1
|
Melero‐Cobo X, Gallemí M, Carnicer M, Monte E, Planas A, Leivar P. MoCloro: an extension of the Chlamydomonas reinhardtii modular cloning toolkit for microalgal chloroplast engineering. PHYSIOLOGIA PLANTARUM 2025; 177:e70088. [PMID: 39871102 PMCID: PMC11772913 DOI: 10.1111/ppl.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering. The MoClo (Modular Cloning) toolkit based on Golden Gate assembly was recently developed in the model eukaryotic green microalgae Chlamydomonas reinhardtii to facilitate nuclear transformation and engineering. Here, we present MoCloro as an extension of the MoClo that allows chloroplast genome engineering. Briefly, a Golden Gate-compatible chloroplast transformation vector (pWF.K.4) was constructed, which contains homologous arms for integration at the petA site in the plastome. A collection of standardized parts (promoters, terminators, reporter and selection marker genes) was created following the MoClo syntax to enable easy combinatorial assembly of multi-cassettes in the destination pWF.K.4 vector. The functionality of the biobricks was assayed by constructing and assessing the expression of several multigenic constructs. Finally, a generic vector pK4 was constructed for easy Golden Gate cloning of 5' and 3' homologous arms, allowing targeting at alternative plastome integration sites. This work represents a significant advancement in technology aimed at facilitating more efficient and rapid chloroplast transformation and engineering of green microalgae.
Collapse
Affiliation(s)
- Xavier Melero‐Cobo
- Laboratory of Biochemistry, Institut Químic de SarriàUniversitat Ramon LlullBarcelonaSpain
| | - Marçal Gallemí
- Laboratory of Biochemistry, Institut Químic de SarriàUniversitat Ramon LlullBarcelonaSpain
| | - Marc Carnicer
- Laboratory of Biochemistry, Institut Químic de SarriàUniversitat Ramon LlullBarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UABBarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de SarriàUniversitat Ramon LlullBarcelonaSpain
- Royal Academy of Sciences and Arts of BarcelonaChemistry SectionBarcelonaSpain
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de SarriàUniversitat Ramon LlullBarcelonaSpain
| |
Collapse
|
2
|
Kumar A, Middha SK, Menon SV, Paital B, Gokarn S, Nelli M, Rajanikanth RB, Chandra HM, Mugunthan SP, Kantwa SM, Usha T, Hati AK, Venkatesan D, Rajendran A, Behera TR, Venkatesamurthy S, Sahoo DK. Current Challenges of Vaccination in Fish Health Management. Animals (Basel) 2024; 14:2692. [PMID: 39335281 PMCID: PMC11429256 DOI: 10.3390/ani14182692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination is an essential method of immunological preventive care required for the health management of all animals, including fish. More particularly, immunization is necessary for in-land aquaculture to manage diseases in fish broodstocks and healthy seed production. According to the latest statistics in 2020, 90.3 million tons of capture fishery production was achieved from the aquaculture sector. Out of the above, 78.8 million tons were from marine water aquaculture sectors, and 11.5 million tons were from inland water aquaculture sectors. About a 4% decline in fish production was achieved in 2020 in comparison to 2018 from inland aquaculture sectors. On the other hand, the digestive protein content, healthy fats, and nutritional values of fish products are comparatively more affordable than in other meat sources. In 2014, about 10% of aquatic cultured animals were lost (costing global annual losses > USD 10 billion) due to infectious diseases. Therefore, vaccination in fish, especially in broodstocks, is one of the essential approaches to stop such losses in the aquaculture sector. Fish vaccines consist of whole-killed pathogens, protein subunits, recombinant proteins, DNA, or live-attenuated vaccines. Challenges persist in the adaption of vaccination in the aquaculture sector, the route of administration, the use of effective adjuvants, and, most importantly, the lack of effective results. The use of autogenous vaccines; vaccination via intramuscular, intraperitoneal, or oral routes; and, most importantly, adding vaccines in feed using top dressing methods or as a constituent in fish feed are now emerging. These methods will lower the risk of using antibiotics in cultured water by reducing environmental contamination.
Collapse
Affiliation(s)
- Avnish Kumar
- Department of Biotechnology, School of Life Sciences, Dr. Bhimrao Ambedkar University, Agra 282004, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Soumya Vettiyatil Menon
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Shyam Gokarn
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Meghana Nelli
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | | | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | | | - Sanwar Mal Kantwa
- Department of Zoology, B. S. Memorial P.G. College, NH 52, Ranoli, Sikar 332403, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Akshaya Kumar Hati
- Dr. Abhin Chandra Homoeopathic Medical College and Hospital, Homeopathic College Rd., Unit 3, Kharvela Nagar, Bhubaneswar 751001, India
| | | | - Abira Rajendran
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Tapas Ranjan Behera
- Department of Community Medicine, Fakir Mohan Medical College and Hospital, Januganj Rd., Kalidaspur, Balia, Balasore 756019, India
| | - Swarupa Venkatesamurthy
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
3
|
Kato Y, Kuroda H, Ozawa SI, Saito K, Dogra V, Scholz M, Zhang G, de Vitry C, Ishikita H, Kim C, Hippler M, Takahashi Y, Sakamoto W. Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. eLife 2023; 12:RP88822. [PMID: 37986577 PMCID: PMC10665015 DOI: 10.7554/elife.88822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Faculty of Agriculture, Setsunan UniversityOsakaJapan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of MünsterMünsterGermany
| | - Guoxian Zhang
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie CurieParisFrance
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
| | - Michael Hippler
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Institute of Plant Biology and Biotechnology, University of MünsterMünsterGermany
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
| |
Collapse
|
4
|
Chung KP, Loiacono FV, Neupert J, Wu M, Bock R. An RNA thermometer in the chloroplast genome of Chlamydomonas facilitates temperature-controlled gene expression. Nucleic Acids Res 2023; 51:11386-11400. [PMID: 37855670 PMCID: PMC10639063 DOI: 10.1093/nar/gkad816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
Riboregulators such as riboswitches and RNA thermometers provide simple, protein-independent tools to control gene expression at the post-transcriptional level. In bacteria, RNA thermometers regulate protein synthesis in response to temperature shifts. Thermometers outside of the bacterial world are rare, and in organellar genomes, no RNA thermometers have been identified to date. Here we report the discovery of an RNA thermometer in a chloroplast gene of the unicellular green alga Chlamydomonas reinhardtii. The thermometer, residing in the 5' untranslated region of the psaA messenger RNA forms a hairpin-type secondary structure that masks the Shine-Dalgarno sequence at 25°C. At 40°C, melting of the secondary structure increases accessibility of the Shine-Dalgarno sequence to initiating ribosomes, thus enhancing protein synthesis. By targeted nucleotide substitutions and transfer of the thermometer into Escherichia coli, we show that the secondary structure is necessary and sufficient to confer the thermometer properties. We also demonstrate that the thermometer provides a valuable tool for inducible transgene expression from the Chlamydomonas plastid genome, in that a simple temperature shift of the algal culture can greatly increase recombinant protein yields.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mengting Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Barbosa MJ, Janssen M, Südfeld C, D'Adamo S, Wijffels RH. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol 2023; 41:452-471. [PMID: 36707271 DOI: 10.1016/j.tibtech.2022.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
The urge for food security and sustainability has advanced the field of microalgal biotechnology. Microalgae are microorganisms able to grow using (sun)light, fertilizers, sugars, CO2, and seawater. They have high potential as a feedstock for food, feed, energy, and chemicals. Microalgae grow faster and have higher areal productivity than plant crops, without competing for agricultural land and with 100% efficiency uptake of fertilizers. In comparison with bacterial, fungal, and yeast single-cell protein production, based on hydrogen or sugar, microalgae show higher land-use efficiency. New insights are provided regarding the potential of microalgae replacing soy protein, fish oil, and palm oil and being used as cell factories in modern industrial biotechnology to produce designer feed, recombinant proteins, biopharmaceuticals, and vaccines.
