1
|
Ruampatana J, Feyera T, Yamsrikaew U, Juarjan M, Homyog K, Mekboonsonglarp W, Settachaimongkon S, Nuntapaitoon M. Metabolomic and lipidomic insights into the impact of Euglena gracilis-derived β-glucan supplementation on sow colostrum and milk composition. Comput Struct Biotechnol J 2025; 27:869-878. [PMID: 40115536 PMCID: PMC11925092 DOI: 10.1016/j.csbj.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Euglena gracilis, an algae-derived source of β-glucan, exhibits prebiotic activity that enhances colostrum quality and improves growth, though the underlying mechanisms remain unclear. This study investigates the effects of E. gracilis supplementation during late gestation and lactation on sow colostrum and milk biomolecular profiles. Sixty-one crossbred sows (Landrace × Yorkshire) were assigned to a standard diet (CON; n = 30) or the CON diet supplemented with 1 g/sow/day of E. gracilis (TRT; n = 31) from day 85 of gestation until day 21 of lactation. Sow performance, including litter size and weight, was recorded from birth to day 21 of age. Colostrum samples (n = 20; 10 sows/group) were collected within 1 h of farrowing, and milk samples were collected from the same sows on days 3 and 10 of lactation to assess alterations in non-volatile polar metabolites (NVM), fatty acids (FA), and associated metabolic pathways. On average, the litter size at birth was 14.2 ± 2.5 piglets/litter, with no effect of dietary treatment from birth to day 21 of lactation (P > 0.05). However, piglets suckled by TRT sows tended to have higher average daily gain from birth to day 21 of age than those suckled CON sows (191.0 ± 6.7 vs. 173.6 ± 6.8 g/day, P = 0.073). Chemometric analysis revealed distinct NVM and FA profiles between the groups, particularly in the colostrum. Although E. gracilis supplementation influenced the contents of multiple metabolites, focus has been given to those that have direct impact on piglet development, including increased colostrum leucine (P = 0.001), threonine (P < 0.001), and N-acetylglucosamine (P = 0.002), enhancing colostrum quality and immunomodulatory potential. Elevated colostrum gamma-linolenic acid (P = 0.047) and arachidonic acid (P = 0.019) levels suggested enhanced immune development. Pathways associated with amino sugars and nucleotide sugars and glucose-related metabolism in colostrum were also modulated. These findings suggest E. gracilis-derived β-glucan as a potential dietary supplement for enhancing sow colostrum quality and piglet growth.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takele Feyera
- Department of Animal Veterinary Sciences, Aarhus University, AU-Viborg, Tjele, DK 8830, Denmark
| | - Unchean Yamsrikaew
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Methaporn Juarjan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Ahmad F, Ahmad S, Srivastav AK, Upadhyay TK, Husain A, Khubaib M, Kang S, Park MN, Kim B, Sharma R. "β-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway". Int J Biol Macromol 2024; 282:136520. [PMID: 39401634 DOI: 10.1016/j.ijbiomac.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/19/2024]
Abstract
β-Glucan, a complex polysaccharide derived from fungal and yeast cell walls, plays a crucial role in modulating immune responses through their interaction with receptors such as Dectin-1 and Complement receptor 3 (CR-3). This review provides an in-depth analysis of the molecular mechanisms by which β-glucans activate receptor-mediated signalling pathways, focusing particularly on the LC3-associated phagocytosis (LAP) and autophagy pathways. Hence, we explore how β-glucan receptor engagement stimulates NADPH oxidase 2 (NOX-2), leading to the intracellular production of significant level of reactive oxygen species (ROS) essential for both conventional autophagy and LAP. While significant progress has been made in elucidation of downstream signaling by glucans, the regulation of phago-lysosomal maturation and antigen presentation during LAP induction still remains less explored. This review aims to provide a comprehensive overview of these pathways and their regulation by β-glucans. By consolidating the current knowledge, we seek to highlight how these mechanisms can be leveraged for therapeutic applications, particularly in the context of tuberculosis (TB) management, where β-glucans could serve as host-directed adjuvant therapies to combat drug-resistant strains. Despite major advancements in this field, currently key research gaps still persist, including detailed molecular interactions between β-glucan receptors and NOX-2 and the translation of these findings to in-vivo models and clinical investigations. This review underscores the need for further research to explore the therapeutic potential of β-glucans in managing not only tuberculosis but also other diseases such as cancer, cardiovascular conditions, and metabolic disorders.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, OK 74074, United States of America
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, Uttar Pradesh, India
| | - Anurag Kumar Srivastav
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Adil Husain
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das [BBD] College of Dental Sciences BBD University, Lucknow 226028, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, Uttar Pradesh, India.
| |
Collapse
|
3
|
Gao Y, Feng X, Zhang R, Xiao J, Huang Q, Li J, Shi T. Molecular dynamics simulation: Effect of sulfation on the structure of curdlan triple helix in aqueous solution. Int J Biol Macromol 2024; 282:137119. [PMID: 39505189 DOI: 10.1016/j.ijbiomac.2024.137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
In this work, by using molecular dynamics simulations, we elucidate the effect of sulfation substitution on the stability of the curdlan triple helix structure. The simulation results indicate that the stability of the triple helix structure is significantly influenced by the sites of sulfation substitution. The substitution at the O2 site directly disrupts the hydrogen bonding network between the triple helix chains, significantly destroying the triple helix conformation. When substitutions occur at both the O4 and O6 sites simultaneously (O4,6), the electrostatic repulsion between numerous sulfate groups introduces considerable energy perturbation to the triple helix, leading to alterations in the glucan chain conformation and consequent destabilization of the triple helix structure. Meanwhile, we find that even if the sulfation substitution is performed at the same substitution sites, the difference in the degree of substitution also has an impact on the triple helix stability. The resistance of the triple helix to sulfation substitution at O2 is weak, and low degree of substitution can lead to the unwinding of the triple helix. However, it demonstrates higher resistance to substitution at O4,6 where only higher degree of substitution results in triple helix destabilization.
Collapse
Affiliation(s)
- Yufu Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore, Singapore.
