1
|
Amin A, Salman TM. Glucagon in glucose homeostasis and metabolic disease: from physiology to therapeutics. J Basic Clin Physiol Pharmacol 2025:jbcpp-2025-0005. [PMID: 40314189 DOI: 10.1515/jbcpp-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/06/2025] [Indexed: 05/03/2025]
Abstract
Glucagon, a key hormone in glucose homeostasis, plays a central role in maintaining blood glucose levels through hepatic glycogenolysis and gluconeogenesis. Historically, glucagon secretion was believed to be primarily regulated by insulin via the "insulin switch-off" hypothesis, where reduced insulin levels triggered glucagon release. However, this view has been revisited as emerging evidence highlights the complexity of glucagon regulation. New studies demonstrate that glucose itself, along with amino acids and fatty acid oxidation, directly influences glucagon secretion, challenging the insulin-centric perspective. These findings reveal the metabolic versatility of pancreatic α-cells and their capacity to adapt to nutrient availability. Recent therapeutic innovations, such as glucagon receptor antagonists, dual GLP-1/glucagon receptor agonists, and modulators of hepatic glucagon signalling, offer promising strategies to mitigate hyperglycemia, improve energy balance, and address metabolic dysregulation. This review provides an in-depth analysis of glucagon's role in health and disease, emphasizing its therapeutic potential in managing diabetes and related metabolic conditions.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Toyin Mohammed Salman
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Long A, Wang Y, Guo Y, Hong J, Ning G, Meng Z, Wang J, Wang Y. A famsin-glucagon axis mediates glucose homeostasis. Cell Metab 2025; 37:629-639.e6. [PMID: 39706194 DOI: 10.1016/j.cmet.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Glucagon is essential for glucose homeostasis, and its dysregulation is associated with diabetes. Despite extensive research, the mechanisms governing glucagon secretion remain incompletely understood. Here, we unveil that famsin, a gut-secreted hormone, promotes glucagon release and modulates glucose homeostasis. Mechanistically, famsin binds to its receptor OLFR796 in mice (OR10P1 in humans), initiating calcium release in the endoplasmic reticulum of islet α cells. This process triggers glucagon secretion, consequently promoting hepatic glucose production through glucagon signaling. Furthermore, deficiency of famsin signaling reduces hepatic glucose production and lowers blood glucose levels, underscoring the significance of the famsin-glucagon axis in glucose homeostasis. Therefore, our findings establish famsin as a crucial regulator of glucagon secretion and provide valuable insights into the intricate gut-islet-liver interorgan crosstalk that maintains glucose homeostasis.
Collapse
Affiliation(s)
- Aijun Long
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Metabolic Syndrome Research Center, Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yazhuo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yihua Guo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Wang K, Zhang L, Deng B, Zhao K, Chen C, Wang W. Mitochondrial uncoupling protein 2: a central player in pancreatic disease pathophysiology. Mol Med 2024; 30:259. [PMID: 39707176 DOI: 10.1186/s10020-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numerous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, UCP2's role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancreatic steatosis are largely unknown. Additionally, the mechanisms connecting various pancreatic diseases are intricate and not yet fully elucidated. Given UCP2's diverse functionality, broad expression in pancreatic tissue, and the distinct pathophysiological features of pancreatic diseases, this review offers a comprehensive analysis of current findings on UCP2's involvement in these conditions. We discuss recent insights into UCP2's complex regulatory mechanisms, propose that UCP2 may serve as a central regulatory factor in pancreatic disease progression, and hypothesize that UCP2 dysfunction could significantly contribute to disease pathogenesis. Understanding UCP2's role and mechanisms in pancreatic diseases may pave the way for innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
5
|
Xu J, Wijesekara N, Regeenes R, Rijjal DA, Piro AL, Song Y, Wu A, Bhattacharjee A, Liu Y, Marzban L, Rocheleau JV, Fraser PE, Dai FF, Hu C, Wheeler MB. Pancreatic β cell-selective zinc transporter 8 insufficiency accelerates diabetes associated with islet amyloidosis. JCI Insight 2021; 6:143037. [PMID: 34027899 PMCID: PMC8262350 DOI: 10.1172/jci.insight.143037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/21/2021] [Indexed: 01/25/2023] Open
Abstract
GWAS have shown that the common R325W variant of SLC30A8 (ZnT8) increases the risk of type 2 diabetes (T2D). However, ZnT8 haploinsufficiency is protective against T2D in humans, counterintuitive to earlier work in humans and mouse models. Therefore, whether decreasing ZnT8 activity is beneficial or detrimental to β cell function, especially under conditions of metabolic stress, remains unknown. In order to examine whether the existence of human islet amyloid polypeptide (hIAPP), a coresident of the insulin granule, affects the role of ZnT8 in regulating β cell function, hIAPP-expressing transgenics were generated with reduced ZnT8 (ZnT8B+/– hIAPP) or null ZnT8 (ZnT8B–/– hIAPP) expression specifically in β cells. We showed that ZnT8B–/– hIAPP mice on a high-fat diet had intensified amyloid deposition and further impaired glucose tolerance and insulin secretion compared with control, ZnT8B–/–, and hIAPP mice. This can in part be attributed to impaired glucose sensing and islet cell synchronicity. Importantly, ZnT8B+/– hIAPP mice were also glucose intolerant and had reduced insulin secretion and increased amyloid aggregation compared with controls. These data suggest that loss of or reduced ZnT8 activity in β cells heightened the toxicity induced by hIAPP, leading to impaired β cell function and glucose homeostasis associated with metabolic stress.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto Western Hospital, Toronto, Ontario Canada
| | - Romario Regeenes
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony L Piro
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Youchen Song
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anne Wu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alpana Bhattacharjee
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ying Liu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Lucy Marzban
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jonathan V Rocheleau
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto Western Hospital, Toronto, Ontario Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Feihan F Dai
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
7
|
Ghazvini Zadeh EH, Huang Z, Xia J, Li D, Davidson HW, Li WH. ZIGIR, a Granule-Specific Zn 2+ Indicator, Reveals Human Islet α Cell Heterogeneity. Cell Rep 2021; 32:107904. [PMID: 32668245 DOI: 10.1016/j.celrep.2020.107904] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous mammalian cells contain abundant Zn2+ in their secretory granules, yet available Zn2+ sensors lack the desired specificity and sensitivity for imaging granular Zn2+. We developed a fluorescent zinc granule indicator, ZIGIR, that possesses numerous desired properties for live cell imaging, including >100-fold fluorescence enhancement, membrane permeability, and selective enrichment to acidic granules. The combined advantages endow ZIGIR with superior sensitivity and specificity for imaging granular Zn2+. ZIGIR enables separation of heterogenous β cells based on their insulin content and sorting of mouse islets into pure α cells and β cells. In human islets, ZIGIR facilitates sorting of endocrine cells into highly enriched α cells and β cells, reveals unexpectedly high Zn2+ activity in the somatostatin granule of some δ cells, and uncovers variation in the glucagon content among human α cells. We expect broad applications of ZIGIR for studying Zn2+ biology and Zn2+-rich secretory granules and for engineering β cells with high insulin content for treating diabetes.