Collapse
Affiliation(s)
- Maria J Barbosa
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands.
| | - Marcel Janssen
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Christian Südfeld
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Sarah D'Adamo
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands; Biosciences and Aquaculture, Nord University, Bodø, N-8049,Norway
| |
Collapse
|
6
|
Miró-Vinyals B, Artigues M, Wostrikoff K, Monte E, Broto-Puig F, Leivar P, Planas A. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants. N Biotechnol 2023; 76:1-12. [PMID: 37004923 DOI: 10.1016/j.nbt.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Hydroxyalkanoyloxyalkanoates (HAA) are lipidic surfactants with a number of potential applications, but more remarkably, they are the biosynthetic precursors of rhamnolipids (RL), which are preferred biosurfactants thanks to their excellent physicochemical properties, biological activities, and environmental biodegradability. Because the natural highest producer of RLs is the pathogenic bacterium Pseudomonas aeruginosa, important efforts have been dedicated to transfer production to heterologous non-pathogenic microorganisms. Unicellular photosynthetic microalgae are emerging as important hosts for sustainable industrial biotechnology due to their ability to transform CO2 efficiently into biomass and bioproducts of interest. Here, we have explored the potential of the eukaryotic green microalgae Chlamydomonas reinhardtii as a chassis to produce RLs. Chloroplast genome engineering allowed the stable functional expression of the gene encoding RhlA acyltransferase from P. aeruginosa, an enzyme catalyzing the condensation of two 3-hydroxyacyl acid intermediaries in the fatty acid synthase cycle, to produce HAA. Four congeners of varying chain lengths were identified and quantified by UHPLC-QTOF mass spectrometry and gas chromatography, including C10-C10 and C10-C8, and the less abundant C10-C12 and C10-C6 congeners. HAA was present in the intracellular fraction, but also showed increased accumulation in the extracellular medium. Moreover, HAA production was also observed under photoautotrophic conditions based on atmospheric CO2. These results establish that RhlA is active in the chloroplast and is able to produce a new pool of HAA in a eukaryotic host. Subsequent engineering of microalgal strains should contribute to the development of an alternative clean, safe and cost-effective platform for the sustainable production of RLs. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Collapse
|
7
|
Masi A, Leonelli F, Scognamiglio V, Gasperuzzo G, Antonacci A, Terzidis MA. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023; 28:molecules28031185. [PMID: 36770853 PMCID: PMC9921279 DOI: 10.3390/molecules28031185] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.
Collapse
Affiliation(s)
- Annalisa Masi
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Giulia Gasperuzzo
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| |
Collapse
|
8
|
Zhu M, Chen G, Wu J, Wang J, Wang Y, Guo S, Shu S. Identification of cucumber S-adenosylmethionine decarboxylase genes and functional analysis of CsSAMDC3 in salt tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1076153. [PMID: 37152135 PMCID: PMC10162440 DOI: 10.3389/fpls.2023.1076153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 05/09/2023]
Abstract
As one of the key enzymes in the biosynthesis of polyamines, S-adenosylmethionine decarboxylase (SAMDC) plays an important role in plant stress resistance. In this study, four SAMDC genes (CsSAMDC1-4) were identified in cucumber (Cucumis sativus L.) and divided into three groups (I, II, and III) by phylogenetic analysis. Motif analysis suggested the existence of many conserved motifs, which is compatible with SAMDC protein classification. Gene structure analysis revealed that CsSAMDC2 and CsSAMDC3 in group I have no intron, which showed a similar response to salt stress by gene expression analysis. CsSAMDC3 responded differently to hormone and stress treatments, and was more susceptible to salt stress. Compared with wild-type (WT) tobacco, the activities of superoxide dismutase, peroxidase, and catalase were increased in CsSAMDC3-overexpressing tobacco under salt stress, but the content of electrolyte leakage, malondialdehyde, and hydrogen peroxide were decreased, which alleviated the inhibition of growth induced by salt stress. Under salt stress, overexpression of CsSAMDC3 in transgenic tobacco plants exhibited salt tolerance, mainly in the form of a significant increase in dry and fresh weight, the maximal quantum yield of PSII photochemistry, the net photosynthetic rate and the content of spermidine and spermine, while the content of putrescine was reduced. In addition, the expression levels of antioxidase-related coding genes (NtSOD, NtPOD, NtCAT) and PAs metabolism-related coding genes (NtSAMS, NtSPDS, NtSPMS, NtPAO) in transgentic plants was lower than WT under salt stress, which suggested that overexpression of CsSAMDC3 affected the expression of these genes. In summary, our results showed that CsSAMDC3 could be used as a potential candidate gene to improve salt tolerance of cucumber by regulating polyamine and antioxidant metabolism.
Collapse
Affiliation(s)
- Mengliang Zhu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guangling Chen
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jianqing Wu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
- *Correspondence: Sheng Shu,
| |
Collapse
|
9
|
Pervaiz R, Khan MA, Raza FA, Ahmad S, Zafar AU, Ahmed N, Akram M. Expression of a mosquito larvicidal gene in chloroplast and nuclear compartments of Chlamydomonas reinhardtii. J Biotechnol 2022; 360:182-191. [PMID: 36368638 DOI: 10.1016/j.jbiotec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
As a part of the search for environment-friendly biocontrol of mosquito-borne diseases, mosquito larvicidal potential of Bacillus thuringiensis subsp. jegathesan (Btj) Cry toxins is explored for toxins with increased toxicity. Safe delivery of the Cry toxins to mosquito larvae in aquatic habitats is a major concern. This is because in water bodies Bacillus thuringiensis (Bt) protein formulations degrade by sunlight, can sink down and get adsorbed by the silt. So, because of its short persistence the toxin requires repeated applications at the given site. Therefore, an upcoming approach is incorporating the Bt toxins in Chlamydomonas reinhardtii (C. reinhardtii) because it is a food of mosquito larvae in water and its molecular toolkit is well investigated for foreign gene expression. The present work aimed to compare the feasibility of C. reinhardtii chloroplast and nuclear compartments for stable expression of Cry11Ba toxin as this is the most toxic Btj protein to date, lethal to different mosquito species. With chloroplast expression of cry11Ba gene we were able to generate marker-free C. reinhardtii strain stably expressing Cry11Ba protein and demonstrating mortality against Aedes aegypti larvae. Moreover, for nuclear expression linking the cry11Ba gene to zeocin via foot and mouth disease virus (FMDV) 2A peptide resulted in the selection of transformants with increased cry11Ba mRNA expression levels by semi-quantitative reverse transcriptase PCR. Obtained results lay a foundation for the C. reinhardtii chloroplast expression system to be used for genetic engineering with Bt toxins which possess enhanced toxicity.
