1
|
He S, Guo X, Zhao M, Chen D, Fu S, Tian G, Xu H, Liang X, Wang H, Li G, Liu X. Ecological restoration reduces greenhouse gas emissions by altering planktonic and sedimentary microbial communities in a shallow eutrophic lake. ENVIRONMENTAL RESEARCH 2025; 275:121400. [PMID: 40090476 DOI: 10.1016/j.envres.2025.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Ecological restoration is a promising approach to alleviate eutrophication. However, its impacts on greenhouse gas (GHG) emissions and the underlying microbial mechanisms in different habitats of lakes remain unclear. To address this knowledge gap, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes at both water-air and sediment-water interfaces of eutrophic (Caohai) and restored area (Dapokou) of Dianchi Lake, a typical eutrophic lake in China. Meanwhile, we investigated the responses of planktonic and sedimentary bacterial and fungal communities by high-throughput sequencing. Our results indicated that 6 years of ecological restoration significantly reduced CO2 and N2O fluxes by 1.0-3.6 and 2.2-2.8 folds respectively, with more pronounced variations at the water-air interface than the sediment-water interface. Ecological restoration also shifted the structures of planktonic bacterial and fungal communities remarkably, leading to a significant reduction in the relative abundances of Actinobacteriota (by 70.94%), Bacteroidota (by 61.65%), Planctomycetota (by 74.18%) and Chytridiomycota (by 95.44%). Correlation analyses further suggested that GHG fluxes at the water-air interface were significantly correlated with planktonic microbial community composition (P < 0.05), and the significant reduction of CO2 and N2O fluxes under ecological restoration could be attributed to the decreased abundances of organic matter decomposers (such as hgcI_clade, Sporichthyaceae and Acidibacter) and increased abundances of autotrophs (such as Hydrogenophaga and Cyanobium_PCC-6307) in water. Collectively, our findings verify the importance of ecological restoration in reducing GHG emissions in inland lake ecosystems, providing new insights for addressing global climate change and advancing carbon neutrality.
Collapse
Affiliation(s)
- Songbing He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xue Guo
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Mengying Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dengbo Chen
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuai Fu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Gege Tian
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Huihua Xu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ximing Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongtao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
2
|
Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. ENVIRONMENTAL MICROBIOME 2024; 19:31. [PMID: 38720385 PMCID: PMC11080224 DOI: 10.1186/s40793-024-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Římov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses. RESULTS Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow. CONCLUSIONS Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| | - Vesna Grujčić
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Michaela M Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Petr Znachor
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Jaromír Seďa
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Pavel Rychtecký
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Tanja Shabarova
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
3
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
4
|
Kavagutti VS, Bulzu PA, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, Grujčić V, Mehrshad M, Kasalický V, Andrei AS, Jezberová J, Seďa J, Rychtecký P, Znachor P, Šimek K, Ghai R. High-resolution metagenomic reconstruction of the freshwater spring bloom. MICROBIOME 2023; 11:15. [PMID: 36698172 PMCID: PMC9878933 DOI: 10.1186/s40168-022-01451-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. RESULTS We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. CONCLUSION We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom. Video Abstract.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Cecilia M Chiriac
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vesna Grujčić
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Microbial Evogenomics Lab (MiEL), University of Zurich, Kilchberg, Switzerland
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Jaromir Seďa
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Šimek K, Mukherjee I, Nedoma J, de Paula CCP, Jezberová J, Sirová D, Vrba J. CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes. Environ Microbiol 2022; 24:4256-4273. [PMID: 34933408 PMCID: PMC9788210 DOI: 10.1111/1462-2920.15846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
Heterotrophic nanoflagellates (HNF) and ciliates are major protistan planktonic bacterivores. The term HNF, however, describes a functional guild only and, in contrast to the morphologically distinguishable ciliates, does not reflect the phylogenetic diversity of flagellates in aquatic ecosystems. Associating a function with taxonomic affiliation of key flagellate taxa is currently a major task in microbial ecology. We investigated seasonal changes in the HNF and ciliate community composition as well as taxa-specific bacterivory in four hypertrophic freshwater lakes. Taxa-specific catalyzed reporter deposition-fluorescence in situ hybridization probes assigned taxonomic affiliations to 51%-96% (average ±SD, 75 ± 14%) of total HNF. Ingestion rates of fluorescently labelled bacteria unveiled that HNF contributed to total protist-induced bacterial mortality rates more (56%) than ciliates (44%). Surprisingly, major HNF bacterivores were aplastidic cryptophytes and their Cry1 lineage, comprising on average 53% and 24% of total HNF abundance and 67% and 21% of total HNF bacterivory respectively. Kinetoplastea were important consumers of bacteria during summer phytoplankton blooms, reaching 38% of total HNF. Katablepharidacea (7.5% of total HNF) comprised mainly omnivores, with changing contributions of bacterivorous and algivorous phylotypes. Our results show that aplastidic cryptophytes, accompanied by small omnivorous ciliate genera Halteria/Pelagohalteria, are the major protistan bacterivores in hypertrophic freshwaters.
Collapse
Affiliation(s)
- Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic,Faculty of ScienceUniversity of South Bohemia, Branišovská 1760České Budějovice37005Czech Republic
| | - Indranil Mukherjee
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Jiří Nedoma
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | | | - Jitka Jezberová
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Dagmara Sirová
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Jaroslav Vrba
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic,Faculty of ScienceUniversity of South Bohemia, Branišovská 1760České Budějovice37005Czech Republic
| |
Collapse
|
6
|
Abstract
A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed coexisting. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, where biotic interactions might be required to make the most of an extreme environment. We studied a high-throughput gene data set of alpine lakes (>220 Pyrenean lakes) with cooccurrence network analysis to infer potential biotic interactions, using the combination of a probabilistic method for determining significant cooccurrences and coexclusions between pairs of species and a conceptual framework for classifying the nature of the observed cooccurrences and coexclusions. This computational approach (i) determined and quantified the importance of environmental variables and spatial distribution and (ii) defined potential interacting microbial assemblages. We determined the properties and relationships between these assemblages by examining node properties at the taxonomic level, indicating associations with their potential habitat sources (i.e., aquatic versus terrestrial) and their functional strategies (i.e., parasitic versus mixotrophic). Environmental variables explained fewer pairs in bacteria than in microbial eukaryotes for the alpine data set, with pH alone explaining the highest proportion of bacterial pairs. Nutrient composition was also relevant for explaining association pairs, particularly in microeukaryotes. We identified a reduced subset of pairs with the highest probability of species interactions (“interacting guilds”) that significantly reached higher occupancies and lower mean relative abundances in agreement with the carrying capacity hypothesis. The interacting bacterial guilds could be more related to habitat and microdispersal processes (i.e., aquatic versus soil microbes), whereas for microeukaryotes trophic roles (osmotrophs, mixotrophs, and parasitics) could potentially play a major role. Overall, our approach may add helpful information to guide further efforts for a mechanistic understanding of microbial interactions in situ. IMPORTANCE A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed to coexist. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, in which biotic interactions might be required to make the most of an extreme environment. Microbial metacommunities are too often only studied in terms of their environmental niches and geographic barriers since they show inherent difficulties to quantify biological interactions and their role as drivers of ecosystem functioning. Our study highlights that telling apart potential interactions from both environmental and geographic niches may help for the initial characterization of organisms with similar ecologies in a large scope of ecosystems, even when information about actual interactions is partial and limited. The multilayered statistical approach carried out here offers the possibility of going beyond taxonomy to understand microbiological behavior in situ.
