1
|
Marissen J, Reichert L, Härtel C, Fortmann MI, Faust K, Msanga D, Harder J, Zemlin M, Gomez de Agüero M, Masjosthusmann K, Humberg A. Antimicrobial Peptides (AMPs) and the Microbiome in Preterm Infants: Consequences and Opportunities for Future Therapeutics. Int J Mol Sci 2024; 25:6684. [PMID: 38928389 PMCID: PMC11203687 DOI: 10.3390/ijms25126684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in various organisms, including humans. Beyond their direct antimicrobial effects, AMPs play essential roles in various physiological processes. They induce angiogenesis, promote wound healing, modulate immune responses, and serve as chemoattractants for immune cells. AMPs regulate the microbiome and combat microbial infections on the skin, lungs, and gastrointestinal tract. Produced in response to microbial signals, AMPs help maintain a balanced microbial community and provide a first line of defense against infection. In preterm infants, alterations in microbiome composition have been linked to various health outcomes, including sepsis, necrotizing enterocolitis, atopic dermatitis, and respiratory infections. Dysbiosis, or an imbalance in the microbiome, can alter AMP profiles and potentially lead to inflammation-mediated diseases such as chronic lung disease and obesity. In the following review, we summarize what is known about the vital role of AMPs as multifunctional peptides in protecting newborn infants against infections and modulating the microbiome and immune response. Understanding their roles in preterm infants and high-risk populations offers the potential for innovative approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Janina Marissen
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Lilith Reichert
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- German Center for Infection Research, Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Mats Ingmar Fortmann
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Kirstin Faust
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Delfina Msanga
- Department of Pediatrics, Bugando Hospital, Catholic University of Health and Allied Sciences, Mwanza 33109, Tanzania;
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Quincke Research Center, Kiel University, 24105 Kiel, Germany;
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Katja Masjosthusmann
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| | - Alexander Humberg
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| |
Collapse
|
2
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
3
|
Daneshi M, Caton JS, Caixeta LS, Eftekhari Z, Ward AK. Expression, Regulation, and Function of β-Defensins in the Bovine Mammary Glands: Current Knowledge and Future Perspectives. Animals (Basel) 2023; 13:3372. [PMID: 37958127 PMCID: PMC10650070 DOI: 10.3390/ani13213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
β-Defensins are cationic antimicrobial peptides (AMPs) that play an important role in the innate immune defense of bovines. They are constitutively expressed in mammary glands and induced differently in response to pathogens. Their expression is influenced by various factors, including hormones, plant-derived compounds, and dietary energy imbalance. The toll-like receptors (TLRs)/nuclear factor-kappa B (NF-κB) pathway plays a crucial role in β-defensin induction, while alternative pathways such as mitogen-activated protein kinase (MAPK) and epigenetic regulation also make substantial contributions. β-Defensins exhibit bactericidal activity against a wide range of pathogens, including two major mastitis pathogens, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), primarily through membrane disruption. β-Defensins have low cytotoxicity to host cells and demonstrate immunomodulatory properties, and pathogens also display minimal resistance to these AMPs. Given the increasing concern in antimicrobial resistance, the potential of β-defensins as natural antimicrobials has garnered considerable attention. This article provides an overview of the characteristics of bovine β-defensins, their expression pathways, their mode of action, and factors influencing their expression in the mammary glands of cattle. Additionally, it identifies the current gaps in research within this field and suggests areas that require further investigation. Understanding the regulation and function of β-defensins offers valuable insights to develop effective strategies for strengthening the immune system of mammary glands, reducing the reliance on synthetic antimicrobials, and explore novel natural antimicrobial alternatives.
Collapse
Affiliation(s)
- Mojtaba Daneshi
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Luciano S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Zohre Eftekhari
- Biotechnology Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Alison K. Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
4
|
Narayan C, Kant V, Mahajan JK, Mohan B, Taneja N. Differential invasiveness & expression of antimicrobial peptides in Shigella serotypes. Indian J Med Res 2023; 158:303-310. [PMID: 37815071 PMCID: PMC10720961 DOI: 10.4103/ijmr.ijmr_4864_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 10/11/2023] Open
Abstract
Background & objectives The study of Shigella pathogenesis at present is severely hampered by the lack of a relevant animal model that replicates human bacillary dysentery. Different Shigella serogroups cause varying severity of clinical illness. Ex vivo colonization of Shigella flexneri, S. dysenteriae and S. sonnei were characterized in human paediatric colonic pinch biopsies in the in vitro organ culture (IVOC) model to study the invasiveness of Shigella by gentamicin protection assay (GPA). Furthermore, the expression of antimicrobial peptides (AMPs) in response to different serotypes of Shigella was also studied in IVOC model. Methods IVOC explants were inoculated with 109 colony forming units of different serotypes of Shigella and recovery of bacteria studied. Histopathological analysis was carried out to study inflammatory immune responses. GPA was done to elucidate the invasiveness of different serotypes of Shigella. Secretions of AMPs were measured by enzyme-linked immunosorbent assay (ELISA). Western blotting was performed to check the expression of AMPs and nuclear factor kappa B in IVOC explants. Results After 24 h post-infection, the colon biopsies showed intense inflammatory reaction. In both IVOC and GPA, S. dysenteriae 1 was the most invasive as compared to S. flexneri and S. sonnei. S. sonnei was the least invasive. ELISA demonstrated that S. sonnei dampened the HBD (human β-defensin)-2 responses whereas there was augmentation by S. dysenteriae and there was a modest but non-significant increase by S. flexneri. A modest increase in HBD-3 by S. sonnei and S. flexneri was observed but was not found to be significant. However, western blotting data showed upregulation of all AMPs by all serotypes. Western blotting is more sensitive than ELISA. Interpretation & conclusions In the present study, differences in invasiveness and AMP production induced by different serotypes of Shigella were found. Human intestinal IVOC represents a model system to investigate early interaction between pathogenic bacteria and the human gut.
Collapse
Affiliation(s)
- Chandradeo Narayan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Vishal Kant
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Jai Kumar Mahajan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
5
|
Migliario M, Yerra P, Gino S, Sabbatini M, Renò F. Laser Biostimulation Induces Wound Healing-Promoter β2-Defensin Expression in Human Keratinocytes via Oxidative Stress. Antioxidants (Basel) 2023; 12:1550. [PMID: 37627545 PMCID: PMC10451672 DOI: 10.3390/antiox12081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The innate immune system is the first line of defense of the body composed of anatomical barriers, such as skin and mucosa, as well as effector cells, antimicrobial peptides, soluble mediators, and cell receptors able to detect and destroy viruses and bacteria and to sense trauma and wounds to initiate repair. The human β-defensins belong to a family of antimicrobial small cationic peptides produced by epithelial cells, and show immunomodulatory and pro-healing activities. Laser biostimulation is a therapy widely used to contrast microbial infection and to accelerate wound healing through biological mechanisms that include the creation of oxidative stress. In this paper, we explored laser biostimulation's ability to modulate the production of two β-defensins, hBD-1 and hBD-2, in human keratinocytes and whether this modulation was, at least in part, oxidative-stress-dependent. Human spontaneously immortalized keratinocytes (HaCaT) were stimulated using laser irradiation at a 980 nm wavelength, setting the power output to 1 W (649.35 mW/cm2) in the continuous mode. Cells were irradiated for 0 (negative control), 5, 10, 25 and 50 s, corresponding to an energy stimulation of 0, 5, 10, 25 and 50 J. Positive control cells were treated with lipopolysaccharide (LPS, 200 ng/mL). After 6 and 24 h of treatment, the cell conditioned medium was collected and analyzed via ELISA assay for the production of hBD-1 and hBD-2. In another set of experiments, HaCaT were pre-incubated for 45 min with antioxidant drugs-vitamin C (Vit. C, 100 µM), sodium azide (NaN3, 1 mM); ω-nitro-L-arginine methyl ester (L-NAME, 10 mM) and sodium pyruvate (NaPyr, 100 µM)-and then biostimulated for 0 or 50 s. After 6 h, the conditioned medium was collected and used for the ELISA analysis. The hBD-1 and hBD-2 production by HaCaT was significantly increased by single laser biostimulation after 6 h in an energy-dependent fashion compared to basal levels, and both reached production levels induced by LPS. After 24 h, only hBD-2 production induced by laser biostimulation was further increased, while the basal and stimulated hBD-1 levels were comparable. Pre-incubation with antioxidative drugs was able to completely abrogate the laser-induced production of both hBD-1 and hBD-2 after 6 h, with the exception of hBD-1 production in samples stimulated after NaN3 pre-incubation. A single laser biostimulation induced the oxidative-stress-dependent production of both hBD-1 and hBD-2 in human keratinocytes. In particular, the pro-healing hBD-2 level was almost three times higher than the baseline level and lasted for 24 h. These findings increase our knowledge about the positive effects of laser biostimulation on wound healing.
