1
|
Hamada K, Terauchi A, Nakamura K, Li Y, Zhang J, Li J, Jiang M, Chu Y, Du Z, Miyatake H, Mikoshiba K. Long-range gating regulation by leaflet and autoinhibitory domains in mouse type 1 IP 3 receptors. Biochem Biophys Res Commun 2025; 766:151875. [PMID: 40306162 DOI: 10.1016/j.bbrc.2025.151875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) is a calcium channel that mediates Ca2+ release from the endoplasmic reticulum in response to IP3. Structural studies have revealed that the IP3-binding sites are located approximately 90 Å from the Ca2+-conducting pore within the transmembrane domain, suggesting a long-range force transmission mechanism between ligand binding and channel gating. However, the molecular basis of this mechanism remains poorly understood. We hypothesized that a unique leaflet domain mediates this force transmission from the cytosolic region to the channel pore. Supporting this, site-directed mutagenesis of three conserved residues- isoleucine, glutamate, and isoleucine (IEI)-within the leaflet domain to glycine abolished channel function. Moreover, deletion of a 31-amino acid segment at the C-terminus significantly enhanced IP3-induced Ca2+ release, indicating that the C-terminal domain acts as an autoinhibitory domain (AID) rather than participating directly in gating. These findings suggest that the conserved IEI motif in the leaflet domain is critical for conveying IP3-induced conformational changes to channel opening, whereas the C-terminal AID modulates gating allosterically from a distance. Together, these opposing regulatory elements may act in concert to fine-tune channel gating and maintain cellular homeostasis in health and disease.
Collapse
Affiliation(s)
- Kozo Hamada
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China; Suzhou Municipal Key Lab of Cancer Biology and Chronic Disease, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China; Suzhou Municipal Key Lab of Metabolic Syndrome and Drug Research, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| | - Akiko Terauchi
- Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Kyoko Nakamura
- Department of Physiology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yiying Li
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Jinyi Zhang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Jialong Li
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Mingjun Jiang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Zhenyun Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| |
Collapse
|
2
|
Gu W, Ma X, Yang C, Jiang D, Fan H, Wang L, Song L. Insight into Ca 2+- inositol 1,4,5-trisphosphate receptor 2 (IP 3R2)-mediated unfolded protein response and apoptosis in scallop Patinopecten yessoensis under high temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111092. [PMID: 40147540 DOI: 10.1016/j.cbpb.2025.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Inositol 1,4,5-trisphosphate receptor 2 (IP3R2) is an essential Ca2+ release channel protein located in the endoplasmic reticulum (ER), and plays a significant role in responding to various environmental stimuli. In the present study, the function of IP3R2 from Yesso scallop Patinopecten yessoensis (PyIP3R2) in regulating the Ca2+-mediated unfolded protein response (UPR) and apoptosis after high temperature (25 °C) treatment was investigated. Three MIR domains, one RYDR_ITPR domain, one RIH_assoc domain and one Ion_trans domain were identified in PyIP3R2. Both D-myo-inositol-1,4,5-triphosphate (IP3, an activator of IP3R) and high temperature significantly upregulated the mRNA expression level of PyIP3R2 and genes related to apoptosis and the UPR, and also increased intracellular Ca2+ content (p < 0.05). Furthermore, the IP3R antagonist 2-aminoethyl diphenylborinate (2-APB) had the opposite effect, decreasing intracellular Ca2+ content and the mRNA expression level of PyIP3R2, glucose regulated protein 78 (PyGRP78) and PyCaspase-3 (p < 0.05). However, the apoptosis rate and Caspase-3 activity remained comparable to those in the injection control group. These findings indicate that PyIP3R2 mediates UPR and apoptosis in scallop haemocytes by regulating Ca2+content and distribution, and providing insight into the cellular responses of scallops to high temperature.
Collapse
Affiliation(s)
- Wenfei Gu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxue Ma
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Dongli Jiang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Hongmei Fan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
3
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Chen B, Lyssiotis CA, Shah YM. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis. Mol Cell 2025; 85:1487-1508. [PMID: 40250411 DOI: 10.1016/j.molcel.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/20/2025]
Abstract
Mitochondria serve as central hubs in cellular metabolism by sensing, integrating, and responding to metabolic demands. This integrative function is achieved through inter-organellar communication, involving the exchange of metabolites, lipids, and signaling molecules. The functional diversity of metabolite exchange and pathway interactions is enabled by compartmentalization within organelle membranes. Membrane contact sites (MCSs) are critical for facilitating mitochondria-organelle communication, creating specialized microdomains that enhance the efficiency of metabolite and lipid exchange. MCS dynamics, regulated by tethering proteins, adapt to changing cellular conditions. Dysregulation of mitochondrial-organelle interactions at MCSs is increasingly recognized as a contributing factor in the pathogenesis of multiple diseases. Emerging technologies, such as advanced microscopy, biosensors, chemical-biology tools, and functional genomics, are revolutionizing our understanding of inter-organellar communication. These approaches provide novel insights into the role of these interactions in both normal cellular physiology and disease states. This review will highlight the roles of metabolite transporters, lipid-transfer proteins, and mitochondria-organelle interfaces in the coordination of metabolism and transport.
Collapse
Affiliation(s)
- Brandon Chen
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Yatrik M Shah
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Qu Y, Liu ZX, Zheng XX, Wu SN, An JQ, Zou MH, Zhang ZR. MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension. J Mol Cell Cardiol 2025; 200:45-60. [PMID: 39848488 DOI: 10.1016/j.yjmcc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension. METHODS Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition. RESULTS Sunitinib increased mitochondrial ROS accumulation, decreased oxygen consumption rate, ATP production, and mitochondrial calcium ([Ca2+]M) levels, and impaired endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) signaling in HUVECs. In addition, sunitinib also decreased mitochondrial membrane potential, elongated mitochondria, and reduced MAMs. Remarkably, these effects were reversed by an adeno-virus linker (Ad-linker) that reinforces MAMs. Engineered augmentation of MAMs using AAV-FLT1-linker significantly mitigated sunitinib-induced hypertension, by restoring endothelium-dependent relaxation in mice, highlighting the crucial role of MAMs in this process. Further analyses revealed that sunitinib enhanced Akt-mediated expression of mitofusin 2 (MFN2), causing mitochondrial elongation, and induced dephosphorylation of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) at residues Y1737/Y1738, reducing [Ca2+]M. Our study suggests that increased MFN2 expression and IP3R1 dephosphorylation are critical in sunitinib-induced MAMs reduction and [Ca2+]M homeostasis. CONCLUSION Sunitinib induces mitochondrial dysfunction, Akt/MFN2-mediated decrease in MAMs and mitochondrial elongation, and IP3R1 dephosphorylation in endothelial cells, leading to endothelial dysfunction and hypertension. Our results provide the potential therapeutic targets for combating TKI-induced hypertension.
Collapse
Affiliation(s)
- Yao Qu
- Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Zhi-Xue Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Xiao-Xu Zheng
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Sheng-Nan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Jun-Qing An
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Ming-Hui Zou
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA.
| | - Zhi-Ren Zhang
- Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China.
| |
Collapse
|
6
|
Qiao K, Zhao M, Huang Y, Liang L, Zhang Y. Bitter Perception and Effects of Foods Rich in Bitter Compounds on Human Health: A Comprehensive Review. Foods 2024; 13:3747. [PMID: 39682819 DOI: 10.3390/foods13233747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter food, because of its unique taste, is not popular with the public, and is even considered to be difficult to swallow. By binding to specific sites of bitter receptors (26 hTAS2Rs), bitter compounds activate the downstream signaling pathways mediated by G protein, which convert chemical signals into electrical signals that are ultimately transmitted to the brain to produce the bitter perception. The intensity of bitterness is mainly determined by the hydrophobic recognition region of bitter receptors. The bitter compounds in foods mainly include alkaloids, polyphenols, terpenoids, amino acids, etc. Foods rich in bitter taste are mostly natural such as beans, nuts, and coffee, etc. Studies have proven that bitter foods have biological activities such as preventing hyperlipidemia, hypertension, hyperglycemia, anti-inflammatory, antitumor, antibacterial, antioxidant, and exhibit neuroprotective effects and other biological activities. The purpose of this review is to explore the bitter perception and the biological activity of bitter compounds, clarify the mechanism of their action on human health, and provide theoretical guidance for the development and application of functional foods.