Collapse
|
7
|
Watanabe K, Kitamura T, Ogata Y, Shindo C, Suda W. Flavobacterium ammonificans sp. nov. and Flavobacterium ammoniigenes sp. nov., ammonifying bacteria isolated from surface river water. Int J Syst Evol Microbiol 2022; 72. [PMID: 35344478 DOI: 10.1099/ijsem.0.005307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three aerobic, Gram-stain-negative, non-motile, rod-shaped bacteria, designated as strains SHINM13T, GENT5T and GENT11 were isolated from surface river water (Saitama Prefecture, Japan). SHINM13T and GENT11 were positive for catalase, whereas GENT5T was negative. Phylogenetic analyses based on the 16S rRNA gene (1341 bp) or 40 marker gene (34,513 bp) sequences revealed that the strains formed distinct phylogenetic lineages within the genus Flavobacterium. The three strains shared 99.3-99.6 % 16S rRNA gene sequence similarity among each other. The average nucleotide identity by orthology (OrthoANI) and digital DNA-DNA hybridization (dDDH) values between strains SHINM13T and GENT11 were 96.56 and 82.1 %, respectively, and those between SHINM13T and GENT5T were 83.46 % and 52.9 %, respectively. The major cellular fatty acids were C15 : 1ω6c, iso-C15 : 0, iso-C15 : 1G, anteiso-C15 : 0 and iso-C15 : 0 3-OH. The major polar lipid was phosphatidylethanolamine. SHINM13T and GENT5T contained menaquinone-6 (MK-6) as the predominant respiratory quinone, and their DNA G+C contents were 34.4 and 35.1 mol%, respectively. Genome sequencing of the three isolates revealed a genome size of 2.26-2.40 Mbp. Furthermore, all three isolates converted dissolved organic nitrogen to ammonium during cell growth. On the basis of the results of phenotypic and phylogenetic analyses, strains SHINM13T and GENT11 and GENT5T represent two distinct novel species in the genus Flavobacterium, for which the names Flavobacterium ammonificans sp. nov. (type strain SHINM13T =JCM 34684T =NCIMB 15379T) and Flavobacterium ammoniigenes sp. nov. (type strain GENT5T =JCM 32249T=NCIMB 15380T) are proposed.
Collapse
Affiliation(s)
- Keiji Watanabe
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Tatsumi Kitamura
- Ibaraki Kasumigaura Environmental Science Center, 1853 Okijyuku-machi, Tsuchiura, Ibaraki 300-0023, Japan
| | - Yusuke Ogata
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chie Shindo
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
8
|
Dynamics of actively dividing prokaryotes in the western Mediterranean Sea. Sci Rep 2022; 12:2064. [PMID: 35136122 PMCID: PMC8825817 DOI: 10.1038/s41598-022-06120-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3–3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.
Collapse
|
9
|
Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol 2021; 30:1545-1558. [PMID: 33484584 DOI: 10.1111/mec.15815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The association with microbes in plants and animals is known to be beneficial for host's survival and fitness, but the generality of the effect of the microbiome is still debated. For some animals, similarities in microbiome composition reflect taxonomic relatedness of the hosts, a pattern termed phylosymbiosis. The mechanisms behind the pattern could be due to co-evolution and/or to correlated ecological constraints. General conclusions are hampered by the fact that available knowledge is highly dominated by microbiomes from model species. Here, we addressed the issue of the generality of phylosymbiosis by analysing the species-specificity of microbiomes across different species of freshwater zooplankton, including rotifers, cladocerans, and copepods, coupling field surveys and experimental manipulations. We found that no signal of phylosymbiosis was present, and that the proportion of "core" microbial taxa, stable and consistent within each species, was very low. Changes in food and temperature under laboratory experimental settings revealed that the microbiome of freshwater zooplankton is highly flexible and can be influenced by the external environment. Thus, the role of co-evolution, strict association, and interaction with microbes within the holobiont concept highlighted for vertebrates, corals, sponges, and other animals does not seem to be supported for all animals, at least not for freshwater zooplankton. Zooplankton floats in the environment where both food and bacteria that can provide help in digesting such food are available. In addition, there is probably redundancy for beneficial bacterial functions in the environment, not allowing a strict host-microbiome association to originate and persist.
Collapse
Affiliation(s)
- Ester M Eckert
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| | - Nikoleta Anicic
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy.,Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Diego Fontaneto
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| |
Collapse
|
10
|
Planktonic and Benthic Bacterial Communities of the Largest Central European Shallow Lake, Lake Balaton and Its Main Inflow Zala River. Curr Microbiol 2020; 77:4016-4028. [PMID: 33068137 PMCID: PMC7677278 DOI: 10.1007/s00284-020-02241-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/01/2020] [Indexed: 11/10/2022]
Abstract
Lake Balaton is the largest European shallow lake, which underwent cultural eutrophication in the ‘70–80s. Therefore, strict pollution control measures were introduced and the water quality has become meso-eutrophic since the millennium. Due to the touristic significance and change in trophic levels of the lake, numerous ecological studies were carried out, but none of them was focused on both benthic and planktonic microbial communities at the same time. In our study, an attempt was made to reveal the spatial bacterial heterogeneity of the Lake Balaton and Zala River by 16S rDNA terminal restriction fragment length polymorphism fingerprinting and Illumina amplicon sequencing methods in the summer of 2017. According to the molecular biology results, mostly well-known freshwater microorganisms, adapted to nutrient-poor conditions were found in the pelagic water column. The LD12 subclade member Fonsibacter ubiquis, the cyanobacterial Synechococcus sp. and unknown Verrucomicrobia species were abundant in the less nutrient-dense basins, while the hgcI clade members showed various distribution. In the estuary and in the nutrient-dense western part of the lake, some eutrophic conditions preferring cyanobacteria (filamentous Anabaena and Aphanizomenon species) were also detectable. The benthic microbial community showed higher diversity, according to the observed appearance of microorganisms adapted to the deeper, less aerated layers (e.g. members of Desulfobacteraceae, Nitrosomonadaceae).
Collapse
|
11
|
Bock C, Jensen M, Forster D, Marks S, Nuy J, Psenner R, Beisser D, Boenigk J. Factors shaping community patterns of protists and bacteria on a European scale. Environ Microbiol 2020; 22:2243-2260. [PMID: 32202362 DOI: 10.1111/1462-2920.14992] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/18/2020] [Indexed: 01/19/2023]
Abstract
Factors shaping community patterns of microorganisms are controversially discussed. Physical and chemical factors certainly limit the survival of individual taxa and maintenance of diversity. In recent years, a contribution of geographic distance and dispersal barriers to distribution patterns of protists and bacteria has been demonstrated. Organismic interactions such as competition, predation and mutualism further modify community structure and maintenance of distinct taxa. Here, we address the relative importance of these different factors in shaping protists and bacterial communities on a European scale using high-throughput sequencing data obtained from lentic freshwater ecosystems. We show that community patterns of protists are similar to those of bacteria. Our results indicate that cross-domain organismic factors are important variables with a higher influence on protists as compared with bacteria. Abiotic physical and chemical factors also contributed significantly to community patterns. The contribution of these latter factors was higher for bacteria, which may reflect a stronger biogeochemical coupling. The contribution of geographical distance was similar for both microbial groups.
Collapse
Affiliation(s)
- Christina Bock
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Manfred Jensen
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Dominik Forster
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger-Str. 14, 67663, Kaiserslautern, Germany
| | - Sabina Marks
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Julia Nuy
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Roland Psenner
- Lake and Glacier Research, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Daniela Beisser
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
12
|
Rocca JD, Simonin M, Bernhardt ES, Washburne AD, Wright JP. Rare microbial taxa emerge when communities collide: freshwater and marine microbiome responses to experimental mixing. Ecology 2020; 101:e02956. [PMID: 31840237 DOI: 10.1002/ecy.2956] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/01/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023]
Abstract
Whole microbial communities regularly merge with one another, often in tandem with their environments, in a process called community coalescence. Such events impose substantial changes: abiotic perturbation from environmental blending and biotic perturbation of community merging. We used an aquatic mixing experiment to unravel the effects of these perturbations on the whole microbiome response and on the success of individual taxa when distinct freshwater and marine communities coalesce. We found that an equal mix of freshwater and marine habitats and blended microbiomes resulted in strong convergence of the community structure toward that of the marine microbiome. The enzymatic potential of these blended microbiomes in mixed media also converged toward that of the marine, with strong correlations between the multivariate response patterns of the enzymes and of community structure. Exposing each endmember inocula to an axenic equal mix of their freshwater and marine source waters led to a 96% loss of taxa from our freshwater microbiomes and a 66% loss from our marine microbiomes. When both inocula were added together to this mixed environment, interactions amongst the communities led to a further loss of 29% and 49% of freshwater and marine taxa, respectively. Under both the axenic and competitive scenarios, the diversity lost was somewhat counterbalanced by increased abundance of microbial taxa that were too rare to detect in the initial inocula. Our study emphasizes the importance of the rare biosphere as a critical component of microbial community responses to community coalescence.