Collapse
Affiliation(s)
- Rabbia Pervaiz
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan.
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| | - Faiz Ahmed Raza
- Health Research Institute, National Institute of Health (HRI-NIH), Research Centre, King Edward Medical University, Lahore 54000, Pakistan
| | - Sohail Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| | - Ahmad Usman Zafar
- Qarshi University, 8-Km Thokar Niaz Baig, Canal Bank Road, Opposite Izmir Town, Lahore 54000, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| | - Maham Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| |
Collapse
|
10
|
Suarez JV, Mudd EA, Day A. A Chloroplast-Localised Fluorescent Protein Enhances the Photosynthetic Action Spectrum in Green Algae. Microorganisms 2022; 10:microorganisms10091770. [PMID: 36144372 PMCID: PMC9504678 DOI: 10.3390/microorganisms10091770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 10/29/2022] Open
Abstract
Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon-optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.
Collapse
Affiliation(s)
- Julio V. Suarez
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carr. Transpeninsular 3917, Ensenada 22860, Mexico
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| | - Elisabeth A. Mudd
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| |
Collapse
|
11
|
Ma K, Deng L, Wu H, Fan J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. BIORESOUR BIOPROCESS 2022; 9:83. [PMID: 38647750 PMCID: PMC10992328 DOI: 10.1186/s40643-022-00568-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgae are cosmopolitan organisms in nature with short life cycles, playing a tremendous role in reducing the pressure of industrial carbon emissions. Besides, microalgae have the unique advantages of being photoautotrophic and harboring both prokaryotic and eukaryotic expression systems, becoming a popular host for recombinant proteins. Currently, numerous advanced molecular tools related to microalgal transgenesis have been explored and established, especially for the model species Chlamydomonas reinhardtii (C. reinhardtii hereafter). The development of genetic tools and the emergence of new strategies further increase the feasibility of developing C. reinhardtii chloroplasts as green factories, and the strong genetic operability of C. reinhardtii endows it with enormous potential as a synthetic biology platform. At present, C. reinhardtii chloroplasts could successfully produce plenty of recombinant proteins, including antigens, antibodies, antimicrobial peptides, protein hormones and enzymes. However, additional techniques and toolkits for chloroplasts need to be developed to achieve efficient and markerless editing of plastid genomes. Mining novel genetic elements and selectable markers will be more intensively studied in the future, and more factors affecting protein expression are urged to be explored. This review focuses on the latest technological progress of selectable markers for Chlamydomonas chloroplast genetic engineering and the factors that affect the efficiency of chloroplast protein expression. Furthermore, urgent challenges and prospects for future development are pointed out.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
12
|
Choi BY, Shim D, Kong F, Auroy P, Lee Y, Li-Beisson Y, Lee Y, Yamaoka Y. The Chlamydomonas transcription factor MYB1 mediates lipid accumulation under nitrogen depletion. THE NEW PHYTOLOGIST 2022; 235:595-610. [PMID: 35383411 DOI: 10.1111/nph.18141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Microalgae accumulate high levels of oil under stress, but the underlying biosynthetic pathways are not fully understood. We sought to identify key regulators of lipid metabolism under stress conditions. We found that the Chlamydomonas reinhardtii gene encoding the MYB-type transcription factor MYB1 is highly induced under stress conditions. Two myb1 mutants accumulated less total fatty acids and storage lipids than their parental strain upon nitrogen (N) depletion. Transcriptome analysis revealed that genes involved in lipid metabolism are highly enriched in the wild-type but not in the myb1-1 mutant after 4 h of N depletion. Among these genes were several involved in the transport of fatty acids from the chloroplast to the endoplasmic reticulum (ER): acyl-ACP thioesterase (FAT1), Fatty Acid EXporters (FAX1, FAX2), and long-chain acyl-CoA synthetase1 (LACS1). Furthermore, overexpression of FAT1 in the chloroplast increased lipid production. These results suggest that, upon N depletion, MYB1 promotes lipid accumulation by facilitating fatty acid transport from the chloroplast to the ER. This study identifies MYB1 as an important positive regulator of lipid accumulation in C. reinhardtii upon N depletion, adding another player to the established regulators of this process, including NITROGEN RESPONSE REGULATOR 1 (NRR1) and TRIACYLGLYCEROL ACCUMULATION REGULATOR 1 (TAR1).
Collapse
Affiliation(s)
- Bae Young Choi
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Fantao Kong
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Pascaline Auroy
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Korea
| |
Collapse
|
13
|
Overcoming Poor Transgene Expression in the Wild-Type Chlamydomonas Chloroplast: Creation of Highly Mosquitocidal Strains of Chlamydomonas reinhardtii. Microorganisms 2022; 10:microorganisms10061087. [PMID: 35744605 PMCID: PMC9229432 DOI: 10.3390/microorganisms10061087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
High-level expression of transgenes in the chloroplast of wild-type Chlamydomonas reinhardtii (C. reinhardtii) remains challenging for many genes (e.g., the cry toxin genes from Bacillus thuringiensis israelensis). The bottleneck is presumed to be post-transcriptional and mediated by the 5′ element and the coding region. Using 5′ elements from highly expressed photosynthesis genes such as atpA did not improve the outcome with cry11A regardless of the promoter. However, when we employed the 5′ UTR from mature rps4 mRNA with clean fusions to promoters, production of the rCry11A protein became largely promoter-dependent. The best results were obtained with the native 16S rrn promoter (−91 to −1). When it was fused to the mature 5′ rps4 UTR, rCry11A protein levels were ~50% higher than was obtained with the inducible system, or ~0.6% of total protein. This level was sufficient to visualize the 73-kDa rCry11A protein on Coomassie-stained gels of total algal protein. In addition, analysis of the expression of these transgenes by RT-PCR indicated that RNA levels roughly correlated with protein production. Live cell bioassays using the best strains as food for 3rd instar Aedes aegypti larvae showed that most larvae were killed even when the cell concentration was as low as 2 × 104 cells/mL. Finally, the results indicate that these highly toxic strains are also quite stable, and thus represent a key milestone in using C. reinhardtii for mosquito control.
