1
|
Badizadegan K, Thompson KM. Characterization of environmental and clinical surveillance inputs to support prospective integrated modeling of the polio endgame. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004168. [PMID: 39919149 PMCID: PMC11805368 DOI: 10.1371/journal.pgph.0004168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
National, regional, and global poliovirus surveillance needs continue to expand and evolve. The 1988 global resolution to eradicate polio necessitated the creation and support for a global poliovirus surveillance system able to identify poliovirus transmission anywhere and everywhere. Clinical surveillance of patients that present with acute flaccid paralysis (AFP) became an essential tool, and the need for standardized laboratory methods to detect polioviruses isolated from stool samples of AFP patients led to the development of the Global Poliovirus Laboratory Network (GPLN) in 1990. Relatively recently, the GPLN expanded to include environmental surveillance to obtain additional information about poliovirus transmission in some geographies and to increase confidence about the absence of poliovirus transmission after successful eradication and/or the cessation of use of live-attenuated oral poliovirus vaccines (OPVs). Historical polio eradication strategic plans anticipated that successful global poliovirus eradication would lead to reduced requirements for financial investments for a poliovirus-specific surveillance system, and consequent transition of capacity and resources into integrated national disease surveillance systems. However, given the state of the polio endgame with ongoing transmission in several geographies, current global strategic plans include poliovirus-specific surveillance for the foreseeable future. In addition, the development and expansion of genetic testing technologies create new opportunities for poliovirus surveillance system designs. The expected growth (instead of decline) of poliovirus surveillance needs as of 2024, as well as innovations in laboratory technologies and expansion wastewater sampling, raise questions about the tradeoffs of different options and the future of poliovirus surveillance. This descriptive review of poliovirus surveillance evidence as of late 2024 aims to provide national, regional, and global decision makers with an understanding of prospective tradeoffs and uncertainties and to support prospective assumptions relevant for integrated policy, poliovirus transmission, and economic modeling for 2024-2035.
Collapse
|
2
|
Badizadegan ND, Wassilak SGF, Estívariz CF, Wiesen E, Burns CC, Bolu O, Thompson KM. Increasing Population Immunity Prior to Globally-Coordinated Cessation of Bivalent Oral Poliovirus Vaccine (bOPV). Pathogens 2024; 13:804. [PMID: 39338995 PMCID: PMC11435063 DOI: 10.3390/pathogens13090804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
In 2022, global poliovirus modeling suggested that coordinated cessation of bivalent oral poliovirus vaccine (bOPV, containing Sabin-strain types 1 and 3) in 2027 would likely increase the risks of outbreaks and expected paralytic cases caused by circulating vaccine-derived polioviruses (cVDPVs), particularly type 1. The analysis did not include the implementation of planned, preventive supplemental immunization activities (pSIAs) with bOPV to achieve and maintain higher population immunity for types 1 and 3 prior to bOPV cessation. We reviewed prior published OPV cessation modeling studies to support bOPV cessation planning. We applied an integrated global poliovirus transmission and OPV evolution model after updating assumptions to reflect the epidemiology, immunization, and polio eradication plans through the end of 2023. We explored the effects of bOPV cessation in 2027 with and without additional bOPV pSIAs prior to 2027. Increasing population immunity for types 1 and 3 with bOPV pSIAs (i.e., intensification) could substantially reduce the expected global risks of experiencing cVDPV outbreaks and the number of expected polio cases both before and after bOPV cessation. We identified the need for substantial increases in overall bOPV coverage prior to bOPV cessation to achieve a high probability of successful bOPV cessation.
Collapse
Affiliation(s)
| | - Steven G. F. Wassilak
- Global Immunization Division, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Concepción F. Estívariz
- Global Immunization Division, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Eric Wiesen
- Global Immunization Division, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Cara C. Burns
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Omotayo Bolu
- Global Immunization Division, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
3
|
Thompson KM, Badizadegan K. Review of Poliovirus Transmission and Economic Modeling to Support Global Polio Eradication: 2020-2024. Pathogens 2024; 13:435. [PMID: 38921733 PMCID: PMC11206708 DOI: 10.3390/pathogens13060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Continued investment in the development and application of mathematical models of poliovirus transmission, economics, and risks leads to their use in support of polio endgame strategy development and risk management policies. This study complements an earlier review covering the period 2000-2019 and discusses the evolution of studies published since 2020 by modeling groups supported by the Global Polio Eradication Initiative (GPEI) partners and others. We systematically review modeling papers published in English in peer-reviewed journals from 2020-2024.25 that focus on poliovirus transmission and health economic analyses. In spite of the long-anticipated end of poliovirus transmission and the GPEI sunset, which would lead to the end of its support for modeling, we find that the number of modeling groups supported by GPEI partners doubled and the rate of their publications increased. Modeling continued to play a role in supporting GPEI and national/regional policies, but changes in polio eradication governance, decentralized management and decision-making, and increased heterogeneity in modeling approaches and findings decreased the overall impact of modeling results. Meanwhile, the failure of the 2016 globally coordinated cessation of type 2 oral poliovirus vaccine use for preventive immunization and the introduction of new poliovirus vaccines and formulation, increased the complexity and uncertainty of poliovirus transmission and economic models and policy recommendations during this time.
Collapse
|
4
|
Thompson KM, Kalkowska DA, Kidd SE, Burns CC, Badizadegan K. Trade-offs of different poliovirus vaccine options for outbreak response in the United States and other countries that only use inactivated poliovirus vaccine (IPV) in routine immunization. Vaccine 2024; 42:819-827. [PMID: 38218668 PMCID: PMC10947589 DOI: 10.1016/j.vaccine.2023.12.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Delays in achieving polio eradication have led to ongoing risks of poliovirus importations that may cause outbreaks in polio-free countries. Because of the low, but non-zero risk of paralysis with oral poliovirus vaccines (OPVs), countries that achieve and maintain high national routine immunization coverage have increasingly shifted to exclusive use of inactivated poliovirus vaccine (IPV) for all preventive immunizations. However, immunization coverage within countries varies, with under-vaccinated subpopulations potentially able to sustain transmission of imported polioviruses and experience local outbreaks. Due to its cost, ease-of-use, and ability to induce mucosal immunity, using OPV as an outbreak control measure offers a more cost-effective option in countries in which OPV remains in use. However, recent polio outbreaks in IPV-only countries raise questions about whether and when IPV use for outbreak response may fail to stop poliovirus transmission and what consequences may follow from using OPV for outbreak response in these countries. We systematically reviewed the literature to identify modeling studies that explored the use of IPV for outbreak response in IPV-only countries. In addition, applying a model of the 2022 type 2 poliovirus outbreak in New York, we characterized the implications of using different OPV formulations for outbreak response instead of IPV. We also explored the hypothetical scenario of the same outbreak except for type 1 poliovirus instead of type 2. We find that using IPV for outbreak response will likely only stop outbreaks for polioviruses of relatively low transmission potential in countries with very high overall immunization coverage, seasonal transmission dynamics, and only if IPV immunization interventions reach some unvaccinated individuals. Using OPV for outbreak response in IPV-only countries poses substantial risks and challenges that require careful consideration, but may represent an option to consider for some outbreaks in some populations depending on the properties of the available vaccines and coverage attainable.
Collapse
Affiliation(s)
| | | | - Sarah E Kidd
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Kalkowska DA, Wiesen E, Wassilak SGF, Burns CC, Pallansch MA, Badizadegan K, Thompson KM. Worst-case scenarios: Modeling uncontrolled type 2 polio transmission. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:379-389. [PMID: 37344376 PMCID: PMC10733542 DOI: 10.1111/risa.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
In May 2016, the Global Polio Eradication Initiative (GPEI) coordinated the cessation of all use of type 2 oral poliovirus vaccine (OPV2), except for emergency outbreak response. Since then, paralytic polio cases caused by type 2 vaccine-derived polioviruses now exceed 3,000 cases reported by 39 countries. In 2022 (as of April 25, 2023), 20 countries reported detection of cases and nine other countries reported environmental surveillance detection, but no reported cases. Recent development of a genetically modified novel type 2 OPV (nOPV2) may help curb the generation of neurovirulent vaccine-derived strains; its use since 2021 under Emergency Use Listing is limited to outbreak response activities. Prior modeling studies showed that the expected trajectory for global type 2 viruses does not appear headed toward eradication, even with the best possible properties of nOPV2 assuming current outbreak response performance. Continued persistence of type 2 poliovirus transmission exposes the world to the risks of potentially high-consequence events such as the importation of virus into high-transmission areas of India or Bangladesh. Building on prior polio endgame modeling and assuming current national and GPEI outbreak response performance, we show no probability of successfully eradicating type 2 polioviruses in the near term regardless of vaccine choice. We also demonstrate the possible worst-case scenarios could result in rapid expansion of paralytic cases and preclude the goal of permanently ending all cases of poliomyelitis in the foreseeable future. Avoiding such catastrophic scenarios will depend on the development of strategies that raise population immunity to type 2 polioviruses.