Collapse
Affiliation(s)
- Kaina Qiao
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxia Zhao
- Food Laboratory of Zhongyuan · Luohe Food Engineering Vocational University, Luohe 462300, China
| | - Yan Huang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci 2024; 31:101. [PMID: 39497143 PMCID: PMC11533606 DOI: 10.1186/s12929-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
8
|
Zhuang Z, Meng Y, Xue Y, Wang Y, Cheng X, Jing J. Adaptation of STIM1 structure-function relationships for optogenetic control of calcium signaling. J Biol Chem 2024; 300:107636. [PMID: 39122007 PMCID: PMC11402311 DOI: 10.1016/j.jbc.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.
Collapse
Affiliation(s)
- Zirui Zhuang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yu Xue
- School of Life Science, Tianjin University, Tianjin, China
| | - Yan Wang
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Li R, Liu X, Ke C, Zeng F, Zeng Q, Xu X, Fan X, Zhang Y, Hou Q. ITPR1 variant-induced autosomal dominant hereditary spastic paraplegia in a Chinese family. Front Neurol 2024; 15:1365787. [PMID: 39011359 PMCID: PMC11247953 DOI: 10.3389/fneur.2024.1365787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease prominently characterized by slowly progressive lower limb weakness and spasticity. The significant genotypic and phenotypic heterogeneity of this disease makes its accurate diagnosis challenging. In this study, we identified the NM_001168272: c.2714A > G (chr3.hg19: g.4716912A > G, N905S) variant in the ITPR1 gene in a three-generation Chinese family with multiple individuals affected by HSP, which we believed to be associated with HSP pathogenesis. To confirm, we performed whole exome sequencing, copy number variant assays, dynamic mutation analysis of the entire family, and protein structure prediction. The variant identified in this study was in the coupling domain, and this is the first corroborated report assigning ITPR1 variants to HSP. These findings expand the clinical and genetic spectrum of HSP and provide important data for its genetic analysis and diagnosis.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xuan Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenming Ke
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanli Zeng
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Zeng
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xiaowei Xu
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoqin Fan
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Ying Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Greene D, Shiferaw Y. A structure-based computational model of IP 3R1 incorporating Ca and IP3 regulation. Biophys J 2024; 123:1274-1288. [PMID: 38627970 PMCID: PMC11140470 DOI: 10.1016/j.bpj.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
The inositol 1,4,5-triphosphate receptor (IP3R) mediates Ca release in many cell types and is pivotal to a wide range of cellular processes. High-resolution cryoelectron microscopy studies have provided new structural details of IP3R type 1 (IP3R1), showing that channel function is determined by the movement of various domains within and between each of its four subunits. Channel properties are regulated by ligands, such as Ca and IP3, which bind at specific sites and control the interactions between these domains. However, it is not known how the various ligand-binding sites on IP3R1 interact to control the opening of the channel. In this study, we present a coarse-grained model of IP3R1 that accounts for the channel architecture and the location of specific Ca- and IP3-binding sites. This computational model accounts for the domain-domain interactions within and between the four subunits that form IP3R1, and it also describes how ligand binding regulates these interactions. Using a kinetic model, we explore how two Ca-binding sites on the cytosolic side of the channel interact with the IP3-binding site to regulate the channel open probability. Our primary finding is that the bell-shaped open probability of IP3R1 provides constraints on the relative strength of these regulatory binding sites. In particular, we argue that a specific Ca-binding site, whose function has not yet been established, is very likely a channel antagonist. Additionally, we apply our model to show that domain-domain interactions between neighboring subunits exert control over channel cooperativity and dictate the nonlinear response of the channel to Ca concentration. This suggests that specific domain-domain interactions play a pivotal role in maintaining the channel's stability, and a disruption of these interactions may underlie disease states associated with Ca dysregulation.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics & Astronomy, California State University, Northridge, California
| | - Yohannes Shiferaw
- Department of Physics & Astronomy, California State University, Northridge, California.
| |
Collapse
|
11
|
Kochkina EN, Kopylova EE, Rogachevskaja OA, Kovalenko NP, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Agonist-Induced Ca 2+ Signaling in HEK-293-Derived Cells Expressing a Single IP 3 Receptor Isoform. Cells 2024; 13:562. [PMID: 38607001 PMCID: PMC11011116 DOI: 10.3390/cells13070562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
In mammals, three genes encode IP3 receptors (IP3Rs), which are involved in agonist-induced Ca2+ signaling in cells of apparently all types. Using the CRISPR/Cas9 approach for disruption of two out of three IP3R genes in HEK-293 cells, we generated three monoclonal cell lines, IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK, with the single functional isoform, IP3R1, IP3R2, and IP3R3, respectively. All engineered cells responded to ACh with Ca2+ transients in an "all-or-nothing" manner, suggesting that each IP3R isotype was capable of mediating CICR. The sensitivity of cells to ACh strongly correlated with the affinity of IP3 binding to an IP3R isoform they expressed. Based on a mathematical model of intracellular Ca2+ signals induced by thapsigargin, a SERCA inhibitor, we developed an approach for estimating relative Ca2+ permeability of Ca2+ store and showed that all three IP3R isoforms contributed to Ca2+ leakage from ER. The relative Ca2+ permeabilities of Ca2+ stores in IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK cells were evaluated as 1:1.75:0.45. Using the genetically encoded sensor R-CEPIA1er for monitoring Ca2+ signals in ER, engineered cells were ranged by resting levels of stored Ca2+ as IP3R3-HEK ≥ IP3R1-HEK > IP3R2-HEK. The developed cell lines could be helpful for further assaying activity, regulation, and pharmacology of individual IP3R isoforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stanislav S. Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, 142290 Pushchino, Russia
| |
Collapse
|
12
|
Li Z, Qi L, Cui R, Zhang N, Song C, Li X, Lu X, Fan Y. De novo transcriptome assembly and molecular response mechanism analysis of a diatom Cyclotella meneghiniana Kützing exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116020. [PMID: 38306816 DOI: 10.1016/j.ecoenv.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Cadmium is a persistent heavy metal commonly found in aquatic ecosystems and has a strong toxic effect on organisms. The sensitivity of phytoplankton to environmental changes and its role as an indicator of aquatic ecosystem health have been well-established. However, the mechanisms by which phytoplankton respond to cadmium remain incompletely understood. In this study, we chose the typical planktonic diatom Cyclotella meneghiniana Kützing, by integrating physiological-biochemical data and transcriptome analysis, to reveal the molecular mechanisms of C. meneghiniana responing to cadmium. Under cadmium stress, the cell density and chlorophyll-a content of C. meneghiniana significantly decreased, while MDA content and SOD activity gradually increased. At 72 h of cadmium stress, we found that at this time point, cell abundance and physiological variation were very significant, therefore we selected 72 h for subsequent analysis. To better understand the cadmium stress response mechanisms of C. meneghiniana, a de novo transcriptome method was used to analyse C. meneghiniana under cadmium stress for 72 h, and 1704 (M vs. CK) and 4788 (H vs. CK) differentially expressed genes were found. Our results showed that the changes in gene expression were closely correlated to the physiological-biochemical changes. Although cadmium stress could promote the nitrogen metabolism pathway, ROS scavenging system, and photosynthesis. While, C. meneghiniana under medium and high concentrations of cadmium can also limit various intracellular metabolic pathways, such as the MAPK pathway and phosphatidylinositol metabolic pathway, and the degree of inhibition increases with the increase of stress concentration. In present study, the complete molecular mechanism of the planktonic diatom response to cadmium has been established, which provided important information for further studies on heavy metal pollutants and the multiple functional genes responsible for cadmium sensitivity and tolerance in planktonic diatoms.