Collapse
Affiliation(s)
- Mario Migliario
- Traslational Medicine Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy;
| | - Preetham Yerra
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| | - Sarah Gino
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| | - Maurizio Sabbatini
- Sciences and Innovative Technology Department, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Filippo Renò
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| |
Collapse
|
6
|
Zhang X, Liu L, Wang F, Li H, Fan J, Xie J, Jiao Y, Han Z, Ma D. Pathogenicity and innate immune responses induced by fowl adenovirus serotype 8b in specific pathogen-free chicken. Poult Sci 2023; 102:102846. [PMID: 37354616 PMCID: PMC10404781 DOI: 10.1016/j.psj.2023.102846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023] Open
Abstract
Fowl adenovirus serotype 8b (FAdV-8b), as causative agent of inclusion body hepatitis (IBH), poses a great threat to the poultry industry. Considering the importance of innate immune response in host against viral infections, we investigated pathogenicity of a FAdV-8b strain HLJ/151129 in 1-mo-old specific pathogen-free (SPF) chickens and immune responses of host to FAdV-8b infection in this study. The results demonstrated that no obvious clinical signs were observed in infected birds. Neither mobility nor mortality was observed in both FAdV-8b infected and control chickens, as well. However, hepatic necrosis and a small amount of inflammatory cell infiltration were observed by pathological analysis. Viral load was detected in bursa of Fabricius, cecal tonsils, liver, heart, spleen, Harderian glands, and thymus. Virus shedding and viremia generated as early as 3 days postinfection (dpi) (9/10) and reached the peak at 7 dpi (10/10). In addition, the infected birds had developed FAdV-specific antibodies at 7 dpi, and the antibody titers reached the peak at 14 dpi. Furthermore, the results demonstrated that the mRNA expression levels of most of toll-like receptors (TLRs), most of avian β-defensins (AvBDs), and cytokines [interleukin (IL)-2, IL-6, and interferon (IFN)-γ], were significantly upregulated in most tissues at early phases of FAdV-8b infection, especially in liver and spleen. In contrast, FAdV-8b infection results in downregulation of TLR4, TLR5, and TLR21 expressions in some tissues of infected chickens. In addition, FAdV-8b infection upregulated myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB) p65, and TIR-domain-containing adapter inducing interferon-β (TRIF) expression in some tissues, while decreased NF-κBp65 and TRIF in spleen at both 72 hpi and 21 dpi. Taken together, these results confirmed that FAdV-8b could replicate in all investigated tissues of infected birds, and then, result in production of FAdV-specific antibody titers. Meanwhile, the FAdV-8b infection induces strong innate immune responses at early stage in chickens, which may associate with the viral pathogenesis.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Liangliang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Fangfang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Huixin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jiahui Fan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jingjing Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yaru Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Zongxi Han
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Zhang K, Shen X, Han L, Wang M, Lian S, Wang K, Li C. Effects on the intestinal morphology, inflammatory response and microflora in piglets challenged with enterotoxigenic Escherichia coli K88. Res Vet Sci 2023; 157:50-61. [PMID: 36871456 DOI: 10.1016/j.rvsc.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in piglets, which leads to great economic losses. In this study, the ternary crossbred weaned piglets were orally administered with 1.5 × 1011 CFU ETEC K88 for three days. The results showed the ratio of villus length to crypt depth decreased in the duodenum and ileum after ETEC K88 infection. The expression of tight junction proteins ZO-1 in the jejunum and ileum, occludin in the jejunum and colon, and claudin-1 in the colon were down-regulated. The expression of IL-8 in the duodenum and jejunum, IL-13 in the colon, and TNF-α in the jejunum and colon were up-regulated. The expression of pBD1 in the colon, pBD2 in the jejunum, and pBD3 in the duodenum increased after infection. Meanwhile, the expression of TLR4, p38 MAPK and NF-κB p65 increased in all intestinal segments. Moreover, the expression of IL-8 in superficial cervical lymph nodes (SCLN), TNF-α in mesenteric lymph nodes (MLN), and IL-13 in inguinal lymph nodes (ILN) and MLN were up-regulated. The expression of pBD1 and pBD2 in SCLN and MLN, and pBD3 in SCLN were up-regulated. Acidobacteria and Proteobacteria were the most abundant phyla in both groups by analysis of intestinal microflora using 16 s rRNA sequencing, and the relative abundances of bacteria were found to be changed by Metastats software and LEfSe analysis. Our results indicated that cytokines and pBDs had different roles in different intestinal segments or different lymph nodes against ETEC K88, and gut microbiota was influenced after infection.
Collapse
Affiliation(s)
- Kun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Xiaoyang Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Lu Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China; Henan Animal Husbandry Service, Zhengzhou, Henan, People's Republic of China
| | - Mengyun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Shaoqiang Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China.
| | - Chunli Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China.
| |
Collapse
|
8
|
Kompuinen J, Keskin M, Yilmaz D, Gürsoy M, Gürsoy UK. Human β-Defensins in Diagnosis of Head and Neck Cancers. Cells 2023; 12:cells12060830. [PMID: 36980171 PMCID: PMC10047923 DOI: 10.3390/cells12060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers are malignant growths with high death rates, which makes the early diagnosis of the affected patients of utmost importance. Over 90% of oral cavity cancers come from squamous cells, and the tongue, oral cavity, and salivary glands are the most common locations for oral squamous cell carcinoma lesions. Human β-defensins (hBDs), which are mainly produced by epithelial cells, are cationic peptides with a wide antimicrobial spectrum. In addition to their role in antimicrobial defense, these peptides also take part in the regulation of the immune response. Recent studies produced evidence that these small antimicrobial peptides are related to the gene and protein expression profiles of tumors. While the suppression of hBDs is a common finding in head and neck cancer studies, opposite findings were also presented. In the present narrative review, the aim will be to discuss the changes in the hBD expression profile during the onset and progression of head and neck cancers. The final aim will be to discuss the use of hBDs as diagnostic markers of head and neck cancers.
Collapse
Affiliation(s)
- Jenna Kompuinen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Mutlu Keskin
- Oral and Dental Health Department, Altınbaş University, İstanbul 34147, Turkey
| | - Dogukan Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya 54050, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Welfare Division, Oral Health Care, 20101 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
9
|
Morio KA, Sternowski RH, Brogden KA. Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation. Antibiotics (Basel) 2023; 12:antibiotics12020361. [PMID: 36830272 PMCID: PMC9952314 DOI: 10.3390/antibiotics12020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Antibiotics are often used to treat oral infections. Unfortunately, excessive antibiotic use can adversely alter oral microbiomes and promote the development of antibiotic-resistant microorganisms, which can be difficult to treat. An alternate approach could be to induce the local transcription and expression of endogenous oral antimicrobial peptides (AMPs). To assess the feasibility and benefits of this approach, we conducted literature searches to identify (i) the AMPs expressed in the oral cavity; (ii) the methods used to induce endogenous AMP expression; and (iii) the roles that expressed AMPs may have in regulating oral inflammation, immunity, healing, and pain. Search results identified human neutrophil peptides (HNP), human beta defensins (HBD), and cathelicidin AMP (CAMP) gene product LL-37 as prominent AMPs expressed by oral cells and tissues. HNP, HBD, and LL-37 expression can be induced by micronutrients (trace elements, elements, and vitamins), nutrients, macronutrients (mono-, di-, and polysaccharides, amino acids, pyropeptides, proteins, and fatty acids), proinflammatory agonists, thyroid hormones, and exposure to ultraviolet (UV) irradiation, red light, or near infrared radiation (NIR). Localized AMP expression can help reduce infection, inflammation, and pain and help oral tissues heal. The use of a specific inducer depends upon the overall objective. Inducing the expression of AMPs through beneficial foods would be suitable for long-term health protection. Additionally, the specialized metabolites or concentrated extracts that are utilized as dosage forms would maintain the oral and intestinal microbiome composition and control oral and intestinal infections. Inducing AMP expression using irradiation methodologies would be applicable to a specific oral treatment area in addition to controlling local infections while regulating inflammatory and healing processes.
