
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Ilaíne Silveira Matos
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, USA
| | | | - Molly Ng
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, USA
| | | | - Silje Östman
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Karolína Pánková
- Department of Botany, Charles University, Prague, Czech Republic
| | - Nina Roth
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Marcus Spiegel
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eleanor Thomson
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA.
| |
Collapse
|
28
|
Manitašević Jovanović S, Hočevar K, Vuleta A, Tucić B. Predicting the Responses of Functional Leaf Traits to Global Warming: An In Situ Temperature Manipulation Design Using Iris pumila L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3114. [PMID: 37687360 PMCID: PMC10490406 DOI: 10.3390/plants12173114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Phenotypic plasticity is widely acknowledged as one of the most common solutions for coping with novel environmental conditions following climate change. However, it is less known whether the current amounts of trait plasticity, which is sufficient for matching with the contemporary climate, will be adequate when global temperatures exceed historical levels. We addressed this issue by exploring the responses of functional and structural leaf traits in Iris pumila clonal individuals to experimentally increased temperatures (~1.5 °C) using an open top chamber (OTC) design. We determined the phenotypic values of the specific leaf area, leaf dry matter content, specific leaf water content, and leaf thickness in the leaves sampled from the same clone inside and outside of the OTC deployed on it, over seasons and years within two natural populations. We analyzed the data using a repeated multivariate analysis of variance, which primarily focusses on the profiles (reaction norms (RNs)) of a variable gathered from the same individual at several different time points. We found that the mean RNs of all analyzed traits were parallel regardless of experienced temperatures, but differed in the level and the shape. The populations RNs were similar as well. As the amount of plasticity in the analyzed leaf trait was adequate for coping with elevated temperatures inside the OTCs, we predict that it will be also sufficient for responding to increased temperatures if they exceed the 1.5 °C target.
Collapse
Affiliation(s)
- Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| | - Katarina Hočevar
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| | - Ana Vuleta
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| | | |
Collapse
|
29
|
Sasaki T, Collins SL, Rudgers JA, Batdelger G, Baasandai E, Kinugasa T. Dryland sensitivity to climate change and variability using nonlinear dynamics. Proc Natl Acad Sci U S A 2023; 120:e2305050120. [PMID: 37603760 PMCID: PMC10587894 DOI: 10.1073/pnas.2305050120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Primary productivity response to climatic drivers varies temporally, indicating state-dependent interactions between climate and productivity. Previous studies primarily employed equation-based approaches to clarify this relationship, ignoring the state-dependent nature of ecological dynamics. Here, using 40 y of climate and productivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlinear time-series analysis to reveal sensitivity patterns of productivity to climate change and variability and clarify underlying mechanisms. We showed that productivity responded positively to annual precipitation in mesic regions but negatively in arid regions, with the opposite pattern observed for annual mean temperature. Furthermore, productivity responded negatively to decreasing annual aridity that integrated precipitation and temperature across Mongolia. Productivity responded negatively to interannual variability in precipitation and aridity in mesic regions but positively in arid regions. Overall, interannual temperature variability enhanced productivity. These response patterns are largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate effects modify annual productivity responses to annual climate conditions. Notably, our results suggest that the sensitivity of annual productivity to increasing annual precipitation and decreasing annual aridity can even be negative when the negative time-delayed effects of annual precipitation and aridity on productivity prevail across time. Second, the proportion of plant species resistant to water and temperature stresses at a site determines the sensitivity of productivity to climate variability. Thus, we highlight the importance of nonlinear, state-dependent sensitivity of productivity to climate change and variability, accurately forecasting potential biosphere feedback to the climate system.
Collapse
Affiliation(s)
- Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya, Yokohama240-8501, Japan
| | - Scott L. Collins
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM87131
| | - Jennifer A. Rudgers
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM87131
| | - Gantsetseg Batdelger
- Information and Research Institute of Meteorology, Hydrology and Environment of Mongolia, Ulaanbaatar15160, Mongolia
| | - Erdenetsetseg Baasandai
- Information and Research Institute of Meteorology, Hydrology and Environment of Mongolia, Ulaanbaatar15160, Mongolia
| | | |
Collapse
|
30
|
Post E, Kaarlejärvi E, Macias-Fauria M, Watts DA, Bøving PS, Cahoon SMP, Higgins RC, John C, Kerby JT, Pedersen C, Post M, Sullivan PF. Large herbivore diversity slows sea ice-associated decline in arctic tundra diversity. Science 2023; 380:1282-1287. [PMID: 37347848 DOI: 10.1126/science.add2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
Biodiversity is declining globally in response to multiple human stressors, including climate forcing. Nonetheless, local diversity trends are inconsistent in some taxa, obscuring contributions of local processes to global patterns. Arctic tundra diversity, including plants, fungi, and lichens, declined during a 15-year experiment that combined warming with exclusion of large herbivores known to influence tundra vegetation composition. Tundra diversity declined regardless of experimental treatment, as background growing season temperatures rose with sea ice loss. However, diversity declined slower with large herbivores than without them. This difference was associated with an increase in effective diversity of large herbivores as formerly abundant caribou declined and muskoxen increased. Efforts that promote herbivore diversity, such as rewilding, may help mitigate impacts of warming on tundra diversity.