Collapse
Affiliation(s)
- Jennifer D Rocca
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Marie Simonin
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,IRD, Cirad, IPME, University of Montpellier, Montpellier, 34080, France
| | - Emily S Bernhardt
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Alex D Washburne
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, 59717, USA
| | - Justin P Wright
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
13
|
Eckert EM, Quero GM, Di Cesare A, Manfredini G, Mapelli F, Borin S, Fontaneto D, Luna GM, Corno G. Antibiotic disturbance affects aquatic microbial community composition and food web interactions but not community resilience. Mol Ecol 2019; 28:1170-1182. [PMID: 30697889 DOI: 10.1111/mec.15033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
Notwithstanding the fundamental role that environmental microbes play for ecosystem functioning, data on how microbes react to disturbances are still scarce, and most factors that confer stability to microbial communities are unknown. In this context, antibiotic discharge into the environment is considered a worldwide threat for ecosystems with potential risks to human health. We therefore tested resilience of microbial communities challenged by the presence of an antibiotic. In a continuous culture experiment, we compared the abundance, composition and diversity of microbial communities undisturbed or disturbed by the constant addiction of tetracycline in low (10 µg/L) or intermediate (100 µg/L) concentration (press disturbance). Further, the bacterial communities in the three treatments had to face the sudden pulse disturbance of adding an allochthonous bacterium (Escherichia coli). Tetracycline, even at low concentrations, affected microbial communities by changing their phylogenetic composition and causing cell aggregation. This, however, did not coincide with a reduced microbial diversity, but was mainly caused by a shift in dominance of specific bacterial families. Moreover, the less disturbed community (10 µg/L tetracycline) was sometimes more similar to the control and sometimes more similar to heavily disturbed community (100 µg/L tetracycline). All in all, we could not see a pattern where the communities disturbed with antibiotics were less resilient to a second disturbance introducing E. coli, but they seemed to be able to buffer the input of the allochthonous strain in a similar manner as the control.
Collapse
Affiliation(s)
- Ester M Eckert
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Grazia M Quero
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
| | - Andrea Di Cesare
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy.,Department of Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Giuliana Manfredini
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| | - Diego Fontaneto
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Gian Marco Luna
- National Research Council, Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Ancona, Italy
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| |
Collapse
|
14
|
Lau NS, Zarkasi KZ, Md Sah ASR, Shu-Chien AC. Diversity and Coding Potential of the Microbiota in the Photic and Aphotic Zones of Tropical Man-Made Lake with Intensive Aquaculture Activities: a Case Study on Temengor Lake, Malaysia. MICROBIAL ECOLOGY 2019; 78:20-32. [PMID: 30397794 DOI: 10.1007/s00248-018-1283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/29/2018] [Indexed: 05/27/2023]
Abstract
Although freshwater biomes cover less than 1% of the Earth's surface, they have disproportionate ecological significances. Attempts to study the taxonomy and function of freshwater microbiota are currently limited to samples collected from temperate lakes. In this study, we investigated samples from the photic and aphotic of an aquaculture site (disturbed) of Temengor Lake, a tropical lake in comparison with the undisturbed site of the lake using 16S rRNA amplicon and shotgun metagenomic approaches. Vertical changes in bacterial community composition and function of the Temengor Lake metagenomes were observed. The photic water layer of Temengor Lake was dominated by typical freshwater assemblages consisting of Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Cyanobacteria lineages. On the other hand, the aphotic water featured in addition to Proteobacteria, Bacteroidetes, Verrucomicrobia, and two more abundant bacterial phyla that are typically ubiquitous in anoxic habitats (Chloroflexi and Firmicutes). The aphotic zone of Temengor Lake exhibited genetic potential for nitrogen and sulfur metabolisms for which terminal electron acceptors other than oxygen are used in the reactions. The aphotic water of the disturbed site also showed an overrepresentation of genes associated with the metabolism of carbohydrates, likely driven by the enrichment of nutrient resulting from aquaculture activities at the site. The results presented in this study can serve as a basis for understanding the structure and functional capacity of the microbial communities in the photic and aphotic zones/water layers of tropical man-made lakes.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Kamarul Zaman Zarkasi
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | | | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
15
|
Mikhailov IS, Zakharova YR, Bukin YS, Galachyants YP, Petrova DP, Sakirko MV, Likhoshway YV. Co-occurrence Networks Among Bacteria and Microbial Eukaryotes of Lake Baikal During a Spring Phytoplankton Bloom. MICROBIAL ECOLOGY 2019; 77:96-109. [PMID: 29882155 DOI: 10.1007/s00248-018-1212-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 05/28/2018] [Indexed: 05/25/2023]
Abstract
The pelagic zone of Lake Baikal is an ecological niche where phytoplankton bloom causes increasing microbial abundance in spring which plays a key role in carbon turnover in the freshwater lake. Co-occurrence patterns revealed among different microbes can be applied to predict interactions between the microbes and environmental conditions in the ecosystem. We used 454 pyrosequencing of 16S rRNA and 18S rRNA genes to study bacterial and microbial eukaryotic communities and their co-occurrence patterns at the pelagic zone of Lake Baikal during a spring phytoplankton bloom. We found that microbes within one domain mostly correlated positively with each other and are highly interconnected. The highly connected taxa in co-occurrence networks were operational taxonomic units (OTUs) of Actinobacteria, Bacteroidetes, Alphaproteobacteria, and autotrophic and unclassified Eukaryota which might be analogous to microbial keystone taxa. Constrained correspondence analysis revealed the relationships of bacterial and microbial eukaryotic communities with geographical location.
Collapse
Affiliation(s)
- Ivan S Mikhailov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya, Irkutsk, Russia, 664033.
| | - Yulia R Zakharova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya, Irkutsk, Russia, 664033
| | - Yuri S Bukin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya, Irkutsk, Russia, 664033
| | - Yuri P Galachyants
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya, Irkutsk, Russia, 664033
| | - Darya P Petrova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya, Irkutsk, Russia, 664033
| | - Maria V Sakirko
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya, Irkutsk, Russia, 664033
| | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya, Irkutsk, Russia, 664033
| |
Collapse
|
16
|
Xu Z, Te SH, He Y, Gin KYH. The Characteristics and Dynamics of Cyanobacteria-Heterotrophic Bacteria Between Two Estuarine Reservoirs - Tropical Versus Sub-Tropical Regions. Front Microbiol 2018; 9:2531. [PMID: 30459732 PMCID: PMC6232297 DOI: 10.3389/fmicb.2018.02531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, Illumina MiSeq sequencing technique was employed to explore the characteristics and dynamics of cyanobacteria–heterotrophic bacteria between two estuarine reservoirs in sub-tropical (reservoir A in Shanghai) and tropical (reservoir B in Singapore) regions. The results indicated that significant differences in bacterial community composition were found between two estuarine reservoirs, which influenced by varied environmental variables. The environmental heterogeneity in reservoir A was much higher, which indicated that the composition of bacterial community in reservoir A was more complex. In contrast, reservoir B provided a suitable and temperate water environment conditions for bacterial growth, which resulted in higher community diversity and less co-exclusion correlations. The molecular ecological network indicated that the presence of dominant bacterial community in each of the reservoir were significant different. These differences mainly reflected the responses of bacterial community to the variations of environmental variables. Although Synechococcus was the dominant cyanobacterial species in both reservoirs, it exhibited co-occurrence patterns with different heterotrophic bacteria between reservoirs. In addition, the cyanobacteria–heterotrophic bacteria interaction exhibited highly dynamic variations, which was affected by nutrition and survive space. Also, the co-occurrence of Microcystis and Pseudanabaena found in reservoir B implied that the non-N-fixing Microcystis accompanied with N-fixing Pseudanabeana occurrence in freshwater lakes, so as to better meet the demand for nitrogen source.