| | - Ran Zhang
- BASF Advanced Chemicals Co. Ltd, No. 300, Jiangxinsha Road, Pudong, Shanghai 200137, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingrong Huang
- Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Jiawei Li
- Department of Mathematics & Statistics, Boston University, 665 Commonwealth Avenue, Boston, MA 02215, USA
| | - Tongfei Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Kaleta B, Zielniok K, Roszczyk A, Turło J, Zagożdżon R. Selenopolysaccharide Isolated from Lentinula edodes Mycelium Affects Human T-Cell Function. Int J Mol Sci 2024; 25:11576. [PMID: 39519128 PMCID: PMC11546230 DOI: 10.3390/ijms252111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Lentinula edodes polysaccharides are natural immunomodulators. SeLe30, analyzed in this study, is a new mixture of selenium-enriched linear 1,4-α-glucans and 1,3-β- and 1,6-β-glucans isolated from L. edodes mycelium. In the present study, we evaluated its immunomodulatory properties in human T cells. Peripheral blood mononuclear cells (PBMCs) and T cells were isolated from healthy donors' buffy coats. The effects of SeLe30 on CD25, CD366, and CD279 expression, the subsets of CD8+ T cells, and IFN-γ, IL-6, and TNF-α production were analyzed. SeLe30 downregulated CD25, CD279, and CD366 expression on T cells stimulated by the anti-CD3 antibody (Ab) and upregulated in unstimulated and anti-CD3/CD28-Abs-stimulated T cells. It increased the percentage of central memory CD8+ T cells in unstimulated PBMCs and naïve and central memory T cells in anti-CD3-Ab-stimulated PBMCs. SeLe30 decreased the number of central memory and naïve CD8+ T cells in anti-CD3/CD28-stimulated T cells, whereas, in PBMCs, it reduced the percentage of effector memory CD8+ T cells. Moreover, SeLe30 upregulated cytokine production. SeLe30 exhibits context-dependent effects on T cells. It acts on unstimulated T cells, affecting their activation while increasing the expression of immune checkpoints, which sensitizes them to inhibitory signals that can silence this activation. In the case of a lack of costimulation, SeLe30 exhibits an inhibitory effect, reducing T-cell activation. In cells stimulated by dual signals, its effect is further enhanced, again increasing the "safety brake" of CD366 and CD279. However, the final SeLe30 effect is mediated by its indirect impacts by altering interactions with other immune cells.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| |
Collapse
|
5
|
Reza MH, Dutta S, Goyal R, Shah H, Dey G, Sanyal K. Expansion microscopy reveals characteristic ultrastructural features of pathogenic budding yeast species. J Cell Sci 2024; 137:jcs262046. [PMID: 39051746 PMCID: PMC11423813 DOI: 10.1242/jcs.262046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Candida albicans is the most prevalent fungal pathogen associated with candidemia. Similar to other fungi, the complex life cycle of C. albicans has been challenging to study with high-resolution microscopy due to its small size. Here, we employed ultrastructure expansion microscopy (U-ExM) to directly visualise subcellular structures at high resolution in the yeast and during its transition to hyphal growth. N-hydroxysuccinimide (NHS)-ester pan-labelling in combination with immunofluorescence via snapshots of various mitotic stages provided a comprehensive map of nucleolar and mitochondrial segregation dynamics and enabled the resolution of the inner and outer plaque of spindle pole bodies (SPBs). Analyses of microtubules (MTs) and SPBs suggest that C. albicans displays a side-by-side SPB arrangement with a short mitotic spindle and longer astral MTs (aMTs) at the pre-anaphase stage. Modifications to the established U-ExM protocol enabled the expansion of six other human fungal pathogens, revealing that the side-by-side SPB configuration is a plausibly conserved feature shared by many fungal species. We highlight the power of U-ExM to investigate subcellular organisation at high resolution and low cost in poorly studied and medically relevant microbial pathogens.
Collapse
Affiliation(s)
- Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Srijana Dutta
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Rohit Goyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Hiral Shah
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN-80, Sector V, Bidhan Nagar, Kolkata 700091, India
| |
Collapse
|
6
|
Chuaychu SB, Sirisereewan C, Techakriengkrai N, Tummaruk P, Thanawongnuwech R, Nedumpun T. Enhancement of systemic virus-specific T lymphocyte responses in pigs supplemented with algae-derived β-glucan. Vet J 2024; 306:106182. [PMID: 38897378 DOI: 10.1016/j.tvjl.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Algae-derived β-glucan has been widely used as a feed additive in the swine industry. The supplementation of β-glucan aims to improve growth performance and modulate the immunity of pigs. However, the potential effects of supplementing β-glucan from algae on immune responses in pigs-specifically antigen-specific immunity-must be determined. In this study, the effects of algae-derived β-glucan supplementation on growth performance, virus neutralising antibody and virus-specific T lymphocytes responses were investigated in pigs. Piglets (n=112 per treatment) were assigned to three treatments including non-supplemented group (control), β-glucan 100 g/ton supplemented group (BG100), and β-glucan 200 g/ton supplemented group (BG200). In this study, production performance of pigs was not found to be different between the experimental groups. Pigs supplemented with β-glucan exhibited high levels of classical swine fever virus (CSFV)-specific producing T lymphocytes and neutralising antibody titer, compared to the control group. Interestingly, supplementation of β-glucan significantly enhanced porcine reproductive and respiratory syndrome virus (PRRSV)-specific interferon-gamma (IFN-γ) producing T lymphocytes, including CD4+, CD8+, and CD4+CD8+ T lymphocyte subpopulations. Moreover, PRRS modified live vaccine (MLV) viremia was reduced in earlier for β-glucan-supplemented pigs compared to the control group. The findings indicate that the algae-derived β-glucan possesses biological potential as an immunomodulatory substance to enhance antiviral immunity, which may contribute to disease resistance in pigs.
Collapse
Affiliation(s)
- Sh B Chuaychu
- International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - C Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - N Techakriengkrai
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - P Tummaruk
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - R Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - T Nedumpun
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Nowell RW, Rodriguez F, Hecox-Lea BJ, Mark Welch DB, Arkhipova IR, Barraclough TG, Wilson CG. Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Nat Commun 2024; 15:5787. [PMID: 39025839 PMCID: PMC11258130 DOI: 10.1038/s41467-024-49919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors. Among hundreds of upregulated genes, the most markedly overrepresented were clusters resembling bacterial polyketide and nonribosomal peptide synthetases that produce antibiotics. Upregulation of these clusters in a pathogen-resistant rotifer species was nearly ten times stronger than in a susceptible species. By acquiring, domesticating, and expressing non-metazoan biosynthetic pathways, bdelloids may have evolved to resist natural enemies using antimicrobial mechanisms absent from other animals.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Institute of Ecology and Evolution, University of Edinburgh; Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| |
Collapse
|
8
|
Beteri B, Barone M, Turroni S, Brigidi P, Tzortzis G, Vulevic J, Sekulic K, Motei DE, Costabile A. Impact of Combined Prebiotic Galacto-Oligosaccharides and Bifidobacterium breve-Derived Postbiotic on Gut Microbiota and HbA1c in Prediabetic Adults: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2024; 16:2205. [PMID: 39064648 PMCID: PMC11280236 DOI: 10.3390/nu16142205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
The complex interactions between intestinal microbiota and metabolic disorders are well-documented, with implications for glucose metabolism, energy expenditure, and intestinal permeability. Prebiotics induce beneficial changes in gut microbiota composition in prediabetes, while postbiotics can enhance gut barrier function, complementing each other to improve glucose metabolism and insulin sensitivity. This study investigated the effects of a 12-week dietary fibre (DF) supplement on gut health, metabolic function, and diet. The supplement contained konjac glucomannan (KGM), galacto-oligosaccharides (GOSs), and exopolysaccharides (EPSs) from Bifidobacterium breve. In a randomised, double-blind, placebo-controlled, parallel-group clinical trial, 53 prediabetic volunteers were randomly assigned to either a daily DF supplement (YMETA) or a placebo (cellulose microcrystalline) for 12 weeks, followed by a 4-week follow-up. Measurements included gut microbiota composition, glycated haemoglobin (HbA1c), fasting plasma glucose (FPG), plasma lipids, anthropometry, body composition, blood pressure, and dietary intake. The intervention group showed a significant increase in alpha diversity and butyrate-producing bacteria, with reductions in HbA1c and FPG levels below prediabetes thresholds. No significant changes were observed in the placebo group. This study suggests that manipulating the human gut microbiome through dietary interventions could be a promising therapeutic approach to managing prediabetes and preventing or delaying diabetes.
Collapse
Affiliation(s)
- Beyda Beteri
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.B.); (P.B.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.B.); (P.B.)
| | - George Tzortzis
- veMico Ltd., Amelia House, Crescent Road, Worthing BN11 1RL, UK; (G.T.); (J.V.)
| | - Jelena Vulevic
- veMico Ltd., Amelia House, Crescent Road, Worthing BN11 1RL, UK; (G.T.); (J.V.)
| | - Karol Sekulic
- Alberta Health Services, Edmonton, AB T5J 3E4, Canada;
| | - Diana-Elena Motei
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| |
Collapse
|
9
|
Csata E, Pérez-Escudero A, Laury E, Leitner H, Latil G, Heinze J, Simpson SJ, Cremer S, Dussutour A. Fungal infection alters collective nutritional intake of ant colonies. Curr Biol 2024; 34:902-909.e6. [PMID: 38307022 DOI: 10.1016/j.cub.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term-a form of collective self-medication.
Collapse
Affiliation(s)
- Enikő Csata
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland; Institute for Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany.