Collapse
Affiliation(s)
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
6
|
Mashal MT, Eltayeb D, Higgins-Steele A, El Sheikh IS, Abid NS, Shukla H, Machado L, Jafari H. Effective partnership and in-country resource mobilization in Sudan for cVDPV2 outbreak response amid multiple emergencies in 2020-2021. BMC Public Health 2024; 24:235. [PMID: 38243167 PMCID: PMC10799533 DOI: 10.1186/s12889-023-15675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/13/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND During 2020 and immediately prior to the COVID-19 pandemic, Sudan was experiencing multiple emergencies including violence, seasonal flooding, and vector-borne disease outbreaks. After more than ten years since its last case of wild poliovirus, Sudan declared a circulating vaccine-derived poliovirus type 2 (cVDPV2) outbreak on 9 August 2020. METHODS cVDPV2 outbreak response data and programme documents of the Federal Ministry of Health and WHO were reviewed. Surveillance data was verified through WHO-recommended procedures for detecting and characterizing polioviruses from stool and sewage samples collected from acute flaccid paralysis (AFP) cases and the environment. RESULTS This outbreak in Sudan led to a total of 58 confirmed cases of cVDPV2 from 15 of the 18 states. Two nationwide vaccination campaigns were held to increase immunity of children under-five against poliovirus type 2. Funding challenges were overcome by intense additional resource mobilization from in-country sources. The funding gap was bridged from domestic resources (49%) sourced through GPEI partners, and in-country humanitarian funding mechanisms. CONCLUSIONS During an outbreak response and challenge of funding shortfall, mobilizing in-country resources is possible through coordinated approaches, regular communication with partners, disaggregation of needs, and matching in-kind and financial support to fill gaps. A cVDPV2 outbreak requires a fast, resourced, and quality response to stop virus circulation.
Collapse
Affiliation(s)
- Mohammed Taufiq Mashal
- Polio and Immunization Programmes, Sudan Country Office, World Health Organization, Khartoum, 2234, Sudan
| | | | - Ariel Higgins-Steele
- Polio Eradication Department, Eastern Mediterranean Regional Office, World Health Organization, P.O. Box 811547, Mohammad Jamjoum Street, Ministry of Interior Building #5, Amman, 11181, Jordan.
| | | | - Ni'ma Saeed Abid
- World Health Organization, Sudan Country Office, Khartoum, 2234, Sudan
| | - Hemant Shukla
- Polio Eradication Department, Eastern Mediterranean Regional Office, World Health Organization, P.O. Box 811547, Mohammad Jamjoum Street, Ministry of Interior Building #5, Amman, 11181, Jordan
| | - Leonard Machado
- Polio Eradication Department, Eastern Mediterranean Regional Office, World Health Organization, P.O. Box 811547, Mohammad Jamjoum Street, Ministry of Interior Building #5, Amman, 11181, Jordan
| | - Hamid Jafari
- Polio Eradication Department, Eastern Mediterranean Regional Office, World Health Organization, P.O. Box 811547, Mohammad Jamjoum Street, Ministry of Interior Building #5, Amman, 11181, Jordan
| |
Collapse
|
7
|
Thompson KM, Badizadegan K. Evolution of global polio eradication strategies: targets, vaccines, and supplemental immunization activities (SIAs). Expert Rev Vaccines 2024; 23:597-613. [PMID: 38813792 DOI: 10.1080/14760584.2024.2361060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Despite multiple revisions of targets and timelines in polio eradication plans since 1988, including changes in supplemental immunization activities (SIAs) that increase immunity above routine immunization (RI) coverage, poliovirus transmission continues as of 2024. METHODS We reviewed polio eradication plans and Global Polio Eradication Initiative (GPEI) annual reports and budgets to characterize key phases of polio eradication, the evolution of poliovirus vaccines, and the role of SIAs. We used polio epidemiology to provide context for successes and failures and updated prior modeling to show the contribution of SIAs in achieving and maintaining low polio incidence compared to expected incidence for the counterfactual of RI only. RESULTS We identified multiple phases of polio eradication that included shifts in targets and timelines and the introduction of different poliovirus vaccines, which influenced polio epidemiology. Notable shifts occurred in GPEI investments in SIAs since 2001, particularly since 2016. Modeling results suggest that SIAs play(ed) a key role in increasing (and maintaining) high population immunity to levels required to eradicate poliovirus transmission globally. CONCLUSIONS Shifts in polio eradication strategy and poliovirus vaccine usage in SIAs provide important context for understanding polio epidemiology, delayed achievement of polio eradication milestones, and complexity of the polio endgame.
Collapse
|
8
|
Badizadegan K, Kalkowska DA, Thompson KM. Health Economic Analysis of Antiviral Drugs in the Global Polio Eradication Endgame. Med Decis Making 2023; 43:850-862. [PMID: 37577803 PMCID: PMC10680042 DOI: 10.1177/0272989x231191127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Polio antiviral drugs (PAVDs) may provide a critical tool in the eradication endgame by stopping poliovirus infections in immunodeficient individuals who may not clear the virus without therapeutic intervention. Although prolonged/chronic poliovirus excreters are rare, they represent a source of poliovirus reintroduction into the general population. Prior studies that assumed the successful cessation of all oral poliovirus vaccine (OPV) use estimated the potential upper bound of the incremental net benefits (INBs) of resource investments in research and development of PAVDs. However, delays in polio eradication, OPV cessation, and the development of PAVDs necessitate an updated economic analysis to reevaluate the costs and benefits of further investments in PAVDs. METHODS Using a global integrated model of polio transmission, immunity, vaccine dynamics, risks, and economics, we explore the risks of reintroduction of polio transmission due to immunodeficiency-related vaccine-derived poliovirus (iVDPV) excreters and reevaluate the upper bound of the INBs of PAVDs. RESULTS Under the current conditions, for which the use of OPV will likely continue for the foreseeable future, even with successful eradication of type 1 wild poliovirus by the end of 2023 and continued use of Sabin OPV for outbreak response, we estimate an upper bound INB of 60 million US$2019. With >100 million US$2019 already invested in PAVD development and with the introduction of novel OPVs that are less likely to revert to neurovirulence, our analysis suggests the expected INBs of PAVDs would not offset their costs. CONCLUSIONS While PAVDs could play an important role in the polio endgame, their expected economic benefits drop with ongoing OPV use and poliovirus transmissions. However, stakeholders may pursue the development of PAVDs as a desired product regardless of their economic benefits.HighlightsWhile polio antiviral drugs could play an important role in the polio endgame, their expected economic benefits continue to drop with delays in polio eradication and the continued use of oral poliovirus vaccines.The incremental net benefits of investments in polio antiviral drug development and screening for immunodeficiency-related circulating polioviruses are small.Limited global resources are better spent on increasing global population immunity to polioviruses to stop and prevent poliovirus transmission.
Collapse
|
9
|
Wong W, Gauld J, Famulare M. From vaccine to pathogen: Modeling Sabin 2 vaccine virus reversion and evolutionary epidemiology in Matlab, Bangladesh. Virus Evol 2023; 9:vead044. [PMID: 37692896 PMCID: PMC10491863 DOI: 10.1093/ve/vead044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023] Open
Abstract
The oral poliovirus vaccines (OPVs) are one of the most effective disease eradication tools in public health. However, the OPV strains are genetically unstable and can cause outbreaks of circulating, vaccine-derived Type 2 poliovirus (cVDPV2) that are clinically indistinguishable from wild poliovirus (WPV) outbreaks. Here, we developed a Sabin 2 reversion model that simulates the reversion of Sabin 2 to reacquire a WPV-like phenotype based on the clinical differences in shedding duration and infectiousness between individuals vaccinated with Sabin 2 and those infected with WPV. Genetic reversion is informed by a canonical reversion pathway defined by three gatekeeper mutations (A481G, U2909C, and U398C) and the accumulation of deleterious nonsynonymous mutations. Our model captures essential aspects of both phenotypic and molecular evolution and simulates transmission using a multiscale transmission model that consolidates the relationships among immunity, susceptibility, and transmission risk. Despite rapid Sabin 2 attenuation reversal, we show that the emergence of a revertant virus does not guarantee a cVDPV2 outbreak. When simulating outbreaks in Matlab, Bangladesh, we found that cVDPV2 outbreaks are most likely in areas with low population-level immunity and poor sanitation. In Matlab, our model predicted that declining immunity against Type 2 poliovirus following the cessation of routine OPV vaccination was not enough to promote cVDPV2 emergence. However, cVDPV2 emergencedepended on the average viral exposure dose per contact, which was modeled as a combination of the viral concentration per fecal gram and the average fecal-oral dose per contact. These results suggest that cVDPV2 emergence risk can be mitigated by reducing the amount of infectious fecal material individuals are exposed to. Thus, a combined strategy of assessing and improving sanitation levels in conjunction with high-coverage vaccination campaigns could limit the future cVDPV2 emergence.
