1
|
Lindström Battle AL, Barrett AW, Fricker MD, Sweetlove LJ. Localising enzymes to biomolecular condensates increase their accumulation and benefits engineered metabolic pathway performance in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40203202 DOI: 10.1111/pbi.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The establishment of Nicotiana benthamiana as a robust biofactory is complicated by issues such as product toxicity and proteolytic degradation of target proteins/introduced enzymes. Here we investigate whether biomolecular condensates can be used to address these problems. We engineered biomolecular condensates in N. benthamiana leaves using transient expression of synthetic modular scaffolds. The in vivo properties of the condensates that resulted were consistent with them being liquid-like bodies with thermodynamic features typical of multicomponent phase-separating systems. We show that recruitment of enzymes to condensates in vivo led to several-fold yield increases in one- and three-step metabolic pathways (citramalate biosynthesis and poly-3-hydroxybutyrate (PHB) biosynthesis, respectively). This enhanced yield could be for several reasons including improved enzyme kinetics, metabolite channelling or avoidance of cytotoxicity by retention of the pathway product within the condensate, which was demonstrated for PHB. However, we also observed a several-fold increase in the amount of the enzymes that accumulated when they were targeted to the condensates. This suggests that the enzymes were more stable when localised to the condensate than when freely diffusing in the cytosol. We hypothesise that this stability is likely the main driver for increased pathway product production. Our findings provide a foundation for leveraging biomolecular condensates in plant metabolic engineering and advance N. benthamiana as a versatile biofactory for industrial applications.
Collapse
|
2
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
3
|
Kumar S, Kumar S, Sharma H, Singh VP, Rawale KS, Kahlon KS, Gupta V, Bhatt SK, Vairamani R, Gill KS, Balyan HS. Physical map of QTL for eleven agronomic traits across fifteen environments, identification of related candidate genes, and development of KASP markers with emphasis on terminal heat stress tolerance in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:235. [PMID: 39333356 DOI: 10.1007/s00122-024-04748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
KEY MESSAGE Key message This study identified stable QTL, promising candidate genes and developed novel KASP markers for heat tolerance, providing genomic resources to assist breeding for the development of high-yielding and heat-tolerant wheat germplasm and varieties. To understand the genetic architecture of eleven agronomic traits under heat stress, we used a doubled-haploid population (177 lines) derived from a heat-sensitive cultivar (PBW343) and a heat-tolerant genotype (KSG1203). This population was evaluated under timely, late and very late sown conditions over locations and years comprising fifteen environments. Best linear unbiased estimates and a genetic map (5,710 SNPs) developed using sequencing-based genotyping were used for QTL mapping. The identified 66 QTL (20 novel) were integrated into wheat physical map (14,263.4 Mb). These QTL explained 5.3% (QDth.ccsu-4A for days to heading and QDtm.ccsu-5B for days to maturity) to 24.9% (QGfd.ccsu-7D for grain filling duration) phenotypic variation. Thirteen stable QTL explaining high phenotypic variation were recommended for marker-assisted recurrent selection (MARS) for optimum/heat stress environments. Selected QTL were validated by their presence in high-yielding doubled-haploid lines. Some QTL for 1000-grain weight (TaERF3-3B, TaFER-5B, and TaZIM-A1), grain yield (TaCol-B5), and developmental traits (TaVRT-2) were co-localized with known genes. Specific known genes for traits like abiotic/biotic stress, grain quality and yield were co-located with 26 other QTL. Furthermore, 209 differentially expressed candidate genes for heat tolerance in plants that encode 28 different proteins were identified. KASP markers for three major/stable QTL, namely QGfd.ccsu-7A for grain filling duration on chromosome 7A (timely sown), QNgs.ccsu-3A for number of grains per spike on 3A, and QDth.ccsu-7A for days to heading on 7A (late and very late sown) environments were developed for MARS focusing on the development of heat-tolerant wheat varieties/germplasm.
Collapse
Affiliation(s)
- Sourabh Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India.
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Vivudh Pratap Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | | | - Kaviraj Singh Kahlon
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Vikas Gupta
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Sunil Kumar Bhatt
- Research and Development Division, JK Agri-Genetics Limited, Hyderabad, Telangana, India
| | | | - Kulvinder Singh Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| |
Collapse
|
4
|
Chen Z, Qiu S, Yu Z, Li M, Ge S. Enhanced Secretions of Algal Cell-Adhesion Molecules and Metal Ion-Binding Exoproteins Promote Self-Flocculation of Chlorella sp. Cultivated in Municipal Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11916-11924. [PMID: 34424674 DOI: 10.1021/acs.est.1c01324] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanism of self-flocculation remains unclear, partially impeding its efficiency enhancement and commercial application of microalgae-based municipal wastewater (MW) bioremediation technology. This study revealed the contributions of exoproteins [PN, proteins in extracellular polymeric substances (EPS)] to the separation of indigenous microalgae from treated MW. Compared to the low light intensity group, the high light intensity (HL) group produced Chlorella sp. with 4.3-fold higher self-flocculation efficiencies (SE). This was attributed to the enriched biological functions and positional rearrangement of increased PN within 2.9-fold higher EPS. Specifically, a total of 75 PN was over-expressed in the HL group among the 129 PN identified through label-free proteomics. The algal cell-adhesion molecules (Algal-CAMs) and metal-ion-binding PN were demonstrated as two dominant contributors promoting cell adhesion and bridging, through function prediction based on the contained domains. The modeled 3D structure showed that Algal-CAMs presented less hydrophilic α-helix abundance and were distributed in the outermost position of the EPS matrix, further facilitating microalgal separation. Moreover, the 10.1% lower hydrophily degree value, negative interfacial free energy (-19.5 mJ/m2), and 6.8-fold lower energy barrier between cells also supported the observed higher SE. This finding is expected to further fill the knowledge gap of the role of PN in microalgal self-flocculation and promote the development of biomass recovery from the microalgae-wastewater system.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| |
Collapse
|
5
|
Jutras PV, Dodds I, van der Hoorn RA. Proteases of Nicotiana benthamiana: an emerging battle for molecular farming. Curr Opin Biotechnol 2020; 61:60-65. [PMID: 31765962 DOI: 10.1016/j.copbio.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
Molecular farming increasingly uses the tobacco relative Nicotiana benthamiana for production of recombinant proteins through transient expression. Several proteins are produced efficiently with this expression platform, but yields for other proteins are often very low. These low yields are frequently due to endogenous proteases. The latest genome annotations indicate that N. benthamiana encodes for at least 1243 putative proteases that probably act redundantly and consecutively on substrates in different subcellular compartments. Here, we discuss the N. benthamiana protease repertoire that may affect recombinant protein production and recent advances in protease depletion strategies to increase recombinant protein production in N. benthamiana.