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Emmanuel Laury
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hanna Leitner
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jürgen Heinze
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Audrey Dussutour
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
10
|
Ferreira MDS, Gonçalves DDS, Mendoza SR, de Oliveira GA, Pontes B, la Noval CRD, Honorato L, Ramos LFC, Nogueira FCS, Domont GB, Casadevall A, Nimrichter L, Peralta JM, Guimaraes AJ. β-1,3-Glucan recognition by Acanthamoeba castellanii as a putative mechanism of amoeba-fungal interactions. Appl Environ Microbiol 2024; 90:e0173623. [PMID: 38259076 PMCID: PMC10880599 DOI: 10.1128/aem.01736-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal β-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface β-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a β-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble β-1,3-glucan substantially inhibited this adhesion, indicating the involvement of β-1,3-glucan recognition. Biotinylated β-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the β-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding β-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to β-1,3-glucans. These findings underscore the complexity of binding via β-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of β-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for β-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.
Collapse
Affiliation(s)
- Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Gabriel Afonso de Oliveira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas e Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Claudia Rodríguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Luis Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Fábio C. S. Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leonardo Nimrichter
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Niterói, Rio de Janeiro, Brazil
| | - Jose Mauro Peralta
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Allan J. Guimaraes
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Niterói, Rio de Janeiro, Brazil
- Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Noorbakhsh Varnosfaderani SM, Ebrahimzadeh F, Akbari Oryani M, Khalili S, Almasi F, Mosaddeghi Heris R, Payandeh Z, Li C, Nabi Afjadi M, Alagheband Bahrami A. Potential promising anticancer applications of β-glucans: a review. Biosci Rep 2024; 44:BSR20231686. [PMID: 38088444 PMCID: PMC10776902 DOI: 10.1042/bsr20231686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
β-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of β-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via β-glucans. β-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of β-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal β-glucans, as well as their application.
Collapse
Affiliation(s)
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
12
|
Guluarte C, Pereyra A, Ramírez-Hernández E, Zenteno E, Luis Sánchez-Salgado J. The immunomodulatory and antioxidant effects of β-glucans in invertebrates. J Invertebr Pathol 2023; 201:108022. [PMID: 37984608 DOI: 10.1016/j.jip.2023.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
β-glucans (βGs) are carbohydrate polymers linked by β-1,3, 1,4 or 1,6 bonds, they have been used to protect against potential pathogens and prevent lethal diseases. The immune system possesses several receptors that identify a wide range of structures and trigger cellular and humoral mechanisms. However, the mechanisms by which βGs activate the immune system of invertebrate organisms have not been fully clarified. This review is focused on evaluating the effect of βGs on innate immune system in invertebrates. βGs stimulate different cellular and humoral mechanisms, such as phagocytosis, oxygen species production, extracellular trap formation, proPO system, and antimicrobial peptide synthesis, moreover, βGs increase survival rate and decrease pathogen load in several species.
Collapse
Affiliation(s)
- Crystal Guluarte
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Alí Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Eleazar Ramírez-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - José Luis Sánchez-Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico.
| |
Collapse
|
13
|
Ota T, Saburi W, Komba S, Mori H. Chemical synthesis of oligosaccharide derivatives with partial structure of β1-3/1-6 glucan, using monomeric units for the formation of β1-3 and β1-6 glucosidic linkages. Biosci Biotechnol Biochem 2023; 87:1111-1121. [PMID: 37407435 DOI: 10.1093/bbb/zbad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
β1-3/1-6 Glucans, known for their diverse structures, comprise a β1-3-linked main chain and β1-6-linked short branches. Laminarin, a β1-3/1-6 glucan extracted from brown seaweed, for instance, includes β1-6 linkages even in the main chain. The diverse structures provide various beneficial functions for the glucan. To investigate the relationship between structure and functionality, and to enable the characterization of β1-3/1-6 glucan-metabolizing enzymes, oligosaccharides containing the exact structures of β1-3/1-6 glucans are required. We synthesized the monomeric units for the synthesis of β1-3/1-6 mixed-linked glucooligosaccharides. 2-(Trimethylsilyl)ethyl 2-O-benzoyl-4,6-O-benzylidene-β-d-glucopyranoside served as an acceptor in the formation of β1-3 linkages. Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(tert-butyldiphenylsilyl)-1-thio-β-d-glucopyranoside and phenyl 2,3-di-O-benzoyl-4,6-di-O-levulinyl-1-thio-β-d-glucopyranoside acted as donors, synthesizing acceptors suitable for the formation of β1-3- and β1-6-linkages, respectively. These were used to synthesize a derivative of Glcβ1-6Glcβ1-3Glcβ1-3Glc, demonstrating that the proposed route can be applied to synthesize the main chain of β-glucan, with the inclusion of both β1-3 and β1-6 linkages.
Collapse
Affiliation(s)
- Tomoya Ota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shiro Komba
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Timm TG, Costa TM, Alberton MD, Helm CV, Tavares LBB. Mushroom β-glucans: application and innovation for food industry and immunotherapy. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12656-4. [PMID: 37410138 DOI: 10.1007/s00253-023-12656-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Among the most important sources of β-glucans are edible and medicinal mushrooms. These molecules are components of the cellular wall of basidiomycete fungi (mushrooms) and can be extracted even from the basidiocarp as the mycelium and its cultivation extracts or biomasses. Mushroom β-glucans are recognized by their potential effects as immunostimulants and immunosuppressants. They are highlighted as anticholesterolemic, anti-inflammatory, adjuvant in diabetes mellitus, mycotherapy for cancer treatment, as well as adjuvants for COVID-19 vaccines. Due to their relevance, several techniques of β-glucans extraction, purification, and analysis have already been described. Despite the previous knowledge of β-glucans' benefits for human nutrition and health, the main information about this topic refers to the molecular identification, properties, and benefits, as well as their synthesis and action on cells. Studies on biotechnology industry applications (product development) and the registered products of β-glucans from mushrooms are still limited and more common for feed and healthcare. In this context, this paper reviews the biotechnological production of food products containing β-glucans from basidiomycete fungi, focusing on food enrichment, and presents a new perspective on fungi β-glucans' use as potential immunotherapy agents. KEY POINTS: • Mushrooms' β-glucans for product development in the biotechnology industry • Biotechnological production of food products containing mushrooms' β-glucans • Basidiomycete fungi β-glucans are used as potential immunotherapy agents.
Collapse
Affiliation(s)
- Thaynã Gonçalves Timm
- Environmental Engineering Graduate Program, Regional University of Blumenau, Blumenau, Santa Catarina, Brazil.
| | | | - Michele Debiasi Alberton
- Pharmaceutical Science Department, Regional University of Blumenau, Blumenau, Santa Catarina, Brazil
| | - Cristiane Vieira Helm
- Brazilian Agricultural Research Corporation, Research Center of Forestry - Embrapa Florestas, Colombo, Paraná, Brazil
| | | |
Collapse
|
15
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
16
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Rawling M, Schiavone M, Apper E, Merrifield DL, Castex M, Leclercq E, Foey A. Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish ( Danio rerio). Front Immunol 2023; 14:1158390. [PMID: 37304290 PMCID: PMC10248512 DOI: 10.3389/fimmu.2023.1158390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and β-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Daniel L. Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| |
Collapse
|
18
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
19
|
Zhang J, Agarwal AK, Feng Q, Tripathi SK, Khan IA, Pugh ND. Identification of Botanicals that Unmask β-Glucan from the Cell Surface of an Opportunistic Fungal Pathogen. J Diet Suppl 2023; 21:154-166. [PMID: 37070414 DOI: 10.1080/19390211.2023.2201355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Dectin-1 expressed on host immune cells recognizes β-glucans within the cell walls of fungal pathogens and plays an important role in the clearance of fungal infections. However, because β-glucan is masked by an outer layer of mannoproteins, fungal pathogens can evade detection by host immune cells. In this study, a microplate-based screen was developed to identify β-glucan unmasking activity exhibited by botanicals. This screen measures the activity of a reporter gene in response to the transcriptional activation of NF-κB due to the interaction between β-glucan on the fungal cell surface and Dectin-1 present on host immune cells. In this proof-of-concept study, we screened a collection of botanicals (10 plants and some of their reported pure compound actives) used in traditional medicine for their antifungal properties. Several hits were identified in samples that unmasked β-glucan at sub-inhibitory concentrations. The hit samples were confirmed by fluorescent staining with a β-glucan antibody, verifying that the samples identified in the screen did indeed unmask β-glucan. These results indicate that the purported antifungal activities attributed to some botanicals may be due, at least in part, to the presence of compounds that exhibit β-glucan unmasking activity. Enhanced exposure of cell wall β-glucans would allow the host to build resilience against fungal infections by helping the immune system to detect the pathogen and mount a more effective clearance mechanism. This screen, together with direct killing/growth inhibition assays, may therefore serve as a valuable tool for substantiating the use of botanicals in preventing and/or treating fungal infections.
