1
|
Zeng YY, Liu XD, Yao GQ, Bi MH, Fang X, Yu K, He J, Liu J, Brodribb TJ, Fang XW. Stomatal-based immunity differentiation across vascular plant lineages. THE NEW PHYTOLOGIST 2025; 246:1183-1197. [PMID: 40088040 DOI: 10.1111/nph.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
Some plants are known to actively close their stomata in the presence of foliar pathogens, inhibiting pathogen entry into leaves, leading to 'stoma-based immunity' as the first line of defense. However, the variation in stoma-based innate immunity across the diversity of vascular plants remains unclear. Here, we investigated the stomatal response and guard cell signaling pathway in various seed plant, fern, and lycophyte species when exposed to the bacterial pathogens or pathogen-associated molecular patterns (PAMPs). We observed active stomatal closure in 10 seed plants when exposed to bacteria or PAMPs, whereas none of the nine fern and one lycophyte species exhibited this response. The PAMP flg22-induced reactive oxygen species burst was observed in all species, but the downstream signaling events, including cytosolic Ca2+ accumulation, nitric oxide production, ion fluxes, vacuolar acidification, cytoplasmic pH elevation, vacuolar compartmentation, and disaggregation of the actin cytoskeleton in guard cells, were only observed in seed plants. No such changes were observed in the representatives of ferns and lycophytes. Our findings suggest a major difference in the regulation of stomatal immunity between seed plants and ferns and lycophytes under this study's conditions, unveiling physiological and biophysical mechanisms that may have underpinned the evolutionary adaptation of stomatal responses to pathogen attacks in seed plants.
Collapse
Affiliation(s)
- Yuan-Yuan Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Guang-Qian Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Min-Hui Bi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kailiang Yu
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Jinsheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Kang M, Choi Y, Kim H, Choi MS, Lee S, Hyun Y, Kim SG. Loss-of-function variants of CYP706A3 in two natural accessions of Arabidopsis thaliana increase floral sesquiterpene emission. BMC PLANT BIOLOGY 2025; 25:275. [PMID: 40025437 PMCID: PMC11874846 DOI: 10.1186/s12870-025-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The major floral scent compounds of Arabidopsis thaliana flowers are terpenes. Although A. thaliana is generally considered to be a self-pollinating plant, there are natural variation in terpene volatile emission from flowers. However, the genetic mechanisms underlying the natural variation in Arabidopsis floral scents remain limited. RESULTS Here, we screened 116 natural accessions of A. thaliana and observed a substantial variability in the levels of terpene emission across these accessions. A genome-wide association study (GWAS) uncovered a genomic region associated with the observed variability in myrcene, one of monoterpene compounds. We then performed high-throughput genetic mapping using two representative accessions: Col-0 and Fr-2, which emit low and large amounts of floral terpenes, respectively. Next-generation mapping and RNA sequencing analyses revealed that the natural premature stop codon of CYP706A3 of Fr-2, located at the 98th codon, confers high emission of sesquiterpene from flowers. We also found an independent mutation of CYP706A3 of Np-0 in different position, leading to increased sesquiterpene emission. Interestingly, the expression levels of defense-related genes in Fr-2 were lower than those in Col-0 flowers, which suggests that terpene volatiles are potentially linked to floral defense. CONCLUSIONS The natural variation in Arabidopsis floral scent emission was partially explained by one natural allele of CYP706A3. Since some natural accessions harboring a functional allele of CYP706A3 still emit the large amount of floral sesquiterpene, it is possible that rare variants located on other loci increase scent emission.
Collapse
Affiliation(s)
- Moonyoung Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyeonjin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min-Soo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seula Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Wang K, Züst T. Within-plant variation in chemical defence of Erysimum cheiranthoides does not explain Plutella xylostella feeding preference. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39937580 DOI: 10.1111/plb.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Plants invest a substantial fraction of their resources into defence against herbivores, with the highest levels of defence often allocated only to the most valuable tissues. Plants in the genus Erysimum (Brassicaceae) have evolved the ability to produce novel cardenolides, in addition to ancestrally conserved glucosinolates. While these plants co-express both defences, differences in tissue-specific expression might represent an effective cost-saving strategy. Larvae of the glucosinolate-resistant diamondback moth Plutella xylostella occasionally feed on Erysimum cheiranthoides but tend to avoid younger leaves. Here, we predict that caterpillar feeding preference is shaped by variations in cardenolide levels. Thus, we quantified within-plant variations in defence and nutritional traits of vegetative or early reproductive plants and performed feeding assays to evaluate the relative importance of cardenolides. In accordance with optimal defence theory (ODT), the youngest leaves contained the most nutrients and had highest levels of cardenolides, glucosinolates and trichomes, with more extreme within-plant differences found in reproductive plants. Caterpillars consistently avoided the well-defended youngest leaves, both on whole plants and detached leaf discs. Surprisingly, neither experimental addition (external application) nor removal (CRISPR-Cas9 knockout) of cardenolides significantly affected caterpillar feeding preference. Physical and chemical defences, including cardenolides, co-vary within E. cheiranthoides to maximize defence of youngest leaves. While P. xylostella clearly responds to some of these traits, the prominent cardenolide defence appears to lack potency against this specialist herbivore. Nonetheless, the careful regulation and re-mobilization of cardenolides to younger leaves during plant development suggests an important role in plant functioning.
Collapse
Affiliation(s)
- K Wang
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - T Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Pan VS, Gilbert KJ, Wetzel WC. Mean plant toxicity modulates the effects of plant defense variability. Ecology 2025; 106:e70012. [PMID: 39902654 PMCID: PMC11792111 DOI: 10.1002/ecy.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/06/2025]
Abstract
Plant trait variation is thought to suppress herbivore performance, but experiments typically manipulate only a single mean level of the trait. We manipulated the mean and variation of the concentration of a plant toxin in a model plant-herbivore system across three field and greenhouse experiments. Plants with leaves painted with a higher mean toxin concentration exhibited increased fitness and resistance to herbivores; however, at high mean concentrations, variation reduced the defensive effect, while at lower mean concentrations, variation enhanced it. This reversal aligns with models that include herbivore food selectivity, but our simulations revealed that the benefits of food selectivity for herbivores were minimal. Instead, nonlinear averaging and physiological tracking effects likely drove patterns in plant fitness and resistance to herbivores. We suggest that high defense variation in plants may be a widespread defensive phenotype, but for well-defended plants, variation may inadvertently promote herbivore niche expansion.
Collapse
Affiliation(s)
- Vincent S. Pan
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
| | - Kadeem J. Gilbert
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - William C. Wetzel
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
- Land Resources and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| |
Collapse
|
5
|
Albaladejo-Marico L, Carvajal M, Yepes-Molina L. Involvement of glucosinolates and phenolics in the promotion of broccoli seedling growth through the modulation of primary and secondary metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112205. [PMID: 39069007 DOI: 10.1016/j.plantsci.2024.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (Brassica oleracea L. var. italica) seedlings and the subsequent development of the plants in adult stages. The results showed an increase in growth in the extract-treated seedlings, which was associated with an alteration of primary and secondary metabolism. In particular, there was an increase in the levels of amino acids, phenolic compounds and hormones, while the levels of glucosinolates decreased. Lipid peroxidation diminished in treated plants, indicating improved membrane integrity. Treated plants subsequently grown in hydroponically showed increased water use efficiency, transpiration, and internal carbon, which contributed to the improved growth of these plants. Overall, our findings underscore the potential of the glucosinolates and phenols ratio as essential to improve crop growth and stress tolerance, as well as revealed the interest of studying the mechanisms involved in the possible uptake and integration of GSLs by broccoli seedlings after external application.