Collapse
Affiliation(s)
- Philippe V Jutras
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Renier Al van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK.
| |
Collapse
|
6
|
Jutras PV, Sainsbury F, Goulet MC, Lavoie PO, Tardif R, Hamel LP, D'Aoust MA, Michaud D. pH Gradient Mitigation in the Leaf Cell Secretory Pathway Attenuates the Defense Response of Nicotiana benthamiana to Agroinfiltration. J Proteome Res 2020; 19:106-118. [PMID: 31789035 DOI: 10.1021/acs.jproteome.9b00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Partial neutralization of the Golgi lumen pH by the ectopic expression of influenza virus M2 proton channel is useful to stabilize acid-labile recombinant proteins in plant cells, but the impact of pH gradient mitigation on host cellular functions has not been investigated. Here, we assessed the unintended effects of M2 expression on the leaf proteome of Nicotiana benthamiana infiltrated with the bacterial gene vector Agrobacterium tumefaciens. An isobaric tags for relative and absolute quantification quantitative proteomics procedure was followed to compare the leaf proteomes of plants agroinfiltrated with either an "empty" vector or an M2-encoding vector. Leaves infiltrated with the empty vector had a low soluble protein content compared to noninfiltrated control leaves, associated with increased levels of stress-related proteins but decreased levels of photosynthesis-associated proteins. M2 expression partly compromised these effects of agroinfiltration to restore soluble protein content in the leaf tissue, associated with restored levels of photosynthesis-associated proteins and reduced levels of stress-related proteins in the apoplast. These data illustrate the cell-wide influence of the Golgi lumen pH homeostasis on the leaf proteome of N. benthamiana responding to microbial challenge. They also underline the relevance of assessing the eventual unintended effects of accessory proteins used to modulate specific cellular or metabolic functions in plant protein biofactories.
Collapse
Affiliation(s)
- Philippe V Jutras
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| | - Frank Sainsbury
- Griffith Institute for Drug Discovery , Griffith University , Nathan , QLD 4111 , Australia
| | - Marie-Claire Goulet
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| | | | | | | | | | - Dominique Michaud
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| |
Collapse
|
7
|
Jutras PV, Grosse‐Holz F, Kaschani F, Kaiser M, Michaud D, van der Hoorn RA. Activity-based proteomics reveals nine target proteases for the recombinant protein-stabilizing inhibitor SlCYS8 in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1670-1678. [PMID: 30742730 PMCID: PMC6662110 DOI: 10.1111/pbi.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/23/2023]
Abstract
Co-expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity-based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain-like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar-processing enzyme and serine hydrolase activity. A robust concentration-dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin-PLCP interactions. Activity-based proteomics revealed that nine different Cathepsin-L/-F-like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin-B/-H-like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin-containing proteases from the Resistant-to-Desiccation-21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Department of Plant SciencesPlant Chemetics LaboratoryUniversity of OxfordOxfordUK
| | | | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuébecCanada
| | | |
Collapse
|
8
|
Miguel S, Nisse E, Biteau F, Rottloff S, Mignard B, Gontier E, Hehn A, Bourgaud F. Assessing Carnivorous Plants for the Production of Recombinant Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:793. [PMID: 31275341 PMCID: PMC6593082 DOI: 10.3389/fpls.2019.00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/31/2019] [Indexed: 05/16/2023]
Abstract
The recovery of recombinant proteins from plant tissues is an expensive and time-consuming process involving plant harvesting, tissue extraction, and subsequent protein purification. The downstream process costs can represent up to 80% of the total cost of production. Secretion-based systems of carnivorous plants might help circumvent this problem. Drosera and Nepenthes can produce and excrete out of their tissues a digestive fluid containing up to 200 mg. L-1 of natural proteins. Based on the properties of these natural bioreactors, we have evaluated the possibility to use carnivorous plants for the production of recombinant proteins. In this context, we have set up original protocols of stable and transient genetic transformation for both Drosera and Nepenthes sp. The two major drawbacks concerning the proteases naturally present in the secretions and a polysaccharidic network composing the Drosera glue were overcome by modulating the pH of the plant secretions. At alkaline pH, digestive enzymes are inactive and the interactions between the polysaccharidic network and proteins in the case of Drosera are subdued allowing the release of the recombinant proteins. For D. capensis, a concentration of 25 μg of GFP/ml of secretion (2% of the total soluble proteins from the glue) was obtained for stable transformants. For N. alata, a concentration of 0.5 ng of GFP/ml secretions (0.5% of total soluble proteins from secretions) was reached, corresponding to 12 ng in one pitcher after 14 days for transiently transformed plants. This plant-based expression system shows the potentiality of biomimetic approaches leading to an original production of recombinant proteins, although the yields obtained here were low and did not allow to qualify these plants for an industrial platform project.