Collapse
Affiliation(s)
- Jin Zhang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ameeta K Agarwal
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Qin Feng
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Siddharth K Tripathi
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Nirmal D Pugh
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
20
|
Yang F, Cheung PCK. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. J Fungi (Basel) 2023; 9:jof9040475. [PMID: 37108930 PMCID: PMC10143420 DOI: 10.3390/jof9040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal β-glucans are naturally occurring active macromolecules used in food and medicine due to their wide range of biological activities and positive health benefits. Significant research efforts have been devoted over the past decade to producing fungal β-glucan-based nanomaterials and promoting their uses in numerous fields, including biomedicine. Herein, this review offers an up-to-date report on the synthetic strategies of common fungal β-glucan-based nanomaterials and preparation methods such as nanoprecipitation and emulsification. In addition, we highlight current examples of fungal β-glucan-based theranostic nanosystems and their prospective use for drug delivery and treatment in anti-cancer, vaccination, as well as anti-inflammatory treatments. It is anticipated that future advances in polysaccharide chemistry and nanotechnology will aid in the clinical translation of fungal β-glucan-based nanomaterials for the delivery of drugs and the treatment of illnesses.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
21
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
22
|
Kilburn-Kappeler LR, Aldrich CG. Evaluation of a yeast β-glucan blend in a pet food application to determine its impact on stool quality, apparent nutrient digestibility, and intestinal health when fed to dogs. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1125061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Oral supplementation of β-glucans may be able to improve the health of companion animals. However, little is understood regarding the effects of yeast β-glucan on diet processing and intestinal function. Therefore, the objectives of this research were to determine the carry through of yeast β-glucan during extruded diet production and its impact on diet utilization by dogs. Three diets were formulated to contain increasing levels of a yeast β-glucan blend at 0, 0.012 and 0.023% inclusion. Processing inputs were held constant during extrusion to allow for evaluation of output parameters and physical characteristics of kibble. Yeast β-glucan concentration was analyzed in extruded diets using the glucan enzymatic method, resulting in >100% recovery. Twenty-four Labrador Retrievers were assigned to one of three dietary groups of 8 dogs each with an equal distribution of sex and age. Dogs were fed dietary treatments for 24-d adaption followed by 4-d total fecal collection. Feces were scored on a 1-5 scale, with 1 representing liquid diarrhea and 5 hard pellet-like with a fecal score of 3.5-4 considered ideal. Fresh fecal samples were collected for analysis of short chain fatty acid concentrations. Apparent total tract digestibility was calculated by total fecal collection (TFC) and titanium (TI) marker methods. Data were analyzed using a mixed model procedure in software (version 9.4, SAS Institute, Inc., Cary, NC). Dry bulk density, kibble diameter, and kibble length did not differ among dietary treatments. Intake was similar among dietary treatments (P > 0.05). Dogs required about 26% more food than estimated [130*BWkg0.75] to maintain body weight among all treatments. Fecal score was not different (P > 0.05) among dietary treatments but was lower than ideal at an average of 2.6. Nutrient digestibility was not affected (P > 0.05) by inclusion of the yeast β-glucan. By method, the TFC procedure resulted in higher (P< 0.05) digestibility values when compared to the TI procedure. In addition, yeast β-glucan did not alter short or branched chain fatty acid proportions. Overall, processing parameters, physical characteristics of kibble, stool quality, nutrient digestibility, and intestinal health in dogs were not affected by the yeast β-glucan blend.
Collapse
|
23
|
de Assis LJ, Bain JM, Liddle C, Leaves I, Hacker C, Peres da Silva R, Yuecel R, Bebes A, Stead D, Childers DS, Pradhan A, Mackenzie K, Lagree K, Larcombe DE, Ma Q, Avelar GM, Netea MG, Erwig LP, Mitchell AP, Brown GD, Gow NAR, Brown AJP. Nature of β-1,3-Glucan-Exposing Features on Candida albicans Cell Wall and Their Modulation. mBio 2022; 13:e0260522. [PMID: 36218369 PMCID: PMC9765427 DOI: 10.1128/mbio.02605-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/15/2023] Open
Abstract
Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as β-1,3-glucan. In C. albicans, most β-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some β-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed β-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that β-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed β-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces β-1,3-glucan exposure at bud scars and at punctate foci. β-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates β-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that β-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP β-1,3-glucan, which is an essential component of its cell wall. Most of this β-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed β-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of β-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that β-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.
Collapse
Affiliation(s)
- Leandro José de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Judith M. Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | | | - Roberta Peres da Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - Attila Bebes
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - David Stead
- Aberdeen Proteomics Facility, Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Kevin Mackenzie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Daniel E. Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gabriela Mol Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
24
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
25
|
The Effect of Novel Selenopolysaccharide Isolated from Lentinula edodes Mycelium on Human T Lymphocytes Activation, Proliferation, and Cytokines Synthesis. Biomolecules 2022; 12:biom12121900. [PMID: 36551328 PMCID: PMC9776057 DOI: 10.3390/biom12121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomodulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans. In this study, we analyzed the effects of Se-Le-30 on the activation and proliferation of human T lymphocytes stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs) and on the production of cytokines by peripheral blood mononuclear cells (PBMCs). Se-Le-30 had effects on T cell proliferation induced by Abs against CD3 and CD28. It significantly inhibited the proliferation of CD3-stimulated CD4+ and CD8+ T cells and enhanced the proliferation of CD4+ T cells stimulated with anti-CD3/CD28 Ab. Moreover, Se-Le-30 downregulated the number of CD3-stimulated CD4+CD69+ cells, CD4+CD25+ cells, as well as CD8+CD25+ cells, and upregulated the expression of CD25 marker on CD4+ and CD8+ T cells activated with anti-CD3/CD28 Abs. Furthermore, Se-Le-30 enhanced the synthesis of IFN-γ by the unstimulated and anti-CD3/CD28-stimulated PBMCs, inhibited synthesis of IL-2 and IL-4 by CD3-stimulated cells, and augmented the synthesis of IL-6 and IL-10 by unstimulated, CD3-stimulated, and CD3/CD28-stimulated PBMCs. Together, we demonstrated that Se-Le-30 exerts immunomodulatory effects on human T lymphocytes. These observations are of importance for the prospective use of Se-Le-30 in research or as a therapeutic compound.