Collapse
|
14
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
15
|
Shahar N, Elman T, Williams-Carrier R, Ben-Zvi O, Yacoby I, Barkan A. Use of plant chloroplast RNA-binding proteins as orthogonal activators of chloroplast transgenes in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Cutolo E, Tosoni M, Barera S, Herrera-Estrella L, Dall'Osto L, Bassi R. A chimeric hydrolase-PTXD transgene enables chloroplast-based heterologous protein expression and non-sterile cultivation of Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Rochaix JD, Surzycki R, Ramundo S. Regulated Chloroplast Gene Expression in Chlamydomonas. Methods Mol Biol 2021; 2317:305-318. [PMID: 34028778 DOI: 10.1007/978-1-0716-1472-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes, thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/ repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter or the vitamin-controlled MetE promoter and TPP riboswitch drive the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5' untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or trans-gene by placing it under the control of the psbD 5'untranslated region.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland.
| | | | - Silvia Ramundo
- School of Medicine, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Sanchez-Tarre V, Kiparissides A. The effects of illumination and trophic strategy on gene expression in Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Nawkarkar P, Chugh S, Sharma S, Jain M, Kajla S, Kumar S. Characterization of the Chloroplast Genome Facilitated the Transformation of Parachlorella kessleri-I, A Potential Marine Alga for Biofuel Production. Curr Genomics 2021; 21:610-623. [PMID: 33414682 PMCID: PMC7770631 DOI: 10.2174/1389202921999201102164754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction The microalga Parachlorella kessleri-I produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector. Methods In this study, the complete chloroplast genome sequence (cpDNA) of P. kessleri-I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (aadA) gene and Sh-ble gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR. Results The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of P. kessleri-I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L-1 spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, via homologous recombination. The chloroplast genome copy number in wildtype and transgenic P. kessleri-I was determined using Droplet Digital PCR. Conclusion The optimization of stable chloroplast transformation in marine alga P. kessleri-I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO2, improving the photosynthetic efficiency and reducing the overall biofuels production cost.
Collapse
Affiliation(s)
- Prachi Nawkarkar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sagrika Chugh
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Surbhi Sharma
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Mukesh Jain
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sachin Kajla
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Shashi Kumar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| |
Collapse
|
21
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
22
|
Macedo-Osorio KS, Martínez-Antonio A, Badillo-Corona JA. Pas de Trois: An Overview of Penta-, Tetra-, and Octo-Tricopeptide Repeat Proteins From Chlamydomonas reinhardtii and Their Role in Chloroplast Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:775366. [PMID: 34868174 PMCID: PMC8635915 DOI: 10.3389/fpls.2021.775366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Penta-, Tetra-, and Octo-tricopeptide repeat (PPR, TPR, and OPR) proteins are nucleus-encoded proteins composed of tandem repeats of 35, 34, and 38-40 amino acids, respectively. They form helix-turn-helix structures that interact with mRNA or other proteins and participate in RNA stabilization, processing, maturation, and act as translation enhancers of chloroplast and mitochondrial mRNAs. These helical repeat proteins are unevenly present in plants and algae. While PPR proteins are more abundant in plants than in algae, OPR proteins are more abundant in algae. In Arabidopsis, maize, and rice there have been 450, 661, and 477 PPR proteins identified, respectively, which contrasts with only 14 PPR proteins identified in Chlamydomonas reinhardtii. Likewise, more than 120 OPR proteins members have been predicted from the nuclear genome of C. reinhardtii and only one has been identified in Arabidopsis thaliana. Due to their abundance in land plants, PPR proteins have been largely characterized making it possible to elucidate their RNA-binding code. This has even allowed researchers to generate engineered PPR proteins with defined affinity to a particular target, which has served as the basis to develop tools for gene expression in biotechnological applications. However, fine elucidation of the helical repeat proteins code in Chlamydomonas is a pending task. In this review, we summarize the current knowledge on the role PPR, TPR, and OPR proteins play in chloroplast gene expression in the green algae C. reinhardtii, pointing to relevant similarities and differences with their counterparts in plants. We also recapitulate on how these proteins have been engineered and shown to serve as mRNA regulatory factors for biotechnological applications in plants and how this could be used as a starting point for applications in algae.
Collapse
Affiliation(s)
- Karla S. Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México City, México
- *Correspondence: Karla S. Macedo-Osorio,
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
| | - Jesús A. Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Jesús A. Badillo-Corona,
| |
Collapse
|
23
|
A Simple Technology for Generating Marker-Free Chloroplast Transformants of the Green Alga Chlamydomonas reinhardtii. Methods Mol Biol 2021; 2317:293-304. [PMID: 34028777 DOI: 10.1007/978-1-0716-1472-3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The availability of routine methods for the genetic engineering of the chloroplast genome of Chlamydomonas reinhardtii is allowing researchers to explore the use of this microalga as a phototrophic cell platform for synthesis of high value recombinant proteins and metabolites. However, the established method for delivering transforming DNA into the algal chloroplast involves microparticle bombardment using an expensive "gene gun". Furthermore, selection of transformant lines most commonly involves the use of a bacterial antibiotic resistance gene. In this chapter, we describe a simple and cheap delivery method in which cell-DNA suspensions are agitated with glass beads: a method that is more commonly used for nuclear transformation of Chlamydomonas. We also describe the use of plasmid expression vectors that target transgenes to a neutral site within the chloroplast genome between psbH and trnE2, and employ psbH as the selectable marker-thereby avoiding issues of unwanted antibiotic resistance genes in the resulting transgenic lines. Finally, we highlight a feature in our latest vectors in which the presence of a novel tRNA gene on the plasmid results in recognition within the chloroplast of UGA stop codons in transgenes as tryptophan codons. This feature simplifies the cloning of transgenes that are normally toxic to E. coli, serves as a biocontainment strategy restricting the functional escape of transgenes from the algal chloroplast to environmental microorganisms, and offers a simple system of temperature-regulated translation of transgenes.