Collapse
Affiliation(s)
- Lorena Albaladejo-Marico
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. CEBAS-CSIC. Campus Universitario de Espinardo - 25, Murcia E-30100, Spain.
| |
Collapse
|
6
|
Garcia A, Talavera-Mateo L, Petrik I, Oklestkova J, Novak O, Santamaria ME. Spider mite infestation triggers coordinated hormonal trade-offs enabling plant survival with a fitness cost. PHYSIOLOGIA PLANTARUM 2024; 176:e14479. [PMID: 39187434 DOI: 10.1111/ppl.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024]
Abstract
Tetranychus urticae is an important pest that causes severe damage to a wide variety of plants and crops, leading to a substantial productivity loss. Previous research has been focused on plant defence response to T. urticae to improve plant resistance. However, plant growth, development and reproduction throughout the infestation process have not been previously studied. Through physiological, biochemical, transcriptomic and hormonomic evaluation, we uncover the molecular mechanisms directing the defence-growth trade-off established in Arabidopsis upon T. urticae infestation. Upon mite attack, plants suffer an adaptation process characterized by a temporal separation between the defence and growth responses. Jasmonic and salicylic acids regulate the main defence responses in combination with auxin and abscisic acid. However, while the reduction of both auxin signalling and gibberellin, cytokinin and brassinosteroid biosynthesis lead to initial growth arrest, increasing levels of growth hormones at later stages enables growth restart. These alterations lead to a plant developmental delay that impacts both seed production and longevity. We demonstrate that coordinated trade-offs determine plant adaptation and survival, revealing mite infestation has a long-lasting effect negatively impacting seed viability. This study provides additional tools to design pest management strategies that improve resistance without penalty in plant fitness.
Collapse
Affiliation(s)
- Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Lucia Talavera-Mateo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Ivan Petrik
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Bai X, Zhang R, Zeng Q, Yang W, Fang F, Sun Q, Yan C, Li F, Liu X, Li B. The RNA-Binding Protein BoRHON1 Positively Regulates the Accumulation of Aliphatic Glucosinolates in Cabbage. Int J Mol Sci 2024; 25:5314. [PMID: 38791354 PMCID: PMC11120748 DOI: 10.3390/ijms25105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Baohua Li
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.B.); (R.Z.); (Q.Z.); (W.Y.); (F.F.); (Q.S.); (C.Y.); (F.L.); (X.L.)
| |
Collapse
|
8
|
Chen L, Zeng Q, Zhang J, Li C, Bai X, Sun F, Kliebenstein DJ, Li B. Large-scale identification of novel transcriptional regulators of the aliphatic glucosinolate pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:300-315. [PMID: 37738614 DOI: 10.1093/jxb/erad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Aliphatic glucosinolates are a large group of plant secondary metabolites characteristic of Brassicaceae, including the model plant Arabidopsis. The diverse and complex degradation products of aliphatic glucosinolates contribute to plant responses to herbivory, pathogen attack, and environmental stresses. Most of the biosynthesis genes in the aliphatic glucosinolate pathway have been cloned in Arabidopsis, and the research focus has recently shifted to the regulatory mechanisms controlling aliphatic glucosinolate accumulation. Up till now, more than 40 transcriptional regulators have been identified as regulating the aliphatic glucosinolate pathway, but many more novel regulators likely remain to be discovered based on research evidence over the past decade. In the current study, we took a systemic approach to functionally test 155 candidate transcription factors in Arabidopsis identified by yeast one-hybrid assay, and successfully validated at least 30 novel regulators that could significantly influence the accumulation of aliphatic glucosinolates in our experimental set-up. We also showed that the regulators of the aliphatic glucosinolate pathway have balanced positive and negative effects, and glucosinolate metabolism and plant development can be coordinated. Our work is the largest scale effort so far to validate transcriptional regulators of a plant secondary metabolism pathway, and provides new insights into how the highly diverse plant secondary metabolism is regulated at the transcriptional level.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qi Zeng
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jiahao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xue Bai
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Baohua Li
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Gómez-Fernández A, Aranda I, Milla R. Early human selection of crops' wild progenitors explains the acquisitive physiology of modern cultivars. NATURE PLANTS 2024; 10:25-36. [PMID: 38172574 DOI: 10.1038/s41477-023-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Crops have resource-acquisitive leaf traits, which are usually attributed to the process of domestication. However, early choices of wild plants amenable for domestication may also have played a key role in the evolution of crops' physiological traits. Here we compiled data on 1,034 annual herbs to place the ecophysiological traits of 69 crops' wild progenitors in the context of global botanical variation, and we conducted a common-garden experiment to measure the effects of domestication on crop ecophysiology. Our study found that crops' wild progenitors already had high leaf nitrogen, photosynthesis, conductance and transpiration and soft leaves. After domestication, ecophysiological traits varied little and in idiosyncratic ways. Crops did not surpass the trait boundaries of wild species. Overall, the resource-acquisitive strategy of crops is largely due to the inheritance from their wild progenitors rather than to further breeding improvements. Our study concurs with recent literature highlighting constraints of crop breeding for faster ecophysiological traits.
Collapse
Affiliation(s)
- Alicia Gómez-Fernández
- Grupo de investigación en Ecología Evolutiva, Departamento de Biología y Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Madrid, Spain.
| | - Ismael Aranda
- Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rubén Milla
- Grupo de investigación en Ecología Evolutiva, Departamento de Biología y Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
10
|
Yang F, Jing X, Dong R, Zhou L, Xu X, Dong Y, Zhang L, Zheng L, Lai Y, Chen Y, Lin L, Ma X, You M, Chen W, He W. Glucose Oxidase of a Crucifer-Specialized Insect: A Potential Role in Suppressing Plant Defense via Modulating Antagonistic Plant Hormones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930271 DOI: 10.1021/acs.jafc.3c06401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Glucose oxidase (GOX) is a representative compound found in most insect saliva that can suppress plant-defensive responses. However, little is known about the origin and role of GOX in the crucifer-specialized pest Plutella xylostella. In this study, we showed obvious regurgitation from the larval gut of P. xylostella and identified abundant peptides highly similar to known GOX. Three PxGOX genes were verified with PxGOX2 preferentially expressed in the gut. The heterologously expressed PxGOX2 confirmed its function to be a GOX, and it was detected in plant wounds together with the gut regurgitant. Further experiments revealed that PxGOX2 functioned as an effector and may suppress defensive responses in plant through the production of H2O2, which modulates levels of antagonistic salicylic acid and jasmonic acid. However, excessive H2O2 in the host plant may be neutralized by peroxidase, thus forming defensive feedback. Our findings provided new insights into understanding the GOX-mediated insect-plant interactions.
Collapse
Affiliation(s)
- Feiying Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Xiaodong Jing
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Renfu Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Li Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Xuejiao Xu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Lingling Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Yingfang Lai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Yusong Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Lianyun Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Xiaoli Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| |
Collapse
|
11
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
12
|
Johnson LY, Major IT, Chen Y, Yang C, Vanegas-Cano LJ, Howe GA. Diversification of JAZ-MYC signaling function in immune metabolism. THE NEW PHYTOLOGIST 2023; 239:2277-2291. [PMID: 37403524 PMCID: PMC10528271 DOI: 10.1111/nph.19114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023]
Abstract
Jasmonate (JA) re-programs metabolism to confer resistance to diverse environmental threats. Jasmonate stimulates the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of MYC transcription factors. In Arabidopsis thaliana, MYC and JAZ are encoded by 4 and 13 genes, respectively. The extent to which expansion of the MYC and JAZ families has contributed to functional diversification of JA responses is not well understood. Here, we investigated the role of MYC and JAZ paralogs in controlling the production of defense compounds derived from aromatic amino acids (AAAs). Analysis of loss-of-function and dominant myc mutations identified MYC3 and MYC4 as the major regulators of JA-induced tryptophan metabolism. We developed a JAZ family-based, forward genetics approach to screen randomized jaz polymutants for allelic combinations that enhance tryptophan biosynthetic capacity. We found that mutants defective in all members (JAZ1/2/5/6) of JAZ group I over-accumulate AAA-derived defense compounds, constitutively express marker genes for the JA-ethylene branch of immunity and are more resistant to necrotrophic pathogens but not insect herbivores. In defining JAZ and MYC paralogs that regulate the production of amino-acid-derived defense compounds, our results provide insight into the specificity of JA signaling in immunity.
Collapse
Affiliation(s)
- Leah Y.D. Johnson
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Ian T. Major
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Yani Chen
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Changxian Yang
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Leidy J. Vanegas-Cano
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A. Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Sciences Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Púčiková V, Rohn S, Hanschen FS. Glucosinolate Accumulation and Hydrolysis in Leafy Brassica Vegetables Are Influenced by Leaf Age. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11466-11475. [PMID: 37462686 DOI: 10.1021/acs.jafc.3c01997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The health-beneficial effects of Brassica vegetables are mainly attributed to their high contents of glucosinolates and the products of their hydrolysis, especially isothiocyanates. Distribution of glucosinolates across plant organs can strongly vary. Here, we investigated the effect of leaf age on glucosinolate accumulation and hydrolysis in two leafy Brassica vegetables, pak choi and giant red mustard. We also evaluated the activity of the hydrolyzing enzyme myrosinase across the leaves. Finally, we assessed whether glucosinolates are transported from older leaves to younger leaves. Young leaves of both species contained more than 3-fold more glucosinolates than older ones. Accordingly, more isothiocyanates were released in the young leaves. Myrosinases fully hydrolyzed all of the amounts of glucosinolates regardless of the leaf age. Moreover, older leaves were observed to supply younger leaves with glucosinolates. Thus, this study suggests that consumers can improve the nutritional value of food by incorporating young leaves of leafy Brassicas in their diet.