Collapse
Affiliation(s)
- Wesley Wong
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, SPH 1, Boston, MA 02115, USA
| | - Jillian Gauld
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, 500 5th Ave N, Seattle, WA 98109, USA
| | - Michael Famulare
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, 500 5th Ave N, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Kalkowska DA, Badizadegan K, Thompson KM. Outbreak management strategies for cocirculation of multiple poliovirus types. Vaccine 2023:S0264-410X(23)00429-2. [PMID: 37121801 DOI: 10.1016/j.vaccine.2023.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Prior modeling studies showed that current outbreak management strategies are unlikely to stop outbreaks caused by type 1 wild polioviruses (WPV1) or circulating vaccine-derived polioviruses (cVDPVs) in many areas, and suggested increased risks of outbreaks with cocirculation of more than one type of poliovirus. The surge of type 2 poliovirus transmission that began in 2019 and continues to date, in conjunction with decreases in preventive supplemental immunization activities (SIAs) for poliovirus types 1 and 3, has led to the emergence of several countries with cocirculation of more than one type of poliovirus. Response to these emerging cocirculation events is theoretically straightforward, but the different formulations, types, and inventories of oral poliovirus vaccines (OPVs) available for outbreak response present challenging practical questions. In order to demonstrate the implications of using different vaccine options and outbreak campaign strategies, we applied a transmission model to a hypothetical population with conditions similar to populations currently experiencing outbreaks of cVDPVs of both types 1 and 2. Our results suggest prevention of the largest number of paralytic cases occurs when using (1) trivalent OPV (tOPV) (or coadministering OPV formulations for all three types) until one poliovirus outbreak type dies out, followed by (2) using a type-specific OPV until the remaining poliovirus outbreak type also dies out. Using tOPV first offers a lower overall expected cost, but this option may be limited by the willingness to expose populations to type 2 Sabin OPV strains. For strategies that use type 2 novel OPV (nOPV2) concurrently administered with bivalent OPV (bOPV, containing types 1 and 3 OPV) emerges as a leading option, but questions remain about feasibility, logistics, type-specific take rates, and coadministration costs.
Collapse
|
11
|
Kalkowska DA, Wassilak SGF, Wiesen E, F Estivariz C, Burns CC, Badizadegan K, Thompson KM. Complexity of options related to restarting oral poliovirus vaccine (OPV) in national immunization programs after OPV cessation. Gates Open Res 2023; 7:55. [PMID: 37547300 PMCID: PMC10403636 DOI: 10.12688/gatesopenres.14511.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 08/08/2023] Open
Abstract
Background: The polio eradication endgame continues to increase in complexity. With polio cases caused by wild poliovirus type 1 and circulating vaccine-derived polioviruses of all three types (1, 2 and 3) reported in 2022, the number, formulation, and use of poliovirus vaccines poses challenges for national immunization programs and vaccine suppliers. Prior poliovirus transmission modeling of globally-coordinated type-specific cessation of oral poliovirus vaccine (OPV) assumed creation of Sabin monovalent OPV (mOPV) stockpiles for emergencies and explored the potential need to restart OPV if the world reached a specified cumulative threshold number of cases after OPV cessation. Methods: We document the actual experience of type 2 OPV (OPV2) cessation and reconsider prior modeling assumptions related to OPV restart. We develop updated decision trees of national immunization options for poliovirus vaccines considering different possibilities for OPV restart. Results: While OPV restart represented a hypothetical situation for risk management and contingency planning to support the 2013-2018 Global Polio Eradication Initiative (GPEI) Strategic Plan, the actual epidemiological experience since OPV2 cessation raises questions about what, if any, trigger(s) could lead to restarting the use of OPV2 in routine immunization and/or plans for potential future restart of type 1 and 3 OPV after their respective cessation. The emergency use listing of a genetically stabilized novel type 2 OPV (nOPV2) and continued evaluation of nOPV for types 1 and/or 3 add further complexity by increasing the combinations of possible OPV formulations for OPV restart. Conclusions: Expanding on a 2019 discussion of the logistical challenges and implications of restarting OPV, we find a complex structure of the many options and many issues related to OPV restart decisions and policies as of early 2023. We anticipate many challenges for forecasting prospective vaccine supply needs during the polio endgame due to increasing potential combinations of poliovirus vaccine choices.
Collapse
Affiliation(s)
| | - Steven GF Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Concepcion F Estivariz
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, USA, Atlanta, GA, USA
| | | | | |
Collapse
|
12
|
Kalkowska DA, Pallansch MA, Wassilak SGF, Cochi SL, Thompson KM. Serotype 2 oral poliovirus vaccine (OPV2) choices and the consequences of delaying outbreak response. Vaccine 2023; 41 Suppl 1:A136-A141. [PMID: 33994237 PMCID: PMC11027208 DOI: 10.1016/j.vaccine.2021.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
The Global Polio Eradication Initiative (GPEI) faces substantial challenges with managing outbreaks of serotype 2 circulating vaccine-derived polioviruses (cVDPV2s) in 2021. A full five years after the globally coordinated removal of serotype 2 oral poliovirus vaccine (OPV2) from trivalent oral poliovirus vaccine (tOPV) for use in national immunization programs, cVDPV2s did not die out. Since OPV2 cessation, responses to outbreaks caused by cVDPV2s mainly used serotype 2 monovalent OPV (mOPV2) from a stockpile. A novel vaccine developed from a genetically stabilized OPV2 strain (nOPV2) promises to potentially facilitate outbreak response with lower prospective risks, although its availability and properties in the field remain uncertain. Using an established global poliovirus transmission model and building on a related analysis that characterized the impacts of disruptions in GPEI activities caused by the COVID-19 pandemic, we explore the implications of trade-offs associated with delaying outbreak response to avoid using mOPV2 by waiting for nOPV2 availability (or equivalently, delayed responses waiting for national validation of meeting the criteria for nOPV2 initial use). Consistent with prior modeling, responding as quickly as possible with available mOPV2 promises to reduce the expected burden of disease in the outbreak population and to reduce the chances for the outbreak virus to spread to other areas. Delaying cVDPV2 outbreak response (e.g., modeled as no response January-June 2021) to wait for nOPV2 can considerably increase the total expected cases (e.g., by as many as 1,300 cVDPV2 cases in the African region during 2021-2023) and increases the likelihood of triggering the need to restart widescale preventive use of an OPV2-containing vaccine in national immunization programs that use OPV. Countries should respond to any cVDPV2 outbreaks quickly with rounds that achieve high coverage using any available OPV2, and plan to use nOPV2, if needed, once it becomes widely available based on evidence that it is as effective but safer in populations than mOPV2.
Collapse
Affiliation(s)
| | - Mark A Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G F Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen L Cochi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Kalkowska DA, Wassilak SGF, Pallansch MA, Burns CC, Wiesen E, Durry E, Badizadegan K, Thompson KM. Outbreak response strategies with type 2-containing oral poliovirus vaccines. Vaccine 2023; 41 Suppl 1:A142-A152. [PMID: 36402659 PMCID: PMC10284582 DOI: 10.1016/j.vaccine.2022.10.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Despite exhaustive and fully-financed plans to manage the risks of globally coordinated cessation of oral poliovirus vaccine (OPV) containing type 2 (OPV2) prior to 2016, as of 2022, extensive, continued transmission of circulating vaccine-derived polioviruses (cVDPVs) type 2 (cVDPV2) remains. Notably, cumulative cases caused by cVDPV2 since 2016 now exceed 2,500. Earlier analyses explored the implications of using different vaccine formulations to respond to cVDPV2 outbreaks and demonstrated how different properties of novel OPV2 (nOPV2) might affect its performance compared to Sabin monovalent OPV2 (mOPV2). These prior analyses used fixed assumptions for how outbreak response would occur, but outbreak response implementation can change. We update an existing global poliovirus transmission model to explore different options for responding with different vaccines and assumptions about scope, delays, immunization intensity, target age groups, and number of rounds. Our findings suggest that in order to successfully stop all cVDPV2 transmission globally, countries and the Global Polio Eradication Initiative need to address the deficiencies in emergency outbreak response policy and implementation. The polio program must urgently act to substantially reduce response time, target larger populations - particularly in high transmission areas - and achieve high coverage with improved access to under-vaccinated subpopulations. Given the limited supplies of nOPV2 at the present, using mOPV2 intensively immediately, followed by nOPV2 intensively if needed and when sufficient quantities become available, substantially increases the probability of ending cVDPV2 transmission globally.