Collapse
Affiliation(s)
- Sissi Miguel
- Plant Advanced Technologies SA, Vandoeuvre-lès-Nancy, France
| | - Estelle Nisse
- Plant Advanced Technologies SA, Vandoeuvre-lès-Nancy, France
| | - Flore Biteau
- Laboratoire Agronomie et Environnement, INRA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sandy Rottloff
- Laboratoire Agronomie et Environnement, INRA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Benoit Mignard
- Plant Advanced Technologies SA, Vandoeuvre-lès-Nancy, France
| | - Eric Gontier
- Laboratoire Biopi, Université de Picardie Jules Verne, Amiens, France
| | - Alain Hehn
- Laboratoire Agronomie et Environnement, INRA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | | |
Collapse
|
9
|
Cai CX, Schneck NA, Harris D, Blackstock D, Ivleva VB, Cheng KC, Charlton A, Arnold FJ, Cooper JW, Lei QP. Quantification of residual AEBSF-related impurities by reversed-phase liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1116:19-23. [PMID: 30953918 DOI: 10.1016/j.jchromb.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
During research of a broadly neutralizing antibody (bNAb) for HIV-1 infection, site-specific clipping was observed during cell culture incubation. Protease inhibitor, 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), was supplemented to the cell culture feeding to mitigate clipping as one of the control strategies. It led to the need and development of a new assay to monitor the free AEBSF-related impurities during the purification process. In this work, a reversed-phase liquid chromatography (RPLC-UV) method was developed to measure the total concentration of AEBSF and its major degradant product, 4-(aminoethyl) benzenesulfonic acid (AEBS-OH). This quantitative approach involved hydrolysis pre-treatment to drive all AEBSF to AEBS-OH, a filtration step to remove large molecules, followed by RPLC-UV analysis. The method was qualified and shown to be capable of measuring AEBS-OH down to 0.5 μM with good accuracy and precision, which was then applied for process clearance studies. The results demonstrated that a Protein A purification step in conjunction with a mock ultrafiltration/diafiltration (UF/DF) step could remove AEBSF-related impurities below the detection level. Overall, this study is the first to provide a unique approach for monitoring the clearance of free AEBSF and its related degradant, AEBS-OH, in support of the bNAb research.
Collapse
Affiliation(s)
- Cindy X Cai
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Nicole A Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Doug Harris
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Daniel Blackstock
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Kuang-Chuan Cheng
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Adam Charlton
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Frank J Arnold
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Jonathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, USA.
| |
Collapse
|
10
|
Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci 2019; 20:E1345. [PMID: 30884891 PMCID: PMC6471620 DOI: 10.3390/ijms20061345] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.
Collapse
Affiliation(s)
- Marina Clemente
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Mariana G Corigliano
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Sebastián A Pariani
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Edwin F Sánchez-López
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Valeria A Sander
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Víctor A Ramos-Duarte
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| |
Collapse
|
11
|
Gomes M, Alvarez MA, Quellis LR, Becher ML, Castro JMDA, Gameiro J, Caporrino MC, Moura-da-Silva AM, de Oliveira Santos M. Expression of an scFv antibody fragment in Nicotiana benthamiana and in vitro assessment of its neutralizing potential against the snake venom metalloproteinase BaP1 from Bothrops asper. Toxicon 2019; 160:38-46. [PMID: 30802471 DOI: 10.1016/j.toxicon.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/24/2019] [Accepted: 02/13/2019] [Indexed: 11/29/2022]
Abstract
Human accidents with venomous snakes represent an overwhelming public health problem, mainly in rural populations of underdeveloped countries. Their high incidence and the severity of the accidents result in 81,000 to 138,000 deaths per year. The treatment is based on the administration of purified antibodies, produced by hyper immunization of animals to generate immunoglobulins (Igs), and then obtained by fractionating hyper immune plasma. The use of recombinant antibodies is an alternative to conventional treatment of snakebite envenoming, particularly the Fv fragment, named the single-chain variable fragment (scFv). We have produced recombinant single chain variable fragment scFv against the venom of the pit viper Bothrops asper at high levels expressed transiently and stably in transgenic plants and in vitro cultures that is reactive to BaP1 (a metalloproteinase from B. asper venom). The yield from stably transformed plants was significantly (p > 0.05) higher than the results in from transient expression. In addition, scFvBaP1 yields from systems derived from stable transformation were: transgenic callus 62 μg/g (±2); biomass from cell suspension cultures 83 μg/g (±0.2); culture medium from suspensions 71.75 mg/L (±6.18). The activity of scFvBaP1 was confirmed by binding and neutralization of the fibrin degradation induced by BnP1 toxins from B. neuwiedi and by Atroxlysin Ia from B. atrox venoms. In the present work, we demonstrated the potential use of plant cells to produce scFvBaP1 to be used in the future as a biotechnological alternative to horse immunization protocols to produce anti-venoms to be used in human therapy against snakebites.
Collapse
Affiliation(s)
- Marinna Gomes
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | | | - Leonardo Ramos Quellis
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Melina Laguia Becher
- CONICET-Universidade Maimónides (CEBBAD), Hidalgo 775, Lab 603, Buenos Aires, Argentina
| | - Juciane Maria de Andrade Castro
- Laboratorio de Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Jacy Gameiro
- Laboratorio de Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Maria Cristina Caporrino
- Laboratorio de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil
| | - Ana Maria Moura-da-Silva
- Laboratorio de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil
| | - Marcelo de Oliveira Santos
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil.