Collapse
Affiliation(s)
- Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| | - Elina Kaarlejärvi
- Research Center for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - David A Watts
- Alaska State Virology Laboratory, Division of Public Health, Alaska Department of Health, Fairbanks, AK 99775, USA
| | - Pernille Sporon Bøving
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| | - Sean M P Cahoon
- Pacific Northwest Research Station, USDA Forest Service, Anchorage, AK 99501, USA
| | - R Conor Higgins
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| | - Christian John
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| | - Jeffrey T Kerby
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Christian Pedersen
- Department of Landscape Monitoring, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Mason Post
- Department of Genome Sciences and Brotman Baty Institute, University of Washington, Seattle, WA 98195, USA
| | - Patrick F Sullivan
- Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK 99508, USA
| |
Collapse
|
31
|
Deng Z, Zhao J, Ma P, Zhang H, Li R, Wang Z, Tang Y, Luo T. Precipitation and local adaptation drive spatiotemporal variations of aboveground biomass and species richness in Tibetan alpine grasslands. Oecologia 2023:10.1007/s00442-023-05401-1. [PMID: 37314486 DOI: 10.1007/s00442-023-05401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The Tibetan Plateau contains the highest and largest alpine pasture in the world, which is adapted to the cold and arid climate. It is challenging to understand how the vast alpine grasslands respond to climate change. We aim to test the hypothesis that there is local adaptation in elevational populations of major plant species in Tibetan alpine grasslands, and that the spatiotemporal variations of aboveground biomass (AGB) and species richness (S) can be mainly explained by climate change only when the effect of local adaptation is removed. A 7-year reciprocal transplant experiment was conducted among the distribution center (4950 m), upper (5200 m) and lower (4650 m) limits of alpine Kobresia meadow in central Tibetan Plateau. We observed interannual variations in S and AGB of 5 functional groups and 4 major species, and meteorological factors in each of the three elevations during 2012-2018. Relationships between interannual changes of AGB and climatic factors varied greatly with elevational populations within a species. Elevation of population origin generally had a greater or an equal contribution to interannual variation in AGB of the 4 major species, compared to temperature and precipitation effects. While the effect of local adaptation was removed by calculating differences in AGB and S between elevations of migration and origin, relative changes in AGB and S were mainly explained by precipitation change rather than by temperature change. Our data support the hypothesis, and further provide evidence that the monsoon-adapted alpine grasslands are more sensitive to precipitation change than to warming.
Collapse
Affiliation(s)
- Zhaoheng Deng
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Zhao
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Ma
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoze Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruicheng Li
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhong Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Tang
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianxiang Luo
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
32
|
Koranda M, Rinnan R, Michelsen A. Close coupling of plant functional types with soil microbial community composition drives soil carbon and nutrient cycling in tundra heath. PLANT AND SOIL 2023; 488:551-572. [PMID: 37600962 PMCID: PMC10435393 DOI: 10.1007/s11104-023-05993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/14/2023] [Indexed: 08/22/2023]
Abstract
Aims This study aimed at elucidating divergent effects of two dominant plant functional types (PFTs) in tundra heath, dwarf shrubs and mosses, on soil microbial processes and soil carbon (C) and nutrient availability, and thereby to enhance our understanding of the complex interactions between PFTs, soil microbes and soil functioning. Methods Samples of organic soil were collected under three dwarf shrub species (of distinct mycorrhizal association and life form) and three moss species in early and late growing season. We analysed soil C and nutrient pools, extracellular enzyme activities and phospholipid fatty acid profiles, together with a range of plant traits, soil and abiotic site characteristics. Results Shrub soils were characterised by high microbial biomass C and phosphorus and phosphatase activity, which was linked with a fungal-dominated microbial community, while moss soils were characterised by high soil nitrogen availability, peptidase and peroxidase activity associated with a bacterial-dominated microbial community. The variation in soil microbial community structure was explained by mycorrhizal association, root morphology, litter and soil organic matter quality and soil pH-value. Furthermore, we found that the seasonal variation in microbial biomass and enzyme activities over the growing season, likely driven by plant belowground C allocation, was most pronounced under the tallest shrub Betula nana. Conclusion Our study demonstrates a close coupling of PFTs with soil microbial communities, microbial decomposition processes and soil nutrient availability in tundra heath, which suggests potential strong impacts of global change-induced shifts in plant community composition on carbon and nutrient cycling in high-latitude ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-05993-w.
Collapse
Affiliation(s)
- Marianne Koranda
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, 1350 Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, 1350 Copenhagen, Denmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, 1350 Copenhagen, Denmark
| |
Collapse
|
33
|
Gu Q, Yu Q, Grogan P. Cryptogam plant community stability: Warming weakens influences of species richness but enhances effects of evenness. Ecology 2023; 104:e3842. [PMID: 36199224 DOI: 10.1002/ecy.3842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023]
Abstract
Community stability is a fundamental factor sustaining ecosystem functioning and is affected by species richness and species evenness. The Arctic is warming more rapidly than other biomes, and cryptogam plant species (specifically lichens and bryophytes in this study) are major contributors to tundra biodiversity and productivity. However, to our knowledge, the impacts of warming on cryptogam community stability and the underlying mechanisms have not been investigated. We conducted a 13-year summer warming experiment in mesic birch hummock tundra vegetation near Daring Lake in the continental interior of low Arctic Canada and recorded patterns of cryptogam species abundance in several different growing seasons. Warming decreased the stability of total community abundance, had no effects on species richness, but increased species evenness and species synchrony. Structural equation model analyses indicated that higher species richness was the principal factor associated with the stronger community abundance stability in the control plots and that this effect was driven primarily by a negative correlation with species synchrony. By contrast, higher species evenness was the principal factor associated with the weakened community abundance stability in the warming plots, and this effect was driven primarily by a positive correlation with species synchrony. Our study suggests that climate warming could reduce cryptogam plant community stability in low Arctic tundra and, therefore, decrease important ecosystem services, including carbon storage and food availability to caribou in northern regions.