Collapse
Affiliation(s)
- Zheng Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Harn Te
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore.,Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Piwosz K, Shabarova T, Tomasch J, Šimek K, Kopejtka K, Kahl S, Pieper DH, Koblížek M. Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS). THE ISME JOURNAL 2018; 12:2640-2654. [PMID: 29980795 PMCID: PMC6194029 DOI: 10.1038/s41396-018-0213-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/07/2023]
Abstract
The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
Collapse
Affiliation(s)
- Kasia Piwosz
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
| | - Tanja Shabarova
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Jürgen Tomasch
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Karel Kopejtka
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic
| | - Silke Kahl
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic.
| |
Collapse
|
18
|
Salmaso N, Albanese D, Capelli C, Boscaini A, Pindo M, Donati C. Diversity and Cyclical Seasonal Transitions in the Bacterial Community in a Large and Deep Perialpine Lake. MICROBIAL ECOLOGY 2018; 76:125-143. [PMID: 29192335 DOI: 10.1007/s00248-017-1120-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
High-throughput sequencing (HTS) was used to analyze the seasonal variations in the bacterioplankton community composition (BCC) in the euphotic layer of a large and deep lake south of the Alps (Lake Garda). The BCC was analyzed throughout two annual cycles by monthly samplings using the amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene by the MiSeq Illumina platform. The dominant and most diverse bacterioplankton phyla were among the more frequently reported in freshwater ecosystems, including the Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctomycetes. As a distinctive feature, the development of the BCC showed a cyclical temporal pattern in the two analyzed years and throughout the euphotic layer. The recurring temporal development was controlled by the strong seasonality in water temperature and thermal stratification, and by cyclical temporal changes in nutrients and, possibly, by the remarkable annual cyclical development of cyanobacteria and eukaryotic phytoplankton hosting bacterioplankton that characterizes Lake Garda. Further downstream analyses of operational taxonomic units associated to cyanobacteria allowed confirming the presence of the most abundant taxa previously identified by microscopy and/or phylogenetic analyses, as well as the presence of other small Synechococcales/Chroococcales and rare Nostocales never identified so far in the deep lakes south of the Alps. The implications of the high diversity and strong seasonality are relevant, opening perspectives for the definition of common and discriminating patterns characterizing the temporal and spatial distribution in the BCC, and for the application of the new sequencing technologies in the monitoring of water quality in large and deep lakes.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Camilla Capelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
19
|
Bock C, Salcher M, Jensen M, Pandey RV, Boenigk J. Synchrony of Eukaryotic and Prokaryotic Planktonic Communities in Three Seasonally Sampled Austrian Lakes. Front Microbiol 2018; 9:1290. [PMID: 29963032 PMCID: PMC6014231 DOI: 10.3389/fmicb.2018.01290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023] Open
Abstract
Freshwater systems are characterized by an enormous diversity of eukaryotic protists and prokaryotic taxa. The community structures in different lakes are thereby influenced by factors such as habitat size, lake chemistry, biotic interactions, and seasonality. In our study, we used high throughput 454 sequencing to study the diversity and temporal changes of prokaryotic and eukaryotic planktonic communities in three Austrian lakes during the ice-free season. In the following year, one lake was sampled again with a reduced set of sampling dates to observe reoccurring patterns. Cluster analyses (based on SSU V9 (eukaryotic) and V4 (prokaryotic) OTU composition) grouped samples according to their origin followed by separation into seasonal clusters, indicating that each lake has a unique signature based on OTU composition. These results suggest a strong habitat-specificity of microbial communities and in particular of community patterns at the OTU level. A comparison of the prokaryotic and eukaryotic datasets via co-inertia analysis (CIA) showed a consistent clustering of prokaryotic and eukaryotic samples, probably reacting to the same environmental forces (e.g., pH, conductivity). In addition, the shifts in eukaryotic and bacterioplanktonic communities generally occurred at the same time and on the same scale. Regression analyses revealed a linear relationship between an increase in Bray-Curtis dissimilarities and elapsed time. Our study shows a pronounced coupling between bacteria and eukaryotes in seasonal samplings of the three analyzed lakes. However, our temporal resolution (biweekly sampling) and data on abiotic factors were insufficient to determine if this was caused by direct biotic interactions or by reacting to the same seasonally changing environmental forces.
Collapse
Affiliation(s)
- Christina Bock
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Michaela Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.,Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Manfred Jensen
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Vienna, Austria.,Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jens Boenigk
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Zhang H, Jia J, Chen S, Huang T, Wang Y, Zhao Z, Feng J, Hao H, Li S, Ma X. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020361. [PMID: 29463021 PMCID: PMC5858430 DOI: 10.3390/ijerph15020361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 11/24/2022]
Abstract
The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in Zhoucun drinking water reservoir. Our study highlights the potential role of microbial diversity as a driving force for the algal bloom and biogeochemical cycling of reservoir ecology.
Collapse
Affiliation(s)
- Haihan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Jingyu Jia
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Shengnan Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Zhenfang Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Ji Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Huiyan Hao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Sulin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
- Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| | - Xinxin Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi Province, China.
| |
Collapse
|
21
|
Zheng Q, Wang Y, Xie R, Lang AS, Liu Y, Lu J, Zhang X, Sun J, Suttle CA, Jiao N. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Appl Environ Microbiol 2018; 84:e01517-17. [PMID: 29150500 PMCID: PMC5772231 DOI: 10.1128/aem.01517-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023] Open
Abstract
Interactions between photoautotrophic and heterotrophic microorganisms are central to the marine microbial ecosystem. Lab cultures of one of the dominant marine photoautotrophs, Synechococcus, have historically been difficult to render axenic, presumably because these bacteria depend upon other organisms to grow under these conditions. These tight associations between Synechococcus and heterotrophic bacteria represent a good relevant system to study interspecies interactions. Ten individual Synechococcus strains, isolated from eutrophic and oligotrophic waters, were chosen for investigation. Four to six dominant associated heterotrophic bacteria were detected in the liquid cultures of each Synechococcus isolate, comprising members of the Cytophaga-Flavobacteria-Bacteroides (CFB) group (mainly from Flavobacteriales and Cytophagales), Alphaproteobacteria (mainly from the Roseobacter clade), Gammaproteobacteria (mainly from the Alteromonadales and Pseudomonadales), and Actinobacteria The presence of the CFB group, Gammaproteobacteria, and Actinobacteria showed clear geographic patterns related to the isolation environments of the Synechococcus bacteria. An investigation of the population dynamics within a growing culture (XM-24) of one of the isolates, including an evaluation of the proportions of cells that were free-living versus aggregated/attached, revealed interesting patterns for different bacterial groups. In Synechococcus sp. strain XM-24 culture, flavobacteria, which was the most abundant group throughout the culture period, tended to be aggregated or attached to the Synechococcus cells, whereas the actinobacteria demonstrated a free-living lifestyle, and roseobacters displayed different patterns depending on the culture growth phase. Factors contributing to these succession patterns for the heterotrophs likely include interactions among the culture community members, their relative abilities to utilize different compounds produced by Synechococcus cells and changes in the compounds released as culture growth proceeds, and their responses to other changes in the environmental conditions throughout the culture period.IMPORTANCE Marine microbes exist within an interactive ecological network, and studying their interactions is an important part of understanding their roles in global biogeochemical cycling and the determinants of microbial diversity. In this study, the dynamic relationships between Synechococcus spp. and their associated heterotrophic bacteria were investigated. Synechococcus-associated heterotrophic bacteria had similar geographic distribution patterns as their "host" and displayed different lifestyles (free-living versus attached/aggregated) according to the Synechococcus culture growth phases. Combined organic carbon composition and bacterial lifestyle data indicated a potential for succession in carbon utilization patterns by the dominant associated heterotrophic bacteria. Comprehending the interactions between photoautotrophs and heterotrophs and the patterns of organic carbon excretion and utilization is critical to understanding their roles in oceanic biogeochemical cycling.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Rui Xie
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yanting Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Jiayao Lu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Xiaodong Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany and Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
22
|
Vignola M, Werner D, Wade MJ, Meynet P, Davenport RJ. Medium shapes the microbial community of water filters with implications for effluent quality. WATER RESEARCH 2018; 129:499-508. [PMID: 29195186 DOI: 10.1016/j.watres.2017.09.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/06/2017] [Accepted: 09/22/2017] [Indexed: 05/15/2023]
Abstract
Little is known about the forces that determine the assembly of diverse bacterial communities inhabiting drinking water treatment filters and how this affects drinking water quality. Two contrasting ecological theories can help to understand how natural microbial communities assemble; niche theory and neutral theory, where environmental deterministic factors or stochastic factors predominate respectively. This study investigates the development of the microbial community on two common contrasting filter materials (quartz sand and granular activated carbon-GAC), to elucidate the main factors governing their assembly, through the evaluation of environmental (i.e. filter medium type) and stochastic forces (random deaths, births and immigration). Laboratory-scale filter columns were used to mimic a rapid gravity filter; the microbiome of the filter materials, and of the filter influent and effluent, was characterised using next generation 16S rRNA gene amplicon sequencing and flow-cytometry. Chemical parameters (i.e. dissolved organic carbon, trihalomethanes formation) were also monitored to assess the final effluent quality. The filter communities seemed to be strongly assembled by selection rather than neutral processes, with only 28% of those OTUs shared with the source water detected on the filter medium following predictions using a neutral community model. GAC hosted a phylogenetically more diverse community than sand. The two filter media communities seeded the effluent water, triggering differences in both water quality and community composition of the effluents. Overall, GAC proved to be better than sand in controlling microbial growth, by promoting higher bacterial decay rates and hosting less bacterial cells, and showed better performance for putative pathogen control by leaking less Legionella cells into the effluent water.