Collapse
Affiliation(s)
- Ebrahim H Ghazvini Zadeh
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - ZhiJiang Huang
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Jing Xia
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA; Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Daliang Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| |
Collapse
|
8
|
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021; 22:142-158. [PMID: 33398164 PMCID: PMC8115730 DOI: 10.1038/s41580-020-00317-7] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic β-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from β-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the β-cell glucose response. These advances provide a new perspective for the understanding of the β-cell failure that triggers type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
- Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
9
|
Syring KE, Bosma KJ, Goleva SB, Singh K, Oeser JK, Lopez CA, Skaar EP, McGuinness OP, Davis LK, Powell DR, O’Brien RM. Potential positive and negative consequences of ZnT8 inhibition. J Endocrinol 2020; 246:189-205. [PMID: 32485672 PMCID: PMC7351606 DOI: 10.1530/joe-20-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
SLC30A8 encodes the zinc transporter ZnT8. SLC30A8 haploinsufficiency protects against type 2 diabetes (T2D), suggesting that ZnT8 inhibitors may prevent T2D. We show here that, while adult chow fed Slc30a8 haploinsufficient and knockout (KO) mice have normal glucose tolerance, they are protected against diet-induced obesity (DIO), resulting in improved glucose tolerance. We hypothesize that this protection against DIO may represent one mechanism whereby SLC30A8 haploinsufficiency protects against T2D in humans and that, while SLC30A8 is predominantly expressed in pancreatic islet beta cells, this may involve a role for ZnT8 in extra-pancreatic tissues. Consistent with this latter concept we show in humans, using electronic health record-derived phenotype analyses, that the 'C' allele of the non-synonymous rs13266634 SNP, which confers a gain of ZnT8 function, is associated not only with increased T2D risk and blood glucose, but also with increased risk for hemolytic anemia and decreased mean corpuscular hemoglobin (MCH). In Slc30a8 KO mice, MCH was unchanged but reticulocytes, platelets and lymphocytes were elevated. Both young and adult Slc30a8 KO mice exhibit a delayed rise in insulin after glucose injection, but only the former exhibit increased basal insulin clearance and impaired glucose tolerance. Young Slc30a8 KO mice also exhibit elevated pancreatic G6pc2 gene expression, potentially mediated by decreased islet zinc levels. These data indicate that the absence of ZnT8 results in a transient impairment in some aspects of metabolism during development. These observations in humans and mice suggest the potential for negative effects associated with T2D prevention using ZnT8 inhibitors.
Collapse
Affiliation(s)
- Kristen E. Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Karin J. Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Slavina B. Goleva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kritika Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Christopher A. Lopez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Eric P. Skaar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Lea K. Davis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David R. Powell
- Lexicon Pharmaceuticals Incorporated, 8800 Technology Forest Place, The Woodlands, Texas 77381
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| |
Collapse
|
10
|
Xu SFS, Andersen DB, Izarzugaza JMG, Kuhre RE, Holst JJ. In the rat pancreas, somatostatin tonically inhibits glucagon secretion and is required for glucose-induced inhibition of glucagon secretion. Acta Physiol (Oxf) 2020; 229:e13464. [PMID: 32145704 DOI: 10.1111/apha.13464] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
AIM It is debated whether the inhibition of glucagon secretion by glucose results from direct effects of glucose on the α-cell (intrinsic regulation) or by paracrine effects exerted by beta- or delta-cell products. METHODS To study this in a more physiological model than isolated islets, we perfused isolated rat pancreases and measured glucagon, insulin and somatostatin secretion in response to graded increases in perfusate glucose concentration (from 3.5 to 4, 5, 6, 7, 8, 10, 12 mmol/L) as well as glucagon responses to blockage/activation of insulin/GABA/somatostatin signalling with or without addition of glucose. RESULTS Glucagon secretion was reduced by about 50% (compared to baseline secretion at 3.5 mmol/L) within minutes after increasing glucose from 4 to 5 mmol/L (P < .01, n = 13). Insulin secretion was increased minimally, but significantly, compared to baseline (3.5 mmol/L) at 4 mmol/L, whereas somatostatin secretion was not significantly increased from baseline until 7 mmol/L. Hereafter secretion of both increased gradually up to 12 mmol/L glucose. Neither recombinant insulin (1 µmol/L), GABA (300 µmol/L) or the insulin-receptor antagonist S961 (at 1 µmol/L) affected basal (3.5 mmol/L) or glucose-induced (5.0 mmol/L) attenuation of glucagon secretion (n = 7-8). Somatostatin-14 attenuated glucagon secretion by ~ 95%, and blockage of somatostatin-receptor (SSTR)-2 or combined blockage of SSTR-2, -3 and -5 by specific antagonists increased glucagon output (at 3.5 mmol/L glucose) and prevented glucose-induced (from 3.5 to 5.0 mmol/L) suppression of secretion. CONCLUSION Somatostatin is a powerful and tonic inhibitor of glucagon secretion from the rat pancreas and is required for glucose to inhibit glucagon secretion.