Collapse
Affiliation(s)
- Zhenxiang Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Lin Qi
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Runbo Cui
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Nannan Zhang
- Modern Educational Technology and Experiment Center, Harbin Normal University, Harbin 150025, China
| | - Chunhua Song
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Xue Li
- Moutai Institute, Zunyi 564507, China
| | - Xinxin Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
13
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
14
|
Wu L, Chen J. Type 3 IP3 receptor: Its structure, functions, and related disease implications. Channels (Austin) 2023; 17:2267416. [PMID: 37818548 PMCID: PMC10569359 DOI: 10.1080/19336950.2023.2267416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Cell-fate decisions depend on the precise and strict regulation of multiple signaling molecules and transcription factors, especially intracellular Ca2+ homeostasis and dynamics. Type 3 inositol 1,4,5-triphosphate receptor (IP3R3) is an a tetrameric channel that can mediate the release of Ca2+ from the endoplasmic reticulum (ER) in response to extracellular stimuli. The gating of IP3R3 is regulated not only by ligands but also by other interacting proteins. To date, extensive research conducted on the basic structure of IP3R3, as well as its regulation by ligands and interacting proteins, has provided novel perspectives on its biological functions and pathogenic mechanisms. This review aims to discuss recent advancements in the study of IP3R3 and provides a comprehensive overview of the relevant literature pertaining to its structure, biological functions, and pathogenic mechanisms.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
15
|
Jaberi S, Fahnestock M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer's Disease. Biomolecules 2023; 13:1577. [PMID: 38002258 PMCID: PMC10669442 DOI: 10.3390/biom13111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule in promoting neurogenesis, dendritic and synaptic health, neuronal survival, plasticity, and excitability, all of which are disrupted in neurological and cognitive disorders such as Alzheimer's disease (AD). Extracellular aggregates of amyloid-β (Aβ) in the form of plaques and intracellular aggregates of hyperphosphorylated tau protein have been identified as major pathological insults in the AD brain, along with immune dysfunction, oxidative stress, and other toxic stressors. Although aggregated Aβ and tau lead to decreased brain BDNF expression, early losses in BDNF prior to plaque and tangle formation may be due to other insults such as oxidative stress and contribute to early synaptic dysfunction. Physical exercise, on the other hand, protects synaptic and neuronal structure and function, with increased BDNF as a major mediator of exercise-induced enhancements in cognitive function. Here, we review recent literature on the mechanisms behind exercise-induced BDNF upregulation and its effects on improving learning and memory and on Alzheimer's disease pathology. Exercise releases into the circulation a host of hormones and factors from a variety of peripheral tissues. Mechanisms of BDNF induction discussed here are osteocalcin, FNDC5/irisin, and lactate. The fundamental mechanisms of how exercise impacts BDNF and cognition are not yet fully understood but are a prerequisite to developing new biomarkers and therapies to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Sama Jaberi
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
16
|
Maurya CK, Tapadia MG. Expanded polyQ aggregates interact with sarco-endoplasmic reticulum calcium ATPase and Drosophila inhibitor of apoptosis protein1 to regulate polyQ mediated neurodegeneration in Drosophila. Mol Cell Neurosci 2023; 126:103886. [PMID: 37567489 DOI: 10.1016/j.mcn.2023.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Polyglutamine (polyQ) induced neurodegeneration is one of the leading causes of progressive neurodegenerative disorders characterized clinically by deteriorating movement defects, psychiatric disability, and dementia. Calcium [Ca2+] homeostasis, which is essential for the functioning of neuronal cells, is disrupted under these pathological conditions. In this paper, we simulated Huntington's disease phenotype in the neuronal cells of the Drosophila eye and identified [Ca2+] pump, sarco-endoplasmic reticulum calcium ATPase (SERCA), as one of the genetic modifiers of the neurodegenerative phenotype. This paper shows genetic and molecular interaction between polyglutamine (polyQ) aggregates, SERCA and DIAP1. We present evidence that polyQ aggregates interact with SERCA and alter its dynamics, resulting in a decrease in cytosolic [Ca2+] and an increase in ER [Ca2+], and thus toxicity. Downregulating SERCA lowers the enhanced calcium levels in the ER and rescues, morphological and functional defects caused due to expanded polyQ repeats. Cell proliferation markers such as Yorkie (Yki), Scalloped (Sd), and phosphatidylinositol 3 kinases/protein kinase B (PI3K/Akt), also respond to varying levels of calcium due to genetic manipulations, adding to the amelioration of degeneration. These results imply that neurodegeneration due to expanded polyQ repeats is sensitive to SERCA activity, and its manipulation can be an important step toward its therapeutic measures.
Collapse
Affiliation(s)
- Chandan Kumar Maurya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Baker MR, Fan G, Arige V, Yule DI, Serysheva II. Understanding IP 3R channels: From structural underpinnings to ligand-dependent conformational landscape. Cell Calcium 2023; 114:102770. [PMID: 37393815 PMCID: PMC10529787 DOI: 10.1016/j.ceca.2023.102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.
Collapse
Affiliation(s)
- Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Oh BC. Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling. Exp Mol Med 2023; 55:1702-1712. [PMID: 37524877 PMCID: PMC10474053 DOI: 10.1038/s12276-023-01067-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/02/2023] Open
Abstract
Intracellular calcium (Ca2+) and phosphoinositides (PIPs) are crucial for regulating cellular activities such as metabolism and cell survival. Cells maintain precise intracellular Ca2+ and PIP levels via the actions of a complex system of Ca2+ channels, transporters, Ca2+ ATPases, and signaling effectors, including specific lipid kinases, phosphatases, and phospholipases. Recent research has shed light on the complex interplay between Ca2+ and PIP signaling, suggesting that elevated intracellular Ca2+ levels negatively regulate PIP signaling by inhibiting the membrane localization of PIP-binding proteins carrying specific domains, such as the pleckstrin homology (PH) and Ca2+-independent C2 domains. This dysregulation is often associated with cancer and metabolic diseases. PIPs recruit various proteins with PH domains to the plasma membrane in response to growth hormones, which activate signaling pathways regulating metabolism, cell survival, and growth. However, abnormal PIP signaling in cancer cells triggers consistent membrane localization and activation of PIP-binding proteins. In the context of obesity, an excessive intracellular Ca2+ level prevents the membrane localization of the PIP-binding proteins AKT, IRS1, and PLCδ via Ca2+-PIPs, contributing to insulin resistance and other metabolic diseases. Furthermore, an excessive intracellular Ca2+ level can cause functional defects in subcellular organelles such as the endoplasmic reticulum (ER), lysosomes, and mitochondria, causing metabolic diseases. This review explores how intracellular Ca2+ overload negatively regulates the membrane localization of PIP-binding proteins.
Collapse
Affiliation(s)
- Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|
19
|
Cunha-Garcia D, Monteiro-Fernandes D, Correia JS, Neves-Carvalho A, Vilaça-Ferreira AC, Guerra-Gomes S, Viana JF, Oliveira JF, Teixeira-Castro A, Maciel P, Duarte-Silva S. Genetic Ablation of Inositol 1,4,5-Trisphosphate Receptor Type 2 (IP 3R2) Fails to Modify Disease Progression in a Mouse Model of Spinocerebellar Ataxia Type 3. Int J Mol Sci 2023; 24:10606. [PMID: 37445783 PMCID: PMC10341520 DOI: 10.3390/ijms241310606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.
Collapse
Affiliation(s)
- Daniela Cunha-Garcia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Catarina Vilaça-Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, 4750-810 Barcelos, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|
20
|
Sureshkumar P, Souza Dos Santos RA, Alenina N, Mergler S, Bader M. Angiotensin-(1-7) mediated calcium signalling by MAS. Peptides 2023; 165:171010. [PMID: 37059396 DOI: 10.1016/j.peptides.2023.171010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
The G protein-coupled receptor, MAS, is the receptor of the endogenous ligand, Angiotensin (Ang)-(1-7). It is a promising drug target since the Ang-(1-7)/MAS axis is protective in the cardiovascular system. Therefore, a characterization of MAS signalling is important for developing novel therapeutics for cardiovascular diseases. In this paper, we show that Ang-(1-7) increases intracellular calcium in transiently MAS-transfected HEK293 cells. The calcium influx induced by the activation of MAS is dependent on plasma membrane Ca2+ channels, phospholipase C, and protein kinase C. Specifically, we could demonstrate that MAS employs non-selective, transient receptor potential channels (TRPs) for calcium entry.