Collapse
Affiliation(s)
- Qian Gu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Paul Grogan
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
34
|
Power CC, Assmann JJ, Prendin AL, Treier UA, Kerby JT, Normand S. Improving ecological insights from dendroecological studies of Arctic shrub dynamics: Research gaps and potential solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158008. [PMID: 35988628 DOI: 10.1016/j.scitotenv.2022.158008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Rapid climate change has been driving changes in Arctic vegetation in recent decades, with increased shrub dominance in many tundra ecosystems. Dendroecological observations of tundra shrubs can provide insight into current and past growth and recruitment patterns, both key components for understanding and predicting ongoing and future Arctic shrub dynamics. However, generalizing these dynamics is challenging as they are highly scale-dependent and vary among sites, species, and individuals. Here, we provide a perspective on how some of these challenges can be overcome. Based on a targeted literature search of dendrochronological studies from 2005 to 2022, we highlight five research gaps that currently limit dendro-based studies from revealing cross-scale ecological insight into shrub dynamics across the Arctic biome. We further discuss the related research priorities, suggesting that future studies could consider: 1) increasing focus on intra- and interspecific variation, 2) including demographic responses other than radial growth, 3) incorporating drivers, in addition to warming, at different spatial and temporal scales, 4) implementing systematic and unbiased sampling approaches, and 5) investigating the cellular mechanisms behind the observed responses. Focusing on these aspects in dendroecological studies could improve the value of the field for addressing cross-scale and plant community-framed ecological questions. We outline how this could be facilitated through the integration of community-based dendroecology and dendroanatomy with remote sensing approaches. Integrating new technologies and a more multidisciplinary approach in dendroecological research could provide key opportunities to close important knowledge gaps in our understanding of scale-dependencies, as well as intra- and inter-specific variation, in vegetation community dynamics across the Arctic tundra.
Collapse
Affiliation(s)
- Candice C Power
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark.
| | - Jakob J Assmann
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| | - Angela L Prendin
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| | - Urs A Treier
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| | - Jeffrey T Kerby
- Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Signe Normand
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Hiltunen TA, Stien A, Väisänen M, Ropstad E, Aspi JO, Welker JM. Svalbard reindeer winter diets: Long-term dietary shifts to graminoids in response to a changing climate. GLOBAL CHANGE BIOLOGY 2022; 28:7009-7022. [PMID: 36071549 PMCID: PMC9826046 DOI: 10.1111/gcb.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Arctic ecosystems are changing dramatically with warmer and wetter conditions resulting in complex interactions between herbivores and their forage. We investigated how Svalbard reindeer (Rangifer tarandus platyrhynchus) modify their late winter diets in response to long-term trends and interannual variation in forage availability and accessibility. By reconstructing their diets and foraging niches over a 17-year period (1995-2012) using serum δ13 C and δ15 N values, we found strong support for a temporal increase in the proportions of graminoids in the diets with a concurrent decline in the contributions of mosses. This dietary shift corresponds with graminoid abundance increases in the region and was associated with increases in population density, warmer summer temperatures and more frequent rain-on-snow (ROS) in winter. In addition, the variance in isotopic niche positions, breadths, and overlaps also supported a temporal shift in the foraging niche and a dietary response to extreme ROS events. Our long-term study highlights the mechanisms by which winter and summer climate changes cascade through vegetation shifts and herbivore population dynamics to alter the foraging niche of Svalbard reindeer. Although it has been anticipated that climate changes in the Svalbard region of the Arctic would be detrimental to this unique ungulate, our study suggests that environmental change is in a phase where conditions are improving for this subspecies at the northernmost edge of the Rangifer distribution.
Collapse
Affiliation(s)
| | - Audun Stien
- Department of Arctic and Marine Biology, Fram CentreThe Arctic University of NorwayTromsøNorway
| | - Maria Väisänen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Arctic CentreUniversity of LaplandRovaniemiFinland
| | - Erik Ropstad
- Department of Production Animal Clinical SciencesNorwegian University of Life SciencesÅsNorway
| | - Jouni O. Aspi
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Jeffery M. Welker
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- UArcticRovaniemiFinland
- Department of Biological SciencesUniversity of Alaska AnchorageAnchorageAlaskaUSA
| |
Collapse
|
36
|
Liu Z, Chen R, Qi J, Dang Z, Han C, Yang Y. Control of Mosses on Water Flux in an Alpine Shrub Site on the Qilian Mountains, Northwest China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3111. [PMID: 36432840 PMCID: PMC9692250 DOI: 10.3390/plants11223111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Mosses are an important component of the alpine shrub, but little is known about their contribution to ecosystem water and energy exchange, especially potential opportunities for alpine shrub expansion under a warming climate. We studied the role of mosses in alpine shrub evapotranspiration by conducting herb and moss removal experiments with different Potentilla fruticosa L. shrub coverage in the Qilian Mountains, Northwest China. The understory evapotranspiration was measured using lysimeters in different shrub coverage (dense shrub cover, medium shrub cover, and thin shrub cover) during the growing season of 2012. The understory evapotranspiration is about 1.61 mm per day in the control treatment (intact moss and herbs) during the growing season, and the evapotranspiration rates differed significantly between canopy covers. We found a 22% increase in evapotranspiration losses after removing the moss layer compared to the control treatment lysimeter with an intact moss layer in the shrub site. This suggests that most of the understory evaporation originated from the organic layer underlying the moss layer. Given this study's large moss evaporation rates, understory contributions cannot be ignored when interpreting eddy covariance data for the whole alpine ecosystem. Our results show that mosses may exert strong controls on understory water fluxes in alpine shrub meadow ecosystems and suggest that changes in moss cover may have significant consequences for season frozen soil thaw.