Collapse
Affiliation(s)
- Stella F. S. Xu
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Daniel B. Andersen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Rune E. Kuhre
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
11
|
A comprehensive review on zinc(II) complexes as anti-diabetic agents: The advances, scientific gaps and prospects. Pharmacol Res 2020; 155:104744. [PMID: 32156651 DOI: 10.1016/j.phrs.2020.104744] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/22/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Zinc has gained notable attention in the development of potent anti-diabetic agents, due to its role in insulin storage and secretion, as well as its reported insulin mimetic properties. Consequently, zinc(II) has been complexed with numerous organic ligands as an adjuvant to develop anti-diabetic agents with improved and/or broader scope of pharmacological properties. This review focuses on the research advances thus far to identify the major scientific gaps and prospects. Peer-reviewed published data on the anti-diabetic effects of zinc(II) complexes were sourced from different scientific search engines, including, but not limited to "PubMed", "Google Scholar", "Scopus" and ScienceDirect to identify potent anti-diabetic zinc(II) complexes. The complexes were subcategorized according to their precursor ligands. A critical analysis of the outcomes from published studies shows promising leads, with Zn(II) complexes having a "tri-facet" mode of exerting pharmacological effects. However, the promising leads have been flawed by some major scientific gaps. While zinc(II) complexes of synthetic ligands with little or no anti-diabetic pharmacological history remain the most studied (about 72 %), their toxicity profile was not reported, which raises safety concerns for clinical relevance. The zinc(II) complexes of plant polyphenols; natural ligands, such as maltol and hinokitiol; and supplements, such as ascorbic acid (a natural antioxidant), l-threonine and l-carnitine, showed promising insulin mimetic and glycemic control properties but remain understudied and lack clinical validation, in spite of their minimal safety concerns and health benefits. A paradigm shift toward probing (including clinical studies) supplements, plant polyphenol and natural ligands as anti-diabetic zinc(II) complex is, therefore, recommended. Also, promising anti-diabetic Zn(II) complexes of synthetic ligands should undergo critical toxicity evaluation to address possible safety concerns.
Collapse
|
12
|
Xian Y, Zhou M, Han S, Yang R, Wang Y. A FRET biosensor reveals free zinc deficiency in diabetic beta-cell vesicles. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
14
|
Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Glucagon Resistance. Int J Mol Sci 2019; 20:E3314. [PMID: 31284506 PMCID: PMC6651628 DOI: 10.3390/ijms20133314] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Collapse
Affiliation(s)
- Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, 3400 Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Bosma KJ, Syring KE, Oeser JK, Lee JD, Benninger RKP, Pamenter ME, O'Brien RM. Evidence that Evolution of the Diabetes Susceptibility Gene SLC30A8 that Encodes the Zinc Transporter ZnT8 Drives Variations in Pancreatic Islet Zinc Content in Multiple Species. J Mol Evol 2019; 87:147-151. [PMID: 31273433 PMCID: PMC6699160 DOI: 10.1007/s00239-019-09898-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 11/28/2022]
Abstract
Pancreatic islet zinc levels vary widely between species. Very low islet zinc levels in Guinea pigs were thought to be driven by evolution of the INS gene that resulted in the generation of an isoform lacking a histidine at amino acid 10 in the B chain of insulin that is unable to bind zinc. However, we recently showed that the SLC30A8 gene, that encodes the zinc transporter ZnT8, is a pseudogene in Guinea pigs, providing an alternate mechanism to potentially explain the low zinc levels. We show here that the SLC30A8 gene is also inactivated in sheep, cows, chinchillas and naked mole rats but in all four species a histidine is retained at amino acid 10 in the B chain of insulin. Zinc levels are known to be very low in sheep and cow islets. These data suggest that evolution of SLC30A8 rather than INS drives variation in pancreatic islet zinc content in multiple species.
Collapse
Affiliation(s)
- Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - Kristen E Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - Jason D Lee
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, K1N 6N5, Canada
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA.
| |
Collapse
|
16
|
Al-Harthi S, Lachowicz JI, Nowakowski ME, Jaremko M, Jaremko Ł. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J Inorg Biochem 2019; 198:110716. [PMID: 31153112 DOI: 10.1016/j.jinorgbio.2019.110716] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Human serum albumin (HSA) is a monomeric, globular, multi-carrier and the most abundant protein in the blood. HSA displays multiple ligand binding sites with extraordinary binding capacity for a wide range of ions and molecules. For decades, HSA's ability to bind to various ligands has led many scientists to study its physiological properties and protein structure; indeed, a better understanding of HSA-ligand interactions in human blood, at the atomic level, will likely foster the development of more potent, and overall more performant, diagnostic and therapeutic tools against serious human disorders such as diabetes, cardiovascular disorders, and cancer. Here, we present a concise overview of the current knowledge of HSA's structural characteristics, and its coordination chemistry with transition metal ions, within the scope and limitations of current techniques and biophysical methods to reach atomic resolution in solution and in blood serum. We also highlight the overwhelming need of a detailed atomistic understanding of HSA dynamic structures and interactions that are transient, weak, multi-site and multi-step, and allosterically affected by each other. Considering the fact that HSA is a current clinical tool for drug delivery systems and a potential contender as molecular cargo and nano-vehicle used in biophysical, clinical and industrial fields, we underline the emerging need for novel approaches to target the dynamic functional coordination chemistry of the human blood serum albumin in solution, at the atomic level.