Collapse
|
26
|
Rummell LM, Steele MA, Templeman JR, Yohe TT, Akhtar N, Lambie JG, Singh P, Asquith T, Verbrugghe A, Pearson W, Shoveller AK. A proof of principle study investigating the effects of supplemental concentrated brewer's yeast on markers of gut permeability, inflammation, and fecal metabolites in healthy non-challenged adult sled dogs. J Anim Sci 2022; 100:skac281. [PMID: 36029013 PMCID: PMC9645558 DOI: 10.1093/jas/skac281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Yeast-derived β-glucans impact immunity, though their effects on gut permeability and inflammation are less understood. Most research has investigated other components of the yeast cell wall, such as the prebiotic mannan- and fructo-oligosaccharides. The objective of this study was to assess the effects of feeding a concentrated yeast product on markers of inflammation (serum amyloid A [SAA] and haptoglobin [Hp]) and oxidative status (malondialdehyde [MDA]), fecal products of fermentation, and gut permeability. Nineteen privately owned domestic Siberian huskies, and one Alaskan husky (9 females: 5 intact, 4 spayed; 11 males: 3 intact, 8 neutered), with an average age of 4.8 ± 2.6 yr and body weight (BW) of 25.6 ± 4.1 kg, were used in this study. Dogs were blocked and randomly allocated to one of two diet groups. Ten dogs received a dry extruded diet. The other 10 received the same diet top dressed with yeast for a daily β-glucan dose of 7 mg/kg BW for 10 wk. Fecal collection, for evaluation of fecal metabolites, and scoring occurred weekly. Gut permeability was assessed using the chromium-labeled ethylenediamine tetra-acetic acid (Cr-EDTA) and iohexol markers prior to the initiation of dietary treatment and after 10 wk of treatment. Blood samples were collected premarker administration and 0.5, 1, 2, 3, 4, 5, and 6 h postadministration. Fasting concentrations of SAA, Hp, and MDA were measured on weeks -1, 2, 4, and 8. Incremental area under the curve (I-AUC) was calculated for serum iohexol and Cr-EDTA concentrations. All data were analyzed using PROC GLIMMIX of SAS with dog as random effect, and week as fixed effect and repeated measure. Dogs receiving treatment tended to have decreased I-AUC of Iohexol (P = 0.10) and Cr-EDTA (P = 0.06) between baseline and cessation of treatment compared to the change over time in I-AUC for control (Ctl) dogs. Treatment dogs had lower Hp concentrations (P ≤ 0.05) than Ctl. There were no differences between treatments for SAA and MDA concentrations (P > 0.05). Fecal arabinose concentrations were greater in treatment (Trt) dogs (P ≤ 0.05) compared to Ctl, though no other fecal metabolites were affected by treatment. There was no difference in the relative frequency of defecations scored at any fecal score between Trt and Ctl dogs, and mean score did not differ between groups (P > 0.10). These data suggest that concentrated brewer's yeast may have the potential to reduce gut permeability without impacting inflammatory status and markers of health in adult dogs.
Collapse
Affiliation(s)
- Lindsey M Rummell
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Michael A Steele
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - James R Templeman
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Primal Pet Foods, Primal Pet Group, Fairfield, CA, 94534USA
| | - Taylor T Yohe
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nadeem Akhtar
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jocelyn G Lambie
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Pawanpreet Singh
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1Canada
| | - Wendy Pearson
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
27
|
Lin B, Huang G. An important polysaccharide from fermentum. Food Chem X 2022; 15:100388. [PMID: 36211774 PMCID: PMC9532711 DOI: 10.1016/j.fochx.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Extraction, structure and modification of polysaccharides from fermentum were summarized. Structure-activity relationship and application of polysaccharides from fermentum were reviewed. It provided a strong basis for the development and application of polysaccharides from fermentum.
Fermentum is a common unicellular fungus with many biological activities attributed to β-polysaccharides. Different in vivo and in vivo experimental studies have long proven that fermentum β-polysaccharides have antioxidant, anti-tumor, and fungal toxin adsorption properties. However, there are many uncertainties regarding the relationship between the structure and biological activity of fermentum β-polysaccharides, and a systematic summary of fermentum β-polysaccharides is still lacking. Herein, we reviewed the research progress about the extraction, structure and modification, structure–activity relationship, activity and application of fermentum β-polysaccharides, compared the extraction methods of fermentum β-polysaccharide, and paid special attention to the structure–activity relationship and application of fermentum β-polysaccharide, which provided a strong basis for the development and application of fermentum β-polysaccharide.
Collapse
|
28
|
Ahmad W, Ansari MA, Yusuf M, Amir M, Wahab S, Alam P, Alomary MN, Alhuwayri AA, Khan M, Ali A, Warsi MH, Ashraf K, Ali M. Antibacterial, Anticandidal, and Antibiofilm Potential of Fenchone: In Vitro, Molecular Docking and In Silico/ADMET Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:2395. [PMID: 36145798 PMCID: PMC9505686 DOI: 10.3390/plants11182395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study is to investigate the effective antimicrobial and antibiofilm properties of fenchone, a biologically active bicyclic monoterpene, against infections caused by bacteria and Candida spp. The interactions between fenchone and three distinct proteins from Escherichia coli (β-ketoacyl acyl carrier protein synthase), Candida albicans (1, 3-β−D-glucan synthase), and Pseudomonas aeruginosa (Anthranilate-CoA ligase) were predicted using molecular docking and in silico/ADMET methods. Further, to validate the in-silico prediction, the antibacterial and antifungal potential of fenchone was evaluated against E. coli, P. aeruginosa, and C. albicans by determining minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and minimum fungicidal concentration (MFC). The lowest MIC/MBC values of fenchone against E. coli and P. aeruginosa obtained was 8.3 ± 3.6/25 ± 0.0 and 266.6 ± 115.4/533.3 ± 230.9 mg/mL, respectively, whereas the MIC/MFC value for C. albicans was found to be 41.6 ± 14.4/83.3 ± 28.8 mg/mL. It was observed that fenchone has a significant effect on antimicrobial activity (p < 0.05). Our findings demonstrated that fenchone at 1 mg/mL significantly reduced the production of biofilm (p < 0.001) in E. coli, P. aeruginosa, and C. albicans by 70.03, 64.72, and 61.71%, respectively, in a dose-dependent manner when compared to control. Based on these results, it has been suggested that the essential oil from plants can be a great source of pharmaceutical ingredients for developing new antimicrobial drugs.
Collapse
Affiliation(s)
- Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince-Sattam Bin-Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | | | - Maria Khan
- Department of Pharmacognosy, R.V. Northland Institute, Dadri 203207, India
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kamran Ashraf
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy 42, Knowledge Park—III, Greater Noida 201308, India
| |
Collapse
|
29
|
Xun J, Guo S, Xu Y, Chen R, Tang Q, Zhang X, Liu D, Zhang R, Shen Y, Liu L, Wan J, Chen J, Lu H. Circulating (1 → 3)-β-D-Glucan as an immune activation marker decreased after ART in people living with HIV. Front Public Health 2022; 10:981339. [PMID: 36187617 PMCID: PMC9516330 DOI: 10.3389/fpubh.2022.981339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Abstract
Background Plasma level of polysaccharide (1 → 3)-β-D-Glucan (βDG), as a diagnostic marker of invasive fungal infection has been reported to be elevated in people living with HIV (PLWH). We assessed the association of circulating βDG to inflammation and systemic immune activation and the effect of antiretroviral therapy (ART) on βDG in PLWH. Method Plasma and peripheral blood monocular cell samples from 120 PLWH naive to ART and after 1 year's ART were collected. Plasma levels of βDG, markers of bacterial translocation, gut damage, and cellular immune activation were quantified. Result The plasma βDG levels were negatively correlated with CD4+ T cells count (r = -0.25, p = 0.005) and positively with HIV viral load (r = 0.28, p = 0.002) before ART. It was also positively correlated with immune activation markers, including PD-1 expression on CD4+ T cell (r = 0.40, p = 0.01) and CD8+ T cell (r = 0.47, p = 0.002), as well as HLADR+CD38+ co-expression on CD8+ T cell (r = 0.56, p = 0.0002), but not with the plasma levels of LPS (r = 0.02, p = 0.84), LPS binding protein (LBP, r = 0.11, p = 0.36), soluble LPS receptor sCD14 (r = 0.04, p = 0.68), intestinal fatty acid binding protein (IFABP, r = -0.12, p = 0.18), and regenerating islet-derived protein 3α (REG3α, r = 0.18, p = 0.06). After 1 year's ART, the levels of βDG were significantly decreased compared to that in pre-ART (1.31 ± 0.24 Log10 pg/ml vs. 1.39 ± 0.18 Log10 pg/ml, p < 0.001). Conclusion The level of plasma βDG was associated with cellular immune activation and decreased after ART in PLWH, suggesting it could serve as a biomarker of immune activation and efficacy monitoring.