Collapse
Affiliation(s)
| | | | - Kim A. Brogden
- College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
10
|
Baindara P, Ganguli S, Chakraborty R, Mandal SM. Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clin Pract 2023; 13:125-147. [PMID: 36648852 PMCID: PMC9844411 DOI: 10.3390/clinpract13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The vast surface area of the respiratory system acts as an initial site of contact for microbes and foreign particles. The whole respiratory epithelium is covered with a thin layer of the airway and alveolar secretions. Respiratory secretions contain host defense peptides (HDPs), such as defensins and cathelicidins, which are the best-studied antimicrobial components expressed in the respiratory tract. HDPs have an important role in the human body's initial line of defense against pathogenic microbes. Epithelial and immunological cells produce HDPs in the surface fluids of the lungs, which act as endogenous antibiotics in the respiratory tract. The production and action of these antimicrobial peptides (AMPs) are critical in the host's defense against respiratory infections. In this study, we have described all the HDPs secreted in the respiratory tract as well as how their expression is regulated during respiratory disorders. We focused on the transcriptional expression and regulation mechanisms of respiratory tract HDPs. Understanding how HDPs are controlled throughout infections might provide an alternative to relying on the host's innate immunity to combat respiratory viral infections.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO 65211, USA
| | - Sriradha Ganguli
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
11
|
Solanki S, Kumar V, Kashyap P, Kumar R, De S, Datta TK. Beta-defensins as marker for male fertility: a comprehensive review†. Biol Reprod 2023; 108:52-71. [PMID: 36322147 DOI: 10.1093/biolre/ioac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine male fertility in animals has a direct impact on the productivity of dairy herds. The epididymal sperm maturations involve extensive sperm surface modifications to gain the fertilizing ability, especially by absorptions of the plethora of biomolecules, including glycoprotein beta-defensins (BDs), enzymes, organic ions, protein, and phospholipids. Defensins are broad-range nonspecific antimicrobial peptides that exhibit strong relations with innate and adaptive immunity, but their roles in male fertility are relatively recently identified. In the course of evolution, BD genes give rise to different clusters with specific functions, especially reproductive functions, by undergoing duplications and nonsynonymous mutations. BD polymorphisms have been reported with milk compositions, disease resistance, and antimicrobial activities. However, in recent decades, the link of BD polymorphisms with fertility has emerged as an appealing improvement of reproductive performance such as sperm motility, membrane integrity, cervical mucus penetration, evading of uterus immunosurveillance, oviduct cell attachment, and egg recognition. The reproductive-specific glycosylated BD class-A BDs (CA-BDs) have shown age- and sex-specific expressions in male reproductive organs, signifying their physiological pleiotropism, especially in the sperm maturation and sperm transport in the female reproductive tract. By considering adult male reproductive organ-specific BD expressions, importance in sperm functionalities, and bioinformatic analysis, we have selected two bovine BBD126 and BBD129 genes as novel potential biomarkers of bovine male fertility. Despite the importance of BDs, however, genomic characterization of most BD genes across most livestock and nonmodel organisms remains predictive/incomplete. The current review discusses our understanding of BD pleiotropic functions, polymorphism, and genomic structural attributes concerning the fertilizability of the male gamete in dairy animals.
Collapse
Affiliation(s)
- Subhash Solanki
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Vijay Kumar
- NMR lab-II, National Institute of immunology, New Delhi, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Sachinandan De
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India.,ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
12
|
Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23052499. [PMID: 35269641 PMCID: PMC8910669 DOI: 10.3390/ijms23052499] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.
Collapse
|
13
|
Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb Pathog 2021; 155:104930. [PMID: 33933603 PMCID: PMC8084285 DOI: 10.1016/j.micpath.2021.104930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitously present small peptides, which play a critical function in the innate immune system. The defensin class of AMPs represented an evolutionarily ancient family containing cationic cysteine residue and frequently expressed in epithelial or neutrophils cells. It plays myriad functions in host innate immune responses against various infection. Defensin has a broad spectrum of antimicrobial activities, including anti-bacteria, anti-viruses (AVPs), anti-fungi, anti-cancers, and also overcoming bacterial drug resistance. In this review, we compiled the progress on defensin, particularly incorporating the mechanism of action, their application as an antiviral agent, prospects in different areas, and limitations to be solved as an antiviral peptide. Defensins were explored, in particular, their capacity to stimulate innate and adaptive immunity by trigging as anti-coronavirus (COVID-19) peptides. The present review summarised its immunomodulatory and immunoenhancing properties and predominantly focused on its promising therapeutic adjuvant choices for combat against viral infection.
Collapse
Affiliation(s)
| | - Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
14
|
Yamamoto M, Aizawa R. Maintaining a protective state for human periodontal tissue. Periodontol 2000 2021; 86:142-156. [PMID: 33690927 DOI: 10.1111/prd.12367] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periodontitis, caused by infection with periodontal pathogens, is primarily characterized by inflammatory bone resorption and destruction of connective tissue. Simply describing periodontitis as a specific bacterial infection cannot completely explain the various periodontal tissue destruction patterns observed. Periodontal tissue damage is thought to be caused by various factors. In recent years, research goals for periodontal pathogens have shifted from searching for specific pathogens to investigating mechanisms that damage periodontal tissues. Bacteria interact directly with the host in several ways, influencing expression and activity of molecules that evade host defenses, and destroying local tissues and inhibiting their repair. The host's innate and acquired immune systems are important defense mechanisms that protect periodontal tissues from attack and invasion of periodontal pathogens, thus preventing infection. Innate and acquired immunity have evolved to confront the microbial challenge, forming a seamless defense network in periodontal tissues. In the innate immune response, host cells quickly detect, via specialized receptors, macromolecules and nucleic acids present on bacterial cell walls, and this triggers a protective, inflammatory response. The work of this subsystem of host immunity is performed mainly by phagocytes, beta-defensin, and the complement system. In addition, the first line of defense in oral innate immunity is the junctional epithelium, which acts as a physical barrier to the entry of oral bacteria and other nonself substances. In the presence of a normal flora, junctional epithelial cells differentiate actively and proliferate apically, with concomitant increase in chemotactic factor expression recruiting neutrophils. These immune cells play an important role in maintaining homeostasis and the protective state in periodontal tissue because they eliminate unwanted bacteria over time. Previous studies indicate a mechanism for attracting immune cells to periodontal tissue with the purpose of maintaining a protective state; although this mechanism can function without bacteria, it is enhanced by the normal flora. A better understanding of the relationship between the protective state and its disruption in periodontal disease could lead to the development of new treatment strategies for periodontal disease.
Collapse
Affiliation(s)
- Matsuo Yamamoto
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryo Aizawa
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
15
|
Shiozawa A, Kajiwara C, Ishii Y, Tateda K. N-acetyl-cysteine mediates protection against Mycobacterium avium through induction of human β-defensin-2 in a mouse lung infection model. Microbes Infect 2020; 22:567-575. [PMID: 32882411 DOI: 10.1016/j.micinf.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Mycobacterium avium complex is a causative organism for refractory diseases. In this study, we examined the effects of N-acetyl-cysteine on M. avium infection in vitro and in vivo. N-acetyl-cysteine treatment suppressed the growth of M. avium in A549 cells in a concentration-dependent manner. This effect was related to the induction of the antibacterial peptide human β-defensin-2. In a mouse model, N-acetyl-cysteine treatment significantly reduced the number of bacteria in the lungs and induced murine β-defensin-3. In interleukin-17-deficient mice, the effects of N-acetyl-cysteine disappeared, indicating that these mechanisms may be mediated by interleukin-17. Moreover, an additional reduction in bacterial load was observed in mice administered N-acetyl-cysteine in combination with clarithromycin. Our findings demonstrate the potent antimycobacterial effects of N-acetyl-cysteine against M. avium by inducing antimicrobial peptide, suggesting that N-acetyl-cysteine may have applications as an alternative to classical treatment regimens.
Collapse
Affiliation(s)
- Ayako Shiozawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan.