Collapse
Affiliation(s)
| | - Steven G F Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elias Durry
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
14
|
Thompson KM, Kalkowska DA, Badizadegan K. Oral polio vaccine stockpile modeling: insights from recent experience. Expert Rev Vaccines 2023; 22:813-825. [PMID: 37747090 DOI: 10.1080/14760584.2023.2263096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Achieving polio eradication requires ensuring the delivery of sufficient supplies of the right vaccines to the right places at the right times. Despite large global markets, decades of use, and large quantity purchases of polio vaccines by national immunization programs and the Global Polio Eradication Initiative (GPEI), forecasting demand for the oral poliovirus vaccine (OPV) stockpile remains challenging. RESEARCH DESIGN AND METHODS We review OPV stockpile experience compared to pre-2016 expectations, actual demand, and changes in GPEI policies related to the procurement and use of type 2 OPV vaccines. We use available population and immunization schedule data to explore polio vaccine market segmentation, and its role in polio vaccine demand forecasting. RESULTS We find that substantial challenges remain in forecasting polio vaccine needs, mainly due to (1) deviations in implementation of plans that formed the basis for earlier forecasts, (2) lack of alignment of tactics/objectives among GPEI partners and other key stakeholders, (3) financing, and (4) uncertainty about development and licensure timelines for new polio vaccines and their field performance characteristics. CONCLUSIONS Mismatches between supply and demand over time have led to negative consequences associated with both oversupply and undersupply, as well as excess costs and potentially preventable cases.
Collapse
|
15
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
16
|
Thompson KM, Kalkowska DA, Badizadegan K. Looking back at prospective modeling of outbreak response strategies for managing global type 2 oral poliovirus vaccine (OPV2) cessation. Front Public Health 2023; 11:1098419. [PMID: 37033033 PMCID: PMC10080024 DOI: 10.3389/fpubh.2023.1098419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Detection of poliovirus transmission and ongoing oral poliovirus vaccine (OPV) use continue to delay poliomyelitis eradication. In 2016, the Global Polio Eradication Initiative (GPEI) coordinated global cessation of type 2 OPV (OPV2) for preventive immunization and limited its use to emergency outbreak response. In 2019, GPEI partners requested restart of some Sabin OPV2 production and also accelerated the development of a genetically modified novel OPV2 vaccine (nOPV2) that promised greater genetic stability than monovalent Sabin OPV2 (mOPV2). Methods We reviewed integrated risk, economic, and global poliovirus transmission modeling performed before OPV2 cessation, which recommended multiple risk management strategies to increase the chances of successfully ending all transmission of type 2 live polioviruses. Following OPV2 cessation, strategies implemented by countries and the GPEI deviated from model recommended risk management strategies. Complementing other modeling that explores prospective outbreak response options for improving outcomes for the current polio endgame trajectory, in this study we roll back the clock to 2017 and explore counterfactual trajectories that the polio endgame could have followed if GPEI had: (1) managed risks differently after OPV2 cessation and/or (2) developed nOPV2 before and used it exclusively for outbreak response after OPV2 cessation. Results The implementation of the 2016 model-based recommended outbreak response strategies could have ended (and could still substantially improve the probability of ending) type 2 poliovirus transmission. Outbreak response performance observed since 2016 would not have been expected to achieve OPV2 cessation with high confidence, even with the availability of nOPV2 prior to the 2016 OPV2 cessation. Discussion As implemented, the 2016 OPV2 cessation failed to stop type 2 transmission. While nOPV2 offers benefits of lower risk of seeding additional outbreaks, its reduced secondary spread relative to mOPV2 may imply relatively higher coverage needed for nOPV2 than mOPV2 to stop outbreaks.
Collapse
|
17
|
Thompson KM, Kalkowska DA, Badizadegan K. Health economic analysis of vaccine options for the polio eradication endgame: 2022-2036. Expert Rev Vaccines 2022; 21:1667-1674. [PMID: 36154436 PMCID: PMC10116513 DOI: 10.1080/14760584.2022.2128108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND : Multiple vaccine options are available for polio prevention and risk management. Integrated global risk, economic, and poliovirus transmission modeling provides a tool to explore the dynamics of ending all use of one or more poliovirus vaccines to simplify the polio eradication endgame. RESEARCH DESIGN AND METHODS : With global reported cases of poliomyelitis trending higher since 2016, we apply an integrated global model to simulate prospective vaccine policies and strategies for OPV-using countries starting with initial conditions that correspond to the epidemiological poliovirus transmission situation at the beginning of 2022. RESULTS : Abruptly ending all OPV use in 2023 and relying only on IPV to prevent paralysis with current routine immunization coverage would lead to expected reestablished endemic transmission of poliovirus types 1 and 2, and approximately 150,000 expected cases of poliomyelitis per year. Alternatively, if OPV-using countries restart trivalent OPV (tOPV) use for all immunization activities and end IPV use, the model shows the lowest anticipated annual polio cases and lowest costs. CONCLUSIONS : Poor global risk management and coordination of OPV cessation remain a critical failure mode for the polio endgame, and national and global decision makers face difficult choices due to multiple available polio vaccine options and immunization strategies.
Collapse
|
18
|
Al-Qassimi MA, Al Amad M, Anam L, Almoayed K, Al-Dar A, Ezzadeen F. Circulating vaccine derived polio virus type 1 outbreak, Saadah governorate, Yemen, 2020. BMC Infect Dis 2022; 22:414. [PMID: 35488227 PMCID: PMC9052627 DOI: 10.1186/s12879-022-07397-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background Yemen has faced one of the worst humanitarian crises in the world since the start of the war in 2015. In 2020; 30 Vaccine Derived Polio Virus type 1 (VDPV1) isolates were detected in Saadah governorate. The aims are to characterize the outbreak and address the gaps predisposing the emergence and circulation of VDPV1 in Saadah governorate, Yemen. Method A retrospective descriptive study of confirmed cases of VDPV1 between January and December 2020 was performed. Surveillance staff collected data from patient cases, contacts, as well as stool specimens that shipped to WHO accredited polio labs. Data of population immunity was also reviewed. The difference in days between the date of sample collection, shipment, and receiving lab result was used to calculate the average of delayed days for lab confirmation. Results From January to December 2020, a total of 114 cases of acute flaccid paralysis (AFP) were reported from 87% (13/15) districts, and cVDPV1 was confirmed among 26% (30) AFP cases. 75% (21) were < 5 years, 73% (20) had zero doses of Oral Polio Vaccine (OPV). The first confirmed case (3%) was from Saadah city, with paralysis onset at the end of January 2020 followed by 5 cases (17%) in March from another four districts, 8 cases (27%) in April, and 13 (43%) up to December 2020 were from the same five districts in addition to 3 (10%) form three new districts. The lab confirmation was received after an average of 126 days (71–196) from sample collection. The isolates differ from the Sabin 1 type by 17- 30 VP1 nucleotides (nt) and were linked to VDPV1 with 13 (nt) divergence that isolated in July 2020 from stool specimens collected before one year from contacts of an inadequate AFP case reported from Sahar district. Conclusion The new emerging VDPV1 was retrospectively confirmed after one year of sample collection from Sahar district. Delayed lab confirmation, as well as the response and low immunization profile of children against polio, were the main predisposing factors for cVDPV1 outbreak. This outbreak highlights the need to maintain regular biweekly shipments to referral polio labs in the short-term, and the exploration of other options in the longer-term to enable the Yemen National Lab to fully process national samples itself. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07397-0.
Collapse
Affiliation(s)
| | - Mohammed Al Amad
- Field Epidemiology Training Program, Yemen Ministry of Public Health and Population, Sana'a, Yemen
| | - Labiba Anam
- Field Epidemiology Training Program, Yemen Ministry of Public Health and Population, Sana'a, Yemen
| | - Khaled Almoayed
- General Directorate for Diseases Control and Surveillance, Yemen Ministry of Public Health and Population, Sana'a, Yemen
| | - Ahmed Al-Dar
- National Polio Surveillance, Yemen Ministry of Public Health and Population, Sana'a, Yemen
| | - Faten Ezzadeen
- National Polio Surveillance, Yemen Ministry of Public Health and Population, Sana'a, Yemen
| |
Collapse
|
19
|
Thompson KM. Polio eradication: what kind of world do we want? THE LANCET INFECTIOUS DISEASES 2022; 22:161-163. [PMID: 34648732 PMCID: PMC8504921 DOI: 10.1016/s1473-3099(21)00458-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
|
20
|
Thompson KM, Badizadegan K. Health economic analyses of secondary vaccine effects: a systematic review and policy insights. Expert Rev Vaccines 2021; 21:297-312. [PMID: 34927511 DOI: 10.1080/14760584.2022.2017287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION : Numerous analyses demonstrate substantial health economic impacts of primary vaccine effects (preventing or mitigating clinical manifestations of the diseases they target), but vaccines may also be associated with secondary effects, previously known as non-specific, heterologous, or off-target effects. AREAS COVERED : We define key concepts to distinguish primary and secondary vaccine effects for health economic analyses, summarized terminology used in different fields, and perform a systematic review of health economic analyses focused on secondary vaccine effects (SVEs). EXPERT OPINION : Health economists integrate evidence from multiple fields, which often use incomplete or inconsistent definitions. Like regulators and policy makers, health economists require high-quality evidence of specific effects. Consistent with the limited evidence on mechanisms of action for SVEs, the associated health economic literature remains highly limited, with 4 studies identified by our systematic review. The lack of specific and well-controlled evidence that supports quantification of specific SVEs limits the consideration of these effects in vaccine research, development, regulatory, and recommendation decisions and health economic analyses.