Collapse
Affiliation(s)
- Jingna Xun
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuyan Guo
- Shanghai Foreign Language School, Shanghai International Studies University, Shanghai, China
| | - Yumin Xu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Chen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qi Tang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Danping Liu
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wan
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Jun Chen
| | - Hongzhou Lu
- Department of Infectious Diseases and Nursing research institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Guangdong, China,*Correspondence: Hongzhou Lu
| |
Collapse
|
30
|
Chandrasekar B, Wanke A, Wawra S, Saake P, Mahdi L, Charura N, Neidert M, Poschmann G, Malisic M, Thiele M, Stühler K, Dama M, Pauly M, Zuccaro A. Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging β-glucan decasaccharide to subvert immune responses. THE PLANT CELL 2022; 34:2765-2784. [PMID: 35441693 PMCID: PMC9252488 DOI: 10.1093/plcell/koac114] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Plant pathogenic and beneficial fungi have evolved several strategies to evade immunity and cope with host-derived hydrolytic enzymes and oxidative stress in the apoplast, the extracellular space of plant tissues. Fungal hyphae are surrounded by an inner insoluble cell wall layer and an outer soluble extracellular polysaccharide (EPS) matrix. Here, we show by proteomics and glycomics that these two layers have distinct protein and carbohydrate signatures, and hence likely have different biological functions. The barley (Hordeum vulgare) β-1,3-endoglucanase HvBGLUII, which belongs to the widely distributed apoplastic glycoside hydrolase 17 family (GH17), releases a conserved β-1,3;1,6-glucan decasaccharide (β-GD) from the EPS matrices of fungi with different lifestyles and taxonomic positions. This low molecular weight β-GD does not activate plant immunity, is resilient to further enzymatic hydrolysis by β-1,3-endoglucanases due to the presence of three β-1,6-linked glucose branches and can scavenge reactive oxygen species. Exogenous application of β-GD leads to enhanced fungal colonization in barley, confirming its role in the fungal counter-defensive strategy to subvert host immunity. Our data highlight the hitherto undescribed capacity of this often-overlooked EPS matrix from plant-associated fungi to act as an outer protective barrier important for fungal accommodation within the hostile environment at the apoplastic plant-microbe interface.
Collapse
Affiliation(s)
| | - Alan Wanke
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Pia Saake
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Lisa Mahdi
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Miriam Neidert
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Milena Malisic
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Meik Thiele
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Murali Dama
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
31
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
32
|
Diniz-Lima I, da Fonseca LM, dos Reis JS, Rodrigues da Costa Santos MA, da Costa KM, do Nascimento Santos CA, Barcelos PM, Guimarães-Pinto K, Filardy AA, Freire-de-Lima ME, Decote-Ricardo D, Morrot A, Freire-de-Lima CG, Freire-de-Lima L. The Sweet Side of Fungal Infections: Structural Glycan Diversity and Its Importance for Pathogenic Adaptation. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9060037. [PMID: 35736250 PMCID: PMC9230512 DOI: 10.3390/medicines9060037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
Fungal infections are the most common secondary infections in debilitated individuals in a state of chronic disease or immunosuppression. Despite this, most fungal infections are neglected, mainly due to the lower frequency of their more severe clinical forms in immunocompetent individuals with a healthy background. However, over the past few years, several cases of severe fungal infections in healthy individuals have provoked a change in the epidemiological dynamics of fungal infections around the world, both due to recurrent outbreaks in previously infrequent regions and the greater emergence of more pathogenic fungal variants affecting healthy individuals, such as in the Cryptococcus genus. Therefore, before the arrival of a scenario of prevalent severe fungal infections, it is necessary to assess more carefully what are the real reasons for the increased incidence of fungal infection globally. What are the factors that are currently contributing to this new possible epidemiological dynamic? Could these be of a structural nature? Herein, we propose a discussion based on the importance of the virulence factors of glycoconjugate composition in the adaptation of pathogenic fungal species into the current scenario of increasing severity of these infections.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Jhenifer Santos dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Marcos André Rodrigues da Costa Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Carlos Antonio do Nascimento Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Pedro Marçal Barcelos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Kamila Guimarães-Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (K.G.-P.); (A.A.F.)
| | - Alessandra Almeida Filardy
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (K.G.-P.); (A.A.F.)
| | - Marco Edilson Freire-de-Lima
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro 23890-000, Brazil;
| | - Debora Decote-Ricardo
- Departamento de Microbiologia e Imunologia Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro 23890-000, Brazil;
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
- Correspondence: ; Tel./Fax: +55-21-3938-6646
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| |
Collapse
|
33
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
34
|
Murphy EJ, Rezoagli E, Pogue R, Simonassi-Paiva B, Abidin IIZ, Fehrenbach GW, O'Neil E, Major I, Laffey JG, Rowan N. Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom - A potential treatment for inflammatory lung conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152177. [PMID: 34875322 PMCID: PMC9752827 DOI: 10.1016/j.scitotenv.2021.152177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. β-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of β-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between β-glucan content in extracts isolated from seven mushroom species. The extracts with the highest β-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1β insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of β-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.
Collapse
Affiliation(s)
- Emma J Murphy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Department of Graduate Studies, Limerick Institute of Technology, Limerick, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland; Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| | - Robert Pogue
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brazil
| | | | | | | | - Emer O'Neil
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
35
|
Zhang Y, Liu X, Zhao J, Wang J, Song Q, Zhao C. The phagocytic receptors of β-glucan. Int J Biol Macromol 2022; 205:430-441. [PMID: 35202631 DOI: 10.1016/j.ijbiomac.2022.02.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phagocytosis is a cellular process maintaining tissue balance and plays an essential role in initiating the innate immune response. The process of phagocytosis was triggered by the binding of pathogen-associated molecular patterns (PAMP) with their cell surface receptors on the phagocytes. These receptors not only perform phagocytic functions, but also bridge the gap between extracellular and intracellular communication, leading to signal transduction and the production of inflammatory mediators, which are crucial for clearing the invading pathogens and maintaining cell homeostasis. For the past few years, the application of β-glucan comes down to immunoregulation and anti-tumor territory. As a well-known PAMP, β-glucan is one of the most abundant polysaccharides in nature. By binding to specific receptors on immune cells and activating intracellular signal transduction pathways, it causes phagocytosis and promotes the release of cytokines. Further retrieval and straightening out literature related to β-glucan phagocytic receptors will help better elucidate their immunomodulatory functions. This review attempts to summarize physicochemical properties and specific processes involved in β-glucan induced phagocytosis, its phagocytic receptors, and cascade events triggered by β-glucan at the cellular and molecular levels.
Collapse
Affiliation(s)
- Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Xinning Liu
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Jun Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
36
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
37
|
In vitro gastrointestinal digestion of Lentinus squarrosulus powder and impact on human fecal microbiota. Sci Rep 2022; 12:2655. [PMID: 35173256 PMCID: PMC8850567 DOI: 10.1038/s41598-022-06648-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/31/2022] [Indexed: 01/07/2023] Open
Abstract
Humans have long-used mushrooms as food and medicine, but digestion and colonic fermentation of most mushrooms, including Lentinus squarrosulus is markedly unknown. Here, nutritional profile, digestion and colonic fermentation of L. squarrosulus powder (LP) were determined. The powder contained mainly carbohydrate and protein. SEM and F-TIR analysis of the resistant hydrolysate (RH) revealed that the structure and ratio of carbohydrate and protein components were altered, and released known immunomodulation agents; beta-glucans and mannose. Both LP and RH promoted selected probiotic bacteria, especially Bifidobacterium strains. Using fecal microbiota of five volunteers (V1, V2, V3, V4 and V5), RH stimulated the microbiota of all used volunteers, via decreasing the ratio of Firmicutes/Bacteroidetes ranging from 1.3 to 8.2 times. Also, RH increased the relative abundance of vital immunomodulators; Bacteroides, Bifidobacterium, Clostridium cluster XIVa and IV, and Sutterella. Additionally, RH fermentation enriched the content of branch-chain fatty acids (BCFA) and short-chain fatty acids (SCFA), indicating protein and carbohydrate usage. Notably, propionic and butyric acids were abundant in V1, V2 and V3, while in V4 and V5, acetic and butyric acids were most enriched. Suggesting L. squarrosulus as functional mushroom to improve health and prevent diseases by enhancing gut health.