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Dou X, Gao N, Lan J, Han J, Yang Y, Shan A. TLR2/EGFR Are Two Sensors for pBD3 and pEP2C Induction by Sodium Butyrate Independent of HDAC Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:512-522. [PMID: 31870150 DOI: 10.1021/acs.jafc.9b06569] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host defense peptides (HDPs) are vital mucosal defense effectors of the innate immune response. The expression of HDPs is inducible in epithelial cells by potent endogenous inducers. Herein, our results demonstrate that sodium butyrate (NaB) induces the expression of porcine β-defensin-3 (pBD3) and porcine epididymis protein 2 splicing variant C (pEP2C) in a dose- and time-dependent manner, without modifying the production of proinflammatory cytokines, in porcine intestinal epithelial cells (IPEC J2). Moreover, NaB promotes toll-like receptor 2 (TLR2) expression. TLR2 silencing inhibits the pBD3 and pEP2C expression induced by NaB but does not abolish the histone deacetylase (HDAC) inhibitory activity of NaB. We found that NaB activated the nuclear factor-κB (NF-κB) pathway. Importantly, the degree of cell confluence governs the regulatory responses but does not affect the HDAC activity of NaB. Furthermore, epidermal growth factor receptor (EGFR), but not the mitogen-activated protein kinase (MAPK) pathway, is vital during the NaB-induced pBD3 and pEP2C regulation process. We also demonstrated that pBD3 overexpression increases interleukin-18 levels. This study showed that NaB simultaneously induces pBD3 and pEP2C via TLR2 and EGFR in IPEC J2 cells without increasing the risk of a harmful inflammatory response.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Nan Gao
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Jing Lan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Junlan Han
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Yang Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| |
Collapse
|
17
|
Mehlotra RK. Human Genetic Variation and HIV/AIDS in Papua New Guinea: Time to Connect the Dots. Curr HIV/AIDS Rep 2019; 15:431-440. [PMID: 30218255 DOI: 10.1007/s11904-018-0417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
18
|
Mir DA, Balamurugan K. In vitro and in vivo efficacy of Caenorhabditis elegans recombinant antimicrobial protein against Gram-negative bacteria. BIOFOULING 2019; 35:900-921. [PMID: 31617758 DOI: 10.1080/08927014.2019.1675048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial peptides (AMPs) are short, positively charged host defense peptides, found in various life forms from microorganisms to humans. AMPs are gaining more attention as substitutes for antibiotics in order to combat the risk posed by multi-drug- resistant pathogens. The nematode Caenorhabditis elegans relies solely on its innate immune defense to cope with its challenging life-style. Bacterial infection in C. elegans leads to induction of antimicrobial proteins, defensins, nemapores, cecropins, and neuropeptide-like proteins, which act to limit bacterial proliferation. This study reports how the C. elegans recombinant antibacterial factor (ABF-1) rapidly inhibited bacterial growth (Salmonella Typhi, Klebsiella pneumonia, Shigella sonnei and Vibrio alginolyticus). The ABF-1 exposure on S. Typhi, showed differential regulation in cell-cycle, DNA repair mechanism, membrane stability, and stress related proteins. The exogenous supply of ABF-1 protein has extended C. elegans survival by reducing the bacterial colony forming units on the nematode intestine. Together, these findings indicate the valuable and potential therapeutic applications of ABF-1 protein as antimicrobial agents against intracellular pathogens.
Collapse
|
19
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
20
|
Martínez-Castillo M, Santos-Argumedo L, Galván-Moroyoqui JM, Serrano-Luna J, Shibayama M. Toll-like receptors participate in Naegleria fowleri recognition. Parasitol Res 2018; 117:75-87. [PMID: 29128927 DOI: 10.1007/s00436-017-5666-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Naegleria fowleri is a protozoan that invades the central nervous system and causes primary amoebic meningoencephalitis. It has been reported that N. fowleri induces an important inflammatory response during the infection. In the present study, we evaluated the roles of Toll-like receptors in the recognition of N. fowleri trophozoites by human mucoepithelial cells, analyzing the expression and production of innate immune response mediators. After amoebic interactions with NCI-H292 cells, the expression and production levels of IL-8, TNF-α, IL-1β, and human beta defensin-2 were evaluated by RT-PCR, ELISA, immunofluorescence, and dot blot assays, respectively. To determine whether the canonical signaling pathways were engaged, we used different inhibitors, namely, IMG-2005 for MyD88 and BAY 11-7085 for the nuclear factor NFkB. Our results showed that the expression and production of the pro-inflammatory cytokines and beta defensin-2 were induced by N. fowleri mainly through the canonical TLR4 pathway in a time-dependent manner.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - José Manuel Galván-Moroyoqui
- Department of Medicine and Health Sciences, University of Sonora, Boulevard Luis Donaldo Colosio and Francisco Q. Salazar S/N, 83000, Hermosillo, SON, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
21
|
Genetic and immune determinants of immune activation in HIV-exposed seronegative individuals and their role in protection against HIV infection. INFECTION GENETICS AND EVOLUTION 2017; 66:325-334. [PMID: 29258786 DOI: 10.1016/j.meegid.2017.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Soon thereafter infection is established, hosts strive for an efficient eradication of microorganisms, with as limited tissue damage as possible, and durable immunological protection against re-infection. On the other hand, pathogens have developed countermeasures to escape host surveillance and to warrant diffusion to other hosts. In this molecular arms race the final results relies on multiple variables, including the genetic and immunologic e correlates of protection available for the host. In the field of HIV-infection, natural protection has been repeatedly associated to the presence of an immune activation state, at least in some cohorts of HESN (HIV-exposed seronegative). Indeed, these subjects, who naturally resist HIV-infection despite repeated exposure to the virus, are characterized by an increased expression of activation markers on circulating cells and greater production of immunological effector molecules both in basal condition and upon specific-stimulation. Although these results are not univocally shared, several publications emphasize the existence of a correlation between polymorphisms in genes associated with increased immune activation and the HESN phenotype. In this review, we will describe some of the genetic variants associated with protection against HIV infection. Understanding the basis of HIV resistance in HESN is mandatory to develop new preventative and therapeutic interventions.
Collapse
|
22
|
Dréno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol 2017; 31 Suppl 5:8-12. [DOI: 10.1111/jdv.14374] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- B. Dréno
- Department of Dermatology; Nantes University; Nantes France
| |
Collapse
|
23
|
Expression of Toll-like receptors 2, 4 and 6 in equine endometrial epithelial cells: A comparative in situ and in vitro study. Res Vet Sci 2017; 112:34-41. [PMID: 28119161 DOI: 10.1016/j.rvsc.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/09/2016] [Accepted: 01/11/2017] [Indexed: 01/28/2023]
Abstract
Endometrial epithelial cells form a luminal barrier and are exposed to pathogens and non-infectious antigens. Toll-like receptors (TLRs) mediate pathogen defenses and tissue homeostasis, but are also involved in the pathogenesis of inflammatory and fibrosing alterations. Endometrial diseases are important causes of subfertility in mares. The pathogenesis of some types of persistent inflammation and periglandular fibrosis (endometrosis) is unknown. The aim of this study was to compare by in situ and in vitro immunohistochemistry the expression of TLRs 2, 4 and 6 in equine endometrial epithelial cells. An epithelial immunostaining for TLRs 2, 4 and 6 was detected in 76%, 57% and 90% of tissue sections, respectively. Positive cells lined the luminal surface, glandular ducts, mid glands and/or basal glands. An immunoreaction for TLRs 2, 4 and 6 was observed in 100%, 33% and 94% of cell cultures, respectively. The immunosignal was located in the cytoplasm and/or nucleus of endometrial epithelial cells under in situ and in vitro conditions. Results indicate a complex regulation of the epithelial expression of TLR 2, 4 and 6 proteins. The examined cell culture has to be regarded as suitable in vitro model. This study provides the basis for comparative investigations into the impact of different stimuli on the cellular expression of TLRs 2, 4 and 6. These will assist to find out if TLRs are involved in the pathogenesis of endometrial diseases and may help to understand as to why some mares develop persistent endometritis.
Collapse
|
24
|
Alexander DB, Iigo M, Abdelgied M, Ozeki K, Tanida S, Joh T, Takahashi S, Tsuda H. Bovine lactoferrin and Crohn's disease: a case study. Biochem Cell Biol 2016; 95:133-141. [PMID: 28165294 DOI: 10.1139/bcb-2016-0107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A 22-year-old male suffering from abdominal pain, repeated diarrhea, and weight loss visited the Digestive Disease Department of Nagoya City University Hospital on 19 December 2011. He was hospitalized and diagnosed with Crohn's colitis. His Crohn's Disease Activity Index (CDAI) was 415. Treatment by granulocyte apheresis, mesalazine, and adalimumab was started. His CDAI was 314 on 30 December and 215 on 5 January. A colonoscopic examination on 19 January showed almost complete remission in the transverse colon and marked remission in the rectum. Mesalazine therapy was stopped on 28 February, and the patient was instructed to self-inject 40 mg of adalimumab every other week. His CDAI was 50 on 10 April, indicating clinical remission. His last self-injection of adalimumab was on 24 April 2012, and he started taking 1 g of bovine lactoferrin (bLF) daily. His CDAI was 35 on 8 January 2013. He continued taking 1 g of bLF daily without any other treatment for Crohn's disease. Laboratory blood tests on 7 September 2015 showed no sign of disease recurrence, and a colonoscopic examination on 23 October 2015 showed almost complete mucosal healing. This case indicates that ingestion of bLF to maintain Crohn's disease in a remissive state should be further explored.