| |
Collapse
|
12
|
Jutras PV, Goulet M, Lavoie P, D'Aoust M, Sainsbury F, Michaud D. Recombinant protein susceptibility to proteolysis in the plant cell secretory pathway is pH-dependent. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1928-1938. [PMID: 29618167 PMCID: PMC6181212 DOI: 10.1111/pbi.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 05/07/2023]
Abstract
Cellular engineering approaches have been proposed to mitigate unintended proteolysis in plant protein biofactories, involving the design of protease activity-depleted environments by gene silencing or in situ inactivation with accessory protease inhibitors. Here, we assessed the impact of influenza virus M2 proton channel on host protease activities and recombinant protein processing in the cell secretory pathway of Nicotiana benthamiana leaves. Transient co-expression assays with M2 and GFP variant pHluorin were first conducted to illustrate the potential of proton export from the Golgi lumen to promote recombinant protein yield. A fusion protein-based system involving protease-sensitive peptide linkers to attach inactive variants of tomato cystatin SlCYS8 was then designed to relate the effects of M2 on protein levels with altered protease activities in situ. Secreted versions of the cystatin fusions transiently expressed in leaf tissue showed variable 'fusion to free cystatin' cleavage ratios, in line with the occurrence of protease forms differentially active against the peptide linkers in the secretory pathway. Variable ratios were also observed for the fusions co-expressed with M2, but the extent of fusion cleavage was changed for several fusions, positively or negatively, as a result of pH increase in the Golgi. These data indicating a remodelling of endogenous protease activities upon M2 expression confirm that the stability of recombinant proteins in the plant cell secretory pathway is pH-dependent. They suggest, in practice, the potential of M2 proton channel to modulate the stability of protease-susceptible secreted proteins in planta via a pH-related, indirect effect on host resident proteases.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| | - Marie‐Claire Goulet
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| | | | | | - Frank Sainsbury
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQldAustralia
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| |
Collapse
|
13
|
Hoernstein SNW, Fode B, Wiedemann G, Lang D, Niederkrüger H, Berg B, Schaaf A, Frischmuth T, Schlosser A, Decker EL, Reski R. Host Cell Proteome of Physcomitrella patens Harbors Proteases and Protease Inhibitors under Bioproduction Conditions. J Proteome Res 2018; 17:3749-3760. [PMID: 30226384 DOI: 10.1021/acs.jproteome.8b00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Benjamin Fode
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,Plant Genome and System Biology , Helmholtz Center Munich , D-85764 Neuherberg , Germany
| | - Holger Niederkrüger
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Birgit Berg
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schaaf
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Thomas Frischmuth
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Experimental Biomedicine , University of Wuerzburg , D-97080 Wuerzburg , Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,BIOSS - Centre for Biological Signalling Studies , University of Freiburg , D-79104 Freiburg , Germany
| |
Collapse
|
14
|
Grosse‐Holz F, Madeira L, Zahid MA, Songer M, Kourelis J, Fesenko M, Ninck S, Kaschani F, Kaiser M, van der Hoorn RA. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1797-1810. [PMID: 29509983 PMCID: PMC6131417 DOI: 10.1111/pbi.12916] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 05/21/2023]
Abstract
Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α-Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose-dependent. Activity-based protein profiling (ABPP) revealed that the activities of papain-like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.
Collapse
Affiliation(s)
| | - Luisa Madeira
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Muhammad Awais Zahid
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Molly Songer
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Jiorgos Kourelis
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Mary Fesenko
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Sabrina Ninck
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | | |
Collapse
|
15
|
Jutras PV, Marusic C, Lonoce C, Deflers C, Goulet MC, Benvenuto E, Michaud D, Donini M. An Accessory Protease Inhibitor to Increase the Yield and Quality of a Tumour-Targeting mAb in Nicotiana benthamiana Leaves. PLoS One 2016; 11:e0167086. [PMID: 27893815 PMCID: PMC5125672 DOI: 10.1371/journal.pone.0167086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories.
Collapse
Affiliation(s)
| | - Carla Marusic
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Chiara Lonoce
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Carole Deflers
- Département de phytologie, Université Laval, Québec Quebec, Canada
| | | | - Eugenio Benvenuto
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | | | - Marcello Donini
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| |
Collapse
|
16
|
Review on proteomics for food authentication. J Proteomics 2016; 147:212-225. [PMID: 27389853 DOI: 10.1016/j.jprot.2016.06.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Consumers have the right to know what is in the food they are eating. Accordingly, European and global food regulations require that the provenance of the food can be guaranteed from farm to fork. Many different instrumental techniques have been proposed for food authentication. Although traditional methods are still being used, new approaches such as genomics, proteomics, and metabolomics are helping to complement existing methodologies for verifying the claims made about certain food products. During the last decade, proteomics (the large-scale analysis of proteins in a particular biological system at a particular time) has been applied to different research areas within food technology. Since proteins can be used as markers for many properties of a food, even indicating processes to which the food has been subjected, they can provide further evidence of the foods labeling claim. This review is a comprehensive and updated overview of the applications, drawbacks, advantages, and challenges of proteomics for food authentication in the assessment of the foods compliance with labeling regulations and policies. SIGNIFICANCE This review paper provides a comprehensive and critical overview of the application of proteomics approaches to determine the authenticity of several food products updating the performances and current limitations of the applied techniques in both laboratory and industrial environments.
Collapse
|
17
|
Park SH, Ong RG, Sticklen M. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1329-44. [PMID: 26627868 PMCID: PMC5063159 DOI: 10.1111/pbi.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Rebecca Garlock Ong
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Mariam Sticklen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Mandal MK, Ahvari H, Schillberg S, Schiermeyer A. Tackling Unwanted Proteolysis in Plant Production Hosts Used for Molecular Farming. FRONTIERS IN PLANT SCIENCE 2016; 7:267. [PMID: 27014293 PMCID: PMC4782010 DOI: 10.3389/fpls.2016.00267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/19/2016] [Indexed: 05/17/2023]
Abstract
Although the field of molecular farming has significantly matured over the last years, some obstacles still need to be resolved. A major limiting factor for a broader application of plant hosts for the production of valuable recombinant proteins is the low yield of intact recombinant proteins. These low yields are at least in part due to the action of endogenous plant proteases on the foreign recombinant proteins. This mini review will present the current knowledge of the proteolytic enzymes involved in the degradation of different target proteins and strategies that are applied to suppress undesirable proteolytic activities in order to safeguard recombinant proteins during the production process.
Collapse
Affiliation(s)
| | | | | | - Andreas Schiermeyer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied EcologyAachen, Germany
| |
Collapse
|
19
|
Robert S, Jutras PV, Khalf M, D'Aoust MA, Goulet MC, Sainsbury F, Michaud D. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants. Methods Mol Biol 2016; 1385:115-26. [PMID: 26614285 DOI: 10.1007/978-1-4939-3289-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.