Collapse
|
21
|
Mbaeyi C, Moran T, Wadood Z, Ather F, Sykes E, Nikulin J, Al Safadi M, Stehling-Ariza T, Zomahoun L, Ismaili A, Abourshaid N, Asghar H, Korukluoglu G, Duizer E, Ehrhardt D, Burns CC, Sharaf M. Stopping a polio outbreak in the midst of war: Lessons from Syria. Vaccine 2021; 39:3717-3723. [PMID: 34053791 DOI: 10.1016/j.vaccine.2021.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Outbreaks of circulating vaccine-derived polioviruses (cVDPVs) pose a threat to the eventual eradication of all polioviruses. In 2017, an outbreak of cVDPV type 2 (cVDPV2) occurred in the midst of a war in Syria. We describe vaccination-based risk factors for and the successful response to the outbreak. METHODS We performed a descriptive analysis of cVDPV2 cases and key indicators of poliovirus surveillance and vaccination activities during 2016-2018. In the absence of reliable subnational coverage data, we used the caregiver-reported vaccination status of children with non-polio acute flaccid paralysis (AFP) as a proxy for vaccination coverage. We then estimated the relative odds of being unvaccinated against polio, comparing children in areas affected by the outbreak to children in other parts of Syria in order to establish the presence of poliovirus immunity gaps in outbreak affected areas. FINDINGS A total of 74 cVDPV2 cases were reported, with paralysis onset ranging from 3 March to 21 September 2017. All but three cases were reported from Deir-ez-Zor governorate and 84% had received < 3 doses of oral poliovirus vaccine (OPV). After adjusting for age and sex, non-polio AFP case-patients aged 6-59 months in outbreak-affected areas had 2.5 (95% CI: 1.1-5.7) increased odds of being unvaccinated with OPV compared with non-polio AFP case-patients in the same age group in other parts of Syria. Three outbreak response rounds of monovalent OPV type 2 (mOPV2) vaccination were conducted, with governorate-level coverage mostly exceeding 80%. INTERPRETATION Significant declines in both national and subnational polio vaccination coverage, precipitated by war and a humanitarian crisis, led to a cVDPV2 outbreak in Syria that was successfully contained following three rounds of mOPV2 vaccination.
Collapse
Affiliation(s)
- Chukwuma Mbaeyi
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA.
| | - Thomas Moran
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Zubair Wadood
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Fazal Ather
- Middle East and North Africa Office, United Nations Children's Fund, Abdulqader Al-Abed Street, Building No. 15, Tla'a Al-Ali, Amman, Jordan
| | - Emma Sykes
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Joanna Nikulin
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Mohammad Al Safadi
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Tasha Stehling-Ariza
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Laurel Zomahoun
- World Health Organization Headquarters, Avenue Appia 20, 1202 Geneva, Switzerland
| | - Abdelkarim Ismaili
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Nidal Abourshaid
- Syria Country Office, United Nations Children's Fund, East Mazzeh, Al Shafiee St., Damascus, Syria
| | - Humayun Asghar
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| | - Gulay Korukluoglu
- Public Health Institutions of Turkey, Adnan Saygun Cad. No. 55, F Blok 06100 Sihhiye, Ankara, Turkey
| | - Erwin Duizer
- National Polio Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Derek Ehrhardt
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Cara C Burns
- United States Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Magdi Sharaf
- World Health Organization, Regional Office for the Eastern Mediterranean, Mohammad Jamjoum Street, Ministry of Interior Circle Building No. 5, P.O. Box 811547, Amman 11181, Jordan
| |
Collapse
|
22
|
Thompson KM, Kalkowska DA, Badizadegan K. Hypothetical emergence of poliovirus in 2020: part 2. exploration of the potential role of vaccines in control and eradication. Expert Rev Vaccines 2021; 20:449-460. [PMID: 33599178 DOI: 10.1080/14760584.2021.1891889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The emergence of human pathogens with pandemic potential motivates rapid vaccine development. We explore the role of vaccines in control and eradication of a novel emerging pathogen. METHODS We hypothetically simulate emergence of a novel wild poliovirus (nWPV) in 2020 assuming an immunologically naïve population. Assuming different nonpharmaceutical interventions (NPIs), we explore the impacts of vaccines resembling serotype-specific oral poliovirus vaccine (OPV), novel OPV (nOPV), or inactivated poliovirus vaccine (IPV). RESULTS Vaccines most effectively change the trajectory of an emerging disease when disseminated early, rapidly, and widely in the background of ongoing strict NPIs, unless the NPIs successfully eradicate the emerging pathogen before it establishes endemic transmission. Without strict NPIs, vaccines primarily reduce the burden of disease in the remaining susceptible individuals and in new birth cohorts. Live virus vaccines that effectively compete with the nWPVs can reduce disease burdens more than other vaccines. When relaxation of existing NPIs occurs at the time of vaccine introduction, nWPV transmission can counterintuitively increase in the short term. CONCLUSIONS Vaccines can increase the probability of disease eradication in the context of strict NPIs. However, successful eradication will depend on specific immunization strategies used and a global commitment to eradication.
Collapse
|
23
|
Shulman LM, Weil M, Somech R, Stauber T, Indenbaum V, Rahav G, Mendelson E, Sofer D. Underperformed and Underreported Testing for Persistent Oropharyngeal Poliovirus Infections in Primary Immune Deficient Patients-Risk for Reemergence of Polioviruses. J Pediatric Infect Dis Soc 2021; 10:326-333. [PMID: 32538431 DOI: 10.1093/jpids/piaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Individuals with primary immune deficiencies (PIDs) may excrete poliovirus for extended periods and remain a major reservoir for polio after eradication. Poliovirus can spread by fecal-oral or oral-oral transmission. In middle- and high-income countries, oral-oral transmission may be more prevalent than fecal-oral transmission of polioviruses where PIDs patients survive longer. Our aim was to determine the prevalence of prolonged or persistent oropharyngeal poliovirus infections in PIDs. METHODS We performed a literature search for reports of prolonged (excreting poliovirus for ≥6 months and ≤5 years) or persistent (excreting poliovirus for >5 years) poliovirus infections in PIDs. RESULTS There were 140 PID cases with prolonged or persistent poliovirus infections. All had poliovirus-positive stools. Testing of oropharyngeal mucosa was only reported for 6 cases, 4 of which were positive. Molecular analyses demonstrated independent evolution of poliovirus in the gut and oropharyngeal mucosa in 2 cases. Seven PIDs had multiple lineages of the same poliovirus serotype in stools without information about polioviruses in oropharyngeal mucosa. CONCLUSIONS Testing for persistence of poliovirus in oropharyngeal mucosa of PID patients is rare, with virus recovered in 4 of 5 cases in whom stools were positive. Multiple lineages or serotypes in 7 additional PID cases may indicate separate foci of infection, some of which might be in oropharyngeal mucosa. We recommend screening throat swabs in addition to stools for poliovirus in PID patients. Containment protocols for reducing both oral-oral and fecal-oral transmission from PID patients must be formulated for hospitals and community settings.
Collapse
Affiliation(s)
- Lester M Shulman
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Victoria Indenbaum
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Galia Rahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
24
|
Kalkowska DA, Thompson KM. Modeling Undetected Live Poliovirus Circulation After Apparent Interruption of Transmission: Borno and Yobe in Northeast Nigeria. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:303-311. [PMID: 32348634 PMCID: PMC7814396 DOI: 10.1111/risa.13486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 05/04/2023]
Abstract
Silent circulation of polioviruses complicates the polio endgame by affecting the confidence with which we can certify successful eradication (i.e., the end of transmission everywhere) given a long enough period of time with active surveillance and no observed detections. The Global Polio Eradication Initiative continues to use three years without observing paralytic cases caused by wild poliovirus (WPV) infection as an indication of sufficient confidence that poliovirus circulation stopped (assuming good surveillance). Prior modeling demonstrated the complexities of real populations and the imperfect nature of real surveillance systems, and highlighted the need for modeling the specific last reservoirs of undetected circulation. We use a poliovirus transmission model developed for Borno and Yobe to characterize the probability of undetected poliovirus circulation once apparent die-out occurs (i.e., in the absence of epidemiological signals) for WPV serotypes 1 and 3. Specifically, we convert the model to a stochastic form that supports estimates of confidence about no circulation given the time since the last detected event and considering the quality of both immunization and surveillance activities for these states. We find high confidence of no WPV3 circulation, and increasing confidence of WPV1 circulation, which we anticipate will imply high confidence in the absence of any detected cases in mid-2020 so long as Borno and Yobe maintain similar or achieve improved conditions. Our results confirm that gaps in poliovirus surveillance or reaching elimination with borderline sufficient population immunity can substantially increase the time to reach a high confidence about no undetected poliovirus transmission.