Collapse
Affiliation(s)
- Marta Vignola
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; College of Science and Engineering, Division of Infrastructure and Environment, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - David Werner
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Matthew J Wade
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Paola Meynet
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, Dübendorf, CH-8600, Switzerland
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
23
|
The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir. Appl Environ Microbiol 2017; 83:AEM.01530-17. [PMID: 28842542 DOI: 10.1128/aem.01530-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
Collapse
|
24
|
Grazing of Nuclearia thermophila and Nuclearia delicatula (Nucleariidae, Opisthokonta) on the toxic cyanobacterium Planktothrix rubescens. Eur J Protistol 2017; 60:87-101. [PMID: 28675820 DOI: 10.1016/j.ejop.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023]
Abstract
During the last decades, the planktonic cyanobacterium Planktothrix rubescens became a dominant primary producer in many deep pre-alpine lakes. While altered physiochemical conditions due to lake warming seem to favour this cyanobacterial species, its dominance is partly attributed to factors conferring grazing resistance. The rigid structure of the cyanobacterial filaments and toxic secondary metabolites (e.g. microcystins) protect against diverse grazers. Nonetheless, species of the protistan genus Nuclearia (Nucleariidae, Opisthokonta) are able to overcome this grazing protection. Time lapse video documentation served as tool to record slow feeding processes of N. thermophila and N. delicatula. Three different feeding strategies could be distinguished: (i) Phagocytosis of small fragments, (ii) serial break-ups of cyanobacterial cells and (iii) bending and breaking of filaments. While observations revealed mechanical manipulation to be important for the efficient breakdown of P. rubescens filaments, the toxin microcystin had no pronounced negative effects on nucleariid cells. Growth experiments with N. thermophila/N. delicatula and different accompanying bacterial assemblages pointed to a pivotal role of distinct prokaryotic species for toxin degradation and for the growth success of the protists. Thus, the synergistic effect of nucleariids and specific bacteria favours an efficient degradation of P. rubescens along with its toxin.
Collapse
|
25
|
Rofner C, Peter H, Catalán N, Drewes F, Sommaruga R, Pérez MT. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes. GLOBAL CHANGE BIOLOGY 2017; 23:2331-2344. [PMID: 27801530 PMCID: PMC5434934 DOI: 10.1111/gcb.13545] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 05/25/2023]
Abstract
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems.
Collapse
Affiliation(s)
- Carina Rofner
- Lake and Glacier Ecology Research GroupInstitute of EcologyUniversity of InnsbruckTechnikerstraße 25InnsbruckAustria
| | - Hannes Peter
- Lake and Glacier Ecology Research GroupInstitute of EcologyUniversity of InnsbruckTechnikerstraße 25InnsbruckAustria
- Present address: Stream Biofilm and Ecosystem Research LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Núria Catalán
- Limnology, Department of Ecology and GeneticsUniversity of UppsalaUppsalaSweden
- Catalan Institute for Water Research (ICRA)Emili Grahit 101Girona17003Spain
| | - Fabian Drewes
- Lake and Glacier Ecology Research GroupInstitute of EcologyUniversity of InnsbruckTechnikerstraße 25InnsbruckAustria
- Present address: ARGE LimnologieAngewandte Gewässerökologie GesmbHInnsbruckAustria
| | - Ruben Sommaruga
- Lake and Glacier Ecology Research GroupInstitute of EcologyUniversity of InnsbruckTechnikerstraße 25InnsbruckAustria
| | - María Teresa Pérez
- Lake and Glacier Ecology Research GroupInstitute of EcologyUniversity of InnsbruckTechnikerstraße 25InnsbruckAustria
| |
Collapse
|
26
|
Pernthaler J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ Microbiol 2017; 19:2133-2150. [PMID: 28370850 DOI: 10.1111/1462-2920.13742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station Kilchberg, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Driscoll CB, Otten TG, Brown NM, Dreher TW. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture. Stand Genomic Sci 2017; 12:9. [PMID: 28127419 PMCID: PMC5248499 DOI: 10.1186/s40793-017-0224-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023] Open
Abstract
Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality. Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.
Collapse
Affiliation(s)
- Connor B. Driscoll
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331 USA
| | - Timothy G. Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331 USA
| | - Nathan M. Brown
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331 USA
| | - Theo W. Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331 USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| |
Collapse
|
28
|
von Scheibner M, Sommer U, Jürgens K. Tight Coupling of Glaciecola spp. and Diatoms during Cold-Water Phytoplankton Spring Blooms. Front Microbiol 2017; 8:27. [PMID: 28154558 PMCID: PMC5243806 DOI: 10.3389/fmicb.2017.00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/05/2017] [Indexed: 11/15/2022] Open
Abstract
Early spring phytoplankton blooms can occur at very low water temperatures but they are often decoupled from bacterial growth, which is assumed to be often temperature controlled. In a previous mesocosm study with Baltic Sea plankton communities, an early diatom bloom was associated with a high relative abundance of Glaciecola sequences (Gammaproteobacteria), at both low (2°C) and elevated (8°C) temperatures, suggesting an important role for this genus in phytoplankton-bacteria coupling. In this study, the temperature-dependent dynamics of free-living Glaciecola spp. during the bloom were analyzed by catalyzed reporter deposition fluorescence in situ hybridization using a newly developed probe. The analysis revealed the appearance of Glaciecola spp. in this and in previous spring mesocosm experiments as the dominating bacterial clade during diatom blooms, with a close coupling between the population dynamics of Glaciecola and phytoplankton development. Although elevated temperature resulted in a higher abundance and a higher net growth rate of Glaciecola spp. (Q10 ∼ 2.2), their growth was, in contrast to that of the bulk bacterial assemblages, not suppressed at 2°C and showed a similar pattern at 8°C. Independent of temperature, the highest abundance of Glaciecola spp. (24.0 ± 10.0% of total cell number) occurred during the peak of the phytoplankton bloom. Together with the slightly larger cell size of Glaciecola, this resulted in a ∼30% contribution of Glaciecola to total bacterial biomass. Overall, the results of this and previous studies suggest that Glaciecola has an ecological niche during early diatom blooms at low temperatures, when it becomes a dominant consumer of phytoplankton-derived dissolved organic matter.