Collapse
|
24
|
Ma K, Bao Q, Wu Y, Chen S, Zhao S, Wu H, Fan J. Evaluation of Microalgae as Immunostimulants and Recombinant Vaccines for Diseases Prevention and Control in Aquaculture. Front Bioeng Biotechnol 2020; 8:590431. [PMID: 33304890 PMCID: PMC7701134 DOI: 10.3389/fbioe.2020.590431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microalgae are often used as nutritional supplements for aquatic animals and are widely used in the aquaculture industry, providing direct or indirect nutrients for many aquatic animals. Microalgae are abundant in nature, of high nutritional value, and some of them are non-toxic and rich in antioxidants so that they can be explored as a medicinal carrier for human or animals. Natural wild-type microalgae can be adopted as an immunostimulant to enhance non-specific immune response and improve growth performance, among which Haematococcus pluvialis, Arthrospira (Spirulina) platensis, and Chlorella spp. are commonly used. At present, there have been some successful cases of using microalgae to develop oral vaccines in the aquaculture industry. Researchers usually develop recombinant vaccines based on Chlamydomonas reinhardtii, Dunaliella salina, and cyanobacteria. Among them, in the genetic modification of eukaryotic microalgae, many examples are expressing antigen genes in chloroplasts. They are all used for the prevention and control of single infectious diseases and most of them are resistant to shrimp virus infection. However, there is still no effective strategy targeting polymicrobial infections and few commercial vaccines are available. Although several species of microalgae are widely developed in the aquaculture industry, many of them have not yet established an effective and mature genetic manipulation system. This article systematically analyzes and discusses the above problems to provide ideas for the future development of highly effective microalgae recombinant oral vaccines.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiuwen Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yue Wu
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Siwei Chen
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Shuxin Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
25
|
Kuroda H, Kawashima K, Ueda K, Ikeda T, Saito K, Ninomiya R, Hida C, Takahashi Y, Ishikita H. Proton transfer pathway from the oxygen-evolving complex in photosystem II substantiated by extensive mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148329. [PMID: 33069681 DOI: 10.1016/j.bbabio.2020.148329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
We report a structure-based biological approach to identify the proton-transfer pathway in photosystem II. First, molecular dynamics (MD) simulations were conducted to analyze the H-bond network that may serve as a Grotthuss-like proton conduit. MD simulations show that D1-Asp61, the H-bond acceptor of H2O at the Mn4CaO5 cluster (W1), forms an H-bond via one water molecule with D1-Glu65 but not with D2-Glu312. Then, D1-Asp61, D1-Glu65, D2-Glu312, and the adjacent residues, D1-Arg334, D2-Glu302, and D2-Glu323, were thoroughly mutated to the other 19 residues, i.e., 114 Chlamydomonas chloroplast mutant cells were generated. Mutation of D1-Asp61 was most crucial. Only the D61E and D61C cells grew photoautotrophically and exhibit O2-evolving activity. Mutations of D2-Glu312 were less crucial to photosynthetic growth than mutations of D1-Glu65. Quantum mechanical/molecular mechanical calculations indicated that in the PSII crystal structure, the proton is predominantly localized at D1-Glu65 along the H-bond with D2-Glu312, i.e., pKa(D1-Glu65) > pKa(D2-Glu312). The potential-energy profile shows that the release of the proton from D1-Glu65 leads to the formation of the two short H-bonds between D1-Asp61 and D1-Glu65, which facilitates downhill proton transfer along the Grotthuss-like proton conduit in the S2 to S3 transition. It seems possible that D1-Glu65 is involved in the dominant pathway that proceeds from W1 via D1-Asp61 toward the thylakoid lumen, whereas D2-Glu312 and D1-Arg334 may be involved in alternative pathways in some mutants.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Kawashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Kazuyo Ueda
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takuya Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ryo Ninomiya
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Chisato Hida
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| |
Collapse
|
26
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
27
|
Cutolo E, Tosoni M, Barera S, Herrera-Estrella L, Dall’Osto L, Bassi R. A Phosphite Dehydrogenase Variant with Promiscuous Access to Nicotinamide Cofactor Pools Sustains Fast Phosphite-Dependent Growth of Transplastomic Chlamydomonas reinhardtii. PLANTS 2020; 9:plants9040473. [PMID: 32276527 PMCID: PMC7238262 DOI: 10.3390/plants9040473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/23/2023]
Abstract
Heterologous expression of the NAD+-dependent phosphite dehydrogenase (PTXD) bacterial enzyme from Pseudomonas stutzerii enables selective growth of transgenic organisms by using phosphite as sole phosphorous source. Combining phosphite fertilization with nuclear expression of the ptxD transgene was shown to be an alternative to herbicides in controlling weeds and contamination of algal cultures. Chloroplast expression of ptxD in Chlamydomonas reinhardtii was proposed as an environmentally friendly alternative to antibiotic resistance genes for plastid transformation. However, PTXD activity in the chloroplast is low, possibly due to the low NAD+/NADP+ ratio, limiting the efficiency of phosphite assimilation. We addressed the intrinsic constraints of the PTXD activity in the chloroplast and improved its catalytic efficiency in vivo via rational mutagenesis of key residues involved in cofactor binding. Transplastomic lines carrying a mutagenized PTXD version promiscuously used NADP+ and NAD+ for converting phosphite into phosphate and grew faster compared to those expressing the wild type protein. The modified PTXD enzyme also enabled faster and reproducible selection of transplastomic colonies by directly plating on phosphite-containing medium. These results allow using phosphite as selective agent for chloroplast transformation and for controlling biological contaminants when expressing heterologous proteins in algal chloroplasts, without compromising on culture performance.
Collapse
Affiliation(s)
- Edoardo Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Matteo Tosoni
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Simone Barera
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA) Cinvestav, 36821 Irapuato, Guanajuato, Mexico;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Box 42122, Lubbock, TX 79409, USA
| | - Luca Dall’Osto
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
- Correspondence: ; Tel.: +39-045-802-7916
| |
Collapse
|
28
|
Rosales-Mendoza S, Solís-Andrade KI, Márquez-Escobar VA, González-Ortega O, Bañuelos-Hernandez B. Current advances in the algae-made biopharmaceuticals field. Expert Opin Biol Ther 2020; 20:751-766. [DOI: 10.1080/14712598.2020.1739643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Karla I. Solís-Andrade
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Verónica A. Márquez-Escobar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | |
Collapse
|
29
|
Yoo BC, Yadav NS, Orozco EM, Sakai H. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 2020; 8:e8362. [PMID: 31934513 PMCID: PMC6951285 DOI: 10.7717/peerj.8362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/05/2019] [Indexed: 11/20/2022] Open
Abstract
We present a new approach to edit both mitochondrial and chloroplast genomes. Organelles have been considered off-limits to CRISPR due to their impermeability to most RNA and DNA. This has prevented applications of Cas9/gRNA-mediated genome editing in organelles while the tool has been widely used for engineering of nuclear DNA in a number of organisms in the last several years. To overcome the hurdle, we designed a new approach to enable organelle genome editing. The plasmids, designated "Edit Plasmids," were constructed with two expression cassettes, one for the expression of Cas9, codon-optimized for each organelle, under promoters specific to each organelle, and the other cassette for the expression of guide RNAs under another set of promoters specific to each organelle. In addition, Edit Plasmids were designed to carry the donor DNA for integration between two double-strand break sites induced by Cas9/gRNAs. Each donor DNA was flanked by the regions homologous to both ends of the integration site that were short enough to minimize spontaneous recombination events. Furthermore, the donor DNA was so modified that it did not carry functional gRNA target sites, allowing the stability of the integrated DNA without being excised by further Cas9/gRNAs activity. Edit Plasmids were introduced into organelles through microprojectile transformation. We confirmed donor DNA insertion at the target sites facilitated by homologous recombination only in the presence of Cas9/gRNA activity in yeast mitochondria and Chlamydomonas chloroplasts. We also showed that Edit Plasmids persist and replicate in mitochondria autonomously for several dozens of generations in the presence of the wild-type genomes. Finally, we did not find insertions and/or deletions at one of the Cas9 cleavage sites in Chloroplasts, which are otherwise hallmarks of Cas9/gRNA-mediated non-homologous end joining (NHEJ) repair events in nuclear DNA. This is consistent with previous reports of the lack of NHEJ repair system in most bacteria, which are believed to be ancestors of organelles. This is the first demonstration of CRISPR-mediated genome editing in both mitochondria and chloroplasts in two distantly related organisms. The Edit Plasmid approach is expected to open the door to engineer organelle genomes of a wide range of organisms in a precise fashion.