Collapse
Affiliation(s)
- Samah Al-Harthi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Michal Eligiusz Nowakowski
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
17
|
Zhao T, Huang Q, Su Y, Sun W, Huang Q, Wei W. Zinc and its regulators in pancreas. Inflammopharmacology 2019; 27:453-464. [PMID: 30756223 DOI: 10.1007/s10787-019-00573-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
Studies have demonstrated that susceptibility to type 2 diabetes (T2D) is influenced by common polymorphism in the zinc transporter 8 gene SLC30A8, providing novel insight into the role of zinc in diabetes. Intriguingly, zinc participates in every step of the process, including insulin synthesis, crystallization, storage, secretion and signaling. Zinc deficiency or overload is associated with various disorders, such as diabetes, cardiovascular disease and obesity. Zinc supplementation is considered as an effective means of treating or preventing T2D in people with certain SLC30A8 genotypes. Three important protein families-zinc transporters (ZnTs), zinc importers (ZiPs) and metallothionein (MT)-participate in maintaining zinc homeostasis. Here, we review research on the physiological characteristics of zinc and its role in the pancreas and homeostasis regulation mechanisms, along with the latest research on the structure and function of ZnT/ZiP and MT. In addition, we summarize the advancements in research on SLC30A8 gene polymorphism in search of a mechanism to explain the relationship between the R risk allele and zinc transporter activity.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiongfang Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yangni Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Wuyi Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiong Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
18
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
19
|
Syring KE, Bosma KJ, Oeser JK, Shiota M, O'Brien RM. The Diabetes Susceptibility Gene SLC30A8 that Encodes the Zinc Transporter ZnT8 is a Pseudogene in Guinea Pigs Potentially Contributing to Low Guinea Pig Islet Zinc Content. J Mol Evol 2018; 86:613-617. [PMID: 30392157 PMCID: PMC6309332 DOI: 10.1007/s00239-018-9873-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023]
Abstract
In most mammals pancreatic islet beta cells have very high zinc levels that promote the crystallization and storage of insulin. Guinea pigs are unusual amongst mammals in that their islets have very low zinc content. The selectionist theory of insulin evolution proposes that low environmental zinc led to the selection of a mutation in Guinea pig insulin that negated the requirement for zinc binding. In mice deletion of the Slc30a8 gene, that encodes the zinc transporter ZnT8, markedly reduces islet zinc content. We show here that SLC30A8 is a pseudogene in Guinea pigs. We hypothesize that inactivation of the SLC30A8 gene led to low islet zinc content that allowed for the evolution of insulin that no longer bound zinc.
Collapse
Affiliation(s)
- Kristen E Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, 37232-0615, Nashville, TN, USA
| | - Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, 37232-0615, Nashville, TN, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, 37232-0615, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, 37232-0615, Nashville, TN, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, 37232-0615, Nashville, TN, USA.
| |
Collapse
|
20
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
21
|
Elseweidy MM, Ali AMA, Elabidine NZ, Mursey NM. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats. Biomed Pharmacother 2017; 95:317-323. [PMID: 28858729 DOI: 10.1016/j.biopha.2017.08.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). METHODS Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. RESULTS Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. CONCLUSIONS Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Abdel-Moniem A Ali
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Nabila Zein Elabidine
- Department of Biochemistry, Faculty of Sciences, Zagazig University, Zagazig 44519, Egypt.
| | - Nada M Mursey
- Department of Biochemistry, Faculty of Sciences, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
22
|
Li WH. Probes for monitoring regulated exocytosis. Cell Calcium 2017; 64:65-71. [PMID: 28089267 DOI: 10.1016/j.ceca.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 12/12/2022]
Abstract
Regulated secretion is a fundamental cellular process that serves diverse functions in neurobiology, endocrinology, immunology, and numerous other aspects of animal physiology. In response to environmental or biological cues, cells release contents of secretory granules into an extracellular medium to communicate with or impact neighboring or distant cells through paracrine or endocrine signaling. To investigate mechanisms governing stimulus-secretion coupling, to better understand how cells maintain or regulate their secretory activity, and to characterize secretion defects in human diseases, probes for tracking various exocytotic events at the cellular or sub-cellular level have been developed over the years. This review summarizes different strategies and recent progress in developing optical probes for monitoring regulated secretion in mammalian cells.
Collapse
Affiliation(s)
- Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, United States.
| |
Collapse
|
23
|
Chabosseau P, Rutter GA. Zinc and diabetes. Arch Biochem Biophys 2016; 611:79-85. [DOI: 10.1016/j.abb.2016.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
|
24
|
Ishihara H, Wollheim CB. Is zinc an intra-islet regulator of glucagon secretion? Diabetol Int 2016; 7:106-110. [PMID: 30603252 DOI: 10.1007/s13340-016-0259-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/26/2022]
Abstract
More than a decade ago, zinc was suggested to have a role as an intra-islet regulator of glucagon secretion. Several lines of experimental evidence have since provided support for this hypothesis, though contradictory observations have also been reported. Meanwhile, Slc30A/ZnT8, a zinc transporter expressed in insulin and glucagon secretory granules, was identified. Furthermore, genome wide association analyses revealed it to be a candidate causative gene for type 2 diabetes mellitus. Recent progress in gene manipulation in animals yielded considerable information on the role of zinc in islet cells. In this mini-review, data pertaining the roles played by zinc in islet hormone secretion are summarized and discussed.
Collapse
Affiliation(s)
- Hisamitsu Ishihara
- 1Division of Diabetes and Metabolism, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi, Tokyo 173-8610 Japan
| | - Claes B Wollheim
- 2Department of Cell Physiology and Metabolism, University Medical Centre, rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
25
|
Yu X, Chen W, Wei Z, Ren T, Yang X, Yu X. Effects of maternal mild zinc deficiency and different ways of zinc supplementation for offspring on learning and memory. Food Nutr Res 2016; 60:29467. [PMID: 26829185 PMCID: PMC4734033 DOI: 10.3402/fnr.v60.29467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/13/2023] Open
Abstract
Background The effect of different ways of zinc supplementation on spatial learning and memory remains unclear. Objectives This study aims to assess the effectiveness of two ways of zinc supplementation – oral use and intravenous transfusion – in zinc-deficient offspring rats on learning and memory. Design Rats were randomly divided into six groups on the first day of pregnancy (n=12): control (CO), pair fed (PF), zinc deprived (ZD), oral zinc supplementation (OZS), injection zinc supplementation (IZS), and injection control. The offspring's spatial learning and memory were tested at postnatal day 35 using Morris water maze (MWM). Maternal rats’ serum zinc was measured at postnatal day 21, while pups’ serum zinc was measured at postnatal day 35. Results Compared with the CO and PF groups, pups in ZD group spent more time finding the latent platform and swam longer distances (p<0.05). Compared with ZD groups, pups in OZS group significantly decreased the time used for finding the platform and the swimming distance (p<0.05) and were similar to that of CO and PF groups (p>0.05). However, compared with ZD groups, pups in IZS did not show any improvement in the indexes of MWM (p>0.05) although their zinc serum concentration increased significantly (p<0.05). Conclusions These results indicate that mild zinc deficiency during pregnancy and lactation leads to the impairment of learning and memory function in offspring, and that OZS, instead of intravenous transfusion zinc supplementation, can recover the impairment of spatial learning and memory function.