Collapse
Affiliation(s)
- Stéphanie Robert
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Philippe V Jutras
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Moustafa Khalf
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | | | - Marie-Claire Goulet
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Frank Sainsbury
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Dominique Michaud
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada.
| |
Collapse
|
20
|
Kunert KJ, Pillay P. Commentary: Extracellular peptidase hunting for improvement of protein production in plant cells and roots. FRONTIERS IN PLANT SCIENCE 2015; 6:557. [PMID: 26257762 PMCID: PMC4508503 DOI: 10.3389/fpls.2015.00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
|
21
|
Wang L, Wang X, Jin X, Jia R, Huang Q, Tan Y, Guo A. Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Proteome Sci 2015; 13:15. [PMID: 25949214 PMCID: PMC4422549 DOI: 10.1186/s12953-015-0071-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Background As the rapid growth of the commercialized acreage in genetically modified (GM) crops, the unintended effects of GM crops’ biosafety assessment have been given much attention. To investigate whether transgenic events cause unintended effects, comparative proteomics of cotton leaves between the commercial transgenic Bt + CpTI cotton SGK321 (BT) clone and its non-transgenic parental counterpart SY321 wild type (WT) was performed. Results Using enzyme linked immunosorbent assay (ELISA), Cry1Ac toxin protein was detected in the BT leaves, while its content was only 0.31 pg/g. By 2-DE, 58 differentially expressed proteins (DEPs) were detected. Among them 35 were identified by MS. These identified DEPs were mainly involved in carbohydrate transport and metabolism, chaperones related to post-translational modification and energy production. Pathway analysis revealed that most of the DEPs were implicated in carbon fixation and photosynthesis, glyoxylate and dicarboxylate metabolism, and oxidative pentose phosphate pathway. Thirteen identified proteins were involved in protein-protein interaction. The protein interactions were mainly involved in photosynthesis and energy metabolite pathway. Conclusions Our study demonstrated that exogenous DNA in a host cotton genome can affect the plant growth and photosynthesis. Although some unintended variations of proteins were found between BT and WT cotton, no toxic proteins or allergens were detected. This study verified genetically modified operation did not sharply alter cotton leaf proteome, and the target proteins were hardly checked by traditional proteomic analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0071-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Limin Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China ; Chinese Academy of Agricultural Sciences, The Oilcrops Research Institute, Wuhan, 430062 China
| | - Xuchu Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Xiang Jin
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Ruizong Jia
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Qixing Huang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Yanhua Tan
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Anping Guo
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| |
Collapse
|
22
|
Lallemand J, Bouché F, Desiron C, Stautemas J, de Lemos Esteves F, Périlleux C, Tocquin P. Extracellular peptidase hunting for improvement of protein production in plant cells and roots. FRONTIERS IN PLANT SCIENCE 2015; 6:37. [PMID: 25705212 PMCID: PMC4319384 DOI: 10.3389/fpls.2015.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/14/2015] [Indexed: 05/23/2023]
Abstract
Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.
Collapse
Affiliation(s)
- Jérôme Lallemand
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Carole Desiron
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
| | - Jennifer Stautemas
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
| | | | - Claire Périlleux
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Pierre Tocquin
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| |
Collapse
|
23
|
Thomas DR, Walmsley AM. The effect of the unfolded protein response on the production of recombinant proteins in plants. PLANT CELL REPORTS 2015; 34:179-87. [PMID: 25187294 DOI: 10.1007/s00299-014-1680-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 05/16/2023]
Abstract
Recombinant proteins are currently produced through a wide variety of host systems, including yeast, E. coli, insect and mammalian cells. One of the most recent systems developed uses plant cells. While considerable advances have been made in the yields and fidelity of plant-made recombinant proteins, many of these gains have arisen from the development of recombinant factors. This includes elements such as highly effective promoters and untranslated regions, deconstructed viral vectors, silencing inhibitors, and improved DNA delivery techniques. However, unlike other host systems, much of the work on recombinant protein production in plants uses wild-type hosts that have not been modified to facilitate recombinant protein expression. As such, there are still endogenous mechanisms functioning to maintain the health of the cell. The result is that these pathways, such as the unfolded protein response, can actively work to reduce recombinant protein production to maintain the integrity of the cell. This review examines how issues arising from the unfolded protein response have been addressed in other systems, and how these methods may be transferable to plant systems. We further identify several areas of host plant biology that present attractive targets for modification to facilitate recombinant protein production.
Collapse
Affiliation(s)
- David Rhys Thomas
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|
24
|
Mandal MK, Fischer R, Schillberg S, Schiermeyer A. Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells. Biotechnol J 2014; 9:1065-73. [PMID: 24828029 DOI: 10.1002/biot.201300424] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 04/03/2014] [Accepted: 05/14/2014] [Indexed: 11/08/2022]
Abstract
Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease-deficient tobacco BY-2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY-2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full-length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV-1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four-fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N-terminal sequencing data revealed that the antibody has two cleavage sites within the CDR-H3 and one site at the end of the H4-framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures.
Collapse
Affiliation(s)
- Manoj K Mandal
- RWTH Aachen University, Institute for Molecular Biotechnology, Aachen, Germany
| | | | | | | |
Collapse
|
25
|
Krishnan A, Woodard SL. TrypZean™: An Animal-Free Alternative to Bovine Trypsin. COMMERCIAL PLANT-PRODUCED RECOMBINANT PROTEIN PRODUCTS 2014. [DOI: 10.1007/978-3-662-43836-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Robert S, Khalf M, Goulet MC, D’Aoust MA, Sainsbury F, Michaud D. Protection of recombinant mammalian antibodies from development-dependent proteolysis in leaves of Nicotiana benthamiana. PLoS One 2013; 8:e70203. [PMID: 23894618 PMCID: PMC3720903 DOI: 10.1371/journal.pone.0070203] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
The expression of clinically useful proteins in plants has been bolstered by the development of high-yielding systems for transient protein expression using agroinfiltration. There is a need now to know more about how host plant development and metabolism influence the quantity and quality of recombinant proteins. Endogenous proteolysis is a key determinant of the stability and yield of recombinant proteins in plants. Here we characterised cysteine (C1A) and aspartate (A1) protease profiles in leaves of the widely used expression host Nicotiana benthamiana, in relation with the production of a murine IgG, C5-1, targeted to the cell secretory pathway. Agroinfiltration significantly altered the distribution of C1A and A1 proteases along the leaf age gradient, with a correlation between leaf age and the level of proteolysis in whole-cell and apoplast protein extracts. The co-expression of tomato cystatin SlCYS8, an inhibitor of C1A proteases, alongside C5-1 increased antibody yield by nearly 40% after the usual 6-days incubation period, up to ~3 mg per plant. No positive effect of SlCYS8 was observed in oldest leaves, in line with an increased level of C1A protease activity and a very low expression rate of the inhibitor. By contrast, C5-1 yield was greater by an additional 40% following 8- to 10-days incubations in younger leaves, where high SlCYS8 expression was maintained. These findings confirm that the co-expression of recombinant protease inhibitors is a promising strategy for increasing recombinant protein yields in plants, but that further opportunity exists to improve this approach by addressing the influence of leaf age and proteases of other classes.