Collapse
|
30
|
Hosts for Hostile Protein Production: The Challenge of Recombinant Immunotoxin Expression. Biomedicines 2019; 7:biomedicines7020038. [PMID: 31108917 PMCID: PMC6630761 DOI: 10.3390/biomedicines7020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
For the recombinant expression of toxin-based drugs, a crucial step lies not only in the choice of the production host(s) but also in the accurate design of the protein chimera. These issues are particularly important since such products may be toxic to the expressing host itself. To avoid or limit the toxicity to productive cells while obtaining a consistent yield in chimeric protein, several systems from bacterial to mammalian host cells have been employed. In this review, we will discuss the development of immunotoxin (IT) expression, placing special emphasis on advantages and on potential drawbacks, as one single perfect host for every chimeric protein toxin or ligand does not exist.
Collapse
|
31
|
Kwon YM, Kim KW, Choi TY, Kim SY, Kim JYH. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World J Microbiol Biotechnol 2018; 34:183. [PMID: 30478596 DOI: 10.1007/s11274-018-2567-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.
Collapse
Affiliation(s)
- Yong Min Kwon
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Kyung Woo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Tae-Young Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Sun Young Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea.
| |
Collapse
|
32
|
Macedo-Osorio KS, Pérez-España VH, Garibay-Orijel C, Guzmán-Zapata D, Durán-Figueroa NV, Badillo-Corona JA. Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. PLANT MOLECULAR BIOLOGY 2018; 98:303-317. [PMID: 30225747 DOI: 10.1007/s11103-018-0776-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/31/2018] [Indexed: 05/21/2023]
Abstract
Two intercistronic regions were identified as functional intercistronic expression elements (IEE) for the simultaneous expression of aphA-6 and gfp in a synthetic operon in the chloroplast of C. reinhardtii. Chlamydomonas reinhardtii, a biflagellate photosynthetic microalga, has been widely used in basic and applied science. Already three decades ago, Chlamydomonas had its chloroplast genome transformed and to this day constitutes the only alga routinely used in transplastomic technology. Despite the fact that over a 100 foreign genes have been expressed from the chloroplast genome, little has been done to address the challenge of expressing multiple genes in the form of operons, a development that is needed and crucial to push forward metabolic engineering and synthetic biology in this organism. Here, we studied five intercistronic regions and investigated if they can be used as intercistronic expression elements (IEE) in synthetic operons to drive the expression of foreign genes in the chloroplast of C. reinhardtii. The intercistronic regions were those from the psbB-psbT, psbN-psbH, psaC-petL, petL-trnN and tscA-chlN chloroplast operons, and the foreign genes were the aminoglycoside 3'-phosphotransferase (aphA-6), which confers resistance to kanamycin, and the green fluorescent protein gene (gfp). While all the intercistronic regions yielded lines that were resistant to kanamycin, only two (obtained with intercistronic regions from psbN-psbH and tscA-chlN) were identified as functional IEEs, yielding lines in which the second cistron (gfp) was translated and generated GFP. The IEEs we have identified could be useful for the stacking of genes for metabolic engineering or synthetic biology circuits in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Karla S Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticoman, Mexico City, Mexico
| | - Víctor H Pérez-España
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan Calpulalpan km 8, Col. Chimalpa-Tlalayote, Apan, Hidalgo, Mexico
| | - Claudio Garibay-Orijel
- Labcitec, Camino a Atzacoalco 99, Col. Constitución de la República, Mexico City, Mexico
| | - Daniel Guzmán-Zapata
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticoman, Mexico City, Mexico
| | - Noé V Durán-Figueroa
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticoman, Mexico City, Mexico
| | - Jesús A Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto SN, Col. Barrio la Laguna Ticoman, Mexico City, Mexico.
| |
Collapse
|
33
|
Nellaepalli S, Ozawa SI, Kuroda H, Takahashi Y. The photosystem I assembly apparatus consisting of Ycf3-Y3IP1 and Ycf4 modules. Nat Commun 2018; 9:2439. [PMID: 29934511 PMCID: PMC6015050 DOI: 10.1038/s41467-018-04823-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
In oxygenic photosynthesis, light energy is converted into redox energy by two photosystems (PSI and PSII). PSI forms one of the largest multiprotein complexes in thylakoid membranes consisting of a core complex, peripheral light-harvesting complexes (LHCIs) and cofactors. Although the high-resolution structure of the PSI–LHCI complex has been determined, the assembly process remains unclear due to the rapid nature of the assembly process. Here we show that two conserved chloroplast-encoded auxiliary factors, Ycf3 and Ycf4, form modules that mediate PSI assembly. The first module consists of the tetratricopeptide repeat protein Ycf3 and its interacting partner, Y3IP1, and mainly facilitates the assembly of reaction center subunits. The second module consists of oligomeric Ycf4 and facilitates the integration of peripheral PSI subunits and LHCIs into the PSI reaction center subcomplex. We reveal that these two modules are major mediators of the PSI–LHCI assembly process. Photosystem I is a large multiprotein complex embedded in the chloroplast thylakoid membrane. Here the authors provide evidence for a modular assembly process, whereby Ycf3 facilitates assembly of the reaction center, while Ycf4 incorporates peripheral core and light harvesting complex subunits to the reaction center.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. .,JST-CREST, Tokyo, Japan.
| |
Collapse
|
34
|
Charoonnart P, Purton S, Saksmerprome V. Applications of Microalgal Biotechnology for Disease Control in Aquaculture. BIOLOGY 2018; 7:E24. [PMID: 29649182 PMCID: PMC6022871 DOI: 10.3390/biology7020024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Aquaculture industries, and in particular the farming of fish and crustaceans, are major contributors to the economy of many countries and an increasingly important component in global food supply. However, the severe impact of aquatic microbial diseases on production performance remains a challenge to these industries. This article considers the potential applications of microalgal technology in the control of such diseases. At the simplest level, microalgae offer health-promoting benefits as a nutritional supplement in feed meal because of their digestibility and high content of proteins, lipids and essential nutrients. Furthermore, some microalgal species possess natural anti-microbial compounds or contain biomolecules that can serve as immunostimulants. In addition, emerging genetic engineering technologies in microalgae offer the possibility of producing 'functional feed additives' in which novel and specific bioactives, such as fish growth hormones, anti-bacterials, subunit vaccines, and virus-targeted interfering RNAs, are components of the algal supplement. The evaluation of such technologies for farm applications is an important step in the future development of sustainable aquaculture.