Collapse
Affiliation(s)
| | | | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research WarnemündeRostock, Germany
| |
Collapse
|
29
|
Wissuwa J, Bauer SLM, Steen IH, Stokke R. Complete genome sequence of Lutibacter profundi LP1 T isolated from an Arctic deep-sea hydrothermal vent system. Stand Genomic Sci 2017; 12:5. [PMID: 28078050 PMCID: PMC5219744 DOI: 10.1186/s40793-016-0219-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
Lutibacter profundi LP1T within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki's Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1T is the first genome to be published within the genus Lutibacter. L. profundi LP1T consists of a single 2,966,978 bp circular chromosome with a GC content of 29.8%. The genome comprises 2,537 protein-coding genes, 40 tRNA species and 2 rRNA operons. The microaerophilic, organotrophic isolate contains genes for all central carbohydrate metabolic pathways. However, genes for the oxidative branch of the pentose-phosphate-pathway, the glyoxylate shunt of the tricarboxylic acid cycle and the ATP citrate lyase for reverse TCA are not present. L. profundi LP1T utilizes starch, sucrose and diverse proteinous carbon sources. In accordance, the genome harbours 130 proteases and 104 carbohydrate-active enzymes, indicating a specialization in degrading organic matter. Among a small arsenal of 24 glycosyl hydrolases, which offer the possibility to hydrolyse diverse poly- and oligosaccharides, a starch utilization cluster was identified. Furthermore, a variety of enzymes may be secreted via T9SS and contribute to the hydrolytic variety of the microorganism. Genes for gliding motility are present, which may enable the bacteria to move within the biofilm. A substantial number of genes encoding for extracellular polysaccharide synthesis pathways, curli fibres and attachment to surfaces could mediate adhesion in the biofilm and may contribute to the biofilm formation. In addition to aerobic respiration, the complete denitrification pathway and genes for sulphide oxidation e.g. sulphide:quinone reductase are present in the genome. sulphide:quinone reductase and denitrification may serve as detoxification systems allowing L. profundi LP1T to thrive in a sulphide and nitrate enriched environment. The information gained from the genome gives a greater insight in the functional role of L. profundi LP1T in the biofilm and its adaption strategy in an extreme environment.
Collapse
Affiliation(s)
- Juliane Wissuwa
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Sven Le Moine Bauer
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Okazaki Y, Nakano SI. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan). ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:780-788. [PMID: 27402328 DOI: 10.1111/1758-2229.12439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/20/2016] [Indexed: 05/03/2023]
Abstract
In freshwater microbial ecology, extensive studies are attempting to characterize the vast majority of uncultivated bacterioplankton taxa. However, these studies mainly focus on the epilimnion and little is known regarding the bacterioplankton inhabiting the hypolimnion of deep holomictic lakes, despite its biogeochemical importance. In this study, we investigated the bacterioplankton community composition in a deep freshwater lake with a fully oxygenated hypolimnion (Lake Biwa, Japan) using high-throughput 16S rRNA gene amplicon sequencing. Sampling at a pelagic site over 15 months throughout the water column revealed that the community composition in the hypolimnion was significantly different from that in the epilimnion. The bacterial community in the hypolimnion was composed of groups dominating in the whole water layer (e.g., bacI-A1 and acI-B1) and groups that were hypolimnion habitat specialists. Among the hypolimnion specialists, members of Chloroflexi and Planctomycetes were highly represented (e.g., CL500-11, CL500-15 and CL500-37), followed by members of Acidobacteria, Chlorobi and nitrifiers (e.g., Ca. Nitrosoarchaeum, Nitrosospira and Nitrospira). This study identified the number of previously understudied taxa dominating the deep aerobic freshwater habitat, suggesting that the biogeochemical cycling there is driven by the microbial community that are different from that in the epilimnion.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan
| |
Collapse
|
31
|
Roiha T, Peura S, Cusson M, Rautio M. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters. Sci Rep 2016; 6:34456. [PMID: 27686416 PMCID: PMC5043279 DOI: 10.1038/srep34456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 11/09/2022] Open
Abstract
In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions.
Collapse
Affiliation(s)
- Toni Roiha
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Sari Peura
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Mathieu Cusson
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Milla Rautio
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada.,Centre for Northern Studies (CEN), Laval University, Quebec City, Quebec, Canada.,Group for Interuniversity Research in Limnology and aquatic environment (GRIL), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Prey-Specific Growth Responses of Freshwater Flagellate Communities Induced by Morphologically Distinct Bacteria from the Genus Limnohabitans. Appl Environ Microbiol 2015; 81:4993-5002. [PMID: 25979896 DOI: 10.1128/aem.00396-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022] Open
Abstract
Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at distinct seasonal phases, a late April algal bloom and a late May clear water phase, were each fed 3 Limnohabitans strains of differing cell sizes. Water samples were prefiltered (5 μm) to release natural HNF communities from zooplankton control and then amended with the Limnohabitans strains L. planktonicus II-D5 (medium sized, rod shaped), Limnohabitans sp. strain T6-5 (thin, long, curved rod), and Limnohabitans sp. strain 2KL-3 (large solenoid). Using temporal sampling and prey treatment, we determined HNF growth parameters such as doubling time, growth efficiency, and length of lag phase prior starting to exponential growth. All three Limnohabitans strains supported HNF growth but in significant prey-, site-, and season-dependent fashions. For instance, addition of the moderately large T6-5 strain yielded very rapid HNF growth with a short lag phase. In contrast, the curved morphology and larger cell size of strain 2KL-3 made this prey somewhat protected against grazing by smaller HNF, resulting in slower HNF growth and longer lag phases. These trends were particularly pronounced during the late May clear-water phase, which was dominated by smaller HNF cells. This may indicate a longer "adaptation time" for the flagellate communities toward the large prey size offered.
Collapse
|
33
|
Beall BFN, Twiss MR, Smith DE, Oyserman BO, Rozmarynowycz MJ, Binding CE, Bourbonniere RA, Bullerjahn GS, Palmer ME, Reavie ED, Waters LMK, Woityra LWC, McKay RML. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate. Environ Microbiol 2015; 18:1704-19. [PMID: 25712272 DOI: 10.1111/1462-2920.12819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/01/2022]
Abstract
Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions.
Collapse
Affiliation(s)
- B F N Beall
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - M R Twiss
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - D E Smith
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - B O Oyserman
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - M J Rozmarynowycz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - C E Binding
- Water Science & Technology Directorate, Environment Canada, Burlington, ON, Canada
| | - R A Bourbonniere
- Water Science & Technology Directorate, Environment Canada, Burlington, ON, Canada
| | - G S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - M E Palmer
- Sport Fish and Biomonitoring Unit, Ontario Ministry of the Environment and Climate Change, Toronto, ON, Canada
| | - E D Reavie
- Center for Water and the Environment, Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN, USA
| | | | | | - R M L McKay
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
34
|
Neuenschwander SM, Pernthaler J, Posch T, Salcher MM. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ Microbiol 2014; 17:781-95. [DOI: 10.1111/1462-2920.12520] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/29/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jakob Pernthaler
- Limnological Station; Institute of Plant Biology; University of Zurich; Kilchberg Switzerland
| | - Thomas Posch
- Limnological Station; Institute of Plant Biology; University of Zurich; Kilchberg Switzerland
| | - Michaela M. Salcher
- Limnological Station; Institute of Plant Biology; University of Zurich; Kilchberg Switzerland
| |
Collapse
|
35
|
Garcia SL, McMahon KD, Grossart HP, Warnecke F. Successful enrichment of the ubiquitous freshwater acI Actinobacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:21-27. [PMID: 24596259 DOI: 10.1111/1758-2229.12104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/06/2013] [Indexed: 06/03/2023]
Abstract
Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed.
Collapse
Affiliation(s)
- Sarahi L Garcia
- Jena School for Microbial Communication (JSMC) and Microbial Ecology Group at Friedrich Schiller University, Jena, Germany
| | | | | | | |
Collapse
|
36
|
Polysaccharides and proteins added to flowing drinking water at microgram-per-liter levels promote the formation of biofilms predominated by bacteroidetes and proteobacteria. Appl Environ Microbiol 2014; 80:2360-71. [PMID: 24487544 DOI: 10.1128/aem.04105-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter(-1) in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter(-1) per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm(-2) day(-1)), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm(-2) day(-1)). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water.