Collapse
Affiliation(s)
- Priyavathi Sureshkumar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Department of Ophthalmology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robson Augusto Souza Dos Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Germany.
| |
Collapse
|
21
|
Tambeaux A, Aguilar-Sánchez Y, Santiago DJ, Mascitti M, DiNovo KM, Mejía-Alvarez R, Fill M, Wayne Chen SR, Ramos-Franco J. Ligand sensitivity of type-1 inositol 1,4,5-trisphosphate receptor is enhanced by the D2594K mutation. Pflugers Arch 2023; 475:569-581. [PMID: 36881190 PMCID: PMC10105685 DOI: 10.1007/s00424-023-02796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/08/2023]
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) are homologous cation channels that mediate release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) and thereby are involved in many physiological processes. In previous studies, we determined that when the D2594 residue, located at or near the gate of the IP3R type 1, was replaced by lysine (D2594K), a gain of function was obtained. This mutant phenotype was characterized by increased IP3 sensitivity. We hypothesized the IP3R1-D2594 determines the ligand sensitivity of the channel by electrostatically affecting the stability of the closed and open states. To test this possibility, the relationship between the D2594 site and IP3R1 regulation by IP3, cytosolic, and luminal Ca2+ was determined at the cellular, subcellular, and single-channel levels using fluorescence Ca2+ imaging and single-channel reconstitution. We found that in cells, D2594K mutation enhances the IP3 ligand sensitivity. Single-channel IP3R1 studies revealed that the conductance of IP3R1-WT and -D2594K channels is similar. However, IP3R1-D2594K channels exhibit higher IP3 sensitivity, with substantially greater efficacy. In addition, like its wild type (WT) counterpart, IP3R1-D2594K showed a bell-shape cytosolic Ca2+-dependency, but D2594K had greater activity at each tested cytosolic free Ca2+ concentration. The IP3R1-D2594K also had altered luminal Ca2+ sensitivity. Unlike IP3R1-WT, D2594K channel activity did not decrease at low luminal Ca2+ levels. Taken together, our functional studies indicate that the substitution of a negatively charged residue by a positive one at the channels' pore cytosolic exit affects the channel's gating behavior thereby explaining the enhanced ligand-channel's sensitivity.
Collapse
Affiliation(s)
- Allison Tambeaux
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Yuriana Aguilar-Sánchez
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Demetrio J Santiago
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Karyn M DiNovo
- Department of Physiology, Midwestern University, Downers Grove, IL, USA
| | | | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - S R Wayne Chen
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
22
|
Della Sala F, Ceresara E, Micheli F, Fontana S, Prins LJ, Scrimin P. Exploiting multivalency and cooperativity of gold nanoparticles for binding phosphatidylinositol (3,4,5)-trisphosphate at sub-nanomolar concentrations. Org Biomol Chem 2023; 21:743-747. [PMID: 36601663 DOI: 10.1039/d2ob02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic, monolayer-protected gold nanoparticles provide a multivalent charged surface and a hydrophobic monolayer that synergistically contribute to the binding of phosphatidylinositol (3,4,5)-trisphosphate, a relevant biomarker. The observed dissociation constant is in the picomolar region, providing the possibility of using these gold nanoparticles for the selective extraction of this molecule from biological fluids.
Collapse
Affiliation(s)
- Flavio Della Sala
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy. .,Department of Chemistry, University of Manchester, M13 9LP, UK
| | - Elisa Ceresara
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Fabrizio Micheli
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Stefano Fontana
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Leonard J Prins
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| |
Collapse
|
23
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
24
|
Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, Ahmadzadeh K, Baker MR, Gerbaux M, Willemsen M, Barber JS, Serysheva II, De Waele L, Vermeulen F, Schlenner S, Meyts I, Yule DI, Bultynck G, Schrijvers R, Humblet-Baron S, Liston A. Disrupted Ca 2+ homeostasis and immunodeficiency in patients with functional IP 3 receptor subtype 3 defects. Cell Mol Immunol 2023; 20:11-25. [PMID: 36302985 PMCID: PMC9794825 DOI: 10.1038/s41423-022-00928-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.
Collapse
Affiliation(s)
- Julika Neumann
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Frederik Staels
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Taylor R Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaux Gerbaux
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathijs Willemsen
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - John S Barber
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Susan Schlenner
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- UZ Leuven, Leuven, Belgium.
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- UZ Leuven, Leuven, Belgium.
- Laboratory for Allergy and Clinical Immunology and Immunogenetics Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
25
|
Alves E, Nakaya H, Guimarães E, Garcia CR. Combining IP 3 affinity chromatography and bioinformatics reveals a novel protein-IP 3 binding site on Plasmodium falciparum MDR1 transporter. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 4:100179. [PMID: 36582189 PMCID: PMC9792294 DOI: 10.1016/j.crmicr.2022.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intracellular Ca2+ mobilization induced by second messenger IP3 controls many cellular events in most of the eukaryotic groups. Despite the increasing evidence of IP3-induced Ca2+ in apicomplexan parasites like Plasmodium, responsible for malaria infection, no protein with potential function as an IP3-receptor has been identified. The use of bioinformatic analyses based on previously known sequences of IP3-receptor failed to identify potential IP3-receptor candidates in any Apicomplexa. In this work, we combine the biochemical approach of an IP3 affinity chromatography column with bioinformatic meta-analyses to identify potential vital membrane proteins that present binding with IP3 in Plasmodium falciparum. Our analyses reveal that PF3D7_0523000, a gene that codes a transport protein associated with multidrug resistance as a potential target for IP3. This work provides a new insight for probing potential candidates for IP3-receptor in Apicomplexa.
Collapse
Affiliation(s)
- Eduardo Alves
- Life Science Department, Imperial College London, London, United Kingdom
| | - Helder Nakaya
- Department of Clinical and Toxicological Analyses of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,Computational Systems Biology Laboratory, INOVA, University of Sao Paulo, Sao Paulo, Brazil
| | - Euzébio Guimarães
- Federal University of Rio Grande do Norte, Pharmacy Department, Health Science Center, Natal, Brazil
| | - Célia R.S. Garcia
- Department of Clinical and Toxicological Analyses of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,Corresponding author.
| |
Collapse
|
26
|
Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0195022. [PMID: 36094194 PMCID: PMC9603128 DOI: 10.1128/spectrum.01950-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes.
Collapse
|
27
|
Takahashi T, Stoiljkovic M, Song E, Gao XB, Yasumoto Y, Kudo E, Carvalho F, Kong Y, Park A, Shanabrough M, Szigeti-Buck K, Liu ZW, Kristant A, Zhang Y, Sulkowski P, Glazer PM, Kaczmarek LK, Horvath TL, Iwasaki A. LINE-1 activation in the cerebellum drives ataxia. Neuron 2022; 110:3278-3287.e8. [PMID: 36070749 PMCID: PMC9588660 DOI: 10.1016/j.neuron.2022.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023]
Abstract
Dysregulation of long interspersed nuclear element 1 (LINE-1, L1), a dominant class of transposable elements in the human genome, has been linked to neurodegenerative diseases, but whether elevated L1 expression is sufficient to cause neurodegeneration has not been directly tested. Here, we show that the cerebellar expression of L1 is significantly elevated in ataxia telangiectasia patients and strongly anti-correlated with the expression of epigenetic silencers. To examine the role of L1 in the disease etiology, we developed an approach for direct targeting of the L1 promoter for overexpression in mice. We demonstrated that L1 activation in the cerebellum led to Purkinje cell dysfunctions and degeneration and was sufficient to cause ataxia. Treatment with a nucleoside reverse transcriptase inhibitor blunted ataxia progression by reducing DNA damage, attenuating gliosis, and reversing deficits of molecular regulators for calcium homeostasis in Purkinje cells. Our study provides the first direct evidence that L1 activation can drive neurodegeneration.