Collapse
Affiliation(s)
| | - Kimberly M. Thompson
- Kid Risk, Inc., 7512 Dr. Phillips Blvd. #50-523 Orlando, FL 32819, USA
- Corresponding author:
| |
Collapse
|
25
|
Thompson KM, Kalkowska DA, Badizadegan K. No Role for Reintroducing OPV into the United States with Respect to Controlling COVID-19 [Response to the letter to the Editor by Chumakov et al.]. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:389-392. [PMID: 33590518 PMCID: PMC8014295 DOI: 10.1111/risa.13671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
|
26
|
Thompson KM, Kalkowska DA. An Updated Economic Analysis of the Global Polio Eradication Initiative. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:393-406. [PMID: 33590521 PMCID: PMC7894996 DOI: 10.1111/risa.13665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 05/20/2023]
Abstract
Despite a strong global commitment, polio eradication efforts continue now more than 30 years after the 1988 World Health Assembly resolution that established the Global Polio Eradication Initiative (GPEI), and 20 years after the original target of the year 2000. Prior health economic analyses estimated incremental net benefits of the GPEI of 40-50 billion in 2008 U.S. dollars (US$2008, equivalent to 48-59 billion US$2019), assuming the achievement of polio eradication by 2012. Given the delays in achieving polio eradication and increased costs, we performed an updated economic analysis of the GPEI using an updated integrated global model, and considering the GPEI trajectory as of the beginning of 2020. Applying similar methods and assuming eradication achievement in 2023, we estimate incremental net benefits of the GPEI of 28 billion US$2019, which falls below the prior estimate. Delays in achieving polio eradication combined with the widescale introduction of relatively expensive inactivated poliovirus vaccine significantly increased the costs of the GPEI and make it less cost-effective, although the GPEI continues to yield expected incremental net benefits at the global level when considered over the time horizon of 1988-2029. The overall health and financial benefits of the GPEI will depend on whether and when the GPEI can achieve its goals, when eradication occurs, the valuation method applied, and the path dependence of the actions taken. Reduced expected incremental net benefits of the GPEI and the substantial economic impacts of the COVID-19 pandemic pose large financial risks for the GPEI.
Collapse
|
27
|
Kalkowska DA, Pallansch MA, Cochi SL, Kovacs SD, Wassilak SGF, Thompson KM. Updated Characterization of Post-OPV Cessation Risks: Lessons from 2019 Serotype 2 Outbreaks and Implications for the Probability of OPV Restart. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:320-328. [PMID: 32632925 PMCID: PMC7814395 DOI: 10.1111/risa.13555] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
After the globally coordinated cessation of any serotype of oral poliovirus vaccine (OPV), some risks remain from undetected, existing homotypic OPV-related transmission and/or restarting transmission due to several possible reintroduction risks. The Global Polio Eradication Initiative (GPEI) coordinated global cessation of serotype 2-containing OPV (OPV2) in 2016. Following OPV2 cessation, the GPEI and countries implemented activities to withdraw all the remaining trivalent OPV, which contains all three poliovirus serotypes (i.e., 1, 2, and 3), from the supply chain and replace it with bivalent OPV (containing only serotypes 1 and 3). However, as of early 2020, monovalent OPV2 use for outbreak response continues in many countries. In addition, outbreaks observed in 2019 demonstrated evidence of different types of risks than previously modeled. We briefly review the 2019 epidemiological experience with serotype 2 live poliovirus outbreaks and propose a new risk for unexpected OPV introduction for inclusion in global modeling of OPV cessation. Using an updated model of global poliovirus transmission and OPV evolution with and without consideration of this new risk, we explore the implications of the current global situation with respect to the likely need to restart preventive use of OPV2 in OPV-using countries. Simulation results without this new risk suggest OPV2 restart will likely need to occur (81% of 100 iterations) to manage the polio endgame based on the GPEI performance to date with existing vaccine tools, and with the new risk of unexpected OPV introduction the expected OPV2 restart probability increases to 89%. Contingency planning requires new OPV2 bulk production, including genetically stabilized OPV2 strains.
Collapse
Affiliation(s)
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory, Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen L. Cochi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie D. Kovacs
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
28
|
Thompson KM, Kalkowska DA, Badizadegan K. A Health Economic Analysis for Oral Poliovirus Vaccine to Prevent COVID-19 in the United States. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:376-386. [PMID: 33084153 PMCID: PMC7983986 DOI: 10.1111/risa.13614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 05/20/2023]
Abstract
COVID-19 led to a recent high-profile proposal to reintroduce oral poliovirus vaccine (OPV) in the United States (U.S.), initially in clinical trials, but potentially for widespread and repeated use. We explore logistical challenges related to U.S. OPV administration in 2020, review the literature related to nonspecific effects of OPV to induce innate immunity, and model the health and economic implications of the proposal. The costs of reintroducing a single OPV dose to 331 million Americans would exceed $4.4 billion. Giving a dose of bivalent OPV to the entire U.S. population would lead to an expected 40 identifiable cases of vaccine-associated paralytic polio, with young Americans at the highest risk. Reintroducing any OPV use in the U.S. poses a risk of restarting transmission of OPV-related viruses and could lead to new infections in immunocompromised individuals with B-cell related primary immunodeficiencies that could lead to later cases of paralysis. Due to the lack of a currently licensed OPV in the U.S., the decision to administer OPV to Americans for nonspecific immunological effects would require purchasing limited global OPV supplies that could impact polio eradication efforts. Health economic modeling suggests no role for reintroducing OPV into the U.S. with respect to responding to COVID-19. Countries that currently use OPV experience fundamentally different risks, costs, and benefits than the U.S. Successful global polio eradication will depend on sufficient OPV supplies, achieving and maintaining high OPV coverage in OPV-using countries, and effective global OPV cessation and containment in all countries, including the U.S.
Collapse
|
29
|
Thompson KM, Kalkowska DA. Reflections on Modeling Poliovirus Transmission and the Polio Eradication Endgame. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:229-247. [PMID: 32339327 PMCID: PMC7983882 DOI: 10.1111/risa.13484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
The Global Polio Eradication Initiative (GPEI) partners engaged modelers during the past nearly 20 years to support strategy and policy discussions and decisions, and to provide estimates of the risks, costs, and benefits of different options for managing the polio endgame. Limited efforts to date provided insights related to the validation of the models used for GPEI strategy and policy decisions. However, modeling results only influenced decisions in some cases, with other factors carrying more weight in many key decisions. In addition, the results from multiple modeling groups do not always agree, which supports selection of some strategies and/or policies counter to the recommendations from some modelers but not others. This analysis reflects on our modeling, and summarizes our premises and recommendations, the outcomes of these recommendations, and the implications of key limitations of models with respect to polio endgame strategy. We briefly review the current state of the GPEI given epidemiological experience as of early 2020, which includes failure of the GPEI to deliver on the objectives of its 2013-2018 strategic plan despite full financial support. Looking ahead, we provide context for why the GPEI strategy of global oral poliovirus vaccine (OPV) cessation to end all cases of poliomyelitis looks infeasible given the current state of the GPEI and the failure to successfully stop all transmission of serotype 2 live polioviruses within four years of the April-May 2016 coordinated cessation of serotype 2 OPV use in routine immunization.
Collapse
|
30
|
Kalkowska DA, Pallansch MA, F. Wassilak SG, Cochi SL, Thompson KM. Global Transmission of Live Polioviruses: Updated Dynamic Modeling of the Polio Endgame. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:248-265. [PMID: 31960533 PMCID: PMC7787008 DOI: 10.1111/risa.13447] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 05/05/2023]
Abstract
Nearly 20 years after the year 2000 target for global wild poliovirus (WPV) eradication, live polioviruses continue to circulate with all three serotypes posing challenges for the polio endgame. We updated a global differential equation-based poliovirus transmission and stochastic risk model to include programmatic and epidemiological experience through January 2020. We used the model to explore the likely dynamics of poliovirus transmission for 2019-2023, which coincides with a new Global Polio Eradication Initiative Strategic Plan. The model stratifies the global population into 72 blocks, each containing 10 subpopulations of approximately 10.7 million people. Exported viruses go into subpopulations within the same block and within groups of blocks that represent large preferentially mixing geographical areas (e.g., continents). We assign representative World Bank income levels to the blocks along with polio immunization and transmission assumptions, which capture some of the heterogeneity across countries while still focusing on global poliovirus transmission dynamics. We also updated estimates of reintroduction risks using available evidence. The updated model characterizes transmission dynamics and resulting polio cases consistent with the evidence through 2019. Based on recent epidemiological experience and prospective immunization assumptions for the 2019-2023 Strategic Plan, the updated model does not show successful eradication of serotype 1 WPV by 2023 or successful cessation of oral poliovirus vaccine serotype 2-related viruses.