Collapse
Affiliation(s)
- Stéphanie Robert
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Québec City, Québec, Canada
| | - Moustafa Khalf
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Québec City, Québec, Canada
| | - Marie-Claire Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Québec City, Québec, Canada
| | | | - Frank Sainsbury
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Québec City, Québec, Canada
| | - Dominique Michaud
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
27
|
Production of pharmaceutical proteins in solanaceae food crops. Int J Mol Sci 2013; 14:2753-73. [PMID: 23434646 PMCID: PMC3588013 DOI: 10.3390/ijms14022753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/11/2013] [Accepted: 01/22/2013] [Indexed: 12/13/2022] Open
Abstract
The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins.
Collapse
|
28
|
Gong CY, Wang T. Proteomic evaluation of genetically modified crops: current status and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:41. [PMID: 23471542 PMCID: PMC3590489 DOI: 10.3389/fpls.2013.00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 05/07/2023]
Abstract
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.
Collapse
Affiliation(s)
| | - Tai Wang
- *Correspondence: Tai Wang, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing 100093, China. e-mail:
| |
Collapse
|
29
|
Duceppe MO, Cloutier C, Michaud D. Wounding, insect chewing and phloem sap feeding differentially alter the leaf proteome of potato, Solanum tuberosum L. Proteome Sci 2012; 10:73. [PMID: 23268880 PMCID: PMC3563458 DOI: 10.1186/1477-5956-10-73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/22/2012] [Indexed: 12/30/2022] Open
Abstract
Background Various factors shape the response of plants to herbivorous insects, including wounding patterns, specific chemical effectors and feeding habits of the attacking herbivore. Here we performed a comparative proteomic analysis of the plant's response to wounding and herbivory, using as a model potato plants (Solanum tuberosum L.) subjected to mechanical wounding, defoliation by the Colorado potato beetle Leptinotarsa decemlineata Say, or phloem sap feeding by the potato aphid Macrosiphum euphorbiae Thomas. Results Out of ~500 leaf proteins monitored by two-dimensional gel electrophoresis (2-DE), 31 were up- or downregulated by at least one stress treatment compared to healthy control plants. Of these proteins, 29 were regulated by beetle chewing, 8 by wounding and 8 by aphid feeding. Some proteins were up- or downregulated by two different treatments, while others showed diverging expression patterns in response to different treatments. A number of modulated proteins identified by mass spectrometry were typical defense proteins, including wound-inducible protease inhibitors and pathogenesis-related proteins. Proteins involved in photosynthesis were also modulated, notably by potato beetle feeding inducing a strong decrease of some photosystem I proteins. Quantitative RT PCR assays were performed with nucleotide primers for photosynthesis-related proteins to assess the impact of wounding and herbivory at the gene level. Whereas different, sometimes divergent, responses were observed at the proteome level in response to wounding and potato beetle feeding, downregulating effects were systematically observed for both treatments at the transcriptional level. Conclusions These observations illustrate the differential impacts of wounding and insect herbivory on defense- and photosynthesis-related components of the potato leaf proteome, likely associated with the perception of distinct physical and chemical cues in planta.
Collapse
Affiliation(s)
- Marc-Olivier Duceppe
- Département de phytologie/Centre de recherche en horticulture, Pavillon des services (INAF), Université Laval, Québec, QC, G1V 0A6, Canada.
| | | | | |
Collapse
|
30
|
Munger A, Coenen K, Cantin L, Goulet C, Vaillancourt LP, Goulet MC, Tweddell R, Sainsbury F, Michaud D. Beneficial 'unintended effects' of a cereal cystatin in transgenic lines of potato, Solanum tuberosum. BMC PLANT BIOLOGY 2012; 12:198. [PMID: 23116303 PMCID: PMC3534561 DOI: 10.1186/1471-2229-12-198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. RESULTS The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. CONCLUSIONS These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.
Collapse
Affiliation(s)
- Aurélie Munger
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Karine Coenen
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Line Cantin
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Charles Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
- Current address: Horticulture Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Louis-Philippe Vaillancourt
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Marie-Claire Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Russell Tweddell
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Frank Sainsbury
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Dominique Michaud
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| |
Collapse
|
31
|
Yoshimatsu K, Kawano N, Kawahara N, Akiyama H, Teshima R, Nishijima M. [Current status in the commercialization and application of genetically modified plants and their effects on human and livestock health and phytoremediation]. YAKUGAKU ZASSHI 2012; 132:629-74. [PMID: 22687699 DOI: 10.1248/yakushi.132.629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Developments in the use of genetically modified plants for human and livestock health and phytoremediation were surveyed using information retrieved from Entrez PubMed, Chemical Abstracts Service, Google, congress abstracts and proceedings of related scientific societies, scientific journals, etc. Information obtained was classified into 8 categories according to the research objective and the usage of the transgenic plants as 1: nutraceuticals (functional foods), 2: oral vaccines, 3: edible curatives, 4: vaccine antigens, 5: therapeutic antibodies, 6: curatives, 7: diagnostic agents and reagents, and 8: phytoremediation. In total, 405 cases were collected from 2006 to 2010. The numbers of cases were 120 for nutraceuticals, 65 for oral vaccines, 25 for edible curatives, 36 for vaccine antigens, 36 for therapeutic antibodies, 76 for curatives, 15 for diagnostic agents and reagents, and 40 for phytoremediation (sum of each cases was 413 because some reports were related to several categories). Nutraceuticals, oral vaccines and curatives were predominant. The most frequently used edible crop was rice (51 cases), and tomato (28 cases), lettuce (22 cases), potato (18 cases), corn (15 cases) followed.