Collapse
|
38
|
Krishnan R, Jang YS, Oh MJ. Beta glucan induced immune priming protects against nervous necrosis virus infection in sevenband grouper. FISH & SHELLFISH IMMUNOLOGY 2022; 121:163-171. [PMID: 35017048 DOI: 10.1016/j.fsi.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/28/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we studied the effect of β-glucan on the activation of antiviral immune responses against nervous necrosis virus (NNV) taking into consideration the role of innate immune training. Sevenband grouper primary macrophages showed an attenuated proinflammatory response and elevated antiviral response to NNV infection. In vitro, priming of β-glucan enhanced macrophage viability against NNV infection which is associated with the activation of sustained inflammatory cytokines gene expression. Observations were clear to understand that NLR Family CARD Domain Containing 3 (NLRC3) and caspase-1 activation and subsequent IL-1β production were reduced in β-glucan-primed macrophages. Subsequent markers for training including Lactate and abundance of HIF-1α were elevated in the cells following training. However, the lactate dehydrogenase (LDH) concentrations remained stable among the β-glucan stimulated infected and uninfected groups suggesting similar macrophage health in both groups. In vivo, the NNV-infected fish primed with β-glucan had a higher survival rate (60%) than the control NNV-infected group (40%). Our findings demonstrate that β-glucan induced protective responses against NNV infection and studies are underway to harness its potential applicability for prime and boost vaccination strategies.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| | - Yo-Seb Jang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| |
Collapse
|
39
|
MAVİ BULUT A, ŞİRİNYILDIZ F, ORAK C, CESUR G. The Protective Effects of Beta Glucan Against Experimental Renal Ischemia Reperfusion Injury. ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.996861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Wu CY, Meng J, Merchant A, Zhang YX, Li MW, Zhou XG, Wang Q. Microbial Response to Fungal Infection in a Fungus-Growing Termite, Odontotermes formosanus (Shiraki). Front Microbiol 2021; 12:723508. [PMID: 34880836 PMCID: PMC8645866 DOI: 10.3389/fmicb.2021.723508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The crosstalk between gut microbiota and host immunity has emerged as one of the research foci of microbiome studies in recent years. The purpose of this study was to determine how gut microbes respond to fungal infection in termites, given their reliance on gut symbionts for food intake as well as maintaining host health. Here, we used Metarhizium robertsii, an entomopathogenic fungus, to infect Odontotermes formosanus, a fungus-growing termite in the family Termitidae, and documented changes in host gut microbiota via a combination of bacterial 16S rDNA sequencing, metagenomic shotgun sequencing, and transmission electron microscopy. Our analyses found that when challenged with Metarhizium, the termite gut showed reduced microbial diversity within the first 12 h of fungal infection and then recovered and even surpassed pre-infection flora levels. These combined results shed light on the role of gut flora in maintaining homeostasis and immune homeostasis in the host, and the impact of gut flora dysbiosis on host susceptibility to infection.
Collapse
Affiliation(s)
- Chen-Yu Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jing Meng
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Yi-Xiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Wang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Wu J, Yang Z, Yang X, Chen X, Zhang H, Zhan X. Synthesis of branched β-1,3-glucan oligosaccharide with narrow degree of polymerization by fungi co-cultivation. Carbohydr Polym 2021; 273:118582. [PMID: 34560984 DOI: 10.1016/j.carbpol.2021.118582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
The large molecular weight and poor water solubility of β-1,3-glucan impede its potential applications. In this study, the β-1,3-glucan producing fungi and Trichoderma harzianum capable of secreting endo-β-1,3-glucanase were co-cultivated to produce branched β-1,3-glucan oligosaccharides (bOβGs) by fermentation with Sclerotium rolfsii and Schizophyllum commune. The highest bOβG yields from S. rolfsii in flasks were 4.53 and 9.94 g/L in a 7 L fermenter. Structural analysis proved that bOβG from S. rolfsii had a narrow degree of polymerization of 5-12, whereas bOβG from S. commune had a degree of polymerization of 5-15. Antioxidant tests showed that both bOβGs had remarkable DPPH radical scavenging activity and hydroxyl radical scavenging activity, and the activity of bOβG from S. commune was better than that of bOβG from S. rolfsii. In addition, bOβGs could promote the secretion of NO by mouse macrophages and increase the production of TNF-α, IL-1β, and IL-6 in RAW264.7.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zelin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuechen Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaotian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Paulovičová E, Hrubiško M. Humoral immune responses against facultative pathogen Candida utilis in atopic patients with vulvovaginal candidiasis. Candida utilis glucomannan - New serologic biomarker. Immunobiology 2021; 227:152154. [PMID: 34826687 DOI: 10.1016/j.imbio.2021.152154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/05/2022]
Abstract
Vulvovaginal candidiasis is one of the most commonly reported female genital tract infections, affecting approximately 70-75% of childbearing age women at least once during their lifetime. Approximately 50% of patients have refractory episodes and in 5-10% of cases the disease has a chronic course. The fungal cell wall represents the important host-invader interface. Cell-wall polysaccharides represent biological response modifiers and the pathogen-associated molecular patterns and virulence factors. Glycans are sensed by germ-line encoded pattern recognition receptors and reactively participate in immune system cell signaling. The most dominant cell-wall antigenic structures of Candida species as ß-glucan, α- and ß-mannans, glucomannan and other immunogenic polysaccharides are of particular relevancy for specific in vitro diagnosis and long-term follow-up of the Candida infection. In this study we assessed the immunobiological activity of facultative pathogen Candida utilis cell glucomannan and its effectivity as in vitro serological marker for antibody testing. The novel serologic assay has been developed and optimized for C. utilis serodiagnosis. The comparison assays were performed to establish relationship between antibodies against C. utilis, C. albicans and S. cerevisiae main cell-wall antigens in patient sera. The study evaluates applicability of glucomannan as serodiagnostic antigen and as a trigger of antigenspecific IgG, IgM and IgA antibody isotypes in the cohort of 35 atopic female subjects with recurrent vulvovaginal candidiasis. Statistically significant sera values of specific anti-glycan IgM and IgA class antibodies were revealed. The results are suggestive for efficient serological application of C.utilis glucomannan as in vitro disease marker and prospectively for follow-up of the specific long-term antimycotic therapy.
Collapse
Affiliation(s)
- E Paulovičová
- Immunol. & Cell Culture Labs, Dept. Glycoconjugate Immunochemistry, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - M Hrubiško
- Dept. Clin. Immunol .and Allergy, Oncology Institute of St. Elisabeth and Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
43
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|
44
|
Spacek J, Vocka M, Zavadova E, Konopasek B, Petruzelka L. Immunomodulation with β-glucan from Pleurotus ostreatus in patients with endocrine-dependent breast cancer. Immunotherapy 2021; 14:31-40. [PMID: 34784798 DOI: 10.2217/imt-2021-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the effect of pleuran (β-glucan from Pleurotus ostreatus) administration on the immune profile of patients with endocrine-dependent breast cancer (clinical stages I-II) in clinical and imaging remission. Methodology: Antitumor cellular immunity (CD19+, CD3+, CD4+ and CD8+ T lymphocytes, and natural killer cells) of 195 patients (49 in the pleuran group and 146 in the control group) was measured by flow cytometry. Results: We observed a significant increase in the absolute number of CD3+, CD19+, CD4+ and CD8+ T lymphocytes in the pleuran group compared with the control group. Conclusion: Our results suggest potential benefit of continuous pleuran administration on immune rehabilitation of cellular antitumor immunity and better prognosis in breast cancer patients in remission.