Collapse
Affiliation(s)
- Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Milan Stoiljkovic
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiao-Bing Gao
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuki Yasumoto
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eriko Kudo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fernando Carvalho
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marya Shanabrough
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Klara Szigeti-Buck
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhong-Wu Liu
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ashley Kristant
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Parker Sulkowski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine and Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
28
|
Yang Y, Zhao Y, Wang Q, Liu M, Chang H, Li L, Meng X, Deng Y, Ling C, Wang K, Song G, Sui X. Effects of Nano-titanium Dioxide on Calcium Homeostasis in Vivo and in Vitro: a Systematic Review and Meta-analysis. Toxicol Mech Methods 2022; 33:249-259. [PMID: 36097686 DOI: 10.1080/15376516.2022.2124137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
With the extensive application of titanium dioxide nanoparticles (TiO2 NPs), their impacts on calcium homeostasis have aroused extensive attention from scholars. However, there are still some controversies in relevant reports. Therefore, a systematic review was performed followed by a meta-analysis to explore whether TiO2 NPs could induce the imbalance in calcium homeostasis in vivo and in vitro through Revman5.4 and Stata15.0 in this research. 14 studies were included through detailed database retrieval and literature screening. Results indicated that the calcium levels were significantly increased and the activity of Ca2+-ATPase was significantly decreased by TiO2 NPs in vivo and in vitro. Subgroup analysis of the studies in vivo showed that TiO2 NPs exposure caused a significant increase in calcium levels in rats, exposure to large-sized TiO2 NPs (> 10 nm) and long-term (> 30 d) exposure could significantly increase calcium levels, and the activity of Ca2+-ATPase showed a concentration-dependent downward trend. Subgroup analysis of the studies in vitro revealed that intracellular calcium levels increased significantly in animal cells, exposure to small-sized TiO2 NPs (≤ 10 nm) and high concentration (> 10 μg/mL) exposure could induce a significant increase in Ca2+ concentration, and the activity of Ca2+-ATPase also showed a concentration-dependent downward trend. This research showed that the physicochemical properties of TiO2 NPs and the experimental scheme could affect calcium homeostasis.
Collapse
Affiliation(s)
- Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yiman Zhao
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Mi Liu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Chunmei Ling
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Kui Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Xin Sui
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| |
Collapse
|
29
|
Ishibashi T, Baba H. Paranodal Axoglial Junctions, an Essential Component in Axonal Homeostasis. Front Cell Dev Biol 2022; 10:951809. [PMID: 35874818 PMCID: PMC9299063 DOI: 10.3389/fcell.2022.951809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
In vertebrates, a high density of voltage-gated Na+ channel at nodes of Ranvier and of voltage-gated K+ channel at juxtaparanodes is necessary for rapid propagation of action potential, that is, for saltatory conduction in myelinated axons. Myelin loops attach to the axonal membrane and form paranodal axoglial junctions (PNJs) at paranodes adjacent to nodes of Ranvier. There is growing evidence that the PNJs contribute to axonal homeostasis in addition to their roles as lateral fences that restrict the location of nodal axolemmal proteins for effective saltatory conduction. Perturbations of PNJs, as in specific PNJ protein knockouts as well as in myelin lipid deficient mice, result in internodal axonal alterations, even if their internodal myelin is preserved. Here we review studies showing that PNJs play crucial roles in the myelinated axonal homeostasis. The present evidence points to two functions in particular: 1) PNJs facilitate axonal transport of membranous organelles as well as cytoskeletal proteins; and 2) they regulate the axonal distribution of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) in cerebellar Purkinje axons. Myelinated axonal homeostasis depends among others on the state of PNJs, and consequently, a better understanding of this dependency may contribute to the clarification of CNS disease mechanisms and the development of novel therapies.
Collapse
Affiliation(s)
- Tomoko Ishibashi
- Department of Functional Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hiroko Baba
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
30
|
Wang Q, Chen W, Zhang B, Gao Z, Zhang Q, Deng H, Han L, Shen XL. Perfluorooctanoic acid induces hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro via endoplasmic reticulum-mitochondria communication. Chem Biol Interact 2022; 354:109844. [PMID: 35123991 DOI: 10.1016/j.cbi.2022.109844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant that is widely distributed in the natural environment. Cohort study showed that PFOA-producing workers displayed a significant increase for mortality of liver cancer and liver cirrhosis. However, the underlying mechanism of PFOA-induced hepatotoxicity is far from clear. In this research, cell viability, apoptosis rate, reactive oxygen species, mitochondrial membrane potential (ΔΨm), calcium ion levels, and protein expressions of human liver L02 cells in response to PFOA were determined. Results indicated that a 24 h-treatment with 64 and 256 μM PFOA could remarkably induce mitochondrial-mediated apoptosis via initiating the vicious cycle between endoplasmic reticulum stress and oxidative stress, thereby increasing the level of calcium ion and decreasing the level of ΔΨm, simultaneously elevating the protein expressions of Cyclophilin D (CYPD), Bcl-2 homologous antagonist/killer (Bak), Bcl-2-associated X protein (Bax), Bcl-2-like protein 11 (Bim), cytochrome C (Cyt-C), 78 kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and thioredoxin-interacting protein (TXNIP), while inhibiting the protein expression of tumor necrosis factor receptor-associated protein 1 (TRAP1), Lon protease 1 (Lonp1), Pro-caspase-9, B-cell lymphoma-2 (Bcl-2), and Sigma 1-type opioid receptor (Sig-1R) (p < 0.05). To sum up, PFOA-induced hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro was regulated by endoplasmic reticulum (ER)-mitochondria communication via mitochondria-associated ER membranes (MAMs).
Collapse
Affiliation(s)
- Qian Wang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, PR China.
| | - Zilu Gao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Qipeng Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Huiqiong Deng
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Lingyun Han
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
31
|
Combined Pharmacophore and Grid-Independent Molecular Descriptors (GRIND) Analysis to Probe 3D Features of Inositol 1,4,5-Trisphosphate Receptor (IP 3R) Inhibitors in Cancer. Int J Mol Sci 2021; 22:ijms222312993. [PMID: 34884798 PMCID: PMC8657927 DOI: 10.3390/ijms222312993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling plays a pivotal role in different cellular processes, including cell proliferation and cell death. Remodeling Ca2+ signals by targeting the downstream effectors is considered an important hallmark in cancer progression. Despite recent structural analyses, no binding hypothesis for antagonists within the IP3-binding core (IBC) has been proposed yet. Therefore, to elucidate the 3D structural features of IP3R modulators, we used combined pharmacoinformatic approaches, including ligand-based pharmacophore models and grid-independent molecular descriptor (GRIND)-based models. Our pharmacophore model illuminates the existence of two hydrogen-bond acceptors (2.62 Å and 4.79 Å) and two hydrogen-bond donors (5.56 Å and 7.68 Å), respectively, from a hydrophobic group within the chemical scaffold, which may enhance the liability (IC50) of a compound for IP3R inhibition. Moreover, our GRIND model (PLS: Q2 = 0.70 and R2 = 0.72) further strengthens the identified pharmacophore features of IP3R modulators by probing the presence of complementary hydrogen-bond donor and hydrogen-bond acceptor hotspots at a distance of 7.6-8.0 Å and 6.8-7.2 Å, respectively, from a hydrophobic hotspot at the virtual receptor site (VRS). The identified 3D structural features of IP3R modulators were used to screen (virtual screening) 735,735 compounds from the ChemBridge database, 265,242 compounds from the National Cancer Institute (NCI) database, and 885 natural compounds from the ZINC database. After the application of filters, four compounds from ChemBridge, one compound from ZINC, and three compounds from NCI were shortlisted as potential hits (antagonists) against IP3R. The identified hits could further assist in the design and optimization of lead structures for the targeting and remodeling of Ca2+ signals in cancer.