Collapse
Affiliation(s)
- Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand.
- National Center for Genetic Engineering and Biotechnology (BIOTEC) Thailand Science Park, Pathumthani 12120, Thailand.
| | - Saul Purton
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand.
- National Center for Genetic Engineering and Biotechnology (BIOTEC) Thailand Science Park, Pathumthani 12120, Thailand.
| |
Collapse
|
35
|
Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology (Reading) 2018; 164:113-121. [DOI: 10.1099/mic.0.000599] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuliya M. Dyo
- Molecular Research of Microalgae Laboratory, M. A. Ajtkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biotechnology, Kazakh National Research Technology University, Almaty, Kazakhstan
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
36
|
Stoffels L, Taunt HN, Charalambous B, Purton S. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1130-1140. [PMID: 28160380 PMCID: PMC5552482 DOI: 10.1111/pbi.12703] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 05/12/2023]
Abstract
There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage-infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl-1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.
Collapse
Affiliation(s)
- Laura Stoffels
- Algal Biotechnology GroupInstitute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Henry N. Taunt
- Algal Biotechnology GroupInstitute of Structural and Molecular BiologyUniversity College LondonLondonUK
- Present address:
AlgenuityEden LaboratoryBroadmead RoadStewartbyUK
| | - Bambos Charalambous
- Research Department of InfectionUniversity College London Medical SchoolLondonUK
| | - Saul Purton
- Algal Biotechnology GroupInstitute of Structural and Molecular BiologyUniversity College LondonLondonUK
| |
Collapse
|
37
|
Shrestha RP, Hildebrand M. Development of a silicon limitation inducible expression system for recombinant protein production in the centric diatoms Thalassiosira pseudonana and Cyclotella cryptica. Microb Cell Fact 2017; 16:145. [PMID: 28818078 PMCID: PMC5561644 DOI: 10.1186/s12934-017-0760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/10/2017] [Indexed: 01/03/2023] Open
Abstract
Background An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. Results In this study, we evaluate a number of promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5′ fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Conclusions Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0760-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roshan P Shrestha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
38
|
Sawyer A, Bai Y, Lu Y, Hemschemeier A, Happe T. Compartmentalisation of [FeFe]-hydrogenase maturation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1134-1143. [PMID: 28295776 DOI: 10.1111/tpj.13535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Molecular hydrogen (H2 ) can be produced in green microalgae by [FeFe]-hydrogenases as a direct product of photosynthesis. The Chlamydomonas reinhardtii hydrogenase HYDA1 contains a catalytic site comprising a classic [4Fe4S] cluster linked to a unique 2Fe sub-cluster. From in vitro studies it appears that the [4Fe4S] cluster is incorporated first by the housekeeping FeS cluster assembly machinery, followed by the 2Fe sub-cluster, whose biosynthesis requires the specific maturases HYDEF and HYDG. To investigate the maturation process in vivo, we expressed HYDA1 from the C. reinhardtii chloroplast and nuclear genomes (with and without a chloroplast transit peptide) in a hydrogenase-deficient mutant strain, and examined the cellular enzymatic hydrogenase activity, as well as in vivo H2 production. The transformants expressing HYDA1 from the chloroplast genome displayed levels of H2 production comparable to the wild type, as did the transformants expressing full-length HYDA1 from the nuclear genome. In contrast, cells equipped with cytoplasm-targeted HYDA1 produced inactive enzyme, which could only be activated in vitro after reconstitution of the [4Fe4S] cluster. This indicates that the HYDA1 FeS cluster can only be built by the chloroplastic FeS cluster assembly machinery. Further, the expression of a bacterial hydrogenase gene, CPI, from the C. reinhardtii chloroplast genome resulted in H2 -producing strains, demonstrating that a hydrogenase with a very different structure can fulfil the role of HYDA1 in vivo and that overexpression of foreign hydrogenases in C. reinhardtii is possible. All chloroplast transformants were stable and no toxic effects were seen from HYDA1 or CPI expression.
Collapse
Affiliation(s)
- Anne Sawyer
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Yu Bai
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Anja Hemschemeier
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Thomas Happe
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| |
Collapse
|
39
|
Hirschl S, Ralser C, Asam C, Gangitano A, Huber S, Ebner C, Bohle B, Wolf M, Briza P, Ferreira F, Griesbeck C, Wallner M. Expression and Characterization of Functional Recombinant Bet v 1.0101 in the Chloroplast of Chlamydomonas reinhardtii. Int Arch Allergy Immunol 2017; 173:44-50. [PMID: 28494467 DOI: 10.1159/000471852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Allergen immunotherapy (AIT) still plays a minor role in the treatment of allergic diseases. To improve the acceptance of AIT by allergic patients, the treatment has to become more convenient and efficacious. One possibility is the oral application of allergens or derivatives thereof. Therefore, we sought to produce a recombinant allergen in the green alga Chlamydomonas reinhardtii as a novel production platform. METHODS The major birch pollen allergen Bet v 1 was selected as candidate molecule, and a codon-optimized gene was synthesized and stably integrated into the microalga C. reinhardtii FUD50. Positive transformants were identified by PCR, cultured, and thereafter cells were disrupted by sonication. Bet v 1 was purified from algal total soluble protein (TSP) by affinity chromatography and characterized physicochemically as well as immunologically. RESULTS All transformants showed expression of the allergen with yields between 0.01 and 0.04% of TSP. Algal-derived Bet v 1 displayed similar secondary structure elements as the Escherichia coli-produced reference allergen. Moreover, Bet v 1 produced in C. reinhardtii showed binding comparable to human IgE as well as murine Bet v 1-specific IgG. CONCLUSION We could successfully produce recombinant Bet v 1 in C. reinhardtii. As microalgae are classified as GRAS (generally recognized as safe), the pilot study supports the development of novel allergy treatment concepts such as the oral administration of allergen-containing algal extracts for therapy.
Collapse
Affiliation(s)
- Sonja Hirschl
- Department of Biotechnology and Food Engineering, MCI Management Center Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Faè M, Accossato S, Cella R, Fontana F, Goldschmidt-Clermont M, Leelavathi S, Reddy VS, Longoni P. Comparison of transplastomic Chlamydomonas reinhardtii and Nicotiana tabacum expression system for the production of a bacterial endoglucanase. Appl Microbiol Biotechnol 2017; 101:4085-4092. [PMID: 28190097 DOI: 10.1007/s00253-017-8164-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Abstract
The bulk production of recombinant enzymes by either prokaryotic or eukaryotic organisms might contribute to replace environmentally non-friendly chemistry-based industrial processes with enzyme-based biocatalysis, provided the cost of enzyme production is low. In this context, it is worth noting that the production of recombinant proteins by photosynthetic organisms offer both eukaryotic (nuclear) and prokaryotic (chloroplast) alternatives, along with the advantage of an autotrophic nutrition. Compared to nuclear transformation, chloroplast transformation generally allows a higher level of accumulation of the recombinant protein of interest. Furthermore, among the photosynthetic organisms, there is a choice of using either multicellular or unicellular ones. Tobacco, being a non-food and non-feed plant, has been considered as a good choice for producing enzymes with applications in technical industry, using a transplastomic approach. Also, unicellular green algae, in particular Chlamydomonas reinhardtii, have been proposed as candidate organisms for the production of recombinant proteins. In the light of the different features of these two transplastomic systems, we decided to make a direct comparison of the efficiency of production of a bacterial endoglucanase. With respect to the amount obtained, 14 mg g-1 of biomass fresh weight equivalent to 8-10% of the total protein content and estimated production cost, 1.5-2€ kg-1, tobacco proved to be far more favorable for bulk enzyme production when compared to C. reinhardtii which accumulated this endoglucanase at 0.003% of the total protein.
Collapse
Affiliation(s)
- Matteo Faè
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Sonia Accossato
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Laboratory of Plant Physiology, University of Neuchâtel, Rue Emilie-Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Fabrizia Fontana
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland
| | - Sadhu Leelavathi
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vanga Siva Reddy
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Paolo Longoni
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland.
| |
Collapse
|
41
|
UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:14864-14869. [PMID: 27930292 DOI: 10.1073/pnas.1607695114] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.
Collapse
|
42
|
Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song WY, Nishida I, Li-Beisson Y, Lee Y. Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2158-2167. [PMID: 27133096 PMCID: PMC5096022 DOI: 10.1111/pbi.12572] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 05/03/2023]
Abstract
Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Dorine Achard
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Bertrand Legéret
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Shogo Kamisuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-Ku, Saitama, Japan
| | - Donghwi Ko
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Miriam Schulz-Raffelt
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Yeongho Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Won-Yong Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Ikuo Nishida
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-Ku, Saitama, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Yonghua Li-Beisson
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France.
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea.
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea.
| |
Collapse
|
43
|
Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, Caruso A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:331-339. [PMID: 27236494 DOI: 10.1016/j.envpol.2016.05.006] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 05/23/2023]
Abstract
In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 μm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers. However, after 20 days of contact, in the case of PP only, hetero-aggregates constituted of microalgae, microplastics and exopolysaccharides were formed. An estimation of the hetero-aggregates composition was approximately 50% of PP fragments and 50% of microalgae, which led to a final density close to 1.2. Such hetero-aggregates appear as an important pathway for the vertical transport of PP microplastics from the water surface to sediment. Moreover, after more than 70 days of contact with microplastics, the microalgae genes involved in the sugar biosynthesis pathways were strongly over-expressed compared to control conditions. The levels of over-expression were higher in the case of HDPE than in PP condition. This work presents the first evidence that depending on their chemical nature, microplastics will follow different fates in the environment.
Collapse
Affiliation(s)
- Fabienne Lagarde
- Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France.
| | - Ophélie Olivier
- Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France; Laboratoire Mer, Molécules, Santé (EA 2160), Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Marie Zanella
- Laboratoire Mer, Molécules, Santé (EA 2160), Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Philippe Daniel
- Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Sophie Hiard
- Laboratoire Mer, Molécules, Santé (EA 2160), Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Aurore Caruso
- Laboratoire Mer, Molécules, Santé (EA 2160), Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| |
Collapse
|
44
|
Tibiletti T, Auroy P, Peltier G, Caffarri S. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light. PLANT PHYSIOLOGY 2016; 171:2717-30. [PMID: 27329221 PMCID: PMC4972282 DOI: 10.1104/pp.16.00572] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/18/2016] [Indexed: 05/18/2023]
Abstract
Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed.
Collapse
Affiliation(s)
- Tania Tibiletti
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| | - Pascaline Auroy
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| | - Gilles Peltier
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| | - Stefano Caffarri
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| |
Collapse
|
45
|
Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 2016; 100:5467-77. [PMID: 26887319 PMCID: PMC4875957 DOI: 10.1007/s00253-016-7354-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 01/09/2023]
Abstract
In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone.
Collapse
Affiliation(s)
- Thanyanan Wannathong
- Department of Biology, Faculty of Science, Silpakorn University, Nakornpathom, 73000, Thailand
| | - Janet C Waterhouse
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rosanna E B Young
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Chloe K Economou
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
46
|
Young REB, Purton S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1251-60. [PMID: 26471875 PMCID: PMC5102678 DOI: 10.1111/pbi.12490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 05/18/2023]
Abstract
There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.
Collapse
Affiliation(s)
- Rosanna E B Young
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
47
|
De Marchis F, Bellucci M, Pompa A. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:603-14. [PMID: 26031839 PMCID: PMC11388822 DOI: 10.1111/pbi.12405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast.
Collapse
Affiliation(s)
- Francesca De Marchis
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Michele Bellucci
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Andrea Pompa
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| |
Collapse
|
48
|
Doron L, Segal N, Shapira M. Transgene Expression in Microalgae-From Tools to Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:505. [PMID: 27148328 PMCID: PMC4840263 DOI: 10.3389/fpls.2016.00505] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 05/17/2023]
Abstract
Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation tools and approaches, expression of foreign genes in microalgae suffers from low efficiency. Thus, novel tools have appeared in recent years to deal with this problem. Finally, while C. reinhardtii was traditionally used as a model organism for the development of transformation systems and their subsequent improvement, similar technologies can be adapted for other microalgae that may have higher biotechnological value.
Collapse
|
49
|
Braun-Galleani S, Baganz F, Purton S. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter. Biotechnol J 2015; 10:1289-97. [PMID: 26098300 PMCID: PMC4985702 DOI: 10.1002/biot.201400566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 11/10/2022]
Abstract
Microalgae have potential as platforms for the synthesis of high-value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low-cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co-expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl-1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl-1. This study suggests that recombinant protein expression is product-specific and needs to be optimized individually.
Collapse
Affiliation(s)
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, United Kingdom
| | - Saul Purton
- Institute of Structural and Molecular Biology, University College London, United Kingdom
| |
Collapse
|
50
|
Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:504-522. [PMID: 25660108 DOI: 10.1111/tpj.12787] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 05/03/2023]
Abstract
Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Wayne Riekhof
- School of Biological Sciences and Center for Biological Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|