Collapse
Affiliation(s)
| | - Mark A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen L. Cochi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
31
|
Thompson KM, Kalkowska DA. Potential Future Use, Costs, and Value of Poliovirus Vaccines. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:349-363. [PMID: 32645244 PMCID: PMC7984393 DOI: 10.1111/risa.13557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
Countries face different poliovirus risks, which imply different benefits associated with continued and future use of oral poliovirus vaccine (OPV) and/or inactivated poliovirus vaccine (IPV). With the Global Polio Eradication Initiative (GPEI) continuing to extend its timeline for ending the transmission of all wild polioviruses and to introduce new poliovirus vaccines, the polio vaccine supply chain continues to expand in complexity. The increased complexity leads to significant uncertainty about supply and costs. Notably, the strategy of phased OPV cessation of all three serotypes to stop all future incidence of poliomyelitis depends on successfully stopping the transmission of all wild polioviruses. Countries also face challenges associated with responding to any outbreaks that occur after OPV cessation, because stopping transmission of such outbreaks requires reintroducing the use of the stopped OPV in most countries. National immunization program leaders will likely consider differences in their risks and willingness-to-pay for risk reduction as they evaluate their investments in current and future polio vaccination. Information about the costs and benefits of future poliovirus vaccines, and discussion of the complex situation that currently exists, should prove useful to national, regional, and global decisionmakers and support health economic modeling. Delays in achieving polio eradication combined with increasing costs of poliovirus vaccines continue to increase financial risks for the GPEI.
Collapse
|
32
|
|
33
|
Thompson KM, Kalkowska DA. Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication. Expert Rev Vaccines 2020; 19:661-686. [PMID: 32741232 PMCID: PMC7497282 DOI: 10.1080/14760584.2020.1791093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Over the last 20 years (2000-2019) the partners of the Global Polio Eradication Initiative (GPEI) invested in the development and application of mathematical models of poliovirus transmission as well as economics, policy, and risk analyses of polio endgame risk management options, including policies related to poliovirus vaccine use during the polio endgame. AREAS COVERED This review provides a historical record of the polio studies published by the three modeling groups that primarily performed the bulk of this work. This review also systematically evaluates the polio transmission and health economic modeling papers published in English in peer-reviewed journals from 2000 to 2019, highlights differences in approaches and methods, shows the geographic coverage of the transmission modeling performed, identified common themes, and discusses instances of similar or conflicting insights or recommendations. EXPERT OPINION Polio modeling performed during the last 20 years substantially impacted polio vaccine choices, immunization policies, and the polio eradication pathway. As the polio endgame continues, national preferences for polio vaccine formulations and immunization strategies will likely continue to change. Future modeling will likely provide important insights about their cost-effectiveness and their relative benefits with respect to controlling polio and potentially achieving and maintaining eradication.
Collapse
|
34
|
Popova AY, Ezhlova EB, Melnikova AA, Morozova NS, Mikhailova YM, Ivanova OE, Kozlovskaya LI, Eremeeva TP, Gmyl AP, Korotkova EA, Baykova OY, Krasota AY, Ivanenko АV, Yarmolskaya MS, Kovalchuk IV, Romanenko EN. Measures counteracting 2016 spread of vaccine-derived poliomyelitis virus type 2 in Russian Federation. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020. [DOI: 10.15789/2220-7619-mcs-1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since April 2016 after global cessation of using trivalent oral poliovirus vaccine (tOPV) and switch to bivalent OPV consisting of polioviruses types 1 and 3 (the “switch”), any isolation of type 2 poliovirus has been regarded as an event of extreme importance requiring investigation, risk assessment and decision making. In 2016, 2 cases of isolated vaccine-derived poliovirus type 2 from healthy children was registered in Russia. Our study was aimed at on the assessing a risk of further spread of vaccine-derived poliovirus type 2 and provide measures for preventing its further spread based on epidemiological investigation and genetic characteristics of the isolated viruses. The cases were revealed within the surveillance program for poliomyelitis and acute flaccid paralysis syndrome conducted in the Russian Federation. The laboratory investigation was carried out in accordance with the algorithm adopted in the Russian Federation and recommended by the WHO standards: virus isolation on RD, L20B and Hep2C cell cultures, identification in the neutralization reaction, intratyping differentiation by using RT-PCR in real-time mode, sequencing of the poliovirus genome fragments encoding the VP1 protein. A risk assessment for spread of vaccine-derived poliovirus type 2 was performed in accordance with the WHO recommendations. There was uncovered a genetic relationship between virus strains isolated in September and December from unvaccinated Moscow resident boy (1 year old) who arrived from the Chechen Republic and from unvaccinated girl resident of the Chechen Republic (1 year old) with impaired humoral and cellular immunity. The virus strains were found to bear 10 and 13 genomic nucleotide substitutions, respectively, at the site encoding the VP1 protein compared with the Sabin type 2 vaccine strain that allowed to classify them as vaccine-derived polioviruses. In particular, both virus strains were shown to originate from the type 2 strain presented in the tOPV used shortly before the “switch”. Epidemiological investigation revealed family ties and probable contact between both children in the same premises. A series of organizational and vaccination measures was undertaken, as well as polio surveillance was strengthened in the region. No new type 2 polioviruses of vaccine origin were detected in the territory of the Chechen Republic during 18-month monitoring follow-up. The risk assessment of spread for vaccine-derived poliovirus type 2 in a region, Russian Federation as well as cross-boundary spread identified it as “low,” requiring no use of type 2 monovalent OPV. Such experience for countermeasures may be taken into account to oppose the risks before and after the global certification for poliomyelitis eradication.
Collapse
|
35
|
Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, Xia N. Recent Progress on the Versatility of Virus-Like Particles. Vaccines (Basel) 2020; 8:vaccines8010139. [PMID: 32244935 PMCID: PMC7157238 DOI: 10.3390/vaccines8010139] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-like particles (VLPs) are multimeric nanostructures composed of one or more structural proteins of a virus in the absence of genetic material. Having similar morphology to natural viruses but lacking any pathogenicity or infectivity, VLPs have gradually become a safe substitute for inactivated or attenuated vaccines. VLPs can achieve tissue-specific targeting and complete and effective cell penetration. With highly ordered epitope repeats, VLPs have excellent immunogenicity and can induce strong cellular and humoral immune responses. In addition, as a type of nanocarrier, VLPs can be used to display antigenic epitopes or deliver small molecules. VLPs have thus become powerful tools for vaccinology and biomedical research. This review highlights the versatility of VLPs in antigen presentation, drug delivery, and vaccine technology.
Collapse
Affiliation(s)
- Ciying Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Xinlin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qin Xu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Zhiping Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Jie Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| |
Collapse
|
36
|
Kalkowska DA, Pallansch MA, Thompson KM. Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters. Epidemiol Infect 2019; 147:e295. [PMID: 31647050 PMCID: PMC6813650 DOI: 10.1017/s095026881900181x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Conditions and evidence continue to evolve related to the prediction of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters, which affect assumptions related to forecasting risks and evaluating potential risk management options. Multiple recent reviews provided information about individual iVDPV excreters, but inconsistencies among the reviews raise some challenges. This analysis revisits the available evidence related to iVDPV excreters and provides updated model estimates that can support future risk management decisions. The results suggest that the prevalence of iVDPV excreters remains highly uncertain and variable, but generally confirms the importance of managing the risks associated with iVDPV excreters throughout the polio endgame in the context of successful cessation of all oral poliovirus vaccine use.