Collapse
Affiliation(s)
| | - Masaaki Iigo
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Mohamed Abdelgied
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,b Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,c Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Keiji Ozeki
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Tanida
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- b Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuda
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
25
|
Mehlotra RK, Hall NB, Willie B, Stein CM, Weinberg A, Zimmerman PA, Vernon LT. Associations of Toll-Like Receptor and β-Defensin Polymorphisms with Measures of Periodontal Disease (PD) in HIV+ North American Adults: An Exploratory Study. PLoS One 2016; 11:e0164075. [PMID: 27727278 PMCID: PMC5058471 DOI: 10.1371/journal.pone.0164075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
Abstract
Polymorphisms in toll-like receptor (TLR) and β-defensin (DEFB) genes have been recognized as potential genetic factors that can influence susceptibility to and severity of periodontal diseases (PD). However, data regarding associations between these polymorphisms and PD are still scarce in North American populations, and are not available in HIV+ North American populations. In this exploratory study, we analyzed samples from HIV+ adults (n = 115), who received primary HIV care at 3 local outpatient HIV clinics and were monitored for PD status. We genotyped a total of 41 single nucleotide polymorphisms (SNPs) in 8 TLR genes and copy number variation (CNV) in DEFB4/103A. We performed regression analyses for levels of 3 periodontopathogens in subgingival dental plaques (Porphyromonas gingivalis [Pg], Treponema denticola [Td], and Tannerella forsythia [Tf]) and 3 clinical measures of PD (periodontal probing depth [PPD], gingival recession [REC], and bleeding on probing [BOP]). In all subjects combined, 2 SNPs in TLR1 were significantly associated with Td, and one SNP in TLR2 was significantly associated with BOP. One of the 2 SNPs in TLR1 was significantly associated with Td in Caucasians. In addition, another SNP in TLR1 and a SNP in TLR6 were also significantly associated with Td and Pg, respectively, in Caucasians. All 3 periodontopathogen levels were significantly associated with PPD and BOP, but none was associated with REC. Instrumental variable analysis showed that 8 SNPs in 6 TLR genes were significantly associated with the 3 periodontopathogen levels. However, associations between the 3 periodontopathogen levels and PPD or BOP were not driven by associations with these identified SNPs. No association was found between DEFB4/103A CNV and any periodontopathogen level or clinical measure in all samples, Caucasians, or African Americans. Our exploratory study suggests a role of TLR polymorphisms, particularly TLR1 and TLR6 polymorphisms, in PD in HIV+ North Americans.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| | - Noemi B. Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barne Willie
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lance T. Vernon
- Department of Pediatric and Community Dentistry, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| |
Collapse
|
26
|
Jiang W, Liu G, Tang W. MicroRNA-182-5p Ameliorates Liver Ischemia-Reperfusion Injury by Suppressing Toll-Like Receptor 4. Transplant Proc 2016; 48:2809-2814. [DOI: 10.1016/j.transproceed.2016.06.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
27
|
Defensins: The Case for Their Use against Mycobacterial Infections. J Immunol Res 2016; 2016:7515687. [PMID: 27725944 PMCID: PMC5048032 DOI: 10.1155/2016/7515687] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Human tuberculosis remains a huge global public health problem with an estimated 1/3rd of the population being infected. Defensins are antibacterial cationic peptides produced by a number of cell types, most notably neutrophil granulocytes and epithelial cells. All three defensin types (α-, β-, and θ-defensins) have antibacterial activities, mainly through bacterial membrane permeabilization. Defensins are effective against Gram-negative and Gram-positive bacteria including mycobacteria and are active both intra- and extracellularly. Mycobacterial resistance has never been demonstrated although the mprF gene encoding resistance in Staphylococcus aureus is present in the Mycobacterium tuberculosis genome. In addition to their antibacterial effect, defensins are chemoattractants for macrophages and neutrophils. There are many cases for their use for therapy or prophylaxis in tuberculosis as well. In conclusion, we propose that there is considerable scope and potential for exploring their use as therapeutic/prophylactic agents and more comprehensive survey of defensins from different species and their bioactivity is timely.
Collapse
|
28
|
Battersby AJ, Khara J, Wright VJ, Levy O, Kampmann B. Antimicrobial Proteins and Peptides in Early Life: Ontogeny and Translational Opportunities. Front Immunol 2016; 7:309. [PMID: 27588020 PMCID: PMC4989132 DOI: 10.3389/fimmu.2016.00309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
While developing adaptive immune responses, young infants are especially vulnerable to serious infections, including sepsis, meningitis, and pneumonia. Antimicrobial proteins and peptides (APPs) are key effectors that function as broad-spectrum anti-infectives. This review seeks to summarize the clinically relevant functional qualities of APPs and the increasing clinical trial evidence for their use to combat serious infections in infancy. Levels of APPs are relatively low in early life, especially in infants born preterm or with low birth weight (LBW). There are several rationales for the potential clinical utility of APPs in the prevention and treatment of infections in infants: (a) APPs may be most helpful in those with reduced levels; (b) during sepsis microbial products signal via pattern recognition receptors causing potentially harmful inflammation that APPs may counteract; and (c) in the era of antibiotic resistance, development of new anti-infective strategies is essential. Evidence supports the potential clinical utility of exogenous APPs to reduce infection-related morbidity in infancy. Further studies should characterize the ontogeny of antimicrobial activity in mucosal and systemic compartments, and examine the efficacy of exogenous-APP formulations to inform translational development of APPs for infant groups.
Collapse
Affiliation(s)
- Anna J Battersby
- Academic Paediatrics, Imperial College London, London, UK; Medical Research Council (MRC) Unit, Vaccines and Immunity Theme, Fajara, Gambia
| | - Jasmeet Khara
- Academic Paediatrics, Imperial College London, London, UK; Department of Pharmacy, National University of Singapore, Singapore
| | | | - Ofer Levy
- Precision Vaccines Program, Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Beate Kampmann
- Academic Paediatrics, Imperial College London, London, UK; Medical Research Council (MRC) Unit, Vaccines and Immunity Theme, Fajara, Gambia
| |
Collapse
|
29
|
Ahnert P, Creutz P, Scholz M, Schütte H, Engel C, Hossain H, Chakraborty T, Bauer M, Kiehntopf M, Völker U, Hammerschmidt S, Loeffler M, Suttorp N. PROGRESS - prospective observational study on hospitalized community acquired pneumonia. BMC Pulm Med 2016; 16:108. [PMID: 27535544 PMCID: PMC4987996 DOI: 10.1186/s12890-016-0255-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/03/2016] [Indexed: 12/23/2022] Open
Abstract
Background Community acquired pneumonia (CAP) is a high incidence disease resulting in about 260,000 hospital admissions per year in Germany, more than myocardial infarction or stroke. Worldwide, CAP is the most frequent infectious disease with high lethality ranging from 1.2 % in those 20–29 years old to over 10 % in patients older than 70 years, even in industrial nations. CAP poses numerous medical challenges, which the PROGRESS (Pneumonia Research Network on Genetic Resistance and Susceptibility for the Evolution of Severe Sepsis) network aims to tackle: Operationalization of disease severity throughout the course of disease, outcome prediction for hospitalized patients and prediction of transitions from uncomplicated CAP to severe CAP, and finally, to CAP with sepsis and organ failure as a life-threatening condition. It is a major aim of PROGRESS to understand and predict patient heterogeneity regarding outcome in the hospital and to develop novel treatment concepts. Methods PROGRESS was designed as a clinical, observational, multi-center study of patients with CAP requiring hospitalization. More than 1600 patients selected for low burden of co-morbidities have been enrolled, aiming at a total of 3000. Course of disease, along with therapy, was closely monitored by daily assessments and long-term follow-up. Daily blood samples allow in depth molecular-genetic characterization of patients. We established a well-organized workflow for sample logistics and a comprehensive data management system to collect and manage data from more than 50 study centers in Germany and Austria. Samples are stored in a central biobank and clinical data are stored in a central data base which also integrates all data from molecular assessments. Discussion With the PROGRESS study, we established a comprehensive data base of high quality clinical and molecular data allowing investigation of pressing research questions regarding CAP. In-depth molecular characterization will contribute to the discovery of disease mechanisms and establishment of diagnostic and predictive biomarkers. A strength of PROGRESS is the focus on younger patients with low burden of co-morbidities, allowing a more direct look at host biology with less confounding. As a resulting limitation, insights from PROGRESS will require validation in representative patient cohorts to assess clinical utility. Trial registration The PROGRESS study was retrospectively registered on May 24th, 2016 with ClinicalTrials.gov: NCT02782013
Collapse
Affiliation(s)
- Peter Ahnert
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Medical Faculty, University of Leipzig, Haertelstr. 16-18, 04107, Leipzig, Germany.