Collapse
|
37
|
Parfenova VV, Gladkikh AS, Belykh OI. Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010128] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Tada Y, Makabe R, Kasamatsu-Takazawa N, Taniguchi A, Hamasaki K. Growth and distribution patterns of Roseobacter/Rhodobacter, SAR11, and Bacteroidetes lineages in the Southern Ocean. Polar Biol 2013. [DOI: 10.1007/s00300-013-1294-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Horňák K, Corno G. Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS One 2012; 7:e51576. [PMID: 23251582 PMCID: PMC3520937 DOI: 10.1371/journal.pone.0051576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
One of the earliest challenges for ecologists has been to study the impact of invasive species on microbial communities. Although bacteria are fundamental in biological processes, current knowledge on invasion effects by aquatic non-pathogenic bacteria is still limited. Using pure cultures of diverse planktonic bacteria as model organisms at two different carbon concentration levels, we tested the response of an assembled community to the invasion by Limnohabitans planktonicus, an opportunistic bacterium, successful in freshwaters. The invader, introduced at the early stationary growth phase of the resident community, caused a strong decrement of the abundance of the dominant species. This was due to competition for nutrients and a potential allelopathic interaction. Simultaneously, resident species formerly unable to successfully compete within the community, thus potentially exposed to competitive exclusion, increased their abundances. The overall result of the invasion was preservation of species diversity, the higher the lower was the substrate content available. Our study provides new insights into bacterial invasions, offering an alternative interpretation of invasions for community ecology.
Collapse
Affiliation(s)
- Karel Horňák
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, České Budějovice, Czech Republic.
| | | |
Collapse
|
40
|
Bartrons M, Catalan J, Casamayor EO. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. MICROBIAL ECOLOGY 2012; 64:860-869. [PMID: 22622765 DOI: 10.1007/s00248-012-0072-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/25/2012] [Indexed: 06/01/2023]
Abstract
Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than previously thought.
Collapse
MESH Headings
- Altitude
- Bacteria, Aerobic/classification
- Bacteria, Aerobic/genetics
- Bacteria, Aerobic/growth & development
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Biofilms/growth & development
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/genetics
- Ecosystem
- Genes, rRNA
- Lakes/microbiology
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Spain
Collapse
Affiliation(s)
- Mireia Bartrons
- Biogeodynamics and Biodiversity Group, Centre for Advanced Studies of Blanes, CEAB-CSIC, Spanish Council for Scientific Research, Accés Cala St. Francesc 14, 17300 Blanes, Spain
| | | | | |
Collapse
|
41
|
Rösel S, Allgaier M, Grossart HP. Long-term characterization of free-living and particle-associated bacterial communities in Lake Tiefwaren reveals distinct seasonal patterns. MICROBIAL ECOLOGY 2012; 64:571-583. [PMID: 22526401 DOI: 10.1007/s00248-012-0049-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
Seasonal changes in environmental conditions have a strong impact on microbial community structure and dynamics in aquatic habitats. To better elucidate the response of bacterial communities to environmental changes, we have measured a large variety of limnetic variables and investigated bacterial community composition (BCC) and dynamics over seven consecutive years between 2003 and 2009 in mesotrophic Lake Tiefwaren (NE Germany). We separated between free-living (FL, >0.2, <5.0 μm) and particle-associated (PA, >5.0 μm) bacteria to account for different bacterial lifestyles and to obtain a higher resolution of the microbial diversity. Changes in BCC were studied by DGGE based on PCR-amplified 16S rRNA gene fragments. Sequencing of DGGE bands revealed that ca. 70 % of all FL bacteria belonged to the Actinobacteria, whereas PA bacteria were dominated by Cyanobacteria (43 %). FL communities were generally less diverse and rather stable over time compared to their PA counterpart. Annual changes in reoccurring seasonal patterns of dominant freshwater bacteria were supported by statistical analyses, which revealed several significant correlations between DGGE profiles and various environmental variables, e.g. temperature and nutrients. Overall, FL bacteria were generally less affected by environmental changes than members of the PA fraction. Close association of PA bacteria with phytoplankton and zooplankton suggests a tight coupling of PA bacteria to organisms of higher trophic levels. Our results indicate substantial differences in bacterial lifestyle of pelagic freshwater bacteria, which are reflected by contrasting seasonal dynamics and relationships to a number of environmental variables.
Collapse
Affiliation(s)
- Stefan Rösel
- Department Limnology of Stratified Lakes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany
| | | | | |
Collapse
|
42
|
Shao K, Gao G, Chi K, Qin B, Tang X, Yao X, Dai J. Decomposition ofMicrocystisblooms: Implications for the structure of the sediment bacterial community, as assessed by a mesocosm experiment in Lake Taihu, China. J Basic Microbiol 2012; 53:549-54. [DOI: 10.1002/jobm.201100532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/14/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Keqiang Shao
- State Key Laboratory of Lake Science and Environment; Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences; Nanjing; China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment; Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences; Nanjing; China
| | | | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment; Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences; Nanjing; China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment; Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences; Nanjing; China
| | - Xin Yao
- School of Environment and Planning; Liaocheng University; Shandong; China
| | | |
Collapse
|
43
|
Watanabe K, Komatsu N, Kitamura T, Ishii Y, Park HD, Miyata R, Noda N, Sekiguchi Y, Satou T, Watanabe M, Yamamura S, Imai A, Hayashi S. Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol 2012; 14:2511-25. [PMID: 22759205 DOI: 10.1111/j.1462-2920.2012.02815.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The free-living, cosmopolitan, freshwater betaproteobacterial bacterioplankton genus Polynucleobacter was detected in different years in 11 lakes of varying types and a river using the size-exclusion assay method (SEAM). Of the 350 strains isolated, 228 (65.1%) were affiliated with the Polynucleobacter subclusters PnecC (30.0%) and PnecD (35.1%). Significant positive correlations between fluorescence in situ hybridization and SEAM data were observed in the relative abundance of PnecC and PnecD bacteria to Polynucleobacter communities (PnecC + PnecD). Isolates were mainly PnecC bacteria in the samples with a high specific UV absorbance at 254 nm (SUVA(254) ), and a low total hydrolysable neutral carbohydrate and amino acid (THneutralCH + THAA) content of the dissolved organic matter (DOM) fraction, which is known to be correlated with a high humic content. In contrast, the PnecD bacteria were abundant in samples with high chlorophyll a and/or THneutralCH + THAA concentrations, indicative of primary productivity. With few exceptions, differences in the relative abundance of PnecC and PnecD in each sample, determined using a high-sensitivity cultivation-based approach, were due to DOM quality. These results suggest that the major DOM component in the field, which is allochthonously or autochthonously derived, is a key factor for ecological niche separation between PnecC and PnecD subclusters.
Collapse
Affiliation(s)
- Keiji Watanabe
- National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Llorens-Marès T, Auguet JC, Casamayor EO. Winter to spring changes in the slush bacterial community composition of a high-mountain lake (Lake Redon, Pyrenees). ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:50-56. [PMID: 23757229 DOI: 10.1111/j.1758-2229.2011.00278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial community composition was analysed in the slush layers of snow-covered Lake Redon (2240 m altitude, Limnological Observatory of the Pyrenees, LOOP, NE Spain) in winter and spring and compared with bacteria from the lake water column, using 16S rRNA gene clone libraries and CARD-FISH counts. The set of biological data was related to changes in bacterial production and to other relevant environmental variables measured in situ. In winter, up to 70% of the 16S rRNA sequences found in the slush were closely related to planktonic bacteria from the water column beneath the ice. Conversely, during spring ablation, 50% of the sequences had > 97% identity with bacteria from the cryosphere (i.e. globally distributed glaciers, snow and ice) and may have originated from remote aerosol deposition. The transition winter to spring was characterized by consistent community changes switching from assemblages dominated by Betaproteobacteria, Verrucomicrobia and Bacteroidetes during snowpack growth to communities essentially dominated by the Bacteroidetes of classes Cytophagia and Sphingobacteria. This strong bacterial composition switch was associated with consistent increases in bacterial abundance and production, and decreasing bacterial diversity.