Collapse
Affiliation(s)
- Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Larsen JS, Curtis WR. RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots. BMC Biotechnol 2012; 12:21. [PMID: 22559055 PMCID: PMC3403893 DOI: 10.1186/1472-6750-12-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Plant cell suspensions and hairy root cultures represent scalable protein expression platforms. Low protein product titers have thus far limited the application of transient protein expression in these hosts. The objective of this work was to overcome this limitation by harnessing A. tumefaciens to deliver replicating and non-replicating RNA viral vectors in plant tissue co-cultures. RESULTS Replicating vectors derived from Potato virus X (PVX) and Tobacco rattle virus (TRV) were modified to contain the reporter gene β-glucuronidase (GUS) with a plant intron to prevent bacterial expression. In cell suspensions, a minimal PVX vector retaining only the viral RNA polymerase gene yielded 6.6-fold more GUS than an analogous full-length PVX vector. Transient co-expression of the minimal PVX vector with P19 of Tomato bushy stunt virus or HC-Pro of Tobacco etch virus to suppress post-transcriptional gene silencing increased GUS expression by 44 and 83%, respectively. A non-replicating vector containing a leader sequence from Cowpea mosaic virus (CPMV-HT) modified for enhanced translation led to 70% higher transient GUS expression than a control treatment. In hairy roots, a TRV vector capable of systemic movement increased GUS accumulation by 150-fold relative to the analogous PVX vector. Histochemical staining for GUS in TRV-infected hairy roots revealed the capacity for achieving even higher productivity per unit biomass. CONCLUSIONS For the first time, replicating PVX vectors and a non-replicating CPMV-HT vector were successfully applied toward transient heterologous protein expression in cell suspensions. A replicating TRV vector achieved transient GUS expression levels in hairy roots more than an order of magnitude higher than the highest level previously reported with a viral vector delivered by A. tumefaciens.
Collapse
Affiliation(s)
- Jeffrey S Larsen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
33
|
Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2010.07.017] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:83-101. [PMID: 22284713 DOI: 10.1016/j.plantsci.2011.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/21/2023]
Abstract
Recombinant protein production in microbial hosts and animal cell cultures has revolutionized the pharmaceutical and industrial enzyme industries. Plants as alternative hosts for the production of recombinant proteins are being actively pursued, taking advantage of their unique characteristics. The key to cost-efficient production in any system is the level of protein accumulation, which is inversely proportional to the cost. Levels of up to 5 g/kg biomass have been obtained in plants, making this production system competitive with microbial hosts. Increasing protein accumulation at the cellular level by varying host, germplasm, location of protein accumulation, and transformation procedure is reviewed. At the molecular level increased expression by improving transcription, translation and accumulation of the protein is critically evaluated. The greatest increases in protein accumulation will occur when various optimized parameters are more fully integrated with each other. Because of the complex nature of plants, this will take more time and effort to accomplish than has been the case for the simpler unicellular systems. However the potential for plants to become one of the major avenues for protein production appears very promising.
Collapse
Affiliation(s)
- Erin Egelkrout
- Applied Biotechnology Institute, Cal Poly Technology Park, Building 83, San Luis Obispo, CA 93407, USA
| | | | | |
Collapse
|
35
|
Goulet C, Khalf M, Sainsbury F, D'Aoust MA, Michaud D. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:83-94. [PMID: 21895943 DOI: 10.1111/j.1467-7652.2011.00643.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recombinant proteins face major constraints along the plant cell secretory pathway, including proteolytic processing compromising their structural integrity. Here, we demonstrate the potential of protease inhibitors as in situ stabilizing agents for recombinant proteins migrating towards the leaf apoplast. Genomic data for Arabidopsis, rice and Nicotiana spp. were assessed to determine the relative incidence of protease families in the cell secretory pathway. Transient expression assays with the model platform Nicotiana benthamiana were then performed to test the efficiency of protease inhibitors in stabilizing proteins targeted to the apoplast. Current genomic data suggest the occurrence of proteases from several families along the secretory pathway, including A1 and A22 Asp proteases; C1A and C13 Cys proteases; and S1, S8 and S10 Ser proteases. In vitro protease assays confirmed the presence of various proteases in N. benthamiana leaves, notably pointing to the deposition of A1- and S1-type activities preferentially in the apoplast. Accordingly, transient expression and secretion of the A1/S1 protease inhibitor, tomato cathepsin D inhibitor (SlCDI), negatively altered A1 and S1 protease activities in this cell compartment, while increasing the leaf apoplast protein content by ∼45% and improving the accumulation of a murine diagnostic antibody, C5-1, co-secreted in the apoplast. SlCYS9, an inhibitor of C1A and C13 Cys proteases, had no impact on the apoplast proteases and protein content, but stabilized C5-1 in planta, presumably upstream in the secretory pathway. These data confirm, overall, the potential of protease inhibitors for the in situ protection of recombinant proteins along the plant cell secretory pathway.