| | - Petra Creutz
- Department of Infectious Disease and Respiratory Medicine, Charité - University Medicine Berlin, Campus Virchowklinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Medical Faculty, University of Leipzig, Haertelstr. 16-18, 04107, Leipzig, Germany
| | - Hartwig Schütte
- Department of Pulmonary Medicine, Ernst von Bergmann Hospital, Charlottenstr. 72, 14467, Potsdam, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Medical Faculty, University of Leipzig, Haertelstr. 16-18, 04107, Leipzig, Germany
| | - Hamid Hossain
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Medicine, Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
| | - Michael Kiehntopf
- Integrated Biobank Jena (IBBJ) and Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17487, Greifswald, Germany
| | - Sven Hammerschmidt
- Interfaculty Institute for Genetics and Functional Genomics, Department Genetics of Microorganisms, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17487, Greifswald, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Medical Faculty, University of Leipzig, Haertelstr. 16-18, 04107, Leipzig, Germany
| | - Norbert Suttorp
- Department of Infectious Disease and Respiratory Medicine, Charité - University Medicine Berlin, Campus Virchowklinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
| | | |
Collapse
|
30
|
Wan MLY, Ling KH, Wang MF, El-Nezami H. Green tea polyphenol epigallocatechin-3-gallate improves epithelial barrier function by inducing the production of antimicrobial peptide pBD-1 and pBD-2 in monolayers of porcine intestinal epithelial IPEC-J2 cells. Mol Nutr Food Res 2016; 60:1048-58. [DOI: 10.1002/mnfr.201500992] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Murphy L. Y. Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building; The University of Hong Kong; Pokfulam Hong Kong
| | - K. H. Ling
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building; The University of Hong Kong; Pokfulam Hong Kong
| | - M. F. Wang
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building; The University of Hong Kong; Pokfulam Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building; The University of Hong Kong; Pokfulam Hong Kong
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
31
|
Induction of cytokines via NF-κB and p38 MAP kinase signalling pathways associated with the immunomodulation by Lactobacillus plantarum NDC 75017 in vitro and in vivo. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Martin L, van Meegern A, Doemming S, Schuerholz T. Antimicrobial Peptides in Human Sepsis. Front Immunol 2015; 6:404. [PMID: 26347737 PMCID: PMC4542572 DOI: 10.3389/fimmu.2015.00404] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1-3 and human beta-defensins (HBDs) 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1-3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1-3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Anne van Meegern
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Sabine Doemming
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| |
Collapse
|
33
|
Oh YT, Tran D, Buchanan TA, Selsted ME, Youn JH. θ-Defensin RTD-1 improves insulin action and normalizes plasma glucose and FFA levels in diet-induced obese rats. Am J Physiol Endocrinol Metab 2015; 309:E154-60. [PMID: 25991648 PMCID: PMC4504933 DOI: 10.1152/ajpendo.00131.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/16/2015] [Indexed: 11/22/2022]
Abstract
Inflammation is implicated in metabolic abnormalities in obesity and type 2 diabetes. Because θ-defensins have anti-inflammatory activities, we tested whether RTD-1, a θ-defensin, improves metabolic conditions in diet-induced obesity (DIO). DIO was induced by high-fat feeding in obese-prone CD rats from 4 wk of age. Starting at age 10 wk, the DIO rats were treated with saline or RTD-1 for 4 or 8 wk. DIO rats gained more weight than low-fat-fed controls. RTD-1 treatment did not alter body weight or calorie intake in DIO rats. Plasma glucose, FFA, triglyceride (TG), and insulin levels increased in DIO rats; RTD-1 normalized plasma glucose and FFA levels and showed tendencies to lower plasma insulin and TG levels. Hepatic and skeletal muscle TG contents increased in DIO rats; RTD-1 decreased muscle, but not hepatic, TG content. Insulin sensitivity, estimated using homeostasis model assessment of insulin resistance and the glucose clamp technique, decreased in DIO rats, but this change was markedly reversed by RTD-1. RTD-1 had no significant effects on plasma cytokine/chemokine levels or IL-1β and TNF-α expression in liver or adipose tissues. RTD-1 treatment decreased hepatic expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, suggesting that the effect of RTD-1 on plasma glucose (or insulin action) might be mediated by its effect to decrease hepatic gluconeogenesis. Thus, RTD-1 ameliorated insulin resistance and normalized plasma glucose and FFA levels in DIO rats, supporting the potential of RTD-1 as a novel therapeutic agent for insulin resistance, metabolic syndrome, or type 2 diabetes.
Collapse
Affiliation(s)
- Young Taek Oh
- Departments of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Dat Tran
- Department of Pathology and Laboratory Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Thomas A Buchanan
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California; and
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, University of Southern California Keck School of Medicine, Los Angeles, California; Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jang H Youn
- Departments of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California;
| |
Collapse
|
34
|
Host Avian Beta-Defensin and Toll-Like Receptor Responses of Pigeons following Infection with Pigeon Paramyxovirus Type 1. Appl Environ Microbiol 2015; 81:6415-24. [PMID: 26162868 DOI: 10.1128/aem.01413-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
The high morbidity and mortality in pigeons caused by pigeon paramyxovirus type 1 (PPMV-1) highlights the need for new insights into the host immune response and novel treatment approaches. Host defense peptides (HDPs) are key components of the innate immune system. In this study, three novel avian β-defensins (AvBDs 2, 7, and 10) were characterized in pigeons and shown to possess direct antiviral activity against PPMV-1 in vitro. In addition, we evaluated the mRNA expression of these AvBDs and other immune-related genes in tissues of 2-month-old infected pigeons at 3 and 7 days postinfection. We observed that the expression of AvBD2 in the cecal tonsil, lungs, and proventriculus, as well as the expression of AvBD10 in the spleen, lungs, proventriculus, and kidneys, was upregulated in infected pigeons. Similarly, the expression of both Toll-like receptor 3 (TLR3) and TLR7 was increased in the spleen, trachea, and proventriculus, while TLR15 expression was increased only in the lungs of infected pigeons. In addition, inducible nitric oxide synthase (iNOS) expression was upregulated in the spleen, the bursa of Fabricius, the trachea, and the proventriculus of infected pigeons. Furthermore, we observed a high correlation between the expression of AvBD2 and the expression of either TLR7 or TLR15, as well as between AvBD10 expression and either TLR3 or TLR7 expression in respective tissues. The results suggest that PPMV-1 infection can induce innate host responses characterized by the activation of TLRs, particularly TLR3 and TLR7, AvBDs (2 and 10), and iNOS in pigeons.
Collapse
|
35
|
Defensins: “Simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev 2015; 26:361-70. [DOI: 10.1016/j.cytogfr.2014.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022]
|
36
|
Michailidis G, Anastasiadou M, Guibert E, Froment P. Activation of innate immune system in response to lipopolysaccharide in chicken Sertoli cells. Reproduction 2014; 148:259-70. [DOI: 10.1530/rep-14-0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sertoli cells (SCs) play an important physiological role in the testis, as they support, nourish, and protect the germ cells. As protection of the developing spermatozoa is an emerging aspect of reproductive physiology, this study examined the expression pattern of innate immune-related genes, including avian β-defensins (AvBDs), Toll-like receptors (TLRs), and cytokines, and investigated the time course of an inflammatory response in rooster SCs triggered by exposure to the bacterial endotoxin lipopolysaccharide (LPS). SCs were isolated from 6-week-old chicken, culturedin vitro, and stimulated with 1 μg/ml LPS at different time courses (0, 6, 12, 24, and 48 h). Data on expression analysis revealed that all ten members of the chickenTLRfamily, nine members of theAvBDfamily, as well as eight cytokine genes were expressed in SCs. Quantitative real-time PCR analysis revealed that LPS treatment resulted in significant induction of the expression levels of sixTLRs, sixAvBDs, and four cytokine genes, while two cytokine genes were downregulated and two other genes were unchanged. The increasing interleukin 1β (IL1β) production was confirmed in the conditioned medium. Furthermore, the phagocytosis of SCs was increased after LPS treatment. In conclusion, these findings provide evidence that SCs express innate immune-related genes and respond directly to bacterial ligands. These genes represent an important component of the immune system, which could be integrated into semen, and present a distinctive constituent of the protective repertoire of the testis against ascending infections.