Collapse
|
32
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
33
|
Yamada A, Yoshizaki K, Ishikawa M, Saito K, Chiba Y, Fukumoto E, Hino R, Hoshikawa S, Chiba M, Nakamura T, Iwamoto T, Fukumoto S. Connexin 43-Mediated Gap Junction Communication Regulates Ameloblast Differentiation via ERK1/2 Phosphorylation. Front Physiol 2021; 12:748574. [PMID: 34630166 PMCID: PMC8500398 DOI: 10.3389/fphys.2021.748574] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Connexin 43 (Cx43) is an integral membrane protein that forms gap junction channels. These channels mediate intercellular transport and intracellular signaling to regulate organogenesis. The human disease oculodentodigital dysplasia (ODDD) is caused by mutations in Cx43 and is characterized by skeletal, ocular, and dental abnormalities including amelogenesis imperfecta. To clarify the role of Cx43 in amelogenesis, we examined the expression and function of Cx43 in tooth development. Single-cell RNA-seq analysis and immunostaining showed that Cx43 is highly expressed in pre-secretory ameloblasts, differentiated ameloblasts, and odontoblasts. Further, we investigated the pathogenic mechanisms of ODDD by analyzing Cx43-null mice. These mice developed abnormal teeth with multiple dental epithelium layers. The expression of enamel matrix proteins such as ameloblastin (Ambn), which is critical for enamel formation, was significantly reduced in Cx43-null mice. TGF-β1 induces Ambn transcription in dental epithelial cells. The induction of Ambn expression by TGF-β1 depends on the density of the cultured cells. Cell culture at low densities reduces cell–cell contact and reduces the effect of TGF-β1 on Ambn induction. When cell density was high, Ambn expression by TGF-β1 was enhanced. This induction was inhibited by the gap junction inhibitors, oleamide, and 18α-grycyrrhizic acid and was also inhibited in cells expressing Cx43 mutations (R76S and R202H). TGF-β1-mediated phosphorylation and nuclear translocation of ERK1/2, but not Smad2/3, were suppressed by gap junction inhibitors. Cx43 gap junction activity is required for TGF-β1-mediated Runx2 phosphorylation through ERK1/2, which forms complexes with Smad2/3. In addition to its gap junction activity, Cx43 may also function as a Ca2+ channel that regulates slow Ca2+ influx and ERK1/2 phosphorylation. TGF-β1 transiently increases intracellular calcium levels, and the increase in intracellular calcium over a short period was not related to the expression level of Cx43. However, long-term intracellular calcium elevation was enhanced in cells overexpressing Cx43. Our results suggest that Cx43 regulates intercellular communication through gap junction activity by modulating TGF-β1-mediated ERK signaling and enamel formation.
Collapse
Affiliation(s)
- Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaki Ishikawa
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Emiko Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ryoko Hino
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Seira Hoshikawa
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mitsuki Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tsutomu Iwamoto
- Division of Oral Health Science, Department of Pediatric Dentistry/Special Needs Dentistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Vasilev F, Ezhova Y, Chun JT. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. Int J Mol Sci 2021; 22:ijms221910366. [PMID: 34638705 PMCID: PMC8508623 DOI: 10.3390/ijms221910366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
A cell should deal with the changing external environment or the neighboring cells. Inevitably, the cell surface receives and transduces a number of signals to produce apt responses. Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme and ion channel activities in various cell types including the cells of immune response, neurons, oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to inhibit or enhance the function of these signaling proteins.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Rue St Denis, Montreal, QC H2X 0A9, Canada
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| | - Yulia Ezhova
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| |
Collapse
|
35
|
Iyer R, Franzini-Armstrong C. The location of InsP3 receptors in Purkinje cells of murine cerebellum does not supports a direct interaction in the transfer of calcium ions between ER and mitochondria. Eur J Transl Myol 2021; 31. [PMID: 34498451 PMCID: PMC8495361 DOI: 10.4081/ejtm.2021.9935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
The inositol-3-phosphate receptors (IP3Rs) of cerebellar Purkinje cells are located in abundant, large stacks of endoplasmic reticulum (ER) cisternae. Using thin section electron microscopy, we identify very frequent associations of the ER stacks with mitochondria. The associations have two components: a single, close ER-mitochondria contact on one side to the stack, and multiple layers of ER cisternae decorated by IP3Rs receptors on the side away from the mitochondria. Due to their location in the stacks, IP3Rs are never in contact with the mitochondria, although they are in their vicinity. We conclude that transfer of Ca2+ between ER and mitochondria is not directly mediated by IP3Rs, but is based on mitochondrial Ca2+ uptake from the local cytoplasmic spikes during IP3Rs’ activity.
Collapse
Affiliation(s)
- Ramesh Iyer
- Division of Cardiology, Children Hospital of Philadelphia, Philadelphia, PA.
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
36
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
37
|
Balducci V, Faris P, Balbi C, Costa A, Negri S, Rosti V, Bollini S, Moccia F. The human amniotic fluid stem cell secretome triggers intracellular Ca 2+ oscillations, NF-κB nuclear translocation and tube formation in human endothelial colony-forming cells. J Cell Mol Med 2021; 25:8074-8086. [PMID: 34288391 PMCID: PMC8358861 DOI: 10.1111/jcmm.16739] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Second trimester foetal human amniotic fluid‐derived stem cells (hAFS) have been shown to possess remarkable cardioprotective paracrine potential in different preclinical models of myocardial injury and drug‐induced cardiotoxicity. The hAFS secretome, namely the total soluble factors released by cells in their conditioned medium (hAFS‐CM), can also strongly sustain in vivo angiogenesis in a murine model of acute myocardial infarction (MI) and stimulates human endothelial colony‐forming cells (ECFCs), the only truly recognized endothelial progenitor, to form capillary‐like structures in vitro. Preliminary work demonstrated that the hypoxic hAFS secretome (hAFS‐CMHypo) triggers intracellular Ca2+ oscillations in human ECFCs, but the underlying mechanisms and the downstream Ca2+‐dependent effectors remain elusive. Herein, we found that the secretome obtained by hAFS undergoing hypoxic preconditioning induced intracellular Ca2+ oscillations by promoting extracellular Ca2+ entry through Transient Receptor Potential Vanilloid 4 (TRPV4). TRPV4‐mediated Ca2+ entry, in turn, promoted the concerted interplay between inositol‐1,4,5‐trisphosphate‐ and nicotinic acid adenine dinucleotide phosphate‐induced endogenous Ca2+ release and store‐operated Ca2+ entry (SOCE). hAFS‐CMHypo‐induced intracellular Ca2+ oscillations resulted in the nuclear translocation of the Ca2+‐sensitive transcription factor p65 NF‐κB. Finally, inhibition of either intracellular Ca2+ oscillations or NF‐κB activity prevented hAFS‐CMHypo‐induced ECFC tube formation. These data shed novel light on the molecular mechanisms whereby hAFS‐CMHypo induces angiogenesis, thus providing useful insights for future therapeutic strategies against ischaemic‐related myocardial injury.