Collapse
Affiliation(s)
- Xiaogang Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Wei
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Ren
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Yang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodan Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| |
Collapse
|
26
|
Abstract
Zinc is an important micronutrient, essential in the diet to avoid a variety of conditions associated with malnutrition such as diarrhoea and alopecia. Lowered circulating levels of zinc are also found in diabetes mellitus, a condition which affects one in twelve of the adult population and whose treatments consume approximately 10 % of healthcare budgets. Zn2+ ions are essential for a huge range of cellular functions and, in the specialised pancreatic β-cell, for the storage of insulin within the secretory granule. Correspondingly, genetic variants in the SLC30A8 gene, which encodes the diabetes-associated granule-resident Zn2+ transporter ZnT8, are associated with an altered risk of type 2 diabetes. Here, we focus on (i) recent advances in measuring free zinc concentrations dynamically in subcellular compartments, and (ii) studies dissecting the role of intracellular zinc in the control of glucose homeostasis in vitro and in vivo. We discuss the effects on insulin secretion and action of deleting or over-expressing Slc30a8 highly selectively in the pancreatic β-cell, and the role of zinc in insulin signalling. While modulated by genetic variability, healthy levels of dietary zinc, and hence normal cellular zinc homeostasis, are likely to play an important role in the proper release and action of insulin to maintain glucose homeostasis and lower diabetes risk.
Collapse
|
27
|
Bin BH, Hojyo S, Hosaka T, Bhin J, Kano H, Miyai T, Ikeda M, Kimura-Someya T, Shirouzu M, Cho EG, Fukue K, Kambe T, Ohashi W, Kim KH, Seo J, Choi DH, Nam YJ, Hwang D, Fukunaka A, Fujitani Y, Yokoyama S, Superti-Furga A, Ikegawa S, Lee TR, Fukada T. Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol Med 2014; 6:1028-42. [PMID: 25007800 PMCID: PMC4154131 DOI: 10.15252/emmm.201303809] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023] Open
Abstract
The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13(G64D), in which Gly at amino acid position 64 is replaced by Asp, and ZIP13(ΔFLA), which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13(G64D) and ZIP13(ΔFLA) protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry Showa University, Shinagawa, Japan
| | - Shintaro Hojyo
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, Berlin, Germany
| | - Toshiaki Hosaka
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Hiroki Kano
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Tomohiro Miyai
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Ikeda
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Eun-Gyung Cho
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Kazuhisa Fukue
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Wakana Ohashi
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kyu-Han Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Juyeon Seo
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Yeon-Ju Nam
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Daehee Hwang
- Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu, Republic of Korea
| | - Ayako Fukunaka
- Center for Beta-Cell Biology and Regeneration, Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Center for Beta-Cell Biology and Regeneration, Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Andrea Superti-Furga
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois University of Lausanne, Lausanne, Switzerland
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Toshiyuki Fukada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry Showa University, Shinagawa, Japan Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
28
|
Davidson HW, Wenzlau JM, O'Brien RM. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol Metab 2014; 25:415-24. [PMID: 24751356 PMCID: PMC4112161 DOI: 10.1016/j.tem.2014.03.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
Human pancreatic β cells have exceptionally high zinc content. In β cells the highest zinc concentration is in insulin secretory granules, from which it is cosecreted with the hormone. Uptake of zinc into secretory granules is mainly mediated by zinc transporter 8 (ZnT8), the product of the SLC30A8 [solute carrier family 30 (zinc transporter), member 8] gene. The minor alleles of several single-nucleotide polymorphisms (SNPs) in SLC30A8 are associated with decreased risk of type 2 diabetes (T2D), but the precise mechanisms underlying the protective effects remain uncertain. In this article we review current knowledge of the role of ZnT8 in maintaining zinc homeostasis in β cells, its role in glucose metabolism based on knockout mouse studies, and current theories regarding the link between ZnT8 function and T2D.
Collapse
Affiliation(s)
- Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Integrated Department of Immunology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Janet M Wenzlau
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Abstract
Zinc is an essential nutrient with tremendous importance for human health, and zinc deficiency is a severe risk factor for increased mortality and morbidity. As abnormal zinc homeostasis causes diabetes, and because the pancreatic β-cell contains the highest zinc content of any known cell type, it is of interest to know how zinc fluxes are controlled in β-cells. The understanding of zinc homeostasis has been boosted by the discovery of multiprotein families of zinc transporters, and one of them - zinc transporter 8 (ZnT8) - is abundantly and specifically expressed in the pancreatic islets of Langerhans. In this review, we discuss the evidence for a physiological role of ZnT8 in the formation of zinc-insulin crystals, the physical form in which most insulin is stored in secretory granules. In addition, we cross-examine this information, collected in genetically modified mouse strains, to the knowledge that genetic variants of the human ZnT8 gene predispose to the onset of type 2 diabetes and that epitopes on the ZnT8 protein trigger autoimmunity in patients with type 1 diabetes. The overall conclusion is that we are still at the dawn of a complete understanding of how zinc homeostasis operates in normal β-cells and how abnormalities lead to β-cell dysfunction and diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2012.00199.x, 2012).
Collapse
Affiliation(s)
- Katleen Lemaire
- Gene Expression Unit, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | | | - Frans Schuit
- Gene Expression Unit, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, Nissim I, Yudkoff M. The molecular and metabolic influence of long term agmatine consumption. J Biol Chem 2014; 289:9710-29. [PMID: 24523404 DOI: 10.1074/jbc.m113.544726] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used (13)C or (15)N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased β-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming.
Collapse
|
31
|
Huang L. Zinc and its transporters, pancreatic β-cells, and insulin metabolism. VITAMINS AND HORMONES 2014; 95:365-90. [PMID: 24559925 DOI: 10.1016/b978-0-12-800174-5.00014-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zinc is an essential trace metal for life. Two families of zinc transporters, SLC30A (ZNT) and SLC39A (ZIP) are required for maintaining cellular zinc homeostasis. ZNTs function to decrease cytoplasmic zinc concentrations whereas ZIPs do the opposite. Expression of zinc transporters can be tissue/cell-type specific or ubiquitous. Zinc transporters that are limited in tissue/cell distributions usually perform specialized tasks to satisfy biological processes in a given cell. For example, ZNT8 is mainly expressed in β-cells and functions to deliver zinc into granules for insulin maturation and secretion. Many other zinc transporters are also expressed in β-cells. Defects in these zinc transporters have been associated with abnormalities in insulin synthesis, maturation, and secretion and subsequent glucose metabolism. This review focuses on the specific roles of zinc and its transporters in insulin metabolism and describes the current knowledge of the function of zinc transporters in β-cell health in animal knockout mouse models with respect to diabetes development in humans.