Collapse
Affiliation(s)
- Zhangwen Liu
- Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rensheng Chen
- Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Urban and Environmental Sciences, Northwestern University, Xi’an 710127, China
| | - Jinxian Qi
- Qilian Forestry and Grassland Administration/Qilian Management Branch of Qilian Mountain National Park (Qinghai), Qilian County 810400, China
| | - Zhiying Dang
- Qilian Forestry and Grassland Administration/Qilian Management Branch of Qilian Mountain National Park (Qinghai), Qilian County 810400, China
| | - Chuntan Han
- Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Yang
- Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
37
|
Solarte ME, Solarte Erazo Y, Ramírez Cupacán E, Enríquez Paz C, Melgarejo LM, Lasso E, Flexas J, Gulias J. Photosynthetic Traits of Páramo Plants Subjected to Short-Term Warming in OTC Chambers. PLANTS (BASEL, SWITZERLAND) 2022; 11:3110. [PMID: 36432839 PMCID: PMC9695496 DOI: 10.3390/plants11223110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming and changes in land use are some of the main threats to high mountain species. Both can interact in ways not yet assessed. In this study, we evaluated the photosynthetic responses of six common páramo species within a warming experiment using open-top chambers (OTC) in conserved páramo areas with different land use histories. We did not find significant differences in the photochemical performance of the species as measured through Fv/Fm, ETR, and NPQ in response to passive warming, indicating that warmed plants are not stressed. However, NPQ values were higher in recovering areas, especially in the driest and warmest months. Leaf transpiration, stomatal conductance, and Ci were not affected by the OTC or the land use history. The photosynthetic capacity, maximum photosynthetic capacity, and carboxylation rate of RuBisCO increased in response to warming but only in the area with no anthropogenic intervention. These results suggest that species will respond differently to warming depending on the history of páramo use, and therefore not all páramo communities will respond equally to climate change. In disturbed sites with altered soil conditions, plants could have a lower breadth of physiological response to warming.
Collapse
Affiliation(s)
- María Elena Solarte
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Yisela Solarte Erazo
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Elizabeth Ramírez Cupacán
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Camila Enríquez Paz
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Luz Marina Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogota 111321, Colombia
| | - Eloisa Lasso
- Grupo de Ecología y Fisiología Vegetal EcoFiv, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogota 111711, Colombia
| | - Jaume Flexas
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| | - Javier Gulias
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| |
Collapse
|
38
|
Wu Z, Wang Z, Xie D, Wang H, Zhao A, Wang Y, Wang H, Xu X, Li T, Zhao J. Effects of highland environments on clonal diversity in aquatic plants: An interspecific comparison study on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:1040282. [PMID: 36340384 PMCID: PMC9632175 DOI: 10.3389/fpls.2022.1040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Clonal reproduction is one of the most distinctive characteristics of plants and is common and diverse in aquatic macrophytes. The balance between sexual and asexual reproduction is affected by various conditions, especially adverse environments. However, we know little about clonal diversity of aquatic plants under suboptimal conditions, such as at high altitudes, and having this information would help us understand how environmental gradients influence patterns of clonal and genetic variation in freshwater species. The microsatellite data of four aquatic taxa in our previous studies were revisited to estimate clonal and genetic diversity on the Qinghai-Tibetan Plateau. Clonal diversity among different genetic groups was compared. Local environmental features were surveyed. Beta regressions were used to identify the environmental factors that significantly explained clonal diversity for relative taxon. The level of clonal diversity from high to low was Stuckenia filiformis > Hippuris vulgaris > Myriophyllum species > Ranunculus section Batrachium species. A positive correlation between clonal and genetic diversity was identified for all taxa, except H. vulgaris. Clonal diversity was affected by climate in S. filiformis and by the local environment in H. vulgaris. For Myriophyllum spp., low elevation and high sediment nutrition were significant for sexual recruitment. The environmental effects on clonal diversity were not significant in R. sect. Batrachium spp. Clonal diversity of aquatic plants is moderate to high and varies greatly in highlands. The effects of breeding systems and environmental factors on the patterns of clonal variation were identified. Elevational gradients, climates and local conditions play different roles in clonal diversity among relative taxon. Our results highlight the importance of sexual recruitment in alpine aquatic plant populations and the influence of environmental factors on the genetic patterns in freshwater species at local and regional scales.
Collapse
Affiliation(s)
- Zhigang Wu
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhong Wang
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
- School of Science, Tibet University, Lhasa, China
| | - Dong Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- The National Wetland Ecosystem Field Station of Taihu Lake, National Forestry Administration, Suzhou, China
| | - Huijun Wang
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiwen Zhao
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- School of Science, Tibet University, Lhasa, China
| | - Yalin Wang
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanling Wang
- Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Xinwei Xu
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tao Li
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
39
|
Prager CM, Classen AT, Sundqvist MK, Barrios‐Garcia M, Cameron EK, Chen L, Chisholm C, Crowther TW, Deslippe JR, Grigulis K, He J, Henning JA, Hovenden M, Høye TTT, Jing X, Lavorel S, McLaren JR, Metcalfe DB, Newman GS, Nielsen ML, Rixen C, Read QD, Rewcastle KE, Rodriguez‐Cabal M, Wardle DA, Wipf S, Sanders NJ. Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network. Ecol Evol 2022; 12:e9396. [PMID: 36262264 PMCID: PMC9575997 DOI: 10.1002/ece3.9396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.