Collapse
|
37
|
Takeda A, Tsubaki T, Sagae N, Onda Y, Inada Y, Mochizuki T, Okumura K, Kikuyama S, Kobayashi T, Iwamuro S. Bacterial toxin-inducible gene expression of cathelicidin-B1 in the chicken bursal lymphoma-derived cell line DT40: functional characterization of cathelicidin-B1. Peptides 2014; 59:94-102. [PMID: 24984089 DOI: 10.1016/j.peptides.2014.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 12/16/2022]
Abstract
Chicken cathelicidin-B1 (chCATH-B1) is a major host defense peptide of the chicken bursa of Fabricius (BF). To investigate the mechanisms of chCATH-B1 gene expression in the BF, we focused on the DT40 cell line derived from chicken bursal lymphoma as a model for analysis. A cDNA encoding chCATH-B1 precursor was cloned from DT40 cells. The nucleotide sequence of the cDNA was identical with that of the BF chCATH-B1. A broth dilution analysis showed that the synthetic chCATH-B1 exhibited a significant defensive activity against both Escherichia coli and Staphylococcus aureus. A scanning microscopic analysis demonstrated that chCATH-B1 inhibited bacterial growth through membrane destruction with formation of blebs and spheroplasts. Limulus amoebocyte lysate assay and electromobility shift assay results revealed that chCATH-B1 bound to lipopolysaccharide (LPS) and lipoteichoic acid (LTA), which are the surface substances of the E. coli and S. aureus cell, respectively. A chemotactic assay results revealed that chCATH-B1 showed mouse-derived P-815 mastocytoma migrating activity dose-dependently but with a higher concentration, resulting in a loss of the activity. A semi-quantitative real-time RT-PCR analysis revealed that LPS stimulated chCATH-B1 gene expression in a dose-dependent manner and that the LPS-inducible chCATH-B1 gene expression was inhibited by the administration of dexamethasone. The chCATH-B1 mRNA levels in DT40 cells were also increased by the administration of bacterial LTA. The results indicate that bacterial toxins induce chCATH-B1 gene expression in the chicken BF and the peptide expressed in the organ would act against pathogenic microorganisms not only directly but also indirectly by attracting mast cells.
Collapse
Affiliation(s)
- Asuna Takeda
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takashi Tsubaki
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Nozomi Sagae
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yumiko Onda
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yuri Inada
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takuya Mochizuki
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kazuo Okumura
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sakae Kikuyama
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; Department of Biology, Faculty of Education and Integrated Arts and Sciences, Center for Advanced Biomedical Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjyuku-ku, Tokyo 162-8480, Japan
| | - Tetsuya Kobayashi
- Department of Regulatory Biology, Faculty of Sciences, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shawichi Iwamuro
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
38
|
Kruse T, Kristensen HH. Using antimicrobial host defense peptides as anti-infective and immunomodulatory agents. Expert Rev Anti Infect Ther 2014; 6:887-95. [DOI: 10.1586/14787210.6.6.887] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Sollid J, Furberg A, Hanssen A, Johannessen M. Staphylococcus aureus: Determinants of human carriage. INFECTION GENETICS AND EVOLUTION 2014; 21:531-41. [DOI: 10.1016/j.meegid.2013.03.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 02/02/2023]
|
40
|
Cuperus T, Coorens M, van Dijk A, Haagsman HP. Avian host defense peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:352-369. [PMID: 23644014 DOI: 10.1016/j.dci.2013.04.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
41
|
Williams WM, Torres S, Siedlak SL, Castellani RJ, Perry G, Smith MA, Zhu X. Antimicrobial peptide β-defensin-1 expression is upregulated in Alzheimer's brain. J Neuroinflammation 2013; 10:127. [PMID: 24139179 PMCID: PMC3817866 DOI: 10.1186/1742-2094-10-127] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/01/2013] [Indexed: 02/01/2023] Open
Abstract
Background The human β-defensins (hBDs) are a highly conserved family of cationic antimicrobial and immunomodulatory peptides expressed primarily by epithelial cells in response to invasion by bacteria, fungi and some viruses. To date, the most studied members of this family of peptides are hBD-1, -2, and -3. Expression of hBD-1 and -2 has been demonstrated previously in cultured microglia and astrocytes of both mouse and human brain. Unlike inducible hBD-2 and -3, hBD-1 is constitutively expressed and is not generally upregulated by proinflammatory factors. In this study, we investigated whether hBDs, as active components of the innate immune response, are affected by pathological events in the Alzheimer’s disease (AD) brain. We assessed the expression of hBD-1, -2, and -3 in tissue obtained at autopsy from AD and age-matched control brains. Methods Fixed and frozen choroid plexus and the CA1 region of the hippocampus were obtained at autopsy from individuals diagnosed with AD, or from age-matched control brains without diagnosed neurodegenerative disease. Histopathologically diagnosed AD brain tissue was obtained for our study. Immunocytochemical analysis was performed using affinity purified polyclonal antibodies directed against hBD-1, -2, or -3. TaqMan gene expression assays were used to quantify the mRNA of hBD-1, -2, and -3 in the choroid plexus and hippocampus. Immunocytochemical detection of iron deposits was achieved using a modified Perl’s stain for redox-active iron. In vitro experiments were performed on human primary oral epithelial cells to model the human choroid plexus epithelial response to ferric chloride. Cells were then exposed to ferric chloride added to selected wells at 0, 1, or 10 mM concentrations for 24 h at 37°C. Total mRNA was isolated to quantify hBD-1 mRNA expression by RTqPCR. Results hBD-1 peptide is apparent in astrocytes of the AD hippocampus and hippocampal neurons, notably within granulovacuolar degeneration structures (GVD). A higher level of hBD-1 was also seen in the choroid plexus of AD brain in comparison to age-matched control tissue. Increased expression of hBD-1 mRNA was observed only in the choroid plexus of the AD brain when compared to expression level in age-matched control brain. Redox-active iron was also elevated in the AD choroid plexus and in vitro addition of Fe+3Cl3 to cultured epithelial cells induced hBD-1 mRNA expression. Conclusions Our findings suggest interplay between hBD-1 and neuroimmunological responses in AD, marked by microglial and astrocytic activation, and increased expression of the peptide within the choroid plexus and accumulation within GVD. As a constitutively expressed component of the innate immune system, we propose that hBD-1 may be of considerable importance early in the disease process. We also demonstrate that increased iron deposition in AD may contribute to the elevated expression of hBD-1 within the choroid plexus. These findings represent a potentially important etiological aspect of Alzheimer’s disease neuropathology not previously reported.
Collapse
Affiliation(s)
- Wesley M Williams
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 2124 Cornell Rd,, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hill DR, Rho HK, Kessler SP, Amin R, Homer CR, McDonald C, Cowman MK, de la Motte CA. Human milk hyaluronan enhances innate defense of the intestinal epithelium. J Biol Chem 2013; 288:29090-104. [PMID: 23950179 PMCID: PMC3790008 DOI: 10.1074/jbc.m113.468629] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.
Collapse
Affiliation(s)
- David R. Hill
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Hyunjin K. Rho
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Sean P. Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Ripal Amin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Craig R. Homer
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Christine McDonald
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Mary K. Cowman
- the Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York, 11201
| | - Carol A. de la Motte
- From the Department of Molecular Medicine and
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
43
|
Abstract
Cationic and amphiphilic peptides are widely distributed in eukaryotic organisms and constitute a first line of host defense against invading pathogens. Some of these host defense peptides (HDPs) combine specific antibiotic activities with modulation of immune responses. Moreover, they are active against bacteria resistant to conventional antibiotics and show only modest resistance development under in vitro selection pressure. Based on these features, HDPs and particularly defensins are considered a promising source of novel anti-infective agents. This review summarizes the current knowledge about defensins from different kingdoms and discusses their potential for therapeutic application.
Collapse
|
44
|
Ertugrul AS, Tekin Y, Alpaslan NZ, Bozoglan A, Sahin H, Dikilitas A. Comparison of peri-implant crevicular fluid levels of adrenomedullin and human beta defensins 1 and 2 from mandibular implants with different implant stability quotient levels in nonsmoker patients. J Periodontal Res 2013; 49:480-8. [PMID: 23898869 DOI: 10.1111/jre.12127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE To achieve satisfactory osseointegration, primary stability and healthy peri-implant tissue must be available. In this study, our objective was to compare the adrenomedullin, human beta-defensin (hBD)-1 and hBD-2 levels in implants with different implant stability quotient (ISQ) values and with different peri-implant tissue health values in the peri-implant crevicular fluid. MATERIAL AND METHODS Thirty patients with 60 endosseous osseointegrated implants were included in this study. Following the completion of the osseointegration process, these implants were divided into two main groups: a group of 15 implants with peri-implantitis (peri-implantitis: 40 ≤ ISQ ≤ 80 peri-implantitis, n = 15) and a group of 45 implants with healthy peri-implant tissue. The healthy peri-implant tissue group was further divided into three subgroups according to their ISQ values (Healthy-60: 60 ≤ ISQ ≤ 70, healthy peri-implant, n = 15; Healthy-80: 71 ≤ ISQ ≤ 80, healthy peri-implant, n = 15; and Healthy-100: 81 ≤ ISQ ≤ 100, healthy peri-implant, n = 15). The levels of adrenomedullin, hBD-1 and hBD-2 in the peri-implant crevicular fluid were assessed using ELISAs. RESULTS When the peri-implant clinical measurements were compared within groups, they were found to be highest in the peri-implantitis group and lowest in the Healthy-100 group. The adrenomedullin, hBD-1 and hBD-2 levels in the peri-implant crevicular fluid of the peri-implantitis group were found to be significantly higher than those in the Healthy-60, Healthy-80 and Healthy-100 groups. When only the healthy peri-implant tissue groups were evaluated, the adrenomedullin, hBD-1 and hBD-2 levels in the peri-implant crevicular fluid of the Healthy-60 group were found to be significantly higher than those in the Healthy-80 and Healthy-100 groups. The lowest adrenomedullin, hBD-1 and hBD-2 levels were observed in the Healthy-100 group. CONCLUSION In cases of peri-implantitis, higher adrenomedullin, hBD-1 and hBD-2 levels were observed. These results indicate the presence of a tissue response to prevent the creation of a pathological environment in the peri-implant tissue. In groups with healthy peri-implant tissues, the ISQ value decreases as the adrenomedullin, hBD-1 and hBD-2 levels increase. This condition is thought to be caused by increased dental plaque accumulation and bone resorption in addition to increased lateral implant movements and colonization of microorganisms in the microcavities between the implant elements.