Collapse
Affiliation(s)
- Vanda Púčiková
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| |
Collapse
|
14
|
Chen W, Amir MB, Liao Y, Yu H, He W, Lu Z. New Insights into the Plutella xylostella Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10952-10969. [PMID: 37462091 PMCID: PMC10375594 DOI: 10.1021/acs.jafc.3c03246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Brassica plants have glucosinolate (GLs)-myrosinase defense mechanisms to deter herbivores. However, Plutella xylostella specifically feeds on Brassica vegetables. The larvae possess three glucosinolate sulfatases (PxGSS1-3) that compete with plant myrosinase for shared GLs substrates and produce nontoxic desulfo-GLs (deGLs). Although PxGSSs are considered potential targets for pest control, the lack of a comprehensive review has hindered the development of PxGSSs-targeted pest control methods. Recent advances in integrative multi-omics analysis, substrate-enzyme kinetics, and molecular biological techniques have elucidated the evolutionary origin and functional diversity of these three PxGSSs. This review summarizes research progress on PxGSSs over the past 20 years, covering sequence properties, evolution, protein modification, enzyme activity, structural variation, substrate specificity, and interaction scenarios based on functional diversity. Finally, we discussed the potential applications of PxGSSs-targeted pest control technologies driven by artificial intelligence, including CRISPR/Cas9-mediated gene drive, transgenic plant-mediated RNAi, small-molecule inhibitors, and peptide inhibitors. These technologies have the potential to overcome current management challenges and promote the development and field application of PxGSSs-targeted pest control.
Collapse
Affiliation(s)
- Wei Chen
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Muhammad Bilal Amir
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Liao
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haizhong Yu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State
Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops,
International Joint Research Laboratory of Ecological Pest Control, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanjun Lu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
15
|
Soengas P, Madloo P, Lema M. Spectral Reflectance Indexes Reveal Differences in the Physiological Status of Brassica oleracea with Contrasting Glucosinolate Content under Biotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2698. [PMID: 37514312 PMCID: PMC10384497 DOI: 10.3390/plants12142698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Brassica species produce glucosinolates, a specific group of secondary metabolites present in the Brassicaceae family with antibacterial and antifungal properties. The employment of improved varieties for specific glucosinolates would reduce the production losses caused by pathogen attack. However, the consequences of the increment in these secondary metabolites in the plant are unknown. In this work, we utilized reflectance indexes to test how the physiological status of Brasica oleracea plants changes depending on their constitutive content of glucosinolates under nonstressful conditions and under the attack of the bacteria Xanthomonas campestris pv. campestris and the fungus Sclerotinia sclerotiorum. The modification in the content of glucosinolates had consequences in the resistance to both necrotrophic pathogens, and in several physiological aspects of the plants. By increasing the content in sinigrin and glucobrassicin, plants decrease photosynthesis efficiency (PR531, FvFm), biomass production (CHL-NDVI, SR), pigment content (SIPI, NPQI, RE), and senescence (YI) and increase their water content (WI900). These variables may have a negative impact in the productivity of crops in an agricultural environment. However, when plants are subjected to the attack of both necrotrophic pathogens, an increment of sinigrin and glucobrassicin confers an adaptative advantage to the plants, which compensates for the decay of physiological parameters.
Collapse
Affiliation(s)
- Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| | - Pari Madloo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| | - Margarita Lema
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| |
Collapse
|
16
|
Coves S, Soengas P, Velasco P, Fernández JC, Cartea ME. New vegetable varieties of Brassica rapa and Brassica napus with modified glucosinolate content obtained by mass selection approach. Front Nutr 2023; 10:1198121. [PMID: 37521419 PMCID: PMC10373736 DOI: 10.3389/fnut.2023.1198121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Glucosinolates (GSLs) constitute a characteristic group of secondary metabolites present in the Brassica genus. These compounds confer resistance to pests and diseases. Moreover, they show allelopathic and anticarcinogenic effects. All those effects are dependent on the chemical structure of the GSL. The modification of the content of specific GSLs would allow obtaining varieties with enhanced resistance and/or improved health benefits. Moreover, the attainment of varieties with the same genetic background but with divergent GSLs concentration will prompt the undertaking of studies on their biological effects. Objective and Methods The objective of this study was to evaluate the efficacy of two divergent mass selection programs to modify GSL content in the leaves of two Brassica species: nabicol (Brassica napus L.), selected by glucobrassicanapin (GBN), and nabiza (Brassica rapa L.), selected by gluconapin (GNA) through several selection cycles using cromatographic analysis. Results The response to selection fitted a linear regression model with no signs of variability depletion for GSL modification in either direction, but with higher efficiency in reducing the selected GSL than in the increasing. The selection was also effective in other parts of the plant, suggesting that there is a GSL translocation in the plant or a modification in their synthesis pathway that is not-organ specific. There was an indirect response of selection in other GSL; thus this information should be considered when designing breeding programs. Finally, populations obtained by selection have the same agronomic performance or even better than the original population. Conclusion Therefore, mass selection seems to be a good method to modify the content of specific GSL in Brassica crops.
Collapse
|
17
|
Lawas LMF, Kamileen MO, Buell CR, O'Connor SE, Leisner CP. Transcriptome-based identification and functional characterization of iridoid synthase involved in monotropein biosynthesis in blueberry. PLANT DIRECT 2023; 7:e512. [PMID: 37440931 PMCID: PMC10333835 DOI: 10.1002/pld3.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Blueberries (Vaccinium spp.) are well known for their nutritional quality, and recent work has shown that Vaccinium spp. also produce iridoids, which are specialized metabolites with potent health-promoting benefits. The iridoid glycoside monotropein, which has anti-inflammatory and antinociceptive activities, has been detected in several wild blueberry species but in only a few cultivated highbush blueberry cultivars. How monotropein is produced in blueberry and the genes involved in its biosynthesis remain to be elucidated. Using a monotropein-positive (M+) and monotropein-negative (M-) cultivar of blueberry, we employed transcriptomics and comparative genomics to identify candidate genes in the blueberry iridoid biosynthetic pathway. Orthology analysis was completed using de novo transcript assemblies for both the M+ and M- blueberry cultivars along with the known iridoid-producing plant species Catharanthus roseus to identify putative genes involved in key steps in the early iridoid biosynthetic pathway. From the identified orthologs, we functionally characterized iridoid synthase (ISY), a key enzyme involved in formation of the iridoid scaffold, from both the M+ and M- cultivars. Detection of nepetalactol suggests that ISY from both the M+ and M- cultivars produce functional enzymes that catalyze the formation of iridoids. Transcript accumulation of the putative ISY gene did not correlate with monotropein production, suggesting other genes in the monotropein biosynthetic pathway may be more directly responsible for differential accumulation of the metabolite in blueberry. Mutual rank analysis revealed that ISY is co-expressed with UDP-glucuronosyltransferase, which encodes an enzyme downstream of the ISY step. Results from this study contribute new knowledge in our understanding of iridoid biosynthesis in blueberry and could lead to development of new cultivars with increased human health benefits.
Collapse
Affiliation(s)
| | - Mohamed O. Kamileen
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - C. Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Crop and Soil SciencesInstitute of Plant Breeding, Genetics, & Genomics, University of GeorgiaAthensGeorgiaUSA
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - Courtney P. Leisner
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
18
|
Bellec L, Cortesero AM, Marnet N, Faure S, Hervé MR. Age-specific allocation of glucosinolates within plant reproductive tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111690. [PMID: 36965631 DOI: 10.1016/j.plantsci.2023.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The Optimal Defense Theory (ODT) predicts that the distribution of defenses within a plant should mirror the value and vulnerability of each tissue. Although the ODT has received much experimental support, very few studies have examined defense allocation among reproductive tissues and none assessed simultaneously how these defenses evolve with age. We quantified glucosinolates in perianths, anthers and pistils at different bud maturity stages (i.e., intermediate flower buds, old flower buds and flowers) of undamaged and mechanically damaged plants of an annual brassicaceous species. The youngest leaf was used as a reference for vegetative organs, since it is predicted to be one of the most defended. In line with ODT predictions, reproductive tissues were more defended than vegetative tissues constitutively, and within the former, pistils and anthers more defended than perianths. No change in the overall defense level was found between bud maturity stages, but a significant temporal shift was observed between pistils and anthers. Contrary to ODT predictions, mechanical damage did not induce systemic defenses in leaves but only in pistils. Our results show that defense allocation in plant reproductive tissues occurs at fine spatial and temporal scales, extending the application framework of the ODT. They also demonstrate interactions between space and time in fine-scale defense allocation.
Collapse
Affiliation(s)
- Laura Bellec
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France; Innolea, 6 Chemin de Panedautes, 31700 Mondonville, France.
| | | | | | | | - Maxime R Hervé
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| |
Collapse
|
19
|
Wang M, Cai C, Li Y, Tao H, Meng F, Sun B, Miao H, Wang Q. Brassinosteroids fine-tune secondary and primary sulfur metabolism through BZR1-mediated transcriptional regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1153-1169. [PMID: 36573424 DOI: 10.1111/jipb.13442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
For adaptation to ever-changing environments, plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates (GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promoting hormone brassinosteroid (BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine (Cys) and glutathione (GSH) both in Arabidopsis and Brassica crops, fine-tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1 (BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate-limiting enzyme adenosine 5'-phosphosulfate reductases in the primary sulfur metabolic pathway. In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions. These findings expand our understanding of BR promoting plant growth from a metabolism perspective.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Congxi Cai
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 221116, China
| | - Yubo Li
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Han Tao
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fanliang Meng
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huiying Miao
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Wang
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
21
|
Gong J, Wang Z, Guo Z, Yao L, Zhao C, Lin S, Ma S, Shen Y. DORN1 and GORK regulate stomatal closure in Arabidopsis mediated by volatile organic compound ethyl vinyl ketone. Int J Biol Macromol 2023; 231:123503. [PMID: 36736975 DOI: 10.1016/j.ijbiomac.2023.123503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Evk (ethyl vinyl ketone) is a signal substance for plant defense, but little is known about how evk mediates stomatal closure. Through stomatal biology experiments, we found that evk can mediate stomatal closure, and stomatal closure is weakened when DORN1 (DOES NOT RESPOND TO NUCLEOTIDES 1) and GORK (GATED OUTWARDLY-RECTIFYING K+ CHANNEL) are mutated. In addition, it was found by non-invasive micro-test technology (NMT) that the K+ efflux mediated by evk was significantly weakened when DORN and GORK were mutated. Yeast two-hybrid (Y2H), firefly luciferase complementation imaging (LCI), and in vitro pull-down assays demonstrated that DORN1 and GORK could interact in vitro and in vivo. It was found by molecular docking that evk could combine with MRP (Multidrug Resistance-associated Protein), thus affecting ATP transport, promoting eATP (extracellular ATP) concentration increase and realizing downstream signal transduction. Through inoculation of botrytis cinerea, it was found that evk improved the antibacterial activity of Arabidopsis thaliana. As revealed by reverse transcription quantitative PCR (RT-qPCR), the expression of defense related genes was enhanced by evk treatment. Evk is a potential green antibacterial drug.
Collapse
Affiliation(s)
- Junqing Gong
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China.
| | - Zhujuan Guo
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Lijuan Yao
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Chuanfang Zhao
- Beijing Jingtai Technology Co., Ltd., Beijing 100083, PR China.
| | - Sheng Lin
- Beijing Jingtai Technology Co., Ltd., Beijing 100083, PR China.
| | - Songling Ma
- Beijing Jingtai Technology Co., Ltd., Beijing 100083, PR China.
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
22
|
Chang B, Zhao L, Feng Z, Wei F, Zhang Y, Zhang Y, Huo P, Cheng Y, Zhou J, Feng H. Galactosyltransferase GhRFS6 interacting with GhOPR9 involved in defense against Verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111582. [PMID: 36632889 DOI: 10.1016/j.plantsci.2022.111582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The soil-borne fungus Verticillium dahliae causes Verticillium wilt (VW), one of the most devastating diseases of cotton. In a previous study showed that GhOPR9 played a positive role in resistance of cotton to VW through the regulation of the Jasmonic acid (JA) pathway. Furtherly, we also found that GhOPR9 interacted with a sucrose galactosyltransferase GhRFS6. Raffinose synthase (RFS) plays a key role in plant innate immunity, including the abiotic stress of drought, darkness. However, there were few reports on the effects of RFS on biotic stress. In this study, we verified the function of GhRFS6 to VW. The expression analysis showed that the GhRFS6 may be regulated by various stresses, and it was upregulated under Vd076 and Vd991 pressures. Inhibition of GhRFS6 expression, hydrogen peroxide (H2O2) content, lignin content, cell wall thickness and a series of defense responses were decreased, and the resistance of cotton to V. dahliae was decreased. In addition, this study showed that GhRFS6 has glycosyltransferase activity and can participate in the regulation of α-galactosidase activity and raffinose and inositol synthesis. And that galactose was accumulated in cotton roots after GhRFS6 silencing, which is beneficial for the colonization and growth of V. dahliae. Furthermore, overexpression of GhRFS6 in Arabidopsis thaliana enhanced plant resistance to V. dahliae. In GUS staining, the promoter expression position of GhRFS6 was also altered after V. dahliae infection. Meanwhile, GhRFS6 has also been shown to resist VW through the regulation of the JA pathway. These results suggest that GhRFS6 is a potential molecular target for improving cotton resistance to VW.
Collapse
Affiliation(s)
- Baiyang Chang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yong Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| |
Collapse
|
23
|
Maeda T, Sugano SS, Shirakawa M, Sagara M, Ito T, Kondo S, Nagano AJ. Single-Cell RNA Sequencing of Arabidopsis Leaf Tissues Identifies Multiple Specialized Cell Types: Idioblast Myrosin Cells and Potential Glucosinolate-Producing Cells. PLANT & CELL PHYSIOLOGY 2023; 64:234-247. [PMID: 36440710 DOI: 10.1093/pcp/pcac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
The glucosinolate-myrosinase defense system (GMDS), characteristic of Brassicales, is involved in plant defense. Previous single-cell transcriptomic analyses have reported the expression profiles of multiple GMDS-related cell types (i.e. myrosinase-rich myrosin idioblasts and multiple types of potential glucosinolate synthetic cells as well as a candidate S-cell for glucosinolate accumulation). However, differences in plant stages and cell-type annotation methods have hindered comparisons among studies. Here, we used the single-cell transcriptome profiles of extended Arabidopsis leaves and verified the distribution of previously used markers to refine the expression profiles of GMDS-associated cell types. Moreover, we performed beta-glucuronidase promoter assays to confirm the histological expression patterns of newly obtained markers for GMDS-associated candidates. As a result, we found a set of new specific reporters for myrosin cells and potential glucosinolate-producing cells.
Collapse
Affiliation(s)
- Taro Maeda
- Institute for Advanced Biosciences, Keio University, Kakuganji 246-2, Mizukami, Tsuruoka, Yamagata, 997-0052 Japan
| | - Shigeo S Sugano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Takayama 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Mayu Sagara
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Takayama 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Takayama 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Satoshi Kondo
- Agriculture and Biotechnology Business Division, Toyota Motor Corporation, Toyota 1, Toyota, Aichi, 471-8571 Japan
- Genesis Research Institute, Inc., Noritake-Shinmachi 4-1-35, Nishi-ku, Nagoya, Aichi, 451-0051 Japan
| | - Atsushi J Nagano
- Institute for Advanced Biosciences, Keio University, Kakuganji 246-2, Mizukami, Tsuruoka, Yamagata, 997-0052 Japan
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| |
Collapse
|
24
|
Aguirrebengoa M, Müller C, Hambäck PA, González-Megías A. Density-Dependent Effects of Simultaneous Root and Floral Herbivory on Plant Fitness and Defense. PLANTS (BASEL, SWITZERLAND) 2023; 12:283. [PMID: 36678999 PMCID: PMC9867048 DOI: 10.3390/plants12020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Plants are attacked by multiple herbivores, and depend on a precise regulation of responses to cope with a wide range of antagonists. Simultaneous herbivory can occur in different plant compartments, which may pose a serious threat to plant growth and reproduction. In particular, plants often face co-occurring root and floral herbivory, but few studies have focused on such interactions. Here, we investigated in the field the combined density-dependent effects of root-chewing cebrionid beetle larvae and flower-chewing pierid caterpillars on the fitness and defense of a semiarid Brassicaceae herb. We found that the fitness impact of both herbivore groups was independent and density-dependent. Increasing root herbivore density non-significantly reduced plant fitness, while the relationship between increasing floral herbivore density and the reduction they caused in both seed number and seedling emergence was non-linear. The plant defensive response was non-additive with regard to the different densities of root and floral herbivores; high floral herbivore density provoked compensatory investment in reproduction, and this tolerance response was combined with aboveground chemical defense induction when also root herbivore density was high. Plants may thus prioritize specific trait combinations in response to varying combined below- and aboveground herbivore densities to minimize negative impacts on fitness.
Collapse
Affiliation(s)
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter A. Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | |
Collapse
|
25
|
Soth S, Glare TR, Hampton JG, Card SD, Brookes JJ, Narciso JO. You are what you eat: fungal metabolites and host plant affect the susceptibility of diamondback moth to entomopathogenic fungi. PeerJ 2022; 10:e14491. [PMID: 36570000 PMCID: PMC9774005 DOI: 10.7717/peerj.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background Beauveria are entomopathogenic fungi of a broad range of arthropod pests. Many strains of Beauveria have been developed and marketed as biopesticides. Beauveria species are well-suited as the active ingredient within biopesticides because of their ease of mass production, ability to kill a wide range of pest species, consistency in different conditions, and safety with respect to human health. However, the efficacy of these biopesticides can be variable under field conditions. Two under-researched areas, which may limit the deployment of Beauveria-based biopesticides, are the type and amount of insecticidal compounds produced by these fungi and the influence of diet on the susceptibility of specific insect pests to these entomopathogens. Methods To understand and remedy this weakness, we investigated the effect of insect diet and Beauveria-derived toxins on the susceptibility of diamondback moth larvae to Beauveria infection. Two New Zealand-derived fungal isolates, B. pseudobassiana I12 Damo and B. bassiana CTL20, previously identified with high virulence towards diamondback moth larvae, were selected for this study. Larvae of diamondback moth were fed on four different plant diets, based on different types of Brassicaceae, namely broccoli, cabbage, cauliflower, and radish, before their susceptibility to the two isolates of Beauveria was assessed. A second experiment assessed secondary metabolites produced from three genetically diverse isolates of Beauveria for their virulence towards diamondback moth larvae. Results Diamondback moth larvae fed on broccoli were more susceptible to infection by B. pseudobassiana while larvae fed on radish were more susceptible to infection by B. bassiana. Furthermore, the supernatant from an isolate of B. pseudobassiana resulted in 55% and 65% mortality for half and full-strength culture filtrates, respectively, while the filtrates from two other Beauveria isolates, including a B. bassiana isolate, killed less than 50% of larvae. This study demonstrated different levels of susceptibility of the insects raised on different plant diets and the potential use of metabolites produced by Beauveria isolates in addition to their conidia.
Collapse
Affiliation(s)
- Sereyboth Soth
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
- Department of Science, Technology and Innovation Training, National Institute of Science, Technology and Innovation, Chak Angre Leu, Mean Chey, Phnom Penh, Cambodia
| | - Travis R. Glare
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| | - John G. Hampton
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| | - Stuart D. Card
- Grasslands Research Centre, AgResearch Limited, Palmerston North, Manawatū-Whanganui, New Zealand
| | - Jenny J. Brookes
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| | - Josefina O. Narciso
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| |
Collapse
|
26
|
Hornbacher J, Horst-Niessen I, Herrfurth C, Feussner I, Papenbrock J. First experimental evidence suggests use of glucobrassicin as source of auxin in drought-stressed Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1025969. [PMID: 36388588 PMCID: PMC9659865 DOI: 10.3389/fpls.2022.1025969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The synthesis of indole-3-acetonitrile (IAN) from the indolic glucosinolate (iGSL) glucobrassicin (GB) is a unique trait of members of the Brassicales. To assess the contribution of this pathway to indole-3-acetic acid (IAA) synthesis under stress conditions, drought stress (DS) experiments with Arabidopsis thaliana were performed in vitro. Analysis of GSLs in DS plants revealed higher contents of GB in shoots and roots compared to control plants. Deuterium incorporation experiments showed the highest turnover of GB compared to all other GSLs during drought conditions. Evidence suggests the involvement of the thioglucosidase BGLU18 in the degradation of GB. The nitrile specifier proteins NSP1 and NSP5 are known to direct the GSL hydrolysis towards formation of IAN. Nitrilases like NIT2 are able to subsequently synthesize IAA from IAN. Expression of BGLU18, NSP1, NSP5 and NIT2 and contents of GB, IAN and IAA were significantly elevated in DS plants compared to control plants suggesting the increased use of GB as IAA source. Significantly higher contents of reactive oxygen species in DS bglu18 and epithionitrile specifier protein (esp) mutants compared to Col-0 indicate higher stress levels in these mutants highlighting the need for both proteins in DS plants. Furthermore, GB accumulation in leaves was higher in both mutants during DS when compared to Col-0 indicating enhanced synthesis of GB due to a lack of breakdown products. This work provides the first evidence for the breakdown of iGSLs to IAN which seems to be used for synthesis of IAA in DS A. thaliana plants.
Collapse
Affiliation(s)
| | | | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
27
|
Glucosinolates and Biotic Stress Tolerance in Brassicaceae with Emphasis on Cabbage: A Review. Biochem Genet 2022; 61:451-470. [PMID: 36057909 DOI: 10.1007/s10528-022-10269-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Glucosinolates (GSLs) and GSL-associated genes are receiving increasing attention from molecular biologists due to their multifunctional properties. GSLs are secondary metabolites considered to be highly active in most Brassica species. Their importance has motivated the discovery and functional analysis of the GSLs and GSL hydrolysis products involved in disease development in brassicas and other plants. Comprehensive knowledge of the GSL content of Brassica species and the molecular details of GSL-related genes will help elucidate the molecular control of this plant defense system. This report provides an overview of the current status of knowledge on GSLs, GSL biosynthesis, as well as hydrolysis related genes, and GSL hydrolysis products that regulate fungal, bacterial, and insect resistance in cabbage and other brassicas.
Collapse
|
28
|
Chrétien LTS, Khalil A, Gershenzon J, Lucas-Barbosa D, Dicke M, Giron D. Plant metabolism and defence strategies in the flowering stage: Time-dependent responses of leaves and flowers under attack. PLANT, CELL & ENVIRONMENT 2022; 45:2841-2855. [PMID: 35611630 DOI: 10.1111/pce.14363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Plants developing into the flowering stage undergo major physiological changes. Because flowers are reproductive tissues and resource sinks, strategies to defend them may differ from those for leaves. Thus, this study investigates the defences of flowering plants by assessing processes that sustain resistance (constitutive and induced) and tolerance to attack. We exposed the annual plant Brassica nigra to three distinct floral attackers (caterpillar, aphid and bacterial pathogen) and measured whole-plant responses at 4, 8 and 12 days after the attack. We simultaneously analysed profiles of primary and secondary metabolites in leaves and inflorescences and measured dry biomass of roots, leaves and inflorescences as proxies of resource allocation and regrowth. Regardless of treatments, inflorescences contained 1.2 to 4 times higher concentrations of primary metabolites than leaves, and up to 7 times higher concentrations of glucosinolates, which highlights the plant's high investment of resources into inflorescences. No induction of glucosinolates was detected in inflorescences, but the attack transiently affected the total concentration of soluble sugars in both leaves and inflorescences. We conclude that B. nigra evolved high constitutive rather than inducible resistance to protect their flowers; plants additionally compensated for damage by attackers via the regrowth of reproductive parts. This strategy may be typical of annual plants.
Collapse
Affiliation(s)
- Lucille T S Chrétien
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| | - Alix Khalil
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology (MPI CE), Department of Biochemistry, Jena, Germany
| | - Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| |
Collapse
|
29
|
Oduor AMO. Invasive plant species that experience lower herbivory pressure may evolve lower diversities of chemical defense compounds in the exotic range. AMERICAN JOURNAL OF BOTANY 2022; 109:1382-1393. [PMID: 36000500 DOI: 10.1002/ajb2.16053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Invasive plant species often escape from specialist herbivores and are more likely to be attacked by generalist herbivores in the exotic range. Consequently, the shifting defense hypothesis predicts that invasive plants will produce higher concentrations of qualitative defense compounds to deter dominant generalist herbivores in the exotic range. Here, I additionally propose a reduced chemical diversity hypothesis (RCDH), which predicts that reduced herbivory pressure will select for invasive plant genotypes that produce lower diversities of chemical defense compounds in the exotic range. METHODS I tested whether (1) invasive Brassica nigra populations express a lower diversity and an overall higher concentration of glucosinolate compounds than native-range B. nigra; (2) Brassica nigra individuals that express high diversities and concentrations of glucosinolate compounds are more attractive to specialist and deterrent to generalist herbivores; and (3) tissues of invasive B. nigra are less palatable than tissues of native-range B. nigra to the generalist herbivores Theba pisana and Helix aspersa. RESULTS Invasive B. nigra populations produced a significantly lower diversity of glucosinolate compounds, a marginally higher concentration of total glucosinolates, and a significantly higher concentration of sinigrin (the dominant glucosinolate). Leaf tissues of invasive B. nigra were significantly less palatable to T. pisana and marginally less so to H. aspersa. Brassica nigra individuals that expressed high concentrations of total glucosinolate compounds were visited by a low diversity of generalist herbivore species in the field. CONCLUSIONS In line with the RCDH, the lower diversity of glucosinolate compounds produced by invasive B. nigra populations likely resulted from selection imposed by reduced herbivory pressure in the exotic range.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
30
|
Beilsmith K, Henry CS, Seaver SMD. Genome-scale modeling of the primary-specialized metabolism interface. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102244. [PMID: 35714443 DOI: 10.1016/j.pbi.2022.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Environmental challenges and development require plants to reallocate resources between primary and specialized metabolites to survive. Genome-scale metabolic models, which map carbon flux through metabolic pathways, are a valuable tool in the study of tradeoffs that arise at this interface. Due to annotation gaps, models that characterize all the enzymatic steps in individual specialized pathways and their linkages to each other and to central carbon metabolism are difficult to construct. Recent studies have successfully curated subsystems of specialized metabolism and characterized the interfaces where flux is diverted to the precursors of glucosinolates, terpenes, and anthocyanins. Although advances in metabolite profiling can help to constrain models at this interface, quantitative analysis remains challenging because of the different timescales on which specialized metabolites from constitutive and reactive pathways accumulate.
Collapse
Affiliation(s)
- Kathleen Beilsmith
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Christopher S Henry
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Samuel M D Seaver
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| |
Collapse
|
31
|
Wang H, Zheng Y, Xiao D, Li Y, Liu T, Hou X. BcWRKY33A Enhances Resistance to Botrytis cinerea via Activating BcMYB51-3 in Non-Heading Chinese Cabbage. Int J Mol Sci 2022; 23:ijms23158222. [PMID: 35897830 PMCID: PMC9331318 DOI: 10.3390/ijms23158222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/27/2023] Open
Abstract
The transcription factor WRKY33 is a vital regulator of the biological process of the necrotrophic fungus Botrytis cinerea (B. cinerea). However, its specific regulatory mechanism remains to be further investigated. In non-heading Chinese cabbage (NHCC, Brassica campestris (syn. Brassica rapa) ssp. Chinensis), our previous study showed that BcWRKY33A is induced not only by salt stress, but also by B. cinerea infection. Here, we noticed that BcWRKY33A is expressed in trichomes and confer plant defense resistance. Disease symptoms and qRT-PCR analyses revealed that BcWRKY33A-overexpressing and -silencing lines were less and more severely impaired, respectively, than wild type upon B. cinerea treatment. Meanwhile, the transcripts’ abundance of indolic glucosinolates’ (IGSs) biosynthetic genes is consistent with plants’ B. cinerea tolerance. Identification and expression pattern analysis of BcMYB51s showed that BcMYB51-3 has a similar trend to BcWRKY33A upon B. cinerea infection. Moreover, BcWRKY33A directly binds to the BcMYB51-3 promoter, which was jointly confirmed by Y1H, dual-LUC, and EMSA assays. The importance of MYB51, the homolog of BcMYB51-3, in the BcWRKY33A-mediated B. cinerea resistance was also verified using the TRV-based VIGS system. Overall, our data concludes that BcWRKY33A directly activates the expression of BcMYB51-3 and downstream IGSs’ biosynthetic genes, thereby improving the B. cinerea tolerance of NHCC plants.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
| | - Yushan Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
- Correspondence: (T.L.); (X.H.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.L.); (X.H.)
| |
Collapse
|
32
|
Sestari I, Campos ML. Into a dilemma of plants: the antagonism between chemical defenses and growth. PLANT MOLECULAR BIOLOGY 2022; 109:469-482. [PMID: 34843032 DOI: 10.1007/s11103-021-01213-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 05/21/2023]
Abstract
Chemical defenses are imperative for plant survival, but their production is often associated with growth restrictions. Here we review the most recent theories to explain this complex dilemma of plants. Plants are a nutritional source for a myriad of pests and pathogens that depend on green tissues to complete their life cycle. Rather than remaining passive victims, plants utilize an arsenal of chemical defenses to fend off biotic attack. While the deployment of such barriers is imperative for survival, the production of these chemical defenses is typically associated with negative impacts on plant growth. Here we discuss the most recent theories which explain this highly dynamic growth versus defense dilemma. Firstly, we discuss the hypothesis that the antagonism between the accumulation of chemical defenses and growth is rooted in the evolutionary history of plants and may be a consequence of terrestrialization. Then, we revise the different paradigms available to explain the growth versus chemical defense antagonism, including recent findings that update these into more comprehensive and plausible theories. Finally, we highlight state-of-the-art strategies that are now allowing the activation of growth and the concomitant production of chemical barriers in plants. Growth versus chemical defense antagonism imposes large ecological and economic costs, including increased crop susceptibility to pests and pathogens. In a world where these plant enemies are the main problem to increase food production, we believe that this review will summarize valuable information for future studies aiming to breed highly defensive plants without the typical accompanying penalties to growth.
Collapse
Affiliation(s)
- Ivan Sestari
- Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina, Curitibanos, SC, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
33
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
34
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
35
|
Lin PA, Chen Y, Ponce G, Acevedo FE, Lynch JP, Anderson CT, Ali JG, Felton GW. Stomata-mediated interactions between plants, herbivores, and the environment. TRENDS IN PLANT SCIENCE 2022; 27:287-300. [PMID: 34580024 DOI: 10.1016/j.tplants.2021.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Stomata play a central role in plant responses to abiotic and biotic stresses. Existing knowledge regarding the roles of stomata in plant stress is centered on abiotic stresses and plant-pathogen interactions, but how stomata influence plant-herbivore interactions remains largely unclear. Here, we summarize the functions of stomata in plant-insect interactions and highlight recent discoveries of how herbivores manipulate plant stomata. Because stomata are linked to interrelated physiological processes in plants, herbivory-induced changes in stomatal dynamics might have cellular, organismic, and/or even community-level impacts. We summarize our current understanding of how stomata mediate plant responses to herbivory and environmental stimuli, propose how herbivores may influence these responses, and identify key knowledge gaps in plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Yintong Chen
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Gabriela Ponce
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Flor E Acevedo
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, State College, PA, USA
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Jared G Ali
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
36
|
Barber A, Müller C. Drought and Subsequent Soil Flooding Affect the Growth and Metabolism of Savoy Cabbage. Int J Mol Sci 2021; 22:ijms222413307. [PMID: 34948111 PMCID: PMC8705109 DOI: 10.3390/ijms222413307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
An important factor of current climate change is water availability, with both droughts and flooding becoming more frequent. Effects of individual stresses on plant traits are well studied, although less is known about the impacts of sequences of different stresses. We used savoy cabbage to study the consequences of control conditions (well-watered) versus continuous drought versus drought followed by soil flooding and a potential recovery phase on shoot growth and leaf metabolism. Under continuous drought, plants produced less than half of the shoot biomass compared to controls, but had a >20% higher water use efficiency. In the soil flooding treatment, plants exhibited the poorest growth performance, particularly after the "recovery" phase. The carbon-to-nitrogen ratio was at least twice as high, whereas amino acid concentrations were lowest in leaves of controls compared to stressed plants. Some glucosinolates, characteristic metabolites of Brassicales, showed lower concentrations, especially in plants of the flooding treatment. Stress-specific investment into different amino acids, many of them acting as osmolytes, as well as glucosinolates, indicate that these metabolites play distinct roles in the responses of plants to different water availability conditions. To reduce losses in crop production, we need to understand plant responses to dynamic climate change scenarios.
Collapse
|
37
|
Shaw RK, Shen Y, Wang J, Sheng X, Zhao Z, Yu H, Gu H. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L. FRONTIERS IN PLANT SCIENCE 2021; 12:742553. [PMID: 34938304 PMCID: PMC8687090 DOI: 10.3389/fpls.2021.742553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
38
|
Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. Proc Natl Acad Sci U S A 2021; 118:2111977118. [PMID: 34795057 DOI: 10.1073/pnas.2111977118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.
Collapse
|
39
|
Zimmermann SE, Blau S, Frerigmann H, Krueger S. The phosphorylated pathway of serine biosynthesis is crucial for indolic glucosinolate biosynthesis and plant growth promotion conferred by the root endophyte Colletotrichum tofieldiae. PLANT MOLECULAR BIOLOGY 2021; 107:85-100. [PMID: 34424501 PMCID: PMC8443527 DOI: 10.1007/s11103-021-01181-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/15/2021] [Indexed: 05/21/2023]
Abstract
Phosphoglycerate Dehydrogenase 1 of the phosphorylated pathway of serine biosynthesis, active in heterotrophic plastids, is required for the synthesis of serine to enable plant growth at high rates of indolic glucosinolate biosynthesis. Plants have evolved effective strategies to defend against various types of pathogens. The synthesis of a multitude of specialized metabolites represents one effective approach to keep plant attackers in check. The synthesis of those defense compounds is cost intensive and requires extensive interaction with primary metabolism. However, how primary metabolism is adjusted to fulfill the requirements of specialized metabolism is still not completely resolved. Here, we studied the role of the phosphorylated pathway of serine biosynthesis (PPSB) for the synthesis of glucosinolates, the main class of defensive compounds in the model plant Arabidopsis thaliana. We show that major genes of the PPSB are co-expressed with genes required for the synthesis of tryptophan, the unique precursor for the formation of indolic glucosinolates (IG). Transcriptional and metabolic characterization of loss-of-function and dominant mutants of ALTERED TRYPTOPHAN1-like transcription factors revealed demand driven activation of PPSB genes by major regulators of IG biosynthesis. Trans-activation of PPSB promoters by ATR1/MYB34 transcription factor in cultured root cells confirmed this finding. The content of IGs were significantly reduced in plants compromised in the PPSB and these plants showed higher sensitivity against treatment with 5-methyl-tryptophan, a characteristic behavior of mutants impaired in IG biosynthesis. We further found that serine produced by the PPSB is required to enable plant growth under conditions of high demand for IG. In addition, PPSB-deficient plants lack the growth promoting effect resulting from interaction with the beneficial root-colonizing fungus Colletotrichum tofieldiae.
Collapse
Affiliation(s)
- Sandra E Zimmermann
- Institute for Plant Sciences, Biocenter University of Cologne, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - Samira Blau
- Institute for Plant Sciences, Biocenter University of Cologne, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - Henning Frerigmann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Stephan Krueger
- Institute for Plant Sciences, Biocenter University of Cologne, Zülpicher Straße 47b, 50674, Cologne, Germany.
| |
Collapse
|
40
|
Zhang W, Luo X, Zhang AY, Ma CY, Sun K, Zhang TT, Dai CC. Jasmonate signaling restricts root soluble sugar accumulation and drives root-fungus symbiosis loss at flowering by antagonizing gibberellin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110940. [PMID: 34134852 DOI: 10.1016/j.plantsci.2021.110940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate restricts accumulation of constitutive and fungus-induced root soluble sugars at flowering stage, and thus reduces root beneficial fungal colonization, but little is known about how these are achieved. To determine whether jasmonate-mediated depletion of soluble sugars is the result of direct phytohormonal cross-talk or indirect induced defensive secondary metabolism, we first profiled soluble sugar and tryptophan (Trp)-derived defensive secondary metabolites in the roots of wild-type and jasmonate signaling-impaired Arabidopsis thaliana at flowering upon a beneficial fungus Phomopsis liquidambaris inoculation. Next, jasmonate and gibberellin signaling were manipulated to determine the relationship between jasmonate and gibberellin, and to quantify the effects of these phytohormones on fungal colonization degree, soluble sugar accumulation, Trp-derived secondary metabolites production, and sugar source-sink transport and metabolism. Gibberellin complementation increased Ph. liquidambaris colonization and rescued jasmonate-dependent root soluble sugar depletion and phloem sugar transport and root invertase activity without influencing jasmonate-induced Trp-derived secondary metabolites production at flowering. Furthermore, jasmonate signaling antagonized gibberellin biosynthesis in Ph. liquidambaris-inoculated roots. Our results suggest a phytohormonal antagonism model that jasmonate signaling restricts root soluble sugar accumulation through antagonizing gibberellin biosynthesis rather than through promoting Trp-derived secondary metabolites production and thus drives beneficial fungal colonization decline at flowering.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ai-Yue Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting-Ting Zhang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
41
|
Frerigmann H, Hoecker U, Gigolashvili T. New Insights on the Regulation of Glucosinolate Biosynthesis via COP1 and DELLA Proteins in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:680255. [PMID: 34276733 PMCID: PMC8281118 DOI: 10.3389/fpls.2021.680255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The biosynthesis of defensive secondary metabolites, such as glucosinolates (GSLs), is a costly process, which requires nutrients, ATP, and reduction equivalents, and, therefore, needs well-orchestrated machinery while coordinating defense and growth. We discovered that the key repressor of light signaling, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYTOCHROME A-105 (COP1/SPA) complex, is a crucial component of GSL biosynthesis regulation. Various mutants in this COP1/SPA complex exhibited a strongly reduced level of GSL and a low expression of jasmonate (JA)-dependent genes. Furthermore, cop1, which is known to accumulate DELLA proteins in the dark, shows reduced gibberellin (GA) and JA signaling, thereby phenocopying other DELLA-accumulating mutants. This phenotype can be complemented by a dominant gain-of-function allele of MYC3 and by crossing with a mutant having low DELLA protein levels. Hence, SPA1 interacts with DELLA proteins in a yeast two-hybrid screen, whereas high levels of DELLA inhibit MYC function and suppress JA signaling. DELLA accumulation leads to reduced synthesis of GSL and inhibited growth. Thus, the COP1/SPA-mediated degradation of DELLA not only affects growth but also regulates the biosynthesis of GSLs.
Collapse
Affiliation(s)
- Henning Frerigmann
- Department of Plant-Microbe Interactions and Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ute Hoecker
- BioCenter, Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- BioCenter, Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Ngo SNT, Williams DB. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives. Anticancer Agents Med Chem 2021; 21:1413-1430. [PMID: 32972351 DOI: 10.2174/1871520620666200924104550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced from the hydrolysis of glucosinolates and this reaction is catalysed by the plant-derived enzyme myrosinase. The main Isothiocyanates (ITCs) from cruciferous vegetables are sulforaphane, benzyl ITC, and phenethyl ITC, which had been intensively investigated over the last decade for their anti-breast cancer effects. OBJECTIVE The aim of this article is to systematically review the evidence from all types of studies, which examined the protective effect of cruciferous vegetables and/or their isothiocyanate constituents on breast cancer. METHODS A systematic review was conducted in Pubmed, EMBASE, and the Cochrane Library from inception to 27 April 2020. Peer-reviewed studies of all types (in vitro studies, animal studies, and human studies) were selected. RESULTS The systematic literature search identified 16 human studies, 4 animal studies, and 65 in vitro studies. The effect of cruciferous vegetables and/or their ITCs intake on breast cancer survival was found to be controversial and varied greatly across human studies. Most of these trials were observational studies conducted in specific regions, mainly in the US and China. Substantial evidence from in vitro and animal studies was obtained, which strongly supported the protective effect of sulforaphane and other ITCs against breast cancer. Evidence from in vitro studies showed that sulforaphane and other ITCs reduced cancer cell viability and proliferation via multiple mechanisms and pathways. Isothiocyanates inhibited cell cycle, angiogenesis and epithelial mesenchymal transition, as well as induced apoptosis and altered the expression of phase II carcinogen detoxifying enzymes. These are the essential pathways that promote the growth and metastasis of breast cancer. Noticeably, benzyl ITC showed a significant inhibitory effect on breast cancer stem cells, a new dimension of chemo-resistance in breast cancer treatment. Sulforaphane and other ITCs displayed anti-breast cancer effects at variable range of concentrations and benzyl isothiocyanate appeared to have a relatively lower inhibitory concentration IC50. The mechanisms underlying the cancer protective effect of sulforaphane and other ITCs have also been highlighted in this article. CONCLUSION Current preclinical evidence strongly supports the role of sulforaphane and other ITCs as potential therapeutic agents for breast cancer, either as adjunct therapy or combined therapy with current anti-breast cancer drugs, with sulforaphane displaying the greatest potential.
Collapse
Affiliation(s)
- Suong N T Ngo
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5071, Australia
| | - Desmond B Williams
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
43
|
Liu Z, Wang H, Xie J, Lv J, Zhang G, Hu L, Luo S, Li L, Yu J. The Roles of Cruciferae Glucosinolates in Disease and Pest Resistance. PLANTS 2021; 10:plants10061097. [PMID: 34070720 PMCID: PMC8229868 DOI: 10.3390/plants10061097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
With the expansion of the area under Cruciferae vegetable cultivation, and an increase in the incidence of natural threats such as pests and diseases globally, Cruciferae vegetable losses caused by pathogens, insects, and pests are on the rise. As one of the key metabolites produced by Cruciferae vegetables, glucosinolate (GLS) is not only an indicator of their quality but also controls infestation by numerous fungi, bacteria, aphids, and worms. Today, the safe and pollution-free production of vegetables is advocated globally, and environmentally friendly pest and disease control strategies, such as biological control, to minimize the adverse impacts of pathogen and insect pest stress on Cruciferae vegetables, have attracted the attention of researchers. This review explores the mechanisms via which GLS acts as a defensive substance, participates in responses to biotic stress, and enhances plant tolerance to the various stress factors. According to the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Huiping Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jian Lv
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Guobin Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Linli Hu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Lushan Li
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Correspondence: ; Tel.: +86-931-763-2188
| |
Collapse
|
44
|
Hao Y, Mabry ME, Edger PP, Freeling M, Zheng C, Jin L, VanBuren R, Colle M, An H, Abrahams RS, Washburn JD, Qi X, Barry K, Daum C, Shu S, Schmutz J, Sankoff D, Barker MS, Lyons E, Pires JC, Conant GC. The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible. Genome Res 2021; 31:799-810. [PMID: 33863805 PMCID: PMC8092008 DOI: 10.1101/gr.270033.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Makenzie E Mabry
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Genetics and Genome Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marivi Colle
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - R Shawn Abrahams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Jacob D Washburn
- Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri 65211, USA
| | - Xinshuai Qi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
- Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|
45
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
Rubel MH, Abuyusuf M, Nath UK, Robin AHK, Jung HJ, Kim HT, Park JI, Nou IS. Glucosinolate Profile and Glucosinolate Biosynthesis and Breakdown Gene Expression Manifested by Black Rot Disease Infection in Cabbage. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1121. [PMID: 32872597 PMCID: PMC7569847 DOI: 10.3390/plants9091121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
Cabbage (Brassica oleracea var. capitata) is an economically important crop in the family Brassicaceae. Black rot disease is a top ranked cabbage disease, which is caused by Xanthomonas campestris pv. campestris (Xcc) and may reduce 50% crop loss. Therefore, we need a clear understanding of black rot disease resistance for sustainable disease management. The secondary metabolites, like Glucosinolate (GSL) presents in Brassica species, which plays a potential role in the defense mechanism against pathogens. However, there is little known about GSL-regulated resistance mechanisms and GSL biosynthesis and the breakdown related gene expression after black rot disease infection in cabbage. In this study, relative expression of 43 biosynthetic and breakdown related GSLs were estimated in the black rot resistant and susceptible cabbage lines after Xcc inoculation. Ten different types of GSL from both aliphatic and indolic groups were identified in the contrasting cabbage lines by HPLC analysis, which included six aliphatic and four indolic compounds. In the resistant line, nine genes (MYB122-Bol026204, MYB34-Bol017062, AOP2-Bo9g006240, ST5c-Bol030757, CYP81F1-Bol017376, CYP81F2-Bol012237, CYP81F4-Bol032712, CYP81F4-Bol032714 and PEN2-Bol030092) showed consistent expression patterns. Pearson's correlation coefficient showed positive and significant association between aliphatic GSL compounds and expression values of ST5c-Bol030757 and AOP2-Bo9g006240 genes as well as between indolic GSL compounds and the expression of MYB34-Bol017062, MYB122-Bol026204, CYP81F2-Bol012237, CYP81F4-Bol032712 and CYP81F4-Bol032714 genes. This study helps in understanding the role of GSL biosynthesis and breakdown related genes for resistance against black rot pathogen in cabbage, which could be further confirmed through functional characterization either by overexpression or knock-out mutation.
Collapse
Affiliation(s)
- Mehede Hassan Rubel
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Korea; (M.H.R.); (M.A.); (H.J.J.); (H.T.K.)
| | - Md. Abuyusuf
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Korea; (M.H.R.); (M.A.); (H.J.J.); (H.T.K.)
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (U.K.N.); (A.H.K.R.)
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (U.K.N.); (A.H.K.R.)
| | - Hee Jeong Jung
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Korea; (M.H.R.); (M.A.); (H.J.J.); (H.T.K.)
| | - Hoy Taek Kim
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Korea; (M.H.R.); (M.A.); (H.J.J.); (H.T.K.)
| | - Jong In Park
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Korea; (M.H.R.); (M.A.); (H.J.J.); (H.T.K.)
| | - Ill Sup Nou
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam 57922, Korea; (M.H.R.); (M.A.); (H.J.J.); (H.T.K.)
| |
Collapse
|
47
|
Tan C, Peiffer ML, Ali JG, Luthe DS, Felton GW. Top‐down effects from parasitoids may mediate plant defence and plant fitness. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ching‐Wen Tan
- Department of Entomology Penn State University University Park PA USA
| | | | - Jared G. Ali
- Department of Entomology Penn State University University Park PA USA
| | - Dawn S. Luthe
- Department of Plant Science Penn State University University Park PA USA
| | - Gary W. Felton
- Department of Entomology Penn State University University Park PA USA
| |
Collapse
|
48
|
Decker LE, Hunter MD. Interspecific variation and elevated CO 2 influence the relationship between plant chemical resistance and regrowth tolerance. Ecol Evol 2020; 10:5416-5430. [PMID: 32607163 PMCID: PMC7319169 DOI: 10.1002/ece3.6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/04/2022] Open
Abstract
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade-offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade-offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade-off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade-offs.
Collapse
Affiliation(s)
| | - Mark D. Hunter
- Department of Ecology and Evolutionary BiologyUniversity of MichiganBiological Sciences BuildingAnn ArborMIUSA
| |
Collapse
|
49
|
Li B, Tang M, Caseys C, Nelson A, Zhou M, Zhou X, Brady SM, Kliebenstein DJ. Epistatic Transcription Factor Networks Differentially Modulate Arabidopsis Growth and Defense. Genetics 2020; 214:529-541. [PMID: 31852726 PMCID: PMC7017016 DOI: 10.1534/genetics.119.302996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Plants integrate internal and external signals to finely coordinate growth and defense for maximal fitness within a complex environment. A common model suggests that growth and defense show a trade-offs relationship driven by energy costs. However, recent studies suggest that the coordination of growth and defense likely involves more conditional and intricate connections than implied by the trade-off model. To explore how a transcription factor (TF) network may coordinate growth and defense, we used a high-throughput phenotyping approach to measure growth and flowering in a set of single and pairwise mutants previously linked to the aliphatic glucosinolate (GLS) defense pathway. Supporting a link between growth and defense, 17 of the 20 tested defense-associated TFs significantly influenced plant growth and/or flowering time. The TFs' effects were conditional upon the environment and age of the plant, and more critically varied across the growth and defense phenotypes for a given genotype. In support of the coordination model of growth and defense, the TF mutant's effects on short-chain aliphatic GLS and growth did not display a simple correlation. We propose that large TF networks integrate internal and external signals and separately modulate growth and the accumulation of the defensive aliphatic GLS.
Collapse
Affiliation(s)
- Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, California 95616
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Céline Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Ayla Nelson
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Marium Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Xue Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
50
|
Barco B, Clay NK. Hierarchical and Dynamic Regulation of Defense-Responsive Specialized Metabolism by WRKY and MYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2020; 10:1775. [PMID: 32082343 PMCID: PMC7005594 DOI: 10.3389/fpls.2019.01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.
Collapse
Affiliation(s)
| | - Nicole K. Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|