Collapse
Affiliation(s)
- Liping Huang
- United States Department of Agriculture/Agricultural Research Service/Western Human Nutrition Research Center, Obesity and Metabolism Research Unit, Davis, California, USA; Department of Nutrition, University of California Davis, Davis, California, USA.
| |
Collapse
|
32
|
Abstract
ATP-sensitive potassium channels (K(ATP) channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K(ATP) channels is crucial for insulin secretion. Emerging data suggest that K(ATP) channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K(ATP) channels in insulin and glucagon secretion. We discuss how K(ATP) channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K(ATP) channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K(ATP) channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K(ATP) channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
33
|
Yu X, Jin L, Zhang X, Yu X. Effects of maternal mild zinc deficiency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes. Nutrition 2013; 29:457-61. [PMID: 23312766 DOI: 10.1016/j.nut.2012.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Knowledge about the hippocampal morphologic mechanisms of learning and memory for maternal mild zinc deficiency during pregnancy/lactation followed by zinc supplementation of pups after weaning is limited. This study examined the effects of zinc deficiency and zinc supplementation on cognition and hippocampal neurons. METHODS One-day pregnant rats were randomly divided into four groups (n = 12): control (CO), pair-fed (PF), zinc-deprived (ZD), and oral zinc-supplemented (OZS). The CO and PF groups were fed a control diet (zinc 25 μg/g diet), and the others were fed a mildly zinc-deficient diet (zinc 2 μg/g diet) during pregnancy and lactation. After weaning (day 21), offspring in the OZS group were switched to a control diet. After 35 d, the behavioral function of the offspring was tested with the Morris water maze test. The ultrastructure of the hippocampal CA3 area was observed under a transmission electron microscope. RESULTS Compared with the CO and PF groups, rats in the ZD group spent more time finding the latent platform and swam longer distances (P < 0.05). The time used finding the platform and the swimming distance in the OZS group were similar to those in the CO and PF groups (P > 0.05). In addition, apoptotic neuronal changes in the hippocampus were observed in the ZD group, whereas the reversal of neuronal morphologic changes was observed in the OZS group. CONCLUSION The changes in hippocampal neuron morphology were consistent with the changes in the learning and memory ability of mildly zinc-deficient and zinc-supplemented offspring.
Collapse
Affiliation(s)
- XiaoDan Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Institute for Pediatric Research, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|
34
|
Barnett JP, Blindauer CA, Kassaar O, Khazaipoul S, Martin EM, Sadler PJ, Stewart AJ. Allosteric modulation of zinc speciation by fatty acids. Biochim Biophys Acta Gen Subj 2013; 1830:5456-64. [PMID: 23726993 DOI: 10.1016/j.bbagen.2013.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/09/2013] [Accepted: 05/20/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Serum albumin is the major protein component of blood plasma and is responsible for the circulatory transport of a range of small molecules that include fatty acids, hormones, metal ions and drugs. Studies examining the ligand-binding properties of albumin make up a large proportion of the literature. However, many of these studies do not address the fact that albumin carries multiple ligands (including metal ions) simultaneously in vivo. Thus the binding of a particular ligand may influence both the affinity and dynamics of albumin interactions with another. SCOPE OF REVIEW Here we review the Zn(2+) and fatty acid transport properties of albumin and highlight an important interplay that exists between them. Also the impact of this dynamic interaction upon the distribution of plasma Zn(2+), its effect upon cellular Zn(2+) uptake and its importance in the diagnosis of myocardial ischemia are considered. MAJOR CONCLUSIONS We previously identified the major binding site for Zn(2+) on albumin. Furthermore, we revealed that Zn(2+)-binding at this site and fatty acid-binding at the FA2 site are interdependent. This suggests that the binding of fatty acids to albumin may serve as an allosteric switch to modulate Zn(2+)-binding to albumin in blood plasma. GENERAL SIGNIFICANCE Fatty acid levels in the blood are dynamic and chronic elevation of plasma fatty acid levels is associated with some metabolic disorders such as cardiovascular disease and diabetes. Since the binding of Zn(2+) to albumin is important for the control of circulatory/cellular Zn(2+) dynamics, this relationship is likely to have important physiological and pathological implications. This article is part of a Special Issue entitled Serum Albumin.
Collapse
Affiliation(s)
- James P Barnett
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Li WH, Li D. Fluorescent probes for monitoring regulated secretion. Curr Opin Chem Biol 2013; 17:672-81. [PMID: 23711436 DOI: 10.1016/j.cbpa.2013.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 01/14/2023]
Abstract
Numerous secretory cells use the regulated secretory pathway to release signaling molecules. Regulated secretion is an essential component of the intercellular communication network of a multicellular organism and serves diverse functions in neurobiology, endocrinology, and many other aspects of animal physiology. Probes that can monitor a specific exocytotic event with high temporal and spatial resolution would be invaluable tools for studying the molecular and cellular mechanisms underlying stimulus-secretion coupling, and for characterizing secretion defects that are found in different human diseases. This review summarizes different strategies and recent progress in developing fluorescent sensors for imaging regulated cell secretion.