Collapse
Affiliation(s)
- A S Ertugrul
- Department of Periodontology, Faculty of Dentistry, Yuzuncu Yil University, Van, Turkey
| | | | | | | | | | | |
Collapse
|
45
|
Yu G, Wang L, Li Y, Ma Z, Li Y. Identification of drug candidate for osteoporosis by computational bioinformatics analysis of gene expression profile. Eur J Med Res 2013; 18:5. [PMID: 23448234 PMCID: PMC3599344 DOI: 10.1186/2047-783x-18-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/31/2013] [Indexed: 11/12/2022] Open
Abstract
Background Osteoporosis is a condition of bones that leads to an increased susceptibility to fracture and consequent painful morbidity. It has become a major issue of life quality worldwide. However, until now, the molecular mechanism of this disease is far from being clear. Methods In this study, we obtained the gene expression profile of osteoporosis and controls from Gene Expression Omnibus and identified differentially expressed genes (DEGs) using classical t-test method. Then, functional enrichment analyses were performed to identify the dysregulated Gene Ontology categories and dysfunctional pathways in osteoporosis patients compared to controls. Besides, the connectivity map was used to identify compounds that induced inverse gene changes to osteoporosis. Results A total of 5581 DEGs were identified. We found these DEGs were enriched in 9 pathways by pathway enrichment analysis, including focal adhesion and MAPK signaling pathway. Besides, sanguinarine was identified as a potential therapeutic drug candidate capable of targeting osteoporosis. Conclusion Although candidate agents identified by our approach may be premature for clinical trials, it is clearly a direction that warrants additional consideration.
Collapse
Affiliation(s)
- Guiyong Yu
- Department of Orthopedic, The people's Hospital of Hengshui, No,180 Renmin Street, 053000, Hebei Province, Hengshui, China.
| | | | | | | | | |
Collapse
|
46
|
Ertugrul AS, Sahin H, Dikilitas A, Alpaslan N, Bozoglan A. Evaluation of beta-2 microglobulin and alpha-2 macroglobulin levels in patients with different periodontal diseases. Aust Dent J 2013; 58:170-5. [PMID: 23713636 DOI: 10.1111/adj.12022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Beta-2 microglobulin (B2M) and alpha-2 macroglobulin (A2M) play key roles in the immune system. The aim of this study was to compare B2M and A2M levels in patients with different periodontal diseases. METHODS Eighty patients (20 periodontally healthy, 20 with gingivitis, 20 with chronic periodontitis and 20 with generalized aggressive periodontitis) were enrolled in the study. The analysis of B2M and A2M was performed on gingival crevicular fluid (GCF) using an enzyme-linked immunosorbent assay in GCF. RESULTS The total levels of B2M and A2M were statistically lower in the periodontally healthy group than in the other groups (p < 0.05) and significantly higher in the generalized aggressive periodontitis group compared to the other groups (p < 0.05). CONCLUSIONS B2M and A2M play key roles in the balance between periodontal health and disease. It is proposed that tissues release B2M and A2M to stop inflammation and inhibit the proliferation of microorganisms and this may be the reason for the high levels of B2M and A2M in the generalized aggressive periodontitis and chronic periodontitis groups. B2M and A2M are assumed to be user-friendly and cost-effective markers for periodontal disease to identify asymptomatic diseases.
Collapse
Affiliation(s)
- A S Ertugrul
- Department of Periodontology, Faculty of Dentistry, Yuzuncu Yil University, Van, Turkey.
| | | | | | | | | |
Collapse
|
47
|
Ji S, Choi Y. Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J Periodontal Implant Sci 2013; 43:3-11. [PMID: 23507986 PMCID: PMC3596631 DOI: 10.5051/jpis.2013.43.1.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/18/2013] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is a chronic inflammation of periodontal tissue caused by subgingival plaque-associated bacteria. Periodontitis has long been understood to be the result of an excessive host response to plaque bacteria. In addition, periodontal pathogens have been regarded as the causative agents that induce a hyperinflammatory response from the host. In this brief review, host-microbe interaction of nonperiodontopathic versus periodontopathic bacteria with innate immune components encountered in the gingival sulcus will be described. In particular, we will describe the susceptibility of these microbes to antimicrobial peptides (AMPs) and phagocytosis by neutrophils, the induction of tissue-destructive mediators from neutrophils, the induction of AMPs and interleukin (IL)-8 from gingival epithelial cells, and the pattern recognition receptors that mediate the regulation of AMPs and IL-8 in gingival epithelial cells. This review indicates that true periodontal pathogens are poor activators/suppressors of a host immune response, and they evade host defense mechanisms.
Collapse
Affiliation(s)
- Suk Ji
- Department of Periodontology, Korea University Anam Hospital, Seoul, Korea
| | | |
Collapse
|
48
|
|
49
|
Ertugrul AS, Dikilitas A, Sahin H, Alpaslan N, Bozoglan A, Tekin Y. Gingival crevicular fluid levels of human beta-defensins 1 and 3 in subjects with periodontitis and/or type 2 diabetes mellitus: a cross-sectional study. J Periodontal Res 2012; 48:475-82. [PMID: 23278469 DOI: 10.1111/jre.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Human β-defensins (hBDs) have a strong antibacterial action against various microorganisms, especially periodontal pathogens. The aim of this study was to compare the total levels of hBD-1 and hBD-3 in the gingival crevicular fluid of healthy patients with gingivitis (HG), healthy patients with chronic periodontitis (HP), patients with type 2 diabetes mellitus (DM) and gingivitis (DM2G) and patients with type 2 DM and chronic periodontitis (DM2P). MATERIAL AND METHODS A total of 80 patients were included: 20 HG, 20 HP, 20 DM2G and 20 DM2P. The levels of hBD-1 and hBD-3 in gingival crevicular fluid were measured using ELISA. RESULTS The DM2P group had significantly higher periodontal clinical parameters at sites from which gingival crevicular fluid was collected compared with the other groups. The HG group had significantly lower periodontal clinical parameters within the gingival crevicular fluid-collected sites than did the HP, DM2G and DM2P groups. The gingival crevicular fluid of the DM2P group had significantly higher levels of total hBD-1 and hBD-3 than did that of the other groups; the hBD-1 and hBD-3 levels were significantly higher in the gingival crevicular fluid of the DM2G group than in that of the the non-DM type 2 groups (HG and HP). The gingival crevicular fluid of the HP group had significantly higher levels of total hBD-1 and hBD-3 in comparison with that of the HG group. CONCLUSION As a result of the observed vascular and cell activity changes that occur within patients diagnosed with DM, periodontal diseases become more severe. These changes hinder the migration and the ability of chemotactic factors and leukocytes to protect periodontal tissues from the effects of microorganisms. In order to eliminate microorganisms, the epithelial cells in patients with DM may release more hBD-1 and hBD-3 into the gingival crevicular fluid. Determining the amount of hBD-1 and hBD-3 in the gingival crevicular fluid of patients with and without DM will help to elucidate the relationship among hBD-1, hBD-3, DM and periodontal disease.
Collapse
Affiliation(s)
- A S Ertugrul
- Department of Periodontology, Faculty of Dentistry, Yuzuncu Yil University, Van, Turkey.
| | | | | | | | | | | |
Collapse
|
50
|
Hill DR, Kessler SP, Rho HK, Cowman MK, de la Motte CA. Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium. J Biol Chem 2012; 287:30610-24. [PMID: 22761444 DOI: 10.1074/jbc.m112.356238] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human β-defensin 2 (HβD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HβD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HβD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HβD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HβD2 protein.
Collapse
Affiliation(s)
- David R Hill
- Department of Molecular Medicine, Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|