Collapse
Affiliation(s)
- Case M. Prager
- Ecology and Evolutionary Biology DepartmentUniversity of MichiganAnn ArborMichiganUSA
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Aimee T. Classen
- Ecology and Evolutionary Biology DepartmentUniversity of MichiganAnn ArborMichiganUSA
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Maja K. Sundqvist
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Maria Noelia Barrios‐Garcia
- CONICET, CENAC‐APNSan Carlos de BarilocheRio NegroArgentina
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
| | - Erin K. Cameron
- Department of Environmental ScienceSaint Mary's UniversityHalifaxNova ScotiaCanada
| | - Litong Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area and Key Laboratory of Adaptation and Evolution of Plant BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Chelsea Chisholm
- Department of Environment Systems Science, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Thomas W. Crowther
- Department of Environment Systems Science, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Julie R. Deslippe
- Centre for Biodiversity and Restoration Ecology, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Karl Grigulis
- Laboratoire d'Ecologie AlpineUniversité Grenoble Alpes – CNRS – Université Savoie Mont‐BlancGrenobleFrance
| | - Jin‐Sheng He
- Department of Ecology, College of Urban and Environmental SciencesPeking UniversityBeijingChina
| | - Jeremiah A. Henning
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- Department of BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Mark Hovenden
- Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Toke T. Thomas Høye
- Department of Ecoscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Xin Jing
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- State Key Laboratory of Grassland Agro‐Ecosystems, and College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouGansuChina
| | - Sandra Lavorel
- Laboratoire d'Ecologie AlpineUniversité Grenoble Alpes – CNRS – Université Savoie Mont‐BlancGrenobleFrance
| | - Jennie R. McLaren
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexasUSA
| | - Daniel B. Metcalfe
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - Marie Louise Nielsen
- Department of Ecoscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Christian Rixen
- Mountain Ecosystems GroupWSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
| | - Quentin D. Read
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- National Socio‐Environmental Synthesis CenterAnnapolisMarylandUSA
| | - Kenna E. Rewcastle
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
| | - Mariano Rodriguez‐Cabal
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
- Grupo de Ecología de Invasiones, INIBIOMA, CONICETUniversidad Nacional del ComahueSan Carlos de BarilocheArgentina
| | - David A. Wardle
- Asian School of the EnvironmentNanyang Technological UniversitySingaporeSingapore
| | - Sonja Wipf
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Department of Research and MonitoringChastè Planta‐WildenbergZernezSwitzerland
| | - Nathan J. Sanders
- Ecology and Evolutionary Biology DepartmentUniversity of MichiganAnn ArborMichiganUSA
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
40
|
Ganjurjav H, Hu G, Gornish E, Zhang Y, Li Y, Yan Y, Wu H, Yan J, He S, Danjiu L, Gao Q. Warming and spring precipitation addition change plant growth pattern but have minor effects on growing season mean gross ecosystem productivity in an alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156712. [PMID: 35709997 DOI: 10.1016/j.scitotenv.2022.156712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Gross ecosystem productivity (GEP) plays an important role in global carbon cycling. However, how plant phenology and growth rate regulate GEP under climate change is unclear. Based on an in situ manipulative experiment using open top chambers from 2015 to 2018, we measured whole year warming and spring precipitation addition effects on plant phenology, plant growth rate and GEP. Our results showed that warming delayed plant green up (4 days) and withering (5 days), while spring precipitation addition advanced green up 13 days and did not change withering. Warming delayed the timing of the fast-growing phase 7 days, shortened length of the fast-growing phase 7 days and marginally increased the growth rate. Spring precipitation addition advanced the timing of the fast-growing phase 6 days, but did not change the length of the fast-growing phase or the growth rate. Both whole year warming and spring precipitation addition have not significantly affected growing season mean GEP. GEP is positively correlated with plant growth rate and negatively correlated with the length of the fast-growing phase. We provide an evidence that although warming did not change growing season mean productivity, it delayed plant fast-growing phase. Our findings suggest that management approaches for increasing water availability before the fast-growing phase should be intensified to increase ecosystem carbon uptake and grass supply for animal husbandry in spring.
Collapse
Affiliation(s)
- Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Elise Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Yong Zhang
- National Plateau Wetlands Research Center, College of Wetlands, Southwest Forestry University, Kunming, China
| | - Yu Li
- School of Tourism and Land Resource, Chongqing Technology and Business University, Chongqing, China
| | - Yulong Yan
- CECEP Engineering Technology Research Institute, Beijing, China
| | - Hongbao Wu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jun Yan
- Nagqu Grassland Station, Nagqu, China
| | | | | | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China.
| |
Collapse
|
41
|
Hagenberg LWC, Vanneste T, Opedal ØH, Petlund HT, Björkman MP, Björk RG, Holien H, Limpens J, Molau U, Graae BJ, De Frenne P. Vegetation change on mountaintops in northern Sweden: Stable vascular‐plant but reordering of lichen and bryophyte communities. Ecol Res 2022. [DOI: 10.1111/1440-1703.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liyenne Wu Chen Hagenberg
- Plant Ecology and Nature Conservation Group Wageningen University & Research Wageningen The Netherlands
| | - Thomas Vanneste
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering Ghent University Gontrode Belgium
| | - Øystein H. Opedal
- Biodiversity Unit, Department of Biology Lund University Lund Sweden
| | | | - Mats P. Björkman
- Department of Earth Sciences University of Gothenburg Gothenburg Sweden
- Gothenburg Global Biodiversity Centre Göteborg Sweden
| | - Robert G. Björk
- Department of Earth Sciences University of Gothenburg Gothenburg Sweden
- Gothenburg Global Biodiversity Centre Göteborg Sweden
| | - Håkon Holien
- Faculty of Biosciences and Aquaculture Nord University Steinkjer Norway
| | - Juul Limpens
- Plant Ecology and Nature Conservation Group Wageningen University & Research Wageningen The Netherlands
| | - Ulf Molau
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Bente Jessen Graae
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering Ghent University Gontrode Belgium
| |
Collapse
|
42
|
Garcia FC, Warfield R, Yvon-Durocher G. Thermal traits govern the response of microbial community dynamics and ecosystem functioning to warming. Front Microbiol 2022; 13:906252. [PMID: 36060759 PMCID: PMC9428465 DOI: 10.3389/fmicb.2022.906252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the ecological processes that underpin the dynamics of community turnover in response to environmental change is critical to predicting how warming will influence ecosystem functioning. Here, we quantify the effect of changing temperature on community composition and ecosystem functioning via the action of ecological selection on population-level thermal traits. To achieve this, we use microbes isolated from a network of geothermal streams in Iceland where in situ temperatures span 8–38°C within a single catchment. We first quantified variability in thermal tolerance between taxa, and then assembled synthetic communities along a broad thermal gradient to explore how temperature-driven selection on thermal tolerance traits shaped the emergent community structures and functions. We found marked changes in community structure and composition with temperature, such that communities exposed to extreme temperatures (10, 35°C) had highly asymmetric biomass distributions and low taxonomic richness. Thermal optima were a good predictor of the presence and relative abundance of taxa in the high-temperature treatments. We also found that the evenness of the abundance distribution was related to ecosystem production, such that communities with more equitable abundance distribution were also the most productive. Our results highlight the utility of using a multi-level approach that links population-level traits with community structure and ecosystem functioning to better understand how ecological communities will respond to global warming.