Collapse
Affiliation(s)
- Wen-hong Li
- Department of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, United States.
| | | |
Collapse
|
36
|
Crivello M, Bonaventura MM, Chamson-Reig A, Arany E, Bettler B, Libertun C, Lux-Lantos V. Postnatal development of the endocrine pancreas in mice lacking functional GABAB receptors. Am J Physiol Endocrinol Metab 2013; 304:E1064-76. [PMID: 23531612 DOI: 10.1152/ajpendo.00569.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult mice lacking functional GABAB receptors (GABAB1KO) have glucose metabolism alterations. Since GABAB receptors (GABABRs) are expressed in progenitor cells, we evaluated islet development in GABAB1KO mice. Postnatal day 4 (PND4) and adult, male and female, GABAB1KO, and wild-type littermates (WT) were weighed and euthanized, and serum insulin and glucagon was measured. Pancreatic glucagon and insulin content were assessed, and pancreas insulin, glucagon, PCNA, and GAD65/67 were determined by immunohistochemistry. RNA from PND4 pancreata and adult isolated islets was obtained, and Ins1, Ins2, Gcg, Sst, Ppy, Nes, Pdx1, and Gad1 transcription levels were determined by quantitative PCR. The main results were as follows: 1) insulin content was increased in PND4 GABAB1KO females and in both sexes in adult GABAB1KOs; 2) GABAB1KO females had more clusters (<500 μm(2)) and less islets than WT females; 3) cluster proliferation was decreased at PND4 and increased in adult GABAB1KO mice; 4) increased β-area at the expense of the α-cell area was present in GABAB1KO islets; 5) Ins2, Sst, and Ppy transcription were decreased in PND4 GABAB1KO pancreata, adult GABAB1KO female islets showed increased Ins1, Ins2, and Sst expression, Pdx1 was increased in male and female GABAB1KO islets; and 6) GAD65/67 was increased in adult GABAB1KO pancreata. We demonstrate that several islet parameters are altered in GABAB1KO mice, further pinpointing the importance of GABABRs in islet physiology. Some changes persist from neonatal ages to adulthood (e.g., insulin content in GABAB1KO females), whereas other features are differentially regulated according to age (e.g., Ins2 was reduced in PND4, whereas it was upregulated in adult GABAB1KO females).
Collapse
Affiliation(s)
- Martín Crivello
- Neuroendocrinology Laboratory, Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
37
|
Cheng-Xue R, Gómez-Ruiz A, Antoine N, Noël LA, Chae HY, Ravier MA, Chimienti F, Schuit FC, Gilon P. Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of K(ATP) channels from both α-cells and δ-cells. Diabetes 2013; 62:1612-22. [PMID: 23382449 PMCID: PMC3636641 DOI: 10.2337/db12-0347] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated the role of ATP-sensitive K⁺ (K(ATP)) channels, somatostatin, and Zn²⁺ in the control of glucagon secretion from mouse islets. Switching from 1 to 7 mmol/L glucose inhibited glucagon release. Diazoxide did not reverse the glucagonostatic effect of glucose. Tolbutamide decreased glucagon secretion at 1 mmol/L glucose (G1) but stimulated it at 7 mmol/L glucose (G7). The reduced glucagon secretion produced by high concentrations of tolbutamide or diazoxide, or disruption of K(ATP) channels (Sur1(-/-) mice) at G1 could be inhibited further by G7. Removal of the somatostatin paracrine influence (Sst(-/-) mice or pretreatement with pertussis toxin) strongly increased glucagon release, did not prevent the glucagonostatic effect of G7, and unmasked a marked glucagonotropic effect of tolbutamide. Glucose inhibited glucagon release in the absence of functional K(ATP) channels and somatostatin signaling. Knockout of the Zn²⁺ transporter ZnT8 (ZnT8(-/-) mice) did not prevent the glucagonostatic effect of glucose. In conclusion, glucose can inhibit glucagon release independently of Zn²⁺, K(ATP) channels, and somatostatin. Closure of K(ATP) channels controls glucagon secretion by two mechanisms, a direct stimulation of α-cells and an indirect inhibition via somatostatin released from δ-cells. The net effect on glucagon release results from a balance between both effects.
Collapse
Affiliation(s)
- Rui Cheng-Xue
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Gómez-Ruiz
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Nancy Antoine
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Laura A. Noël
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hee-Young Chae
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Magalie A. Ravier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, INSERM U661, Universités de Montpellier 1 et 2, Montpellier, France
| | | | - Frans C. Schuit
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Gilon
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Corresponding author: Patrick Gilon,
| |
Collapse
|
38
|
Allister EM, Robson-Doucette CA, Prentice KJ, Hardy AB, Sultan S, Gaisano HY, Kong D, Gilon P, Herrera PL, Lowell BB, Wheeler MB. UCP2 regulates the glucagon response to fasting and starvation. Diabetes 2013; 62:1623-33. [PMID: 23434936 PMCID: PMC3636632 DOI: 10.2337/db12-0981] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon is important for maintaining euglycemia during fasting/starvation, and abnormal glucagon secretion is associated with type 1 and type 2 diabetes; however, the mechanisms of hypoglycemia-induced glucagon secretion are poorly understood. We previously demonstrated that global deletion of mitochondrial uncoupling protein 2 (UCP2(-/-)) in mice impaired glucagon secretion from isolated islets. Therefore, UCP2 may contribute to the regulation of hypoglycemia-induced glucagon secretion, which is supported by our current finding that UCP2 expression is increased in nutrient-deprived murine and human islets. Further to this, we created α-cell-specific UCP2 knockout (UCP2AKO) mice, which we used to demonstrate that blood glucose recovery in response to hypoglycemia is impaired owing to attenuated glucagon secretion. UCP2-deleted α-cells have higher levels of intracellular reactive oxygen species (ROS) due to enhanced mitochondrial coupling, which translated into defective stimulus/secretion coupling. The effects of UCP2 deletion were mimicked by the UCP2 inhibitor genipin on both murine and human islets and also by application of exogenous ROS, confirming that changes in oxidative status and electrical activity directly reduce glucagon secretion. Therefore, α-cell UCP2 deletion perturbs the fasting/hypoglycemic glucagon response and shows that UCP2 is necessary for normal α-cell glucose sensing and the maintenance of euglycemia.