Collapse
Affiliation(s)
| | - M. A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
37
|
Mohanty MC, Madkaikar MR, Desai M, Aluri J, Varose SY, Taur P, Sharma DK, Nalavade UP, Rane SV, Gupta M, Shabarish S, Dalvi A, Deshpande JM. Natural Clearance of Prolonged VDPV Infection in a Child With Primary Immunodeficiency Disorder. Front Immunol 2019; 10:1567. [PMID: 31396204 PMCID: PMC6663979 DOI: 10.3389/fimmu.2019.01567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of immunodeficiency-associated vaccine-derived polioviruses (iVDPV) from children with primary immunodeficiency disorders poses a threat to the eradication program. Herein, we report a patient with severe combined immunodeficiency (SCID), identified as a prolonged serotype 3 iVDPV (iVDPV3) excreter with 13 VDPV3 isolates and a maximum of 10.33% nucleotide divergence, who abruptly cleared infection after a period of 2 years. Occurrence of an episode of norovirus diarrhea associated with increased activated oligoclonal cytotoxic T cells, inverse CD4:CD8 ratio, significantly elevated pro-inflammatory cytokines, and subsequent clearance of the poliovirus suggests a possible link between inflammatory diarrheal illness and clearance of iVDPV. Our findings suggest that in the absence of B cells and sufficiently activated T/NK cells, macrophages and other T cells may produce auto-inflammatory conditions by TLR/RLR ligands expressed by previous/ongoing bacterial or viral infections to clear VDPV infection. The study highlights the need to screen all the patients with combined immunodeficiency for poliovirus excretion and intermittent follow-up of their immune parameters if found positive, in order to manage the risk of iVDPV excretion in the polio eradication endgame strategy.
Collapse
Affiliation(s)
- Madhu Chhanda Mohanty
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Mumbai, India
| | - Manisha Ranjan Madkaikar
- ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, KEM Hospital, Mumbai, India
| | - Mukesh Desai
- Bai Jer Bai Wadia Childrens Hospital, Mumbai, India
| | - Jahnavi Aluri
- ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, KEM Hospital, Mumbai, India
| | - Swapnil Yashwant Varose
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Mumbai, India
| | - Prasad Taur
- Bai Jer Bai Wadia Childrens Hospital, Mumbai, India
| | - Deepa Kailash Sharma
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Mumbai, India
| | - Uma Prajwal Nalavade
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Mumbai, India
| | - Sneha Vijay Rane
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Mumbai, India
| | - Maya Gupta
- ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, KEM Hospital, Mumbai, India
| | - Snehal Shabarish
- ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, KEM Hospital, Mumbai, India
| | - Aparna Dalvi
- ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, KEM Hospital, Mumbai, India
| | - Jagadish Mohanrao Deshpande
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
38
|
|
39
|
Kalkowska DA, Duintjer Tebbens RJ, Pallansch MA, Thompson KM. Modeling Undetected Live Poliovirus Circulation After Apparent Interruption of Transmission: Pakistan and Afghanistan. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:402-413. [PMID: 30296340 PMCID: PMC7842182 DOI: 10.1111/risa.13214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Since most poliovirus infections occur with no paralytic symptoms, the possibility of silent circulation complicates the confirmation of the end of poliovirus transmission. Based on empirical field experience and theoretical modeling results, the Global Polio Eradication Initiative identified three years without observing paralytic cases from wild polioviruses with good acute flaccid paralysis surveillance as an indication of sufficient confidence that poliovirus circulation stopped. The complexities of real populations and the imperfect nature of real surveillance systems subsequently demonstrated the importance of specific modeling for areas at high risk of undetected circulation, resulting in varying periods of time required to obtain the same level of confidence about no undetected circulation. Using a poliovirus transmission model that accounts for variability in transmissibility and neurovirulence for different poliovirus serotypes and characterizes country-specific factors (e.g., vaccination and surveillance activities, demographics) related to wild and vaccine-derived poliovirus transmission in Pakistan and Afghanistan, we consider the probability of undetected poliovirus circulation for those countries once apparent die-out occurs (i.e., in the absence of any epidemiological signals). We find that gaps in poliovirus surveillance or reaching elimination with borderline sufficient population immunity could significantly increase the time to reach high confidence about interruption of live poliovirus transmission, such that the path taken to achieve and maintain poliovirus elimination matters. Pakistan and Afghanistan will need to sustain high-quality surveillance for polioviruses after apparent interruption of transmission and recognize that as efforts to identify cases or circulating live polioviruses decrease, the risks of undetected circulation increase and significantly delay the global polio endgame.
Collapse
Affiliation(s)
| | | | - Mark A Pallansch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
40
|
Duintjer Tebbens RJ, Diop OM, Pallansch MA, Oberste MS, Thompson KM. Characterising the costs of the Global Polio Laboratory Network: a survey-based analysis. BMJ Open 2019; 9:e023290. [PMID: 30670511 PMCID: PMC6347914 DOI: 10.1136/bmjopen-2018-023290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To characterise the costs, including for environmental surveillance (ES), of the Global Polio Laboratory Network (GPLN) that provides laboratory support to the Global Polio Eradication Initiative (GPEI). DESIGN AND PARTICIPANTS We conducted a survey of the network across 92 countries of the 146 GPLN laboratories plus three non-GPLN laboratories that concentrate environmental samples to collect information about their activities, characteristics and costs during 2016. We estimate the total costs using regression of reported responses and complementing the findings with GPEI data. RESULTS We received responses from 132 (89%) of the 149 laboratories, with variable response rates for individual questions. We estimate that processing samples of patients with acute flaccid paralysis leads to total costs of approximately $28 million per year (2016 US$) based on extrapolation from reported costs of $16 million, of which 61% were supported by internal (national) funds. Fifty-nine (45%) of the 132 responding laboratories reported supporting ES and we estimate an additional $5.3 million of recurring costs for ES activities performed by the laboratories. The reported costs do not include an estimated additional $10 million of annual global and regional costs to coordinate and support the GPLN. On average, the staff supported by funding for polio in the responding laboratories spent 30% of their time on non-polio activities. We estimate total costs for laboratory support of approximately $43 million (note that this estimate does not include any field or other non-laboratory costs of polio surveillance). CONCLUSIONS Although countries contribute significantly to the GPLN financing, many laboratories currently depend on GPEI funds, and these laboratories also support the laboratory component of surveillance activities for other diseases. Sustaining critical global surveillance for polioviruses and transitioning support for other disease programmes will require continued significant funding after polio certification.
Collapse
Affiliation(s)
| | - Ousmane M Diop
- Global Polio Eradication Initiative, World Health Organization, Geneva, Switzerland
| | - Mark A Pallansch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
41
|
Nkwogu L, Shuaib F, Braka F, Mkanda P, Banda R, Korir C, Bawa S, Mele S, Saidu M, Mshelia H, Shettima A, Tegegne SG, Yehualashet YG, Adamu U, Nsubuga P, Vaz RG, Wondimagegnehu A. Impact of engaging security personnel on access and polio immunization outcomes in security-inaccessible areas in Borno state, Nigeria. BMC Public Health 2018; 18:1311. [PMID: 30541498 PMCID: PMC6292175 DOI: 10.1186/s12889-018-6188-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nigeria was polio free for almost 2 years but, with the recent liberation of areas under the captivity of insurgents, there has been a resurgence of polio cases. For several years, these inaccessible areas did not have access to vaccination due to activities of Bokoharam, resulting in a concentration of a cohort of unvaccinated children that served as a polio sanctuary. This article describes the processes of engagement of security personnel to access security-compromised areas and the impact on immunization outcomes. METHODS We assessed routine program data from January 2016 to July 2016 in security-inaccessible areas and we evaluated the effectiveness of engaging security personnel to improve access to settlements in security-compromised Local Government Areas (LGAs) of Borno state. We thereafter evaluated the effects of this engagement on postcampaign evaluation indicators. RESULTS From 15 LGAs accessible to vaccination teams in January 2016, there was a 47% increase in July 2016. The number of wards increased from 131 in January to 162 in July 2016, while the settlement numbers increased from 6050 in January to 6548 in July 2016. The average percentage of missed children decreased from 8% in January to 3% in July 2016, while the number of LGAs with ≥ 80% coverage increased from 85% in January to 100% in July 2016. CONCLUSION The engagement of security personnel in immunization activities led to an improved access and improvement in postcampaign evaluation indicators in security-compromised areas of a Nigerian state. This approach promises to be an impactful innovation in reaching settlements in security-compromised areas.
Collapse
Affiliation(s)
- Loveday Nkwogu
- World Health Organization Country Representative's Office, Abuja, Nigeria.
| | - Faisal Shuaib
- National Primary Health Care Development Agency, Abuja, Nigeria
| | - Fiona Braka
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | - Pascal Mkanda
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | - Richard Banda
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | - Charles Korir
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | - Samuel Bawa
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | - Sule Mele
- Borno State Primary Health Care Development Agency, Maiduguri, Nigeria
| | - Mahmud Saidu
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | - Hyelni Mshelia
- Borno State Primary Health Care Development Agency, Maiduguri, Nigeria
| | - Aliyu Shettima
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | - Sisay G Tegegne
- World Health Organization Country Representative's Office, Abuja, Nigeria
| | | | - Usman Adamu
- National Primary Health Care Development Agency, Abuja, Nigeria
| | - Peter Nsubuga
- Global Public Health Care Solutions, Atlanta, GA, USA
| | - Rui G Vaz
- World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
42
|
Green MS, LeDuc J, Cohen D, Franz DR. Confronting the threat of bioterrorism: realities, challenges, and defensive strategies. THE LANCET. INFECTIOUