1
|
Lei Y, Chen C, Chen W, Dai H. The MdIAA29-MdARF4 complex plays an important role in balancing plant height with salt and drought stress responses. PLANT PHYSIOLOGY 2024; 196:2795-2811. [PMID: 39230895 DOI: 10.1093/plphys/kiae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Breeding dwarf apple (Malus domestica) varieties is a recent trend in agriculture because such varieties are easy to maintain and have high yields; however, dwarf apple trees generally have poor stress tolerance. Balancing apple plant height and stress response has been an important breeding goal. In this study, aux/indole-3-acetic acid 29 gene in apple (MdIAA29) overexpression lines (#1, #2, and #3) had reduced plant height by 39%, 31%, and 35%, respectively, suitable for close planting applications. Surprisingly, the dwarf MdIAA29-overexpressing lines also showed increased plant tolerance to salt and drought stresses. Further analysis showed that MdIAA29 inhibited the regulation of auxin response factor 4 (ARF4) on Gretchen Hagen 3.9 (GH3.9) gene and 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) gene in apple and changed the contents of auxin and abscisic acid in different tissues, thus achieving a balance between plant height and stress tolerance. In addition, we also found that MdIAA7 enhanced the inhibitory effect of MdIAA29 on MdARF4. In brief, the MdIAA29-MdARF4 complex significantly impacts the height of apple plants and their ability to respond to salt and drought stress.
Collapse
Affiliation(s)
- Yingying Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
3
|
Chen Z, Wang W, Zhou S, Ding L, Xu Z, Sun X, Huo H, Liu L. Single-cell RNA sequencing reveals dynamics of gene expression for 2D elongation and 3D growth in Physcomitrium patens. Cell Rep 2024; 43:114524. [PMID: 39046878 DOI: 10.1016/j.celrep.2024.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
The transition from two-dimensional (2D) to 3D growth likely facilitated plants to colonize land, but its heterogeneity is not well understood. In this study, we utilized single-cell RNA sequencing to analyze the moss Physcomitrium patens, whose morphogenesis involves a transition from 2D to 3D growth. We profiled over 17,000 single cells covering all major vegetative tissues, including 2D filaments (chloronema and caulonema) and 3D structures (bud and gametophore). Pseudotime analyses revealed larger numbers of candidate genes that determine cell fates for 2D tip elongation or 3D bud differentiation. Using weighted gene co-expression network analysis, we identified a module that connects β-type carbonic anhydrases (βCAs) with auxin. We further validated the cellular expression patterns of βCAs and demonstrated their roles in 3D gametophore development. Overall, our study provides insights into cellular heterogeneity in a moss and identifies molecular signatures that underpin the 2D-to-3D growth transition at single-cell resolution.
Collapse
Affiliation(s)
- Zexi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenbo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shizhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lulu Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhanwu Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, 2725 South Binion Road, Apopka, FL 32703, USA
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Wang Y, Jiang L, Kong D, Meng J, Song M, Cui W, Song Y, Wang X, Liu J, Wang R, He Y, Chang C, Ju C. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024. [PMID: 38571393 DOI: 10.1111/nph.19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.
Collapse
Affiliation(s)
- Yidong Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lanlan Jiang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jie Meng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, 100050, China
| | - Wenxiu Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yaqi Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaofan Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Rui Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
5
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
7
|
Brunoni F, Pěnčík A, Žukauskaitė A, Ament A, Kopečná M, Collani S, Kopečný D, Novák O. Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. THE NEW PHYTOLOGIST 2023; 238:2264-2270. [PMID: 36941219 DOI: 10.1111/nph.18887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Federica Brunoni
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science of Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science of Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Anita Ament
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science of Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Silvio Collani
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90736, Sweden
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science of Palacký University, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
8
|
Chen S, Zhong K, Li Y, Bai C, Xue Z, Wu Y. Evolutionary Analysis of the Melon ( Cucumis melo L.) GH3 Gene Family and Identification of GH3 Genes Related to Fruit Growth and Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1382. [PMID: 36987071 PMCID: PMC10053650 DOI: 10.3390/plants12061382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The indole-3-acetic acid (IAA) auxin is an important endogenous hormone that plays a key role in the regulation of plant growth and development. In recent years, with the progression of auxin-related research, the function of the Gretchen Hagen 3 (GH3) gene has become a prominent research topic. However, studies focusing on the characteristics and functions of melon GH3 family genes are still lacking. This study presents a systematic identification of melon GH3 gene family members based on genomic data. The evolution of melon GH3 family genes was systematically analyzed by means of bioinformatics, and the expression patterns of the GH3 family genes in different melon tissues during different fruit developmental stages and with various levels of 1-naphthaleneacetic acid (NAA) induction were analyzed with transcriptomics and RT-qPCR. The melon genome contains 10 GH3 genes distributed across seven chromosomes, and most of these genes are expressed in the plasma membrane. According to evolutionary analysis and the number of GH3 family genes, these genes can be divided into three subgroups, and they have been conserved throughout the evolution of melon. The melon GH3 gene has a wide range of expression patterns across distinct tissue types, with expression generally being higher in flowers and fruit. Through promoter analysis, we found that most cis-acting elements contained light- and IAA-responsive elements. Based on the RNA-seq and RT-qPCR analyses, it can be speculated that CmGH3-5, CmGH3-6 and CmGH3-7 may be involved in the process of melon fruit development. In conclusion, our findings suggest that the GH3 gene family plays an important role in the development of melon fruit. This study provides an important theoretical basis for further research on the function of the GH3 gene family and the molecular mechanism underlying the development of melon fruit.
Collapse
Affiliation(s)
- Sheng Chen
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Kaiqin Zhong
- Fuzhou Institute of Vegetable Science, Fuzhou 350018, China
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changhui Bai
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhuzheng Xue
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yufen Wu
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
9
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
10
|
Lüth VM, Rempfer C, van Gessel N, Herzog O, Hanser M, Braun M, Decker EL, Reski R. A Physcomitrella PIN protein acts in spermatogenesis and sporophyte retention. THE NEW PHYTOLOGIST 2023; 237:2118-2135. [PMID: 36696950 DOI: 10.1111/nph.18691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens), three canonical PINs (PpPINA-C) are expressed in the leafy shoot (gametophore). PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development. Here, we examined the role of PpPINC in the life cycle of Physcomitrella. We established reporter and knockout lines for PpPINC and analysed vegetative and reproductive tissues using microscopy and transcriptomic sequencing of moss gametangia. PpPINC is expressed in immature leaves, mature gametangia and during sporophyte development. The sperm cells (spermatozoids) of pinC knockout mutants exhibit increased motility and an altered flagella phenotype. Furthermore, the pinC mutants have a higher portion of differentially expressed genes related to spermatogenesis, increased fertility and an increased abortion rate of premeiotic sporophytes. Here, we show that PpPINC is important for spermatogenesis and sporophyte retention. We propose an evolutionary conserved way of polar growth during early moss embryo development and sporophyte attachment to the gametophore while suggesting the mechanical function in sporophyte retention of a ring structure, the Lorch ring.
Collapse
Affiliation(s)
- Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Herzog
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Melanie Hanser
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Marion Braun
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
11
|
Ntefidou M, Eklund DM, Le Bail A, Schulmeister S, Scherbel F, Brandl L, Dörfler W, Eichstädt C, Bannmüller A, Ljung K, Kost B. Physcomitrium patens PpRIC, an ancestral CRIB-domain ROP effector, inhibits auxin-induced differentiation of apical initial cells. Cell Rep 2023; 42:112130. [PMID: 36790931 DOI: 10.1016/j.celrep.2023.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC). Protonemal P. patens filaments elongate based on regular division and PpROP-dependent tip growth of apical initial cells, which upon stimulation by the hormone auxin differentiate caulonemal characteristics. PpRIC interacts with active PpROP1, co-localizes with this protein at the plasma membrane at the tip of apical initial cells, and accumulates in the nucleus. Remarkably, PpRIC is not required for tip growth but is targeted to the nucleus to block caulonema differentiation downstream of auxin-controlled gene expression. These observations establish functions of PpRIC in mediating crosstalk between ROP and auxin signaling, which contributes to the maintenance of apical initial cell identity.
Collapse
Affiliation(s)
- Maria Ntefidou
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Aude Le Bail
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sylwia Schulmeister
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Franziska Scherbel
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lisa Brandl
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Wolfgang Dörfler
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Chantal Eichstädt
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anna Bannmüller
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Benedikt Kost
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
12
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci U S A 2022; 119:e2206869119. [PMID: 35914172 PMCID: PMC9371723 DOI: 10.1073/pnas.2206869119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.
Collapse
|
14
|
Casanova‐Sáez R, Mateo‐Bonmatí E, Šimura J, Pěnčík A, Novák O, Staswick P, Ljung K. Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. THE NEW PHYTOLOGIST 2022; 235:263-275. [PMID: 35322877 PMCID: PMC9322293 DOI: 10.1111/nph.18114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.
Collapse
Affiliation(s)
- Rubén Casanova‐Sáez
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Eduardo Mateo‐Bonmatí
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Jan Šimura
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Aleš Pěnčík
- Laboratory of Growth RegulatorsFaculty of SciencePalacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27OlomoucCzech Republic
| | - Ondřej Novák
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
- Laboratory of Growth RegulatorsFaculty of SciencePalacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27OlomoucCzech Republic
| | - Paul Staswick
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| | - Karin Ljung
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| |
Collapse
|
15
|
Conjunctive Analyses of BSA-Seq and BSR-Seq Unveil the Msβ-GAL and MsJMT as Key Candidate Genes for Cytoplasmic Male Sterility in Alfalfa (Medicago sativa L.). Int J Mol Sci 2022; 23:ijms23137172. [PMID: 35806189 PMCID: PMC9266382 DOI: 10.3390/ijms23137172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
Knowing the molecular mechanism of male sterility in alfalfa is important to utilize the heterosis more effectively. However, the molecular mechanisms of male sterility in alfalfa are still unclear. In this study, the bulked segregant analysis (BSA) and bulked segregant RNA-seq (BSR) were performed with F2 separation progeny to study the molecular mechanism of male sterility in alfalfa. The BSA-seq analysis was located in a candidate region on chromosome 5 containing 626 candidate genes which were associated with male sterility in alfalfa, while the BSR-seq analysis filtered seven candidate DEGs related to male sterility, and these candidate genes including EF-Tu, β-GAL, CESA, PHGDH, and JMT. The conjunctive analyses of BSR and BSA methods revealed that the genes of Msβ-GAL and MsJMT are the common detected candidate genes involved in male sterility in alfalfa. Our research provides a theory basis for further study of the molecular mechanism of male sterility in alfalfa and significant information for the genetic breeding of Medicago sativa.
Collapse
|
16
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
17
|
Liu CC, Liu YN, Cheng JF, Guo R, Tian L, Wang B. Dual Roles of OsGH3.2 in Modulating Rice Root Morphology and Affecting Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:853435. [PMID: 35481141 PMCID: PMC9037295 DOI: 10.3389/fpls.2022.853435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Several angiosperm GRETCHEN HAGEN 3 (GH3) genes, including tomato SlGH3.4 and rice OsGH3.2 are induced during arbuscular mycorrhizal (AM) symbiosis, but their functions remain largely unclear. Recently, tomato SlGH3.4 was suggested to negatively regulate arbuscule incidence via decreasing auxin levels in colonized cells. In this study, by acquiring rice OsGH3.2pro:β-glucuronidase (GUS) transgenic plants and generating Osgh3.2 mutants via CRISPR/Cas9 technique, the roles of OsGH3.2 in modulating rice root morphology and affecting AM symbiosis were investigated through time course experiments. Unlike SlGH3.4, OsGH3.2 showed asymbiotic expression in rice young lateral roots, and its mutation resulted in a "shallow" root architecture. Such root morphological change was also observed under symbiotic condition and it likely promoted AM fungal colonization, as the mutants exhibited higher colonization levels and arbuscule incidence than wild-type at early stages. Similar to SlGH3.4, OsGH3.2 showed symbiotic expression in cortical cells that have formed mature arbuscules. At late stages of symbiosis, Osgh3.2 mutants showed elongated cortical cells and larger arbuscules than wild-type, indicating elevated auxin level in the colonized cells. Together, these results revealed both asymbiotic and symbiotic roles of OsGH3.2 in modulating rice root architecture and controlling auxin levels in arbusculated cells, which further affected colonization rate and arbuscule phenotype.
Collapse
|
18
|
Wojtaczka P, Ciarkowska A, Starzynska E, Ostrowski M. The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. PHYTOCHEMISTRY 2022; 194:113039. [PMID: 34861536 DOI: 10.1016/j.phytochem.2021.113039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 05/08/2023]
Abstract
The Gretchen Hagen 3 (GH3) genes encoding proteins belonging to the ANL superfamily are widespread in the plant kingdom. The ANL superfamily consists of three groups of adenylating enzymes: aryl- and acyl-CoA synthetases, firefly luciferase, and amino acid-activating adenylation domains of the nonribosomal peptide synthetases (NRPS). GH3s are cytosolic, acidic amidosynthetases of the firefly luciferase group that conjugate auxins, jasmonates, and benzoate derivatives to a wide group of amino acids. In contrast to auxins, which amide conjugates mainly serve as a storage pool of inactive phytohormone or are involved in the hormone degradation process, conjugation of jasmonic acid (JA) results in biologically active phytohormone jasmonyl-isoleucine (JA-Ile). Moreover, GH3s modulate salicylic acid (SA) concentration by conjugation of its precursor, isochorismate. GH3s, as regulators of the phytohormone level, are crucial for normal plant development as well as plant defense response to different abiotic and biotic stress factors. Surprisingly, recent studies indicate that FIN219/JAR1/GH3.11, one of the GH3 proteins, may act not only as an enzyme but is also able to interact with tau-class glutathione S-transferase (GSTU) and constitutive photomorphogenic 1 (COP1) proteins and regulate light and stress signaling pathways. The aim of this work is to summarize our current knowledge of the GH3 family.
Collapse
Affiliation(s)
- Patrycja Wojtaczka
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Anna Ciarkowska
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Ewelina Starzynska
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
| |
Collapse
|
19
|
Guo R, Hu Y, Aoi Y, Hira H, Ge C, Dai X, Kasahara H, Zhao Y. Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis. Biochem Biophys Res Commun 2022; 589:16-22. [PMID: 34883285 DOI: 10.1016/j.bbrc.2021.11.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Gretchen Hagen 3 (GH3) amido synthetases conjugate amino acids to a carboxyl group of small molecules including hormones auxin, jasmonate, and salicylic acid. The Arabidopsis genome harbors 19 GH3 genes, whose exact roles in plant development have been difficult to define because of genetic redundancy among the GH3 genes. Here we use CRISPR/Cas9 gene editing technology to delete the Arabidopsis group II GH3 genes, which are able to conjugate indole-3-acetic acid (IAA) to amino acids. We show that plants lacking the eight group II GH3 genes (gh3 octuple mutants) accumulate free IAA and fail to produce IAA-Asp and IAA-Glu conjugates. Consequently, gh3 octuple mutants have extremely short roots, long and dense root hairs, and long hypocotyls. Our characterization of gh3 septuple mutants, which provide sensitized backgrounds, reveals that GH3.17 and GH3.9 play prominent roles in root elongation and seed production, respectively. We show that GH3 functions correlate with their expression patterns, suggesting that local deactivation of auxin also contributes to maintaining auxin homeostasis. Moreover, this work provides a method for elucidating functions of individual members of a gene family, whose members have overlapping functions.
Collapse
Affiliation(s)
- Ruipan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China; Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yun Hu
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yuki Aoi
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | - Hayao Hira
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | - Chennan Ge
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Chen J, Tomes S, Gleave AP, Hall W, Luo Z, Xu J, Yao JL. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor. HORTICULTURE RESEARCH 2022; 9:uhab014. [PMID: 35039859 PMCID: PMC8795818 DOI: 10.1093/hr/uhab014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/18/2022] [Accepted: 10/16/2021] [Indexed: 05/24/2023]
Abstract
BABY BOOM (BBM) is a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family and its expression has been shown to improve herbaceous plant transformation and regeneration. However, this improvement has not been shown clearly for tree species. This study demonstrated that the efficiency of transgenic apple (Malus domestica Borkh.) plant production was dramatically increased by ectopic expression of the MdBBM1 gene. "Royal Gala" apple plants were first transformed with a CaMV35S-MdBBM1 construct (MBM) under kanamycin selection. These MBM transgenic plants exhibited enhanced shoot regeneration from leaf explants on tissue culture media, with most plants displaying a close-to-normal phenotype compared with CaMV35S-GUS transgenic plants when grown under greenhouse conditions, the exception being that some plants had slightly curly leaves. Thin leaf sections revealed the MBM plants produced more cells than the GUS plants, indicating that ectopic-expression of MdBBM1 enhanced cell division. Transcriptome analysis showed that mRNA levels for cell division activators and repressors linked to hormone (auxin, cytokinin and brassinosteroid) signalling pathways were enhanced and reduced, respectively, in the MBM plants compared with the GUS plants. Plants of eight independent MBM lines were compared with the GUS plants by re-transforming them with an herbicide-resistant gene construct. The number of transgenic plants produced per 100 leaf explants was 0-3% for the GUS plants, 3-8% for five MBM lines, and 20-30% for three MBM lines. Our results provided a solution for overcoming the barriers to transgenic plant production in apple, and possibly in other trees.
Collapse
Affiliation(s)
- Jiajing Chen
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Andrew P Gleave
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Wendy Hall
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 32 Gangwan Road
Zhengzhou 450009, China
| |
Collapse
|
21
|
Guillory A, Bonhomme S. Phytohormone biosynthesis and signaling pathways of mosses. PLANT MOLECULAR BIOLOGY 2021; 107:245-277. [PMID: 34245404 DOI: 10.1007/s11103-021-01172-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens. The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.
Collapse
Affiliation(s)
- Ambre Guillory
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Sandrine Bonhomme
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
22
|
Koochak H, Ludwig-Müller J. Physcomitrium patens Mutants in Auxin Conjugating GH3 Proteins Show Salt Stress Tolerance but Auxin Homeostasis Is Not Involved in Regulation of Oxidative Stress Factors. PLANTS 2021; 10:plants10071398. [PMID: 34371602 PMCID: PMC8309278 DOI: 10.3390/plants10071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-5910, USA
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Correspondence:
| |
Collapse
|
23
|
Bunsangiam S, Thongpae N, Limtong S, Srisuk N. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci Rep 2021; 11:13094. [PMID: 34158557 PMCID: PMC8219710 DOI: 10.1038/s41598-021-92305-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class and regulates various plant growth processes. The present study investigated IAA production by the basidiomycetous yeast Rhodosporidiobolus fluvialis DMKU-CP293 using the one-factor-at-a-time (OFAT) method and response surface methodology (RSM). IAA production was optimized in shake-flask culture using a cost-effective medium containing 4.5% crude glycerol, 2% CSL and 0.55% feed-grade l-tryptophan. The optimized medium resulted in a 3.3-fold improvement in IAA production and a 3.6-fold reduction in cost compared with those obtained with a non-optimized medium. Production was then scaled up to a 15-L bioreactor and to a pilot-scale (100-L) bioreactor based on the constant impeller tip speed (Vtip) strategy. By doing so, IAA was successfully produced at a concentration of 3569.32 mg/L at the pilot scale. To the best of our knowledge, this is the first report of pilot-scale IAA production by microorganisms. In addition, we evaluated the effect of crude IAA on weed growth. The results showed that weed (Cyperus rotundus L.) growth could be inhibited by 50 mg/L of crude IAA. IAA therefore has the potential to be developed as a herbicidal bioproduct to replace the chemical herbicides that have been banned in various countries, including Thailand.
Collapse
Affiliation(s)
- Sakaoduoen Bunsangiam
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nutnaree Thongpae
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.,Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
24
|
Bowman JL, Flores Sandoval E, Kato H. On the Evolutionary Origins of Land Plant Auxin Biology. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a040048. [PMID: 33558368 DOI: 10.1101/cshperspect.a040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Indole-3-acetic acid, that is, auxin, is a molecule found in a broad phylogenetic distribution of organisms, from bacteria to eukaryotes. In the ancestral land plant auxin was co-opted to be the paramount phytohormone mediating tropic responses and acting as a facilitator of developmental decisions throughout the life cycle. The evolutionary origins of land plant auxin biology genes can now be traced with reasonable clarity. Genes encoding the two enzymes of the land plant auxin biosynthetic pathway arose in the ancestral land plant by a combination of horizontal gene transfer from bacteria and possible neofunctionalization following gene duplication. Components of the auxin transcriptional signaling network have their origins in ancestral alga genes, with gene duplication and neofunctionalization of key domains allowing integration of a portion of the preexisting transcriptional network with auxin. Knowledge of the roles of orthologous genes in extant charophycean algae is lacking, but could illuminate the ancestral functions of both auxin and the co-opted transcriptional network.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Science, Monash University, Melbourne, Victoria 3800, Australia
| | | | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
25
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039867. [PMID: 33431579 PMCID: PMC7919392 DOI: 10.1101/cshperspect.a039867] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.
Collapse
Affiliation(s)
| | | | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
27
|
Jeong J, Park S, Im JH, Yi H. Genome-wide identification of GH3 genes in Brassica oleracea and identification of a promoter region for anther-specific expression of a GH3 gene. BMC Genomics 2021; 22:22. [PMID: 33407107 PMCID: PMC7789250 DOI: 10.1186/s12864-020-07345-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group III subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified. Results As a first step to understand regulation and molecular functions of Group III subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea. Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea, only BoGH3.13–1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13–1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones. Conclusions Sixty-two base pairs (bp) region (− 340 ~ − 279 bp upstream from start codon) and about 450 bp region (− 1489 to − 1017 bp) in BoGH3.13–1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07345-9.
Collapse
Affiliation(s)
- Jiseong Jeong
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunhee Park
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Hui Im
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
28
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
29
|
Biswal DP, Panigrahi KCS. Light- and hormone-mediated development in non-flowering plants: An overview. PLANTA 2020; 253:1. [PMID: 33245411 DOI: 10.1007/s00425-020-03501-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
30
|
Abdollahi Sisi N, Růžička K. ER-Localized PIN Carriers: Regulators of Intracellular Auxin Homeostasis. PLANTS 2020; 9:plants9111527. [PMID: 33182545 PMCID: PMC7697564 DOI: 10.3390/plants9111527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
The proper distribution of the hormone auxin is essential for plant development. It is channeled by auxin efflux carriers of the PIN family, typically asymmetrically located on the plasma membrane (PM). Several studies demonstrated that some PIN transporters are also located at the endoplasmic reticulum (ER). From the PM-PINs, they differ in a shorter internal hydrophilic loop, which carries the most important structural features required for their subcellular localization, but their biological role is otherwise relatively poorly known. We discuss how ER-PINs take part in maintaining intracellular auxin homeostasis, possibly by modulating the internal levels of IAA; it seems that the exact identity of the metabolites downstream of ER-PINs is not entirely clear as well. We further review the current knowledge about their predicted structure, evolution and localization. Finally, we also summarize their role in plant development.
Collapse
Affiliation(s)
- Nayyer Abdollahi Sisi
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-225-106-429
| |
Collapse
|
31
|
Kaneko S, Cook SD, Aoi Y, Watanabe A, Hayashi KI, Kasahara H. An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella moellendorffii. PLANT & CELL PHYSIOLOGY 2020; 61:1724-1732. [PMID: 32697828 DOI: 10.1093/pcp/pcaa098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Auxin is a key regulator of plant growth and development. Indole-3-acetic acid (IAA), a plant auxin, is mainly produced from tryptophan via indole-3-pyruvate (IPA) in both bryophytes and angiosperms. Angiosperms have multiple, well-documented IAA inactivation pathways, involving conjugation to IAA-aspartate (IAA-Asp)/glutamate by the GH3 auxin-amido synthetases, and oxidation to 2-oxindole-3-acetic acid (oxIAA) by the DAO proteins. However, IAA biosynthesis and inactivation processes remain elusive in lycophytes, an early lineage of spore-producing vascular plants. In this article, we studied IAA biosynthesis and inactivation in the lycophyte Selaginella moellendorffii. We demonstrate that S. moellendorffii mainly produces IAA from the IPA pathway for the regulation of root growth and response to high temperature, similar to the angiosperm Arabidopsis. However, S. moellendorffii exhibits a unique IAA metabolite profile with high IAA-Asp and low oxIAA levels, distinct from Arabidopsis and the bryophyte Marchantia polymorpha, suggesting that the GH3 family is integral for IAA homeostasis in the lycophytes. The DAO homologs in S. moellendorffii share only limited similarity to the well-characterized rice and Arabidopsis DAO proteins. We therefore suggest that these enzymes may have a limited role in IAA homeostasis in S. moellendorffii compared to angiosperms. We provide new insights into the functional diversification of auxin metabolic genes in the evolution of land plants.
Collapse
Affiliation(s)
- Shutaro Kaneko
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Sam David Cook
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
- JSPS International Research Fellow, The Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Akie Watanabe
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
32
|
Li A, Lakshmanan P, He W, Tan H, Liu L, Liu H, Liu J, Huang D, Chen Z. Transcriptome Profiling Provides Molecular Insights into Auxin-Induced Adventitious Root Formation in Sugarcane ( Saccharum spp. Interspecific Hybrids) Microshoots. PLANTS 2020; 9:plants9080931. [PMID: 32717893 PMCID: PMC7465322 DOI: 10.3390/plants9080931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022]
Abstract
Adventitious root (AR) formation was enhanced following the treatment of sugarcane microshoots with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) combined, suggesting that auxin is a positive regulator of sugarcane microshoot AR formation. The transcriptome profile identified 1737 and 1268 differentially expressed genes (DEGs) in the basal tissues (5 mm) of sugarcane microshoots treated with IBA+NAA compared to nontreated control on the 3rd and 7th days post-auxin or water treatment (days post-treatment—dpt), respectively. To understand the molecular changes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. This analysis showed that DEGs associated with the pathways were associated with plant hormone signaling, flavonoid and phenylpropanoid biosyntheses, cell cycle, and cell wall modification, and transcription factors could be involved in sugarcane microshoot AR formation. Furthermore, qRT–PCR analysis was used to validate the expression patterns of nine genes associated with root formation and growth, and the results were consistent with the RNA-seq results. Finally, a hypothetical hormonal regulatory working model of sugarcane microshoot AR formation is proposed. Our results provide valuable insights into the molecular processes associated with auxin-induced AR formation in sugarcane.
Collapse
Affiliation(s)
- Aomei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Weizhong He
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Hongwei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Limin Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Hongjian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Junxian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Zhongliang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| |
Collapse
|
33
|
Brunoni F, Collani S, Casanova-Sáez R, Šimura J, Karady M, Schmid M, Ljung K, Bellini C. Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. THE NEW PHYTOLOGIST 2020; 226:1753-1765. [PMID: 32004385 DOI: 10.1111/nph.16463] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Dynamic regulation of the concentration of the natural auxin (IAA) is essential to coordinate most of the physiological and developmental processes and responses to environmental changes. Oxidation of IAA is a major pathway to control auxin concentrations in angiosperms and, along with IAA conjugation, to respond to perturbation of IAA homeostasis. However, these regulatory mechanisms remain poorly investigated in conifers. To reduce this knowledge gap, we investigated the different contributions of the IAA inactivation pathways in conifers. MS-based quantification of IAA metabolites under steady-state conditions and after perturbation was investigated to evaluate IAA homeostasis in conifers. Putative Picea abies GH3 genes (PaGH3) were identified based on a comprehensive phylogenetic analysis including angiosperms and basal land plants. Auxin-inducible PaGH3 genes were identified by expression analysis and their IAA-conjugating activity was explored. Compared to Arabidopsis, oxidative and conjugative pathways differentially contribute to reduce IAA concentrations in conifers. We demonstrated that the oxidation pathway plays a marginal role in controlling IAA homeostasis in spruce. By contrast, an excess of IAA rapidly activates GH3-mediated irreversible conjugation pathways. Taken together, these data indicate that a diversification of IAA inactivation mechanisms evolved specifically in conifers.
Collapse
Affiliation(s)
- Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
| | - Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Departmebt of Chemical Biology and Genetics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
34
|
Morffy N, Strader LC. Old Town Roads: routes of auxin biosynthesis across kingdoms. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:21-27. [PMID: 32199307 PMCID: PMC7540728 DOI: 10.1016/j.pbi.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Auxin is an important signaling molecule synthesized in organisms from multiple kingdoms of life, including land plants, green algae, and bacteria. In this review, we highlight the similarities and differences in auxin biosynthesis among these organisms. Tryptophan-dependent routes to IAA are found in land plants, green algae and bacteria. Recent sequencing efforts show that the indole-3-pyruvic acid pathway, one of the primary biosynthetic pathways in land plants, is also found in the green algae. These similarities raise questions about the origin of auxin biosynthesis. Future studies comparing auxin biosynthesis across kingdoms will shed light on its origin and role outside of the plant lineage.
Collapse
Affiliation(s)
- Nicholas Morffy
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States; Center for Engineering MechanoBiology, Washington University, St. Louis, MO 63130, United States.
| |
Collapse
|
35
|
Walter A, Caputi L, O’Connor S, van Pée KH, Ludwig-Müller J. Chlorinated Auxins-How Does Arabidopsis Thaliana Deal with Them? Int J Mol Sci 2020; 21:E2567. [PMID: 32272759 PMCID: PMC7177246 DOI: 10.3390/ijms21072567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants.
Collapse
Affiliation(s)
- Antje Walter
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Lorenzo Caputi
- Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (L.C.); (S.O.)
| | - Sarah O’Connor
- Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (L.C.); (S.O.)
| | - Karl-Heinz van Pée
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany;
| |
Collapse
|
36
|
Wang J, Wang R, Mao X, Li L, Chang X, Zhang X, Jing R. TaARF4 genes are linked to root growth and plant height in wheat. ANNALS OF BOTANY 2019; 124:903-915. [PMID: 30590478 PMCID: PMC6881231 DOI: 10.1093/aob/mcy218] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/08/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Auxin response factors (ARFs) as transcription activators or repressors have important roles in plant growth and development, but knowledge about the functions of wheat ARF members is limited. A novel ARF member in wheat (Triticum aestivum), TaARF4, was identified, and its protein function, haplotype geographic distribution and allelic frequencies were investigated. METHODS Tissue expression of TaARF4 was analysed by real-time PCR. Sub-cellular localization was performed using green fluorescent protein (GFP)-tagged TaARF4. Ectopic expression of TaARF4-A in arabidopsis was used to study its functions. Electrophoretic mobility shift assays (EMSAs), chromatin immunoprecipitation (ChIP) analyses and gene expression were performed to detect TaARF4 target genes. A dCAPS (derived cleaved amplified polymorphic sequence) marker developed from TaARF4-B was used to identify haplotypes and association analysis between haplotypes and agronomic traits. KEY RESULTS TaARF4-A was constitutively expressed and its protein was localized in the nucleus. Ectopic expression of TaARF4-A in arabidopsis caused abscisic acid (ABA) insensitivity, shorter primary root length and reduced plant height (PH). Through expression studies and ChIP assays, TaARF4-A was shown to regulate HB33 expression which negatively responded to ABA, and reduced root length and plant height by repressing expression of Gretchen Hagen 3 (GH3) genes that in turn upregulated indole-3-acetic acid content in arabidopsis. Association analysis showed that TaARF4-B was strongly associated with PH and root depth at the tillering, jointing and grain fill stages. Geographic distribution and allelic frequencies suggested that TaARF4-B haplotypes were selected in Chinese wheat breeding programmes. An amino acid change (threonine to alanine) at position 158 might be the cause of phenotype variation in accessions possessing different haplotypes. CONCLUSIONS Ectopic expression and association analysis indicate that TaARF4 may be involved in root length and plant height determination in wheat. This work is helpful for selection of wheat genotypes with optimal root and plant architecture.
Collapse
Affiliation(s)
- Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruitong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- For correspondence. E-mail
| |
Collapse
|
37
|
Kai W, Wang J, Liang B, Fu Y, Zheng Y, Zhang W, Li Q, Leng P. PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6305-6319. [PMID: 31504753 PMCID: PMC6859720 DOI: 10.1093/jxb/erz396] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 08/21/2019] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) regulates fruit ripening, yet little is known about the exact roles of ABA receptors in fruit. In this study, we reveal the role of SlPYL9, a tomato pyrabactin resistance (PYR)/pyrobactin resistance-like (PYL)/regulatory component of ABA receptors (RCAR) protein, as a positive regulator of ABA signaling and fruit ripening. SlPYL9 inhibits protein phosphatase-type 2C (PP2C2/6) in an ABA dose-dependent way, and it interacts physically with SlPP2C2/3/4/5 in an ABA-dependent manner. Expression of SlPYL9 was observed in the seeds, flowers, and fruits. Overexpression and suppression of SlPYL9 induced a variety of phenotypes via altered expression of ABA signaling genes (SlPP2C1/2/9, SlSnRK2.8, SlABF2), thereby affecting expression of ripening-related genes involved in ethylene release and cell wall modification. SlPYL9-OE/RNAi plants showed a typical ABA hyper-/hypo-sensitive phenotype in terms of seed germination, primary root growth, and response to drought. Fruit ripening was significantly accelerated in SlPYL9-OE by 5-7 d as a result of increased endogenous ABA accumulation and advanced release of ethylene compared with the wild-type. In the SlPYL9-RNAi lines, fruit ripening was delayed, mesocarp thickness was enhanced, and petal abscission was delayed compared with the wild-type, resulting in conical/oblong and gourd-shaped fruits. These results suggest that SlPYL9 is involved in ABA signaling, thereby playing a role in the regulation of flower abscission and fruit ripening in tomato.
Collapse
Affiliation(s)
- Wenbin Kai
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Juan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Bin Liang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Ying Fu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yu Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Wenbo Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | | | | |
Collapse
|
38
|
Casanova-Sáez R, Voß U. Auxin Metabolism Controls Developmental Decisions in Land Plants. TRENDS IN PLANT SCIENCE 2019; 24:741-754. [PMID: 31230894 DOI: 10.1016/j.tplants.2019.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Unlike animals, whose body plans are set during embryo development, plants maintain the ability to initiate new organs throughout their life cycle. Auxin is a key regulator of almost all aspects of plant development, including morphogenesis and adaptive responses. Cellular auxin concentrations influence whether a cell will divide, grow, or differentiate, thereby contributing to organ formation, growth, and ultimately plant shape. Auxin gradients are established and maintained by a tightly regulated interplay between metabolism, signalling, and transport. Auxin is synthesised, stored, and inactivated by a multitude of parallel pathways that are all tightly regulated. Here we summarise the remarkable progress that has been achieved in identifying some key components of these pathways and the genetic complexity underlying their precise regulation.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Ute Voß
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
39
|
Kirungu JN, Magwanga RO, Lu P, Cai X, Zhou Z, Wang X, Peng R, Wang K, Liu F. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genet 2019; 20:62. [PMID: 31337336 PMCID: PMC6651995 DOI: 10.1186/s12863-019-0756-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Auxins play an important role in plant growth and development; the auxins responsive gene; auxin/indole-3-acetic acid (Aux/IAA), small auxin-up RNAs (SAUR) and Gretchen Hagen3 (GH3) control their mechanisms. The GH3 genes function in homeostasis by the catalytic activities in auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. RESULTS In our study, we identified the GH3 genes in three cotton species; Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, analyzed their chromosomal distribution, phylogenetic relationships, cis-regulatory element function and performed virus induced gene silencing of the novel Gh_A08G1120 (GH3.5) gene. The phylogenetic tree showed four clusters of genes with clade 1, 3 and 4 having mainly members of the GH3 of the cotton species while clade 2 was mainly members belonging to Arabidopsis. There were no paralogous genes, and few orthologous genes were observed between Gossypium and other species. All the GO terms were detected, but only 14 genes were found to have described GO terms in upland cotton, more biological functions were detected, as compared to the other functions. The GH3.17 subfamily harbored the highest number of the cis-regulatory elements, most having promoters towards dehydration-responsiveness. The RNA expression analysis revealed that 10 and 8 genes in drought and salinity stress conditions respectively were upregulated in G. hirsutum. All the genes that were upregulated in plants under salt stress conditions were also upregulated in drought stress; moreover, Gh_A08G1120 (GH3.5) exhibited a significant upregulation across the two stress factors. Functional characterization of Gh_A08G1120 (GH3.5) through virus-induced gene silencing (VIGS) revealed that the VIGS plants ability to tolerate drought and salt stresses was significantly reduced compared to the wild types. The chlorophyll content, relative leaf water content (RLWC), and superoxide dismutase (SOD) concentration level were reduced significantly while malondialdehyde concentration and ion leakage as a measure of cell membrane stability (CMS) increased in VIGS plants under drought and salt stress conditions. CONCLUSION This study revealed the significance of the GH3 genes in enabling the plant's adaptation to drought and salt stress conditions as evidenced by the VIGS results and RT-qPCR analysis.
Collapse
Affiliation(s)
- Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.,School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, 210-40601, Bondo, Kenya
| | - Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Renhai Peng
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/ Anyang Institute of technology, Anyang, 455000, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.
| |
Collapse
|
40
|
Wei L, Yang B, Jian H, Zhang A, Liu R, Zhu Y, Ma J, Shi X, Wang R, Li J, Xu X. Genome-wide identification and characterization of Gretchen Hagen3 ( GH3) family genes in Brassica napus. Genome 2019; 62:597-608. [PMID: 31271724 DOI: 10.1139/gen-2018-0161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hormone auxin is involved in many biological processes throughout a plant's lifecycle. However, genes in the GH3 (Gretchen Hagen3) family, one of the three major auxin-responsive gene families, have not yet been identified in oilseed rape (Brassica napus). In this study, we identified 63 BnaGH3 genes in oilseed rape using homology searches. We analyzed the chromosome locations, gene structures, and phylogenetic relationships of the BnaGH3 genes, as well as the cis-elements in their promoters. Most BnaGH3 genes are located on chromosomes A03, A09, C02, C03, and C09, each with 4-7 members. In addition, we analyzed the expression patterns of BnaGH3 genes in seven tissues by transcriptome sequencing and quantitative RT-PCR analysis of plants under exogenous IAA treatment. The BnaGH3 genes showed different expression patterns in various tissues. BnaA.GH3.2-1 and BnaC.GH3.2-1 were expressed in the seed and seed coat during development and in response to IAA treatment. These results shed light on the possible roles of the GH3 gene family in oilseed rape.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Ruiying Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Yan Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Jinqi Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Xiangtian Shi
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| |
Collapse
|
41
|
Brunoni F, Collani S, Šimura J, Schmid M, Bellini C, Ljung K. A bacterial assay for rapid screening of IAA catabolic enzymes. PLANT METHODS 2019; 15:126. [PMID: 31700527 PMCID: PMC6827244 DOI: 10.1186/s13007-019-0509-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Plants rely on concentration gradients of the native auxin, indole-3-acetic acid (IAA), to modulate plant growth and development. Both metabolic and transport processes participate in the dynamic regulation of IAA homeostasis. Free IAA levels can be reduced by inactivation mechanisms, such as conjugation and degradation. IAA can be conjugated via ester linkage to glucose, or via amide linkage to amino acids, and degraded via oxidation. Members of the UDP glucosyl transferase (UGT) family catalyze the conversion of IAA to indole-3-acetyl-1-glucosyl ester (IAGlc); by contrast, IAA is irreversibly converted to indole-3-acetyl-l-aspartic acid (IAAsp) and indole-3-acetyl glutamic acid (IAGlu) by Group II of the GRETCHEN HAGEN3 (GH3) family of acyl amido synthetases. Dioxygenase for auxin oxidation (DAO) irreversibly oxidizes IAA to oxindole-3-acetic acid (oxIAA) and, in turn, oxIAA can be further glucosylated to oxindole-3-acetyl-1-glucosyl ester (oxIAGlc) by UGTs. These metabolic pathways have been identified based on mutant analyses, in vitro activity measurements, and in planta feeding assays. In vitro assays for studying protein activity are based on producing Arabidopsis enzymes in a recombinant form in bacteria or yeast followed by recombinant protein purification. However, the need to extract and purify the recombinant proteins represents a major obstacle when performing in vitro assays. RESULTS In this work we report a rapid, reproducible and cheap method to screen the enzymatic activity of recombinant proteins that are known to inactivate IAA. The enzymatic reactions are carried out directly in bacteria that produce the recombinant protein. The enzymatic products can be measured by direct injection of a small supernatant fraction from the bacterial culture on ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UHPLC-ESI-MS/MS). Experimental procedures were optimized for testing the activity of different classes of IAA-modifying enzymes without the need to purify recombinant protein. CONCLUSIONS This new method represents an alternative to existing in vitro assays. It can be applied to the analysis of IAA metabolites that are produced upon supplementation of substrate to engineered bacterial cultures and can be used for a rapid screening of orthologous candidate genes from non-model species.
Collapse
Affiliation(s)
- Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Present Address: Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
42
|
Chiu LW, Heckert MJ, You Y, Albanese N, Fenwick T, Siehl DL, Castle LA, Tao Y. Members of the GH3 Family of Proteins Conjugate 2,4-D and Dicamba with Aspartate and Glutamate. PLANT & CELL PHYSIOLOGY 2018; 59:2366-2380. [PMID: 30101323 DOI: 10.1093/pcp/pcy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Auxin homeostasis is a highly regulated process that must be maintained to allow auxin to exert critical growth and developmental controls. Auxin conjugase and hydrolase family proteins play important roles in auxin homeostasis through means of storage, activation, inactivation, response inhibition and degradation of auxins in plants. We systematically evaluated 60 GRETCHEN HAGEN3 (GH3) proteins from diverse plant species for amino acid conjugation activity with the known substrates jasmonic acid (JA), IAA and 4-hydroxybenzoate (4-HBA). While our results largely confirm that Group II conjugases prefer IAA, we observed no clear substrate preference among Group III proteins, and only three of 11 Group I proteins showed the expected preference for JA, indicating that sequence similarity does not always predict substrate specificity. Such a sequence-substrate relationship held true when sequence similarity at the acyl acid-binding site was used for grouping. Several GH3 proteins could catalyze formation of the potentially degradation-destined aspartate (Asp) and glutamate (Glu) conjugates of IAA and the synthetic auxins 2,4-D and dicamba. We found that 2,4-D-Asp/Glu conjugates, but not dicamba and IAA conjugates, were hydrolyzed in Arabidopsis and soybean by AtILL5- and AtIAR3-like amidohydrolases, releasing free 2,4-D in plant cells when conjugates were exogenously applied to seedlings. Dicamba-Asp or dicamba-Glu conjugates were not hydrolyzed in vivo in infiltrated plants nor in vitro with recombinant amidohydrolases. These findings could open the door for exploration of a dicamba herbicide tolerance strategy through conjugation.
Collapse
Affiliation(s)
- Li-Wei Chiu
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Matthew J Heckert
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - You You
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Nicholas Albanese
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Tamara Fenwick
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Daniel L Siehl
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Linda A Castle
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Yumin Tao
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| |
Collapse
|
43
|
Liu X, Sun L, Wu Q, Men X, Yao L, Xing S. Transcriptome profile analysis reveals the ontogenesis of rooted chichi in Ginkgo biloba L. Gene 2018; 669:8-14. [DOI: 10.1016/j.gene.2018.05.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023]
|
44
|
Moody LA, Kelly S, Coudert Y, Nimchuk ZL, Harrison CJ, Langdale JA. Somatic hybridization provides segregating populations for the identification of causative mutations in sterile mutants of the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2018; 218:1270-1277. [PMID: 29498048 DOI: 10.1111/nph.15069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Forward genetics is now straightforward in the moss Physcomitrella patens, and large mutant populations can be screened relatively easily. However, perturbation of development before the formation of gametes currently leaves no route to gene discovery. Somatic hybridization has previously been used to rescue sterile mutants and to assign P. patens mutations to complementation groups, but the cellular basis of the fusion process could not be monitored, and there was no tractable way to identify causative mutations. Here we use fluorescently tagged lines to generate somatic hybrids between Gransden (Gd) and Villersexel (Vx) strains of P. patens, and show that hybridization produces fertile diploid gametophytes that form phenotypically normal tetraploid sporophytes. Quantification of genetic variation between the two parental strains reveals single nucleotide polymorphisms at a frequency of 1/286 bp. Given that the genetic distinction between Gd and Vx strains exceeds that found between pairs of strains that are commonly used for genetic mapping in other plant species, the spore populations derived from hybrid sporophytes provide suitable material for bulk segregant analysis and gene identification by genome sequencing.