Collapse
Affiliation(s)
- Francisca C. Garcia
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Francisca C. Garcia,
| | - Ruth Warfield
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
- Gabriel Yvon-Durocher,
| |
Collapse
|
43
|
McKinney MA, Chételat J, Burke SM, Elliott KH, Fernie KJ, Houde M, Kahilainen KK, Letcher RJ, Morris AD, Muir DCG, Routti H, Yurkowski DJ. Climate change and mercury in the Arctic: Biotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155221. [PMID: 35427623 DOI: 10.1016/j.scitotenv.2022.155221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.
Collapse
Affiliation(s)
- Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - John Chételat
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Samantha M Burke
- Minnow Aquatic Environmental Services, Guelph, ON N1H 1E9, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 5E7, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, QC J8X 2V6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - David J Yurkowski
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
44
|
Vandvik V, Althuizen IHJ, Jaroszynska F, Krüger LC, Lee H, Goldberg DE, Klanderud K, Olsen SL, Telford RJ, Östman SAH, Busca S, Dahle IJ, Egelkraut DD, Geange SR, Gya R, Lynn JS, Meineri E, Young S, Halbritter AH. The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands. Sci Data 2022; 9:451. [PMID: 35902592 PMCID: PMC9332099 DOI: 10.1038/s41597-022-01559-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Plant removal experiments allow assessment of the role of biotic interactions among species or functional groups in community assembly and ecosystem functioning. When replicated along climate gradients, they can assess changes in interactions among species or functional groups with climate. Across twelve sites in the Vestland Climate Grid (VCG) spanning 4 °C in growing season temperature and 2000 mm in mean annual precipitation across boreal and alpine regions of Western Norway, we conducted a fully factorial plant functional group removal experiment (graminoids, forbs, bryophytes). Over six years, we recorded biomass removed, soil microclimate, plant community composition and structure, seedling recruitment, ecosystem carbon fluxes, and reflectance in 384 experimental and control plots. The dataset consists of 5,412 biomass records, 360 species-level biomass records, 1,084,970 soil temperature records, 4,771 soil moisture records, 17,181 plant records covering 206 taxa, 16,656 seedling records, 3,696 ecosystem carbon flux measurements, and 1,244 reflectance measurements. The data can be combined with longer-term climate data and plant population, community, ecosystem, and functional trait data collected within the VCG. Measurement(s) | vegetation layer • ecosystem-wide respiration • ecosystem-wide photosynthesis • seedling development stage • temperature of soil • plant functional group biomass • volumetric soil moisture • reflectance spectrum | Technology Type(s) | Visual species identification and cover estimation • Licor gas analyzer • Visual species identification and estimation • ibutton temperature logger • Analytical Balance • SM300 soil mositure probe, Delta-T • GreenSeeker/Normalized Difference Vegetation Index measurements | Factor Type(s) | temperature • precipitation • Plant functional type composition | Sample Characteristic - Organism | Embryophyta | Sample Characteristic - Environment | alpine tundra biome | Sample Characteristic - Location | Vestlandet Region |
Collapse
Affiliation(s)
- Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway. .,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.
| | - Inge H J Althuizen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.,Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Francesca Jaroszynska
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Office Français de la Biodiversité, Pérols, France
| | - Linn C Krüger
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Hanna Lee
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.,Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Deborah E Goldberg
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Siri L Olsen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.,Norwegian Institute for Nature Research, Oslo, Norway
| | - Richard J Telford
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Silje A H Östman
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sara Busca
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ingrid J Dahle
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Dagmar D Egelkraut
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Sonya R Geange
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Ragnhild Gya
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Josh S Lynn
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Eric Meineri
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | | | - Aud H Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| |
Collapse
|
45
|
Boyle JS, Angers-Blondin S, Assmann JJ, Myers-Smith IH. Summer temperature—but not growing season length—influences radial growth of Salix arctica in coastal Arctic tundra. Polar Biol 2022. [DOI: 10.1007/s00300-022-03074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractArctic climate change is leading to an advance of plant phenology (the timing of life history events) with uncertain impacts on tundra ecosystems. Although the lengthening of the growing season is thought to lead to increased plant growth, we have few studies of how plant phenology change is altering tundra plant productivity. Here, we test the correspondence between 14 years of Salix arctica phenology data and radial growth on Qikiqtaruk–Herschel Island, Yukon Territory, Canada. We analysed stems from 28 individuals using dendroecology and linear mixed-effect models to test the statistical power of growing season length and climate variables to individually predict radial growth. We found that summer temperature best explained annual variation in radial growth. We found no strong evidence that leaf emergence date, earlier leaf senescence date, or total growing season length had any direct or lagged effects on radial growth. Radial growth was also not explained by interannual variation in precipitation, MODIS surface greenness (NDVI), or sea ice concentration. Our results demonstrate that at this site, for the widely distributed species S. arctica, temperature—but not growing season length—influences radial growth. These findings challenge the assumption that advancing phenology and longer growing seasons will increase the productivity of all plant species in Arctic tundra ecosystems.