Collapse
Affiliation(s)
- Emma M. Allister
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kacey J. Prentice
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre B. Hardy
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sobia Sultan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Y. Gaisano
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dong Kong
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Patrick Gilon
- Pôle d’endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Pedro L. Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bradford B. Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Michael B. Wheeler,
| |
Collapse
|
39
|
Abstract
Zn is an essential trace element, involved in many different cellular processes. A relationship between Zn, pancreatic function and diabetes was suggested almost 70 years ago. To emphasise the importance of Zn in biology, the history of Zn research in the field of diabetes along with a general description of Zn transporter families will be reviewed. The paper will then focus on the effects of Zn on pancreatic β-cell function, including insulin synthesis and secretion, Zn signalling in the pancreatic islet, the redox functions of Zn and its target genes. The recent association of two ‘Zn genes’, i.e. metallothionein (MT) and Zn transporter 8 (SLC 30A8), with type 2 diabetes at the genetic level and with insulin secretion in clinical studies offers a potential new way to identify new drug targets to modulate Zn homeostasis directly in β-cells. The action of Zn for insulin action in its target organs, as Zn signalling in other pancreatic islet cells, will be addressed. Therapeutic Zn–insulin preparations and the influence of Zn and Zn transporters in type 1 diabetes will also be discussed. An extensive review of the literature on the clinical studies using Zn supplementation in the prevention and treatment of both types of diabetes, including complications of the disease, will evaluate the overall beneficial effects of Zn supplementation on blood glucose control, suggesting that Zn might be a candidate ion for diabetes prevention and therapy. Clearly, the story of the links between Zn, pancreatic islet cells and diabetes is only now unfolding, and we are presently only at the first chapter.
Collapse
|
40
|
Duprez J, Roma LP, Close AF, Jonas JC. Protective antioxidant and antiapoptotic effects of ZnCl2 in rat pancreatic islets cultured in low and high glucose concentrations. PLoS One 2012; 7:e46831. [PMID: 23056475 PMCID: PMC3463538 DOI: 10.1371/journal.pone.0046831] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/05/2012] [Indexed: 01/09/2023] Open
Abstract
Aim/Hypothesis Rat pancreatic islet cell apoptosis is minimal after prolonged culture in 10 mmol/l glucose (G10), largely increased in 5 mmol/l glucose (G5) and moderately increased in 30 mmol/l glucose (G30). This glucose-dependent asymmetric V-shaped profile is preceded by parallel changes in the mRNA levels of oxidative stress-response genes like Metallothionein 1a (Mt1a). In this study, we tested the effect of ZnCl2, a potent inducer of Mt1a, on apoptosis, mitochondrial oxidative stress and alterations of glucose-induced insulin secretion (GSIS) induced by prolonged exposure to low and high vs. intermediate glucose concentrations. Methods Male Wistar rat islets were cultured in RPMI medium. Islet gene mRNA levels were measured by RTq-PCR. Apoptosis was quantified by measuring islet cytosolic histone-associated DNA fragments and the percentage of TUNEL-positive β-cells. Mitochondrial thiol oxidation was measured in rat islet cell clusters expressing “redox sensitive GFP” targeted to the mitochondria (mt-roGFP1). Insulin secretion was measured by RIA. Results As observed for Mt1a mRNA levels, β-cell apoptosis and loss of GSIS, culture in either G5 or G30 vs. G10 significantly increased mt-roGFP1 oxidation. While TPEN decreased Mt1a/2a mRNA induction by G5, addition of 50–100 µM ZnCl2 to the culture medium strongly increased Mt1a/2a mRNA and protein levels, reduced early mt-roGFP oxidation and significantly decreased late β-cell apoptosis after prolonged culture in G5 or G30 vs. G10. It did not, however, prevent the loss of GSIS under these culture conditions. Conclusion ZnCl2 reduces mitochondrial oxidative stress and improves rat β-cell survival during culture in the presence of low and high vs. intermediate glucose concentrations without improving their acute GSIS.
Collapse
Affiliation(s)
- Jessica Duprez
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Leticia P. Roma
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Anne-Françoise Close
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
- * E-mail:
| |
Collapse
|
41
|
Lye JC, Richards CD, Dechen K, Paterson D, de Jonge MD, Howard DL, Warr CG, Burke R. Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster. J Exp Biol 2012; 215:3254-65. [DOI: 10.1242/jeb.069260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Summary
The heavy metal zinc is an essential component of the human diet and is incorporated as a structural component in up to 10% of all mammalian proteins. The physiological importance of zinc homeostasis at the cellular level and the molecular mechanisms involved in this process have become topics of increasing interest in recent years. We have performed a systematic functional characterization of the majority of the predicted Drosophila Zip (Zinc/iron regulated transporter-related protein) and ZnT genes, using the Gal4-UAS system to carry out both ubiquitous and targeted over expression and suppression studies for thirteen of the seventeen putative zinc transport genes identified to date. We find that six of these thirteen genes may be essential for fly viability and that three of the remaining seven demonstrate over expression phenotypes. Our findings reaffirm the previously proposed function of dZnT63C (CG17723: FBgn005432) as an important zinc efflux protein and indicate that the fly homolog of hZip1, dZip42C.1 (CG9428: FBgn0033096), is a strong zinc importer in Drosophila. By combining over expression of dZip42C.1 with suppression of dZnT63C we were able to produce easily identifiable zinc toxicosis phenotypes which can be rescued or worsened by modifying dietary zinc content. Our findings show that a genetically based zinc toxicosis situation can be therapeutically treated or exacerbated by modifications to the diet, providing a sensitized background for future, more detailed studies of Zip / ZNT function.
Collapse
|
42
|
Abstract
Zinc is essential for the proper storage, secretion, and the action of insulin and is transported from cytoplasm to insulin secretory granules in the pancreatic β-cells by SLC30A zinc transporters (ZnT). ZnT8 is specifically expressed in the pancreatic β-cells and has been identified as a novel target autoantigen in patients with type 1 diabetes. Autoantibodies to ZnT8 (ZnT8A) are detected in 50-60% of Japanese patients with acute-onset and 20% with slow-onset type 1 diabetes. Furthermore, humoral autoreactivity to ZnT8 is unique in terms of a key determinant, which is not reported on other islet autoantigens such as insulin, glutamic acid decarboxylase, or the protein tyrosine phosphatase-related molecules IA-2. Type 2 diabetes-associated nonsynonymous single nucleotide polymorphism in SLC30A8 (the gene of ZnT8), rs13266634 (Arg325Trp), modulates ZnT8A specificities thereby indicating that this amino acid substitution has the critical role in antibody binding. The humoral autoreactivity to ZnT8 depends on the clinical phenotype, which may provide clues to understand the role of this protein in the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Eiji Kawasaki
- Department of Metabolism/Diabetes and Clinical Nutrition, Nagasaki University Hospital, Nagasaki 852-8501, Japan.
| |
Collapse
|