Collapse
Affiliation(s)
- Jan Spacek
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Eva Zavadova
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Bohuslav Konopasek
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| |
Collapse
|
45
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
46
|
Rizzo G, Goggi S, Giampieri F, Baroni L. A review of mushrooms in human nutrition and health. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Costa M, Cardoso C, Afonso C, Bandarra NM, Prates JAM. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J Anim Physiol Anim Nutr (Berl) 2021; 105:1075-1102. [PMID: 33660883 DOI: 10.1111/jpn.13509] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
The effects of dietary macroalgae, or seaweeds, on growth performance and meat quality of livestock animal species are here reviewed. Macroalgae are classified into Phaeophyceae (brown algae), Rhodophyceae (red algae) and Chlorophyceae (green algae). The most common macroalga genera used as livestock feedstuffs are: Ascophyllum, Laminaria and Undaria for brown algae; Ulva, Codium and Cladophora for green algae; and Pyropia, Chondrus and Palmaria for red algae. Macroalgae are rich in many nutrients, including bioactive compounds, such as soluble polysaccharides, with some species being good sources of n-3 and n-6 polyunsaturated fatty acids. To date, the incorporation of macroalgae in livestock animal diets was shown to improve growth and meat quality, depending on the alga species, dietary level and animal growth stage. Generally, Ascophyllum nodosum can increase average daily gain (ADG) in ruminant and pig mostly due to its prebiotic activity in animal's gut. A. nodosum also enhances marbling score, colour uniformity and redness, and can decrease saturated fatty acids in ruminant meats. Laminaria sp., mainly Laminaria digitata, increases ADG and feed efficiency, and improves the antioxidant potential of pork. Ulva sp., and its mixture with Codium sp., was shown to improve poultry growth at up to 10% feed. Therefore, seaweeds are promising sustainable alternatives to corn and soybean as feed ingredients, thus attenuating the current competition among food-feed-biofuel industries. In addition, macroalgae can hinder eutrophication and participate in bioremediation. However, some challenges need to be overcome, such as the development of large-scale and cost-effective algae production methods and the improvement of algae digestibility by monogastric animals. The dietary inclusion of Carbohydrate-Active enZymes (CAZymes) could allow for the degradation of recalcitrant macroalga cell walls, with an increase of nutrients bioavailability. Overall, the use of macroalgae as feedstuffs is a promising strategy for the development of a more sustainable livestock production.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Cláudia Afonso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
48
|
Wang Z, Feng K, Tang F, Xu M. Activation of the Host Immune Response in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae) Induced by Serratia marcescens Bizio. INSECTS 2021; 12:insects12110983. [PMID: 34821784 PMCID: PMC8617612 DOI: 10.3390/insects12110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary Hyphantria cunea (Drury) is a quarantine pest, due to its extensive host, leading to serious economic losses in the agricultural and forestry industries. To control this pest, it is increasingly important to use microbial pesticides because they are biologically active and ecologically safe. Serratia marcescens Bizio (SM1) is a potential biocontrol bacterium. Although SM1 has a pathogenic role in H. cunea, H. cunea self-defense reduces the pathogenic effect of SM1. In this study, immune-related differentially expressed genes (DEGs) in H. cunea were first identified after SM1 infection, and the immune regulation mode of H. cunea in response to SM1, including antimicrobial peptide synthesis pathways, melanization and cellular immunity, was revealed. According to the analysis, the immune system of H. cunea was induced by SM1. In summary, our study demonstrates how the immune systems of the H. cunea work to resist the infection of SM1, which provides the theoretical basis for researching more efficient microbial pesticides for H. cunea. Abstract Host–pathogen interactions are essential to our understanding of biological pesticides. Hyphantria cunea (Drury) is an important forest pest worldwide. The immune mechanism of the interaction between H. cunea and Serratia marcescens Bizio (SM1) is unclear. First, transcriptome sequencing and quantitative real-time PCR (qRT-PCR) analysis described the H. cunea immune response to SM1. A total of 234 immune-related differentially expressed genes (DEGs) were found. Many immune regulatory genes in three classical pathways were found. Antimicrobial peptides, including attacin B, cecropin A, gloverin, lebocin and diapausin, are involved in defending against SM1 challenge, and are mainly produced by Toll and immune deficiency (IMD) pathways. Some melanization genes were changed in H. cunea, which suggested that H. cunea melanization was activated by SM1. Furthermore, phagocytosis, autophagolysosome and apoptosis pathways in cellular immunity were activated in H. cunea against SM1. Finally, the expression patterns of 10 immune genes were analyzed systematically by qRT-PCR, and most of the genes were upregulated compared to the control. Our studies provide useful information about the immune response of H. cunea under the stress of SM1, which is important to understand how SM1 affects the immune system of H. cunea and provides new ideas to control H. cunea by using SM1.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-13813966269
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
49
|
Biotechnological Addition of β-Glucans from Cereals, Mushrooms and Yeasts in Foods and Animal Feed. Processes (Basel) 2021. [DOI: 10.3390/pr9111889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Varied cereal plants including, mushrooms, yeast, bacteria and algae are important sources of β-glucans, and many extraction procedures have been used in order to recover these valuable naturally occurring polysaccharides. The rheological and molecular properties of β-glucans can be utilized to be incorporated into various foods and to offer properties extremely beneficial to human health. Their functional effects are mainly determined by their molecular and structural characteristics. Consumption of foods fortified and enriched with β-glucans can contribute to the treatment of certain chronic diseases. Reduced cholesterol, cardiovascular and diabetic risk and moderate glycemic response of foods have been recorded with the consumption of these biologically active compounds. In addition, β-glucans are characterized by anti-cancer, antioxidant, anti-inflammatory and antiviral activities. As β-glucans interact with the foods in which they are incorporated, this review aims to discuss recent applications with quality and nutritional results of β-glucans incorporation with foods such as beverages, dairy, bakery, meat and pasta products, as well as their addition in animal feeds and their uses in other fields such as medicine.
Collapse
|
50
|
Wang Y, Liu M, Wang X, Zhong L, Shi G, Xu Y, Li Y, Li R, Huang Y, Ye X, Li Z, Cui Z. A novel β-1,3-glucanase Gns6 from rice possesses antifungal activity against Magnaporthe oryzae. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153493. [PMID: 34403886 DOI: 10.1016/j.jplph.2021.153493] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 05/21/2023]
Abstract
As members of the pathogenesis-related protein (PR)-2 family, β-1,3-glucanases play pivotal roles in plant defense. Previous study showed that the rice genome contains 16 genes encoding putative β-1,3-glucanases, and the β-1,3-glucanases in subfamily A were deduced to be involved in plant defense. However, there was limited direct evidence. In this study, the expression of rice β-1,3-glucanases Gns2-Gns6 belonging to subfamily A in rice plant infection with Magnaporthe oryzae was investigated, and the enhanced expression of Gns6 during infection confirmed its crucial role in the defense of rice seedlings. Enzymological characterization revealed that Gns6 preferentially hydrolyzed laminarin, pachymaran, and yeast glucan. The β-1,3; 1,6-glucanase Gns6 exhibited a specific activity of 1.2 U/mg with laminarin as the substrate. In addition, Gns6 could hydrolyze laminarin via an endo-type mechanism, yielding a series of oligosaccharides with various degrees of polymerization that are known immune elicitors in plants. Moreover, Gns6 exhibited a significant inhibitory effect against the formation of the germ tubes and appressoria, with potential applications in plant protection. Taken together, this study shows that Gns6 is an essential effector in the defensive response of rice against pathogenic fungi.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095, Nanjing, PR China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Guolong Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ye Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yangqing Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ruolin Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China; Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|