Collapse
Affiliation(s)
- Charles Goulet
- Département de phytologie, Université Laval, Pavillon des Services (INAF), Québec, QC, Canada
| | | | | | | | | |
Collapse
|
36
|
Sun QY, Ding LW, Lomonossoff GP, Sun YB, Luo M, Li CQ, Jiang L, Xu ZF. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture. J Biotechnol 2011; 155:164-72. [PMID: 21762733 DOI: 10.1016/j.jbiotec.2011.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 12/11/2022]
Abstract
Most human serum albumin (HSA) for medical applications is derived from human plasma due to the lack of suitable heterologous expression systems for recombinant HSA (rHSA). To determine whether plant cell cultures could provide an alternative source, we employed the hyper-translatable cowpea mosaic virus protein expression system (CPMV-HT) to stably express rHSA in tobacco Bright Yellow-2 (BY-2) cells. rHSA was stably produced with yield up to 11.88μg/ml in the culture medium, accounting for 0.7% of total soluble protein, in a 25-ml flask. Cultivation of transgenic cells in modified Murashige and Skoog medium with a pH of 8.0 improved the yield of rHSA two-fold, which may be the result of reduced proteolytic activity in the modified medium. A simple purification scheme was developed to purify the rHSA from culture medium, resulting in a recovery of 48.41% of the secreted rHSA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and N-terminal sequence analysis of the purified rHSA revealed that plant cell-derived rHSA is identical to that of the plasma-derived HSA. Our results show that the CPMV-HT system, which was originally developed as a transient expression system for use in whole plants, can also be used for high-level expression of rHSA, a protein highly susceptible to proteolysis, in transgenic tobacco cells.
Collapse
Affiliation(s)
- Qiao-Yang Sun
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Obembe OO, Popoola JO, Leelavathi S, Reddy SV. Advances in plant molecular farming. Biotechnol Adv 2010; 29:210-22. [PMID: 21115109 DOI: 10.1016/j.biotechadv.2010.11.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 01/01/2023]
Abstract
Plant molecular farming (PMF) is a new branch of plant biotechnology, where plants are engineered to produce recombinant pharmaceutical and industrial proteins in large quantities. As an emerging subdivision of the biopharmaceutical industry, PMF is still trying to gain comparable social acceptance as the already established production systems that produce these high valued proteins in microbial, yeast, or mammalian expression systems. This article reviews the various cost-effective technologies and strategies, which are being developed to improve yield and quality of the plant-derived pharmaceuticals, thereby making plant-based production system suitable alternatives to the existing systems. It also attempts to overview the different novel plant-derived pharmaceuticals and non-pharmaceutical protein products that are at various stages of clinical development or commercialization. It then discusses the biosafety and regulatory issues, which are crucial (if strictly adhered to) to eliminating potential health and environmental risks, which in turn is necessary to earning favorable public perception, thus ensuring the success of the industry.
Collapse
Affiliation(s)
- Olawole O Obembe
- Department of Biological Sciences, Covenant University, PMB 1023 Ota, Ogun State, Nigeria.
| | | | | | | |
Collapse
|
38
|
Schlüter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet MC, Cloutier C, Michaud D. Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4169-83. [PMID: 20581122 DOI: 10.1093/jxb/erq166] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.
Collapse
Affiliation(s)
- Urte Schlüter
- Plant Science Department, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Benchabane M, Schlüter U, Vorster J, Goulet MC, Michaud D. Plant cystatins. Biochimie 2010; 92:1657-66. [PMID: 20558232 DOI: 10.1016/j.biochi.2010.06.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/08/2010] [Indexed: 01/07/2023]
Abstract
Plant cystatins have been the object of intense research since the publication of a first paper reporting their existence more than 20 years ago. These ubiquitous inhibitors of Cys proteases play several important roles in plants, from the control of various physiological and cellular processes in planta to the inhibition of exogenous Cys proteases secreted by herbivorous arthropods and pathogens to digest or colonize plant tissues. After an overview of current knowledge about the evolution, structure and inhibitory mechanism of plant cystatins, we review the different roles attributed to these proteins in plants. The potential of recombinant plant cystatins as effective pesticidal proteins in crop protection is also considered, as well as protein engineering approaches adopted over the years to improve their inhibitory potency and specificity towards Cys proteases of biotechnological interest.
Collapse
Affiliation(s)
- Meriem Benchabane
- Département de phytologie, CRH/INAF, Université Laval, Québec (QC), Canada G1V 0A6
| | | | | | | | | |
Collapse
|
40
|
Khalf M, Goulet C, Vorster J, Brunelle F, Anguenot R, Fliss I, Michaud D. Tubers from potato lines expressing a tomato Kunitz protease inhibitor are substantially equivalent to parental and transgenic controls. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:155-69. [PMID: 20051032 DOI: 10.1111/j.1467-7652.2009.00471.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recombinant protease inhibitors represent useful tools for the development of insect-resistant transgenic crops, but questions have been raised in recent years about the impact of these proteins on endogenous proteases and chemical composition of derived food products. In this study, we performed a detailed compositional analysis of tubers from potato lines expressing the broad-spectrum inhibitor of Ser and Asp proteases, tomato cathepsin D inhibitor (SlCDI), to detect possible unintended effects on tuber composition. A compositional analysis of key nutrients and toxic chemicals was carried out with tubers of SlCDI-expressing and control (comparator) lines, followed by a two-dimensional gel electrophoresis (2-DE) proteomic profiling of total and allergenic proteins to detect eventual effects at the proteome level. No significant differences were observed among control and SlCDI-expressing lines for most chemicals assayed, in line with the very low abundance of SlCDI in tubers. Likewise, proteins detected after 2-DE showed no quantitative variation among the lines, except for a few proteins in some control and test lines, independent of slcdi transgene expression. Components of the patatin storage protein complex and Kunitz protease inhibitors immunodetected after 2-DE showed unaltered deposition patterns in SlCDI-expressing lines, clearly suggesting a null impact of slcdi on the intrinsic allergenic potential of potato tubers. These data suggest, overall, a null impact of slcdi expression on tuber composition and substantial equivalence between comparator and SlCDI-expressing tubers despite reported effects on leaf protein catabolism. They also illustrate the usefulness of proteomics as a tool to assess the authenticity of foods derived from novel-generation transgenic plants.
Collapse
Affiliation(s)
- Moustafa Khalf
- CRH/INAF, Pavillon des Services (INAF), Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|