Collapse
|
46
|
Morales-Sánchez JÁM, Mark K, Souza JPS, Niinemets Ü. Desiccation-rehydration measurements in bryophytes: current status and future insights. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4338-4361. [PMID: 35536655 DOI: 10.1093/jxb/erac172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Desiccation-rehydration experiments have been employed over the years to evaluate desiccation tolerance of bryophytes (Bryophyta, Marchantiophyta, and Anthocerotophyta). Researchers have applied a spectrum of protocols to induce desiccation and subsequent rehydration, and a wide variety of techniques have been used to study desiccation-dependent changes in bryophyte molecular, cellular, physiological, and structural traits, resulting in a multifaceted assortment of information that is challenging to synthesize. We analysed 337 desiccation-rehydration studies, providing information for 351 species, to identify the most frequent methods used, analyse the advances in desiccation studies over the years, and characterize the taxonomic representation of the species assessed. We observed certain similarities across methodologies, but the degree of convergence among the experimental protocols was surprisingly low. Out of 52 bryophyte orders, 40% have not been studied, and data are lacking for multiple remote or difficult to access locations. We conclude that for quantitative interspecific comparisons of desiccation tolerance, rigorous standardization of experimental protocols and measurement techniques, and simultaneous use of an array of experimental techniques are required for a mechanistic insight into the different traits modified in response to desiccation. New studies should also aim to fill gaps in taxonomic, ecological, and spatial coverage of bryophytes.
Collapse
Affiliation(s)
- José Ángel M Morales-Sánchez
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - João Paulo S Souza
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
47
|
Zhang N, Chen K, Du Y, Yang Y, Yan J, Bao H, Zuo D, Qi W, Cui B. The Influence Mechanism of Vegetation Type on the Characteristics of nirS-Type Denitrifying Microbial Communities in Qinghai Lake Wetlands. Curr Microbiol 2022; 79:242. [PMID: 35794356 DOI: 10.1007/s00284-022-02912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
Soil denitrification is an important process in the emission of N2O, an atmospheric greenhouse gas. Environmental factors of different vegetation types are largely heterogeneous, which may directly or indirectly affect N2O fluxes. Through high-throughput sequencing of the nitrite reductase gene nirS, this study investigated the influence of vegetation type on the structure and diversity of denitrifying microbial communities in Qinghai Lake wetlands, China. The results showed that among the four vegetation types in the Qinghai Lake wetlands, Carex rigescens (CR) had the highest species richness index, and Leymus secalinus (LS) had the lowest species richness index. Species evenness followed the opposite trend. Proteobacteria were the main denitrifying bacterial phylum in the wetland soil of Qinghai Lake. There were 40 differential bacterial flora at different levels in the four vegetation types, most of which belonged to Proteobacteria. Magnetospirillum is a bacterium that differed significantly across the four vegetation types, and it was one of the main denitrifying taxa based on relative abundance in the LS vegetation type. Soil pH was the most important regulating factor of nirS-type denitrifying microbial community in Qinghai Lake wetland. In summary, the succession of vegetation types in the Qinghai Lake Wetlands changes the soil microenvironment and significantly affects the community structure and diversity of the denitrifying microbial communities. The large-area growth of CR might even increase the emission of nitrous oxide. This study can serve as a reference for further exploration of the N2O emission mechanism in the unique habitats of alpine wetlands.
Collapse
Affiliation(s)
- Ni Zhang
- Key Laboratory of Tibetan Plateau Surface Processes and Ecological Conservation, Ministry of Education, Xining, 810008, China.,Institute of Plateau Science and Sustainable Development, Qinghai Normal University, Xining, 810008, China.,College of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Kelong Chen
- Key Laboratory of Tibetan Plateau Surface Processes and Ecological Conservation, Ministry of Education, Xining, 810008, China. .,Institute of Plateau Science and Sustainable Development, Qinghai Normal University, Xining, 810008, China.