Collapse
Affiliation(s)
- Tomàs Llorens-Marès
- Limnological Observatory of the Pyrenees (LOOP) - Biogeodynamics & Biodiversity Group, Centro de Estudios Avanzados de Blanes, CEAB-CSIC, Accés Cala Sant Francesc, 14, 17300 Blanes, Girona, Spain
| | | | | |
Collapse
|
45
|
Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol 2011; 14:794-806. [DOI: 10.1111/j.1462-2920.2011.02639.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One 2011; 6:e27492. [PMID: 22096583 PMCID: PMC3212577 DOI: 10.1371/journal.pone.0027492] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022] Open
Abstract
Increasing global temperatures are having a profound impact in the Arctic, including the dramatic loss of multiyear sea ice in 2007 that has continued to the present. The majority of life in the Arctic is microbial and the consequences of climate-mediated changes on microbial marine food webs, which are responsible for biogeochemical cycling and support higher trophic levels, are unknown. We examined microbial communities over time by using high-throughput sequencing of microbial DNA collected between 2003 and 2010 from the subsurface chlorophyll maximum (SCM) layer of the Beaufort Sea (Canadian Arctic). We found that overall this layer has freshened and concentrations of nitrate, the limiting nutrient for photosynthetic production in Arctic seas, have decreased. We compared microbial communities from before and after the record September 2007 sea ice minimum and detected significant differences in communities from all three domains of life. In particular, there were significant changes in species composition of Eukarya, with ciliates becoming more common and heterotrophic marine stramenopiles (MASTs) accounting for a smaller proportion of sequences retrieved after 2007. Within the Archaea, Marine Group I Thaumarchaeota, which earlier represented up to 60% of the Archaea sequences in this layer, have declined to <10%. Bacterial communities overall were less diverse after 2007, with a significant decrease of the Bacteroidetes. These significant shifts suggest that the microbial food webs are sensitive to physical oceanographic changes such as those occurring in the Canadian Arctic over the past decade.
Collapse
Affiliation(s)
- André M. Comeau
- Québec-Océan, Département de Biologie, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - William K. W. Li
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Jean-Éric Tremblay
- Québec-Océan, Département de Biologie, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eddy C. Carmack
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia, Canada
| | - Connie Lovejoy
- Québec-Océan, Département de Biologie, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
47
|
Zeder M, Kohler E, Zeder L, Pernthaler J. A novel algorithm for the determination of bacterial cell volumes that is unbiased by cell morphology. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:799-809. [PMID: 21910938 DOI: 10.1017/s1431927611012104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The determination of cell volumes and biomass offers a means of comparing the standing stocks of auto- and heterotrophic microbes of vastly different sizes for applications including the assessment of the flux of organic carbon within aquatic ecosystems. Conclusions about the importance of particular genotypes within microbial communities (e.g., of filamentous bacteria) may strongly depend on whether their contribution to total abundance or to biomass is regarded. Fluorescence microscopy and image analysis are suitable tools for determining bacterial biomass that moreover hold the potential to replace labor-intensive manual measurements by fully automated approaches. However, the current approaches to calculate bacterial cell volumes from digital images are intrinsically biased by the models that are used to approximate the morphology of the cells. Therefore, we developed a generic contour based algorithm to reconstruct the volumes of prokaryotic cells from two-dimensional representations (i.e., microscopic images) irrespective of their shape. Geometric models of commonly encountered bacterial morphotypes were used to verify the algorithm and to compare its performance with previously described approaches. The algorithm is embedded in a freely available computer program that is able to process both raw (8-bit grayscale) and thresholded (binary) images in a fully automated manner.
Collapse
Affiliation(s)
- M Zeder
- Max Planck Institute for Marine Microbiology, Department of Molecular Ecology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | |
Collapse
|
48
|
Piwosz K, Pernthaler J. Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters. PLoS One 2011; 6:e24415. [PMID: 21966360 PMCID: PMC3180281 DOI: 10.1371/journal.pone.0024415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 08/10/2011] [Indexed: 11/18/2022] Open
Abstract
Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02) to experimental food web manipulation in samples from the Gulf of Gdańsk (Southern Baltic Sea). Seawater was either prefiltered through 5 µm filters to exclude larger predators of nanoflagellates (F-treatment), or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment) to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of Gdańsk might also be related to their vulnerability to grazing pressure.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, Sea Fisheries Institute in Gdynia, Gdynia, Poland
| | - Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
- * E-mail:
| |
Collapse
|
49
|
Flavobacterium johnsoniae as a model organism for characterizing biopolymer utilization in oligotrophic freshwater environments. Appl Environ Microbiol 2011; 77:6931-8. [PMID: 21803894 DOI: 10.1128/aem.00372-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biopolymers are important substrates for heterotrophic bacteria in oligotrophic freshwater environments, but information on bacterial growth kinetics with biopolymers is scarce. The objective of this study was to characterize bacterial biopolymer utilization in these environments by assessing the growth kinetics of Flavobacterium johnsoniae strain A3, which is specialized in utilizing biopolymers at μg liter(-1) levels. Growth of strain A3 with amylopectin, xyloglucan, gelatin, maltose, or fructose at 0 to 200 μg C liter(-1) in tap water followed Monod or Teissier kinetics, whereas growth with laminarin followed Teissier kinetics. Classification of the specific affinity of strain A3 for the tested substrates resulted in the following affinity order: laminarin (7.9 × 10(-2) liter·μg(-1) of C·h(-1)) ≫ maltose > amylopectin ≈ gelatin ≈ xyloglucan > fructose (0.69 × 10(-2) liter·μg(-1) of C·h(-1)). No specific affinity could be determined for proline, but it appeared to be high. Extracellular degradation controlled growth with amylopectin, xyloglucan, or gelatin but not with laminarin, which could explain the higher affinity for laminarin. The main degradation products were oligosaccharides or oligopeptides, because only some individual monosaccharides and amino acids promoted growth. A higher yield and a lower ATP cell(-1) level was achieved at ≤10 μg C liter(-1) than at >10 μg C liter(-1) with every substrate except gelatin. The high specific affinities of strain A3 for different biopolymers confirm that some representatives of the classes Cytophagia-Flavobacteria are highly adapted to growth with these compounds at μg liter(-1) levels and support the hypothesis that Cytophagia-Flavobacteria play an important role in biopolymer degradation in (ultra)oligotrophic freshwater environments.
Collapse
|
50
|
Alonso-Sáez L, Pinhassi J, Pernthaler J, Gasol JM. Leucine-to-carbon empirical conversion factor experiments: does bacterial community structure have an influence? Environ Microbiol 2011; 12:2988-97. [PMID: 20561017 DOI: 10.1111/j.1462-2920.2010.02276.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The suitability of applying empirical conversion factors (eCFs) to determine bacterial biomass production remains unclear because seawater cultures are usually overtaken by phylotypes that are not abundant in situ. While eCFs vary across environments, it has not been tested whether differences in eCFs are driven by changes in bacterial community composition or by in situ environmental conditions. We carried out seawater cultures throughout a year to analyse the correlation between eCFs and bacterial community structure, analysed by catalysed reporter deposition fluorescence in situ hybridization. Gammaproteobacteria usually dominated seawater cultures, but their abundance exhibited a wide range (25-73% of cell counts) and significantly increased with inorganic nutrient enrichment. Flavobacteria were less abundant but increased up to 40% of cells counts in winter seawater cultures, when in situ chlorophyll a was high. The correlations between eCFs and the abundance of the main broad phylogenetic groups (Gamma-, Alphaproteobacteria and Flavobacteria) were significant, albeit weak, while more specific groups (Alteromonadaceae and Rhodobacteraceae) were not significantly correlated. Our results show that the frequent development of the fast-growing group Alteromonadaceae in seawater cultures does not strongly drive the observed variations in eCFs. Rather, the results imply that environmental conditions and the growth of specific phylotypes interact to determine eCFs.
Collapse
Affiliation(s)
- Laura Alonso-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, 08003-Barcelona, Catalunya, Spain.
| | | | | | | |
Collapse
|