Collapse
Affiliation(s)
- Valentina Balducci
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Carolina Balbi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Ambra Costa
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Sailaja GR, Sriramavaratharajan V, Murugan R, Mallavarapu GR, Chellappan DR. Vasorelaxant property of Plectranthus vettiveroides root essential oil and its possible mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114048. [PMID: 33781875 DOI: 10.1016/j.jep.2021.114048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plectranthus vettiveroides (Jacob) N.P. Singh & B.D. Sharma is a traditional medicinal plant used in Siddha System of Medicine and its aromatic root is used to reduce the elevated blood pressure. AIM The aim of the present study was to study vasorelaxant property of the root essential oil nanoemulsion (EON) of P. vettiveroides. METHODS The EON was formulated to enhance the solubility and bioavailability and characterized. The preliminary screening was performed by treating the EON with aortic rings pre-contracted with phenylephrine (1 μM) and potassium chloride (80 mM). The role of K⁺ channels in EON induced vasorelaxation was investigated by pre-incubating the aortic rings with different K⁺ channel inhibitors namely, glibenclamide (a non-specific ATP sensitive K⁺ channel blocker, 10 μM), TEA (a Ca2⁺ activated non-selective K⁺ channel blocker, 10-2 M), 4-AP (a voltage-activated K⁺ channel blocker, 10-3 M) and barium chloride (inward rectifier K⁺ channel blocker, 1 mM). The involvement of extracellular Ca2+ was performed by adding cumulative dose of extracellular calcium in the presence and absence of EON and the concentration-response curve (CRC) obtained is compared. Similarly, the role of nitric oxide synthase, muscarinic and prostacyclin receptors on EON induced vasorelaxation were evaluated by pre-incubating the aortic rings with their inhibitors and the CRC obtained in the presence and absence of inhibitor were compared. RESULTS The GC-MS and GC-FID analyses of the root essential oil revealed the presence of 62 volatile compounds. The EON exhibited significant vasorelaxant effect through nitric oxide-mediated pathway, G-protein coupled muscarinic (M3) receptor pathway, involvement of K+ channels (KATP, KIR, KCa), and blocking of the calcium influx by receptor-operated calcium channel. CONCLUSION It is concluded that the root essential oil of P. vettiveroides is possessing marked vasorelaxant property. The multiple mechanisms of action of the essential oil of P. vettiveroides make it a potential source of antihypertensive drug.
Collapse
Affiliation(s)
- Govinda Rajan Sailaja
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | | | - Ramar Murugan
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, 626 124, Tamil Nadu, India
| | - Gopal Rao Mallavarapu
- Flat No. 602, A-Block, Renaissance Temple Bells, Opp. ISKCON Temple, Yeshwantpur, Bengaluru, 560 022, Karnataka, India
| | - David Raj Chellappan
- Central Animal Facility, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
39
|
Sluga N, Postić S, Sarikas S, Huang YC, Stožer A, Slak Rupnik M. Dual Mode of Action of Acetylcholine on Cytosolic Calcium Oscillations in Pancreatic Beta and Acinar Cells In Situ. Cells 2021; 10:1580. [PMID: 34201461 PMCID: PMC8305080 DOI: 10.3390/cells10071580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cholinergic innervation in the pancreas controls both the release of digestive enzymes to support the intestinal digestion and absorption, as well as insulin release to promote nutrient use in the cells of the body. The effects of muscarinic receptor stimulation are described in detail for endocrine beta cells and exocrine acinar cells separately. Here we describe morphological and functional criteria to separate these two cell types in situ in tissue slices and simultaneously measure their response to ACh stimulation on cytosolic Ca2+ oscillations [Ca2+]c in stimulatory glucose conditions. Our results show that both cell types respond to glucose directly in the concentration range compatible with the glucose transporters they express. The physiological ACh concentration increases the frequency of glucose stimulated [Ca2+]c oscillations in both cell types and synchronizes [Ca2+]c oscillations in acinar cells. The supraphysiological ACh concentration further increases the oscillation frequency on the level of individual beta cells, inhibits the synchronization between these cells, and abolishes oscillatory activity in acinar cells. We discuss possible mechanisms leading to the observed phenomena.
Collapse
Affiliation(s)
- Nastja Sluga
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (N.S.); (A.S.)
| | - Sandra Postić
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
| | - Srdjan Sarikas
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
| | - Ya-Chi Huang
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (N.S.); (A.S.)
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (N.S.); (A.S.)
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (S.P.); (S.S.); (Y.-C.H.)
- Alma Mater Europaea, European Center Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
40
|
Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab ( Eriocheir sinensis) fed different percentage of lipid. Br J Nutr 2021; 127:666-678. [PMID: 33910655 DOI: 10.1017/s0007114521001409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study evaluated the effects of dietary myo-inositol (MI) on growth performance, antioxidant status and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Crabs (4·58 (sem 0·05) g) were fed four diets including a normal lipid diet (N, containing 7 % lipid and 0 mg/kg MI), N with MI supplementation (N + MI, containing 7 % lipid and 1600 mg/kg MI), a high lipid diet (H, containing 13 % lipid and 0 mg/kg MI) and H with MI supplementation (H + MI, containing 13 % lipid and 1600 mg/kg MI) for 8 weeks. The H + MI group showed higher weight gain and specific growth rate than those in the H group. The dietary MI could improve the lipid accumulations in the whole body, hepatopancreas and muscle as a result of feeding on the high dietary lipid (13 %) in crabs. Besides, the crabs fed the H + MI diets increased the activities of antioxidant enzymes but reduced the malondialdehyde content in hepatopancreas compared with those fed the H diets. Moreover, dietary MI enhanced the expression of genes involved in lipid oxidation and exportation, yet reduced lipid absorption and synthesis genes expression in the hepatopancreas of crabs fed the H diet, which might be related to the activation of inositol 1,4,5-trisphosphate receptor (IP3R)/calmodulin-dependent protein kinase kinase-β (CaMKKβ)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. This study demonstrates that MI could increase lipid utilisation and reduce lipid deposition in the hepatopancreas of E. sinensis fed a high lipid diet through IP3R/CaMKKβ/AMPK activation. This work provides new insights into the function of MI in the diet of crustaceans.
Collapse
|
41
|
Lee D, Hong JH. Ca 2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1473. [PMID: 33806911 PMCID: PMC8004807 DOI: 10.3390/cancers13061473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Metastatic features of breast cancer in the brain are considered a common pathology in female patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+ channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and channels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+ channel inhibitors and combined applications will advance treatment strategies for breast cancer metastasis to the brain.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| |
Collapse
|
42
|
Ahumada-Castro U, Bustos G, Silva-Pavez E, Puebla-Huerta A, Lovy A, Cárdenas C. In the Right Place at the Right Time: Regulation of Cell Metabolism by IP3R-Mediated Inter-Organelle Ca 2+ Fluxes. Front Cell Dev Biol 2021; 9:629522. [PMID: 33738285 PMCID: PMC7960657 DOI: 10.3389/fcell.2021.629522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
In the last few years, metabolism has been shown to be controlled by cross-organelle communication. The relationship between the endoplasmic reticulum and mitochondria/lysosomes is the most studied; here, inositol 1,4,5-triphosphate (IP3) receptor (IP3R)-mediated calcium (Ca2+) release plays a central role. Recent evidence suggests that IP3R isoforms participate in synthesis and degradation pathways. This minireview will summarize the current findings in this area, emphasizing the critical role of Ca2+ communication on organelle function as well as catabolism and anabolism, particularly in cancer.
Collapse
Affiliation(s)
- Ulises Ahumada-Castro
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Galdo Bustos
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eduardo Silva-Pavez
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Andrea Puebla-Huerta
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Alenka Lovy
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
43
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21249521. [PMID: 33327665 PMCID: PMC7765134 DOI: 10.3390/ijms21249521] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative pathology characterized by a progressive decline of cognitive functions. Alteration of various signaling cascades affecting distinct subcellular compartment functions and their communication likely contribute to AD progression. Among others, the alteration of the physical association between the endoplasmic reticulum (ER) and mitochondria, also referred as mitochondria-associated membranes (MAMs), impacts various cellular housekeeping functions such as phospholipids-, glucose-, cholesterol-, and fatty-acid-metabolism, as well as calcium signaling, which are all altered in AD. Our review describes the physical and functional proteome crosstalk between the ER and mitochondria and highlights the contribution of distinct molecular components of MAMs to mitochondrial and ER dysfunctions in AD progression. We also discuss potential strategies targeting MAMs to improve mitochondria and ER functions in AD.
Collapse
|
45
|
Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells 2020; 9:cells9122577. [PMID: 33271984 PMCID: PMC7760721 DOI: 10.3390/cells9122577] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer’s disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aβ) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aβ with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors’ (IP3Rs) and ryanodine receptors’ (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.