Collapse
Affiliation(s)
- Laura A Moody
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Yoan Coudert
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Laboratoire Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, 46 Allée d'Italie, Lyon, 69007, France
| | - Zachary L Nimchuk
- Department of Biology, UNC, Coker Hall, 120 South Road, Chapel Hill, NC, 27599-3280, USA
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
45
|
Monte I, Ishida S, Zamarreño AM, Hamberg M, Franco-Zorrilla JM, García-Casado G, Gouhier-Darimont C, Reymond P, Takahashi K, García-Mina JM, Nishihama R, Kohchi T, Solano R. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol 2018; 14:480-488. [PMID: 29632411 DOI: 10.1038/s41589-018-0033-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/21/2018] [Indexed: 11/09/2022]
Abstract
The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.
Collapse
Affiliation(s)
- Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Navarra, Spain
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | | | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Kosaku Takahashi
- Research Faculty of Agriculture, Division of Applied Bioscience, Hokkaido University, Sapporo, Japan
| | | | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
46
|
Thelander M, Landberg K, Sundberg E. Auxin-mediated developmental control in the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:277-290. [PMID: 28992074 DOI: 10.1093/jxb/erx255] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
The signalling molecule auxin regulates many fundamental aspects of growth and development in plants. We review and discuss what is known about auxin-regulated development in mosses, with special emphasis on the model species Physcomitrella patens. It is well established that mosses and other early diverging plants produce and respond to auxin. By sequencing the P. patens genome, it became clear that it encodes many core proteins important for auxin homeostasis, perception, and signalling, which have also been identified in flowering plants. This suggests that the auxin molecular network was present in the last common ancestor of flowering plants and mosses. Despite fundamental differences in their life cycles, key processes such as organ initiation and outgrowth, branching, tropic responses, as well as cell differentiation, division, and expansion appear to be regulated by auxin in the two lineages. This knowledge paves the way for studies aimed at a better understanding of the origin and evolution of auxin function and how auxin may have contributed to the evolution of land plants.
Collapse
Affiliation(s)
- Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| |
Collapse
|
47
|
Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). BMC Genomics 2017; 18:870. [PMID: 29132316 PMCID: PMC5683460 DOI: 10.1186/s12864-017-4250-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Auxin is essential for plant growth and development. Although substantial progress has been made in understanding auxin pathways in model plants such as Arabidopsis and rice, little is known in moso bamboo which is famous for its fast growth resulting from the rapid cell elongation and division. Results Here we showed that exogenous auxin has strong effects on crown and primary roots. Genes involved in auxin action, including 13 YUCCA (YUC) genes involved in auxin synthesis, 14 PIN-FORMED/PIN-like (PIN/PILS) and 7 AUXIN1/LIKE-AUX1 (AUX1/LAX) members involved in auxin transport, 10 auxin receptors (AFB) involved in auxin perception, 43 auxin/indole-3-aceticacid (AUX/IAA) genes, and 41 auxin response factors (ARF) involved in auxin signaling were identified through genome-wide analysis. Phylogenetic analysis of these genes from Arabidopsis, Oryza sativa and bamboo revealed that auxin biosynthesis, transport, and signaling pathways are conserved in these species. A comprehensive study of auxin-responsive genes using RNA sequencing technology was performed, and the results also supported that moso bamboo shared a conserved regulatory mechanism for the expression of auxin pathway genes; meanwhile it harbors its own specific properties. Conclusions In summary, we generated an overview of the auxin pathway in bamboo, which provides information for uncovering the precise roles of auxin pathway in this important species in the future. Electronic supplementary material The online version of this article (10.1186/s12864-017-4250-0) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Rawat A, Brejšková L, Hála M, Cvrčková F, Žárský V. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. THE NEW PHYTOLOGIST 2017; 216:438-454. [PMID: 28397275 DOI: 10.1111/nph.14548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/24/2017] [Indexed: 05/28/2023]
Abstract
The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.3d (Pp1s97_91V6), from the, as yet, poorly characterized EXO70.3 clade. Following phylogenetic analysis to confirm the presence of three ancestral land plant EXO70 clades outside angiosperms, we prepared and phenotypically characterized loss-of-function Ppexo70.3d mutants and localized PpEXO70.3d in vivo using green fluorescent protein-tagged protein expression. Disruption of PpEXO70.3d caused pleiotropic cell elongation and differentiation defects in protonemata, altered response towards exogenous auxin, increased endogenous IAA concentrations, along with defects in bud and gametophore development. During mid-archegonia development, an abnormal egg cell is formed and subsequently collapses, resulting in mutant sterility. Mutants exhibited altered cell wall and cuticle deposition, as well as compromised cytokinesis, consistent with the protein localization to the cell plate. Despite some functional redundancy allowing survival of moss lacking PpEXO70.3d, this subunit has an essential role in the moss life cycle, indicating sub-functionalization within the moss EXO70 family.
Collapse
Affiliation(s)
- Anamika Rawat
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Lucie Brejšková
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Michal Hála
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Fatima Cvrčková
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| |
Collapse
|
49
|
Decker EL, Alder A, Hunn S, Ferguson J, Lehtonen MT, Scheler B, Kerres KL, Wiedemann G, Safavi-Rizi V, Nordzieke S, Balakrishna A, Baz L, Avalos J, Valkonen JPT, Reski R, Al-Babili S. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. THE NEW PHYTOLOGIST 2017; 216:455-468. [PMID: 28262967 DOI: 10.1111/nph.14506] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 05/18/2023]
Abstract
In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.
Collapse
Affiliation(s)
- Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Adrian Alder
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Stefan Hunn
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Jenny Ferguson
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Mikko T Lehtonen
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 7, Helsinki, FIN-00014, Finland
| | - Bjoern Scheler
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Klaus L Kerres
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Vajiheh Safavi-Rizi
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Steffen Nordzieke
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, E-41080, Spain
| | - Aparna Balakrishna
- BESE Division, Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lina Baz
- BESE Division, Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, E-41080, Spain
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 7, Helsinki, FIN-00014, Finland
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
- FRIAS - Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, 79104, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
| | - Salim Al-Babili
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
- BESE Division, Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
50
|
Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K. Evolution of Hormone Signaling Networks in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:401-425. [PMID: 28645231 DOI: 10.1146/annurev-phyto-080516-035544] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.
Collapse
Affiliation(s)
- Matthias L Berens
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Hannah M Berry
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Akira Mine
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|