| | - Yan'gong Du
- Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yang Yang
- Key Laboratory of Tibetan Plateau Surface Processes and Ecological Conservation, Ministry of Education, Xining, 810008, China.,Institute of Plateau Science and Sustainable Development, Qinghai Normal University, Xining, 810008, China.,College of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Jun'an Yan
- Shanghai Biozeron Technology Co., LTD, Shanghai, 201306, China
| | - Han Bao
- Key Laboratory of Tibetan Plateau Surface Processes and Ecological Conservation, Ministry of Education, Xining, 810008, China.,Institute of Plateau Science and Sustainable Development, Qinghai Normal University, Xining, 810008, China.,College of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Dizhao Zuo
- Key Laboratory of Tibetan Plateau Surface Processes and Ecological Conservation, Ministry of Education, Xining, 810008, China.,Institute of Plateau Science and Sustainable Development, Qinghai Normal University, Xining, 810008, China
| | - Wen Qi
- Key Laboratory of Tibetan Plateau Surface Processes and Ecological Conservation, Ministry of Education, Xining, 810008, China.,Institute of Plateau Science and Sustainable Development, Qinghai Normal University, Xining, 810008, China
| | - Boliang Cui
- Key Laboratory of Tibetan Plateau Surface Processes and Ecological Conservation, Ministry of Education, Xining, 810008, China.,Institute of Plateau Science and Sustainable Development, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
48
|
Scharn R, Negri IS, Sundqvist MK, Løkken JO, Bacon CD, Antonelli A, Hofgaard A, Nilsson RH, Björk RG. Limited decadal growth of mountain birch saplings has minor impact on surrounding tundra vegetation. Ecol Evol 2022; 12:e9028. [PMID: 35784030 PMCID: PMC9219107 DOI: 10.1002/ece3.9028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022] Open
Abstract
Temperatures over the Arctic region are increasing at three times the rate of the global average. Consequently, Arctic vegetation is changing and trees are encroaching into the tundra. In this study, we examine the establishment and growth of mountain birch (Betula pubescens ssp. tortuosa), which forms the treeline in subarctic Europe, and its impact on community composition across the treeline ecotone nearby Abisko, Sweden. Birch advancement along elevational gradients was studied by comparing data collected in 2016 with data collected 10 and 15 years previously. Species identity, cover, and phylogenetic relatedness were used to assess the impact of birch encroachment on community composition. Our results show that birch occurrence above the treeline did not affect plant community composition, probably owing to the observed lack of significant growth due to herbivore browsing, nitrogen limitation, or a reduction in snow cover. Independent of birch performance, the tundra community structure shifted toward a novel community dissimilar from the forest plant community found below the treeline. Taken together, our findings are explained by species-specific responses to climate change, rather than by a linear forest advance. Future treeline advancements are likely more restricted than previously expected.
Collapse
Affiliation(s)
- Ruud Scharn
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | - Isabel S. Negri
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- School of BiosciencesCardiff UniversityCardiffUK
| | - Maja K. Sundqvist
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Jørn O. Løkken
- Norwegian Institute for Nature ResearchTrondheimNorway
- Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Christine D. Bacon
- Gothenburg Global Biodiversity CentreGothenburgSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity CentreGothenburgSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Royal Botanical Gardens KewRichmondUK
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | | - R. Henrik Nilsson
- Gothenburg Global Biodiversity CentreGothenburgSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Robert G. Björk
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| |
Collapse
|
49
|
Werkmeister GA, Galbraith D, Docherty E, Borges CS, da Rocha JM, da Silva PA, Marimon BS, Marimon-Junior BH, Phillips OL, Gloor E. A novel in situ passive heating method for evaluating whole-tree responses to daytime warming in remote environments. PLANT METHODS 2022; 18:78. [PMID: 35689241 PMCID: PMC9188097 DOI: 10.1186/s13007-022-00904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many significant ecosystems, including important non-forest woody ecosystems such as the Cerrado (Brazilian savannah), are under threat from climate change, yet our understanding of how increasing temperatures will impact native vegetation remains limited. Temperature manipulation experiments are important tools for investigating such impacts, but are often constrained by access to power supply and limited to low-stature species, juvenile individuals, or heating of target organs, perhaps not fully revealing how entire or mature individuals and ecosystems will react to higher temperatures. RESULTS We present a novel, modified open top chamber design for in situ passive heating of whole individuals up to 2.5 m tall (but easily expandable) in remote field environments with strong solar irradiance. We built multiple whole-tree heating structures (WTHSs) in an area of Cerrado around native woody species Davilla elliptica and Erythroxylum suberosum to test the design and its effects on air temperature and humidity, while also studying the physiological responses of E. suberosum to short-term heating. The WTHSs raised internal air temperature by approximately 2.5 °C above ambient during the daytime. This increased to 3.4 °C between 09:00 and 17:00 local time when thermal impact was greatest, and during which time mean internal temperatures corresponded closely with maximum ambient temperatures. Heating was consistent over time and across WTHSs of variable size and shape, and they had minimal effect on humidity. E. suberosum showed no detectable response of photosynthesis or respiration to short-term experimental heating, but some indication of acclimation to natural temperature changes. CONCLUSIONS Our WTHSs produced a consistent and reproducible level of daytime heating in line with mid-range climate predictions for the Cerrado biome by the end of the century. The whole-tree in situ passive heating design is flexible, low-cost, simple to build using commonly available materials, and minimises negative impacts associated with passive chambers. It could be employed to investigate the high temperature responses of many understudied species in a range of complex non-forest environments with sufficient solar irradiance, providing new and important insights into the possible impacts of our changing climate.
Collapse
Affiliation(s)
| | | | | | - Camilla Silva Borges
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Jairo Matos da Rocha
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Paulo Alves da Silva
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Beatriz Schwantes Marimon
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Ben Hur Marimon-Junior
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | | | | |
Collapse
|
50
|
Leffler AJ, Becker HA, Kelsey KC, Spalinger DA, Welker JM. Short‐term effects of summer warming on caribou forage quality are mitigated by long‐term warming. Ecosphere 2022. [DOI: 10.1002/ecs2.4104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- A. Joshua Leffler
- Department of Natural Resource Management South Dakota State University Brookings South Dakota USA
| | - Heidi A. Becker
- Department of Natural Resource Management South Dakota State University Brookings South Dakota USA
| | - Katharine C. Kelsey
- Department of Geography and Environmental Science University of Colorado‐Denver Denver Colorado USA
| | - Donald A. Spalinger
- Department of Biological Sciences University of Alaska‐Anchorage Anchorage Alaska USA
| | - Jeffrey M. Welker
- Department of Biological Sciences University of Alaska‐Anchorage Anchorage Alaska USA
- Ecology and Genetics Research Unit and UArctic University of Oulu Oulu Finland
| |
Collapse
|