Collapse
Affiliation(s)
- Mounia Chami
- Correspondence: ; Tel.: +33-4939-53457; Fax: +33-4939-53408
| | | |
Collapse
|
46
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
47
|
Maghiaoui A, Gojon A, Bach L. NRT1.1-centered nitrate signaling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6226-6237. [PMID: 32870279 DOI: 10.1093/jxb/eraa361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 05/21/2023]
Abstract
Plants need efficient nitrate (NO3-) sensing systems and sophisticated signaling pathways to develop a wide range of adaptive responses to external fluctuations of NO3- supply. In Arabidopsis thaliana, numerous molecular regulators have been identified to participate in signaling pathways that respond specifically to NO3-. In contrast, only a single NO3- sensing system has been described to date, relying on the NRT1.1 (NPF6.3/CHL1) NO3- transceptor. NRT1.1 governs a wide range of responses to NO3-, from fast reprogramming of genome expression (the primary nitrate response) to longer-term developmental changes (effects on lateral root development). NRT1.1 appears to be at the center of a complex network of signaling pathways, involving numerous molecular players acting downstream and/or upstream of it. Interestingly, some of these regulators are involved in crosstalk with the signaling pathways of other nutrients, such as inorganic phosphate or potassium. Although NRT1.1-mediated NO3- sensing and signaling has mostly been documented in Arabidopsis, recent evidence indicates that similar mechanisms involving NRT1.1 orthologues are operative in rice. This review aims to delineate how the NRT1.1 sensing system and the downstream/upstream transduction cascades are integrated to control both the expression of NO3--responsive genes and the induced plasticity of root development.
Collapse
Affiliation(s)
- Amel Maghiaoui
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), UMR 5004 CNRS/INRAE/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, France
| | - Alain Gojon
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), UMR 5004 CNRS/INRAE/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, France
| | - Liên Bach
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), UMR 5004 CNRS/INRAE/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, France
| |
Collapse
|
48
|
Lee HS, Jeong GS. Aromadendrin Inhibits T Cell Activation via Regulation of Calcium Influx and NFAT Activity. Molecules 2020; 25:molecules25194590. [PMID: 33050076 PMCID: PMC7582607 DOI: 10.3390/molecules25194590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
The objective of this study was to assess the inhibitory effect of the flavonoid aromadendrin on T cell activity to identify a non-cytotoxic immunosuppressive reagent. Conventional and qualitative PCR, MTT assays, flow cytometry and Western blotting were used to evaluate the effect of aromadendrin on the activity, cell viability and confluency, and proximal signal transduction of activated T cells. Aromadendrin effectively regulated IL-2 and IFNγ production in vitro from activated Jurkat T cells without cytotoxicity. Pre-treatment with aromadendrin also suppressed the expression levels of surface molecules CD69, CD25, and CD40L. Reduced calcium (Ca2+) influx in activated T cells pre-treated with aromadendrin was observed. Western blotting revealed that aromadendrin blocked the dephosphorylation of nuclear factor of activated T (NFAT) cells and its nuclear translocation. Involvement of the NFκB and MAPK pathways in the inhibitory effect of aromadendrin was also demonstrated. Results obtained demonstrated the suppressive effect of aromadendrin on T cell activation by Ca2+ influx regulation through NFAT activity suppression of the activated T cells.
Collapse
Affiliation(s)
| | - Gil-Saeng Jeong
- Correspondence: ; Tel.: +82-53-580-6649; Fax: +82-53-580-6645
| |
Collapse
|
49
|
Nagata E, Fujii N, Kohara S, Okada C, Satoh T, Takekoshi S, Takao M, Mihara B, Takizawa S. Inositol hexakisphosphate kinase 2 promotes cell death of anterior horn cells in the spinal cord of patients with amyotrophic lateral sclerosis. Mol Biol Rep 2020; 47:6479-6485. [PMID: 32929655 DOI: 10.1007/s11033-020-05688-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 11/25/2022]
Abstract
We have previously reported that inositol hexakisphosphate kinase (InsP6K)2 mediates cell death. InsP6K2 is abundantly expressed in anterior horn cells of the mammalian spinal cord. We investigated the role of InsP6K2 in spinal cords of patients with amyotrophic lateral sclerosis (ALS). Autopsy specimens of lumbar spinal cords from ten patients with sporadic ALS and five non-neurological disease patients (NNDPs) were obtained. We performed quantitative real-time PCR, immunostaining, and western blotting for InsP6K1, InsP6K2, InsP6K3, protein kinase B (Akt), casein kinase 2 (CK2), and 90-kDa heat-shock protein (HSP90). In contrast to InsP6K1 and InsP6K3 mRNA expression, InsP6K2 levels in anterior horn cells of the spinal cord were significantly increased in ALS patients compared to NNDPs. In ALS patients, InsP6K2 translocated from the nucleus to the cytoplasm. However, we observed a decrease in HSP90, CK2, and Akt activity in ALS patients compared to NNDPs. A previous study reported that InsP6K2 activity is suppressed after binding to HSP90 and subsequent phosphorylation and degradation by CK2, thus decreasing InsP6K2 activity. However, InsP7, which is generated by InsP6K2, can compete with Akt for PH domain binding. Consequently, InsP7 can inhibit Akt phosphorylation. Our results suggest that InsP6K2 is activated in the spinal cord of patients with ALS and may play an important role in ALS by inducing cell death mechanisms via Akt, CK2, and HSP90 pathways.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Tadayuki Satoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Susumu Takekoshi
- Department of Clinical Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| | - Ban Mihara
- Department of Neurology, Mihara Memorial Hospital, Gunma, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
50
|
Lima Filho ACM, França A, Florentino RM, Dos Santos ML, de Oliveira Lemos F, Missiaggia DG, Fonseca RC, Gustavo Oliveira A, Ananthanarayanan M, Guerra MT, de Castro Fonseca M, Vidigal PVT, Lima CX, Nathanson MH, Fatima Leite M. Inositol 1,4,5-trisphosphate receptor type 3 plays a protective role in hepatocytes during hepatic ischemia-reperfusion injury. Cell Calcium 2020; 91:102264. [PMID: 32957029 DOI: 10.1016/j.ceca.2020.102264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/02/2023]
Abstract
Hepatic ischemia-reperfusion injury is seen in a variety of clinical conditions, including hepatic thrombosis, systemic hypotension, and liver transplantation. Calcium (Ca2+) signaling mediates several pathophysiological processes in the liver, but it is not known whether and how intracellular Ca2+ channels are involved in the hepatocellular events secondary to ischemia-reperfusion. Using an animal model of hepatic ischemia-reperfusion injury, we observed a progressive increase in expression of the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular Ca2+ channel that is not normally expressed in healthy hepatocytes. ITPR3 expression was upregulated, at least in part, by a combination of demethylation of the ITPR3 promoter region and the increased transcriptional activity of the nuclear factor of activated T-cells (NFAT). Additionally, expression of pro-inflammatory interleukins and necrotic surface area were less pronounced in livers of control animals compared to liver-specific ITPR3 KO mice subjected to hepatic damage. Corroborating these findings, ITPR3 expression and activation of NFAT were observed in hepatocytes of liver biopsies from patients who underwent liver ischemia caused by thrombosis after organ transplant. Together, these results are consistent with the idea that ITPR3 expression in hepatocytes plays a protective role during hepatic injury induced by ischemia-reperfusion.
Collapse
Affiliation(s)
| | - Andressa França
- Department of Molecular Medicine, Federal University of Minas Gerais (UFMG), MG, Brazil.
| | - Rodrigo M Florentino
- Department of Biophysics and Physiology, Federal University of Minas Gerais (UFMG), MG, Brazil.
| | | | | | | | | | - André Gustavo Oliveira
- Department of Biophysics and Physiology, Federal University of Minas Gerais (UFMG), MG, Brazil.
| | | | - Mateus T Guerra
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, CT, United States.
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, SP, Brazil.
| | | | - Cristiano Xavier Lima
- Department of Surgery, Medicine School of Federal University of Minas Gerais (UFMG), MG, United States.
| | - Michael H Nathanson
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, CT, United States.
| | - M Fatima Leite
- Department of Biophysics and Physiology, Federal University of Minas Gerais (UFMG), MG, Brazil.
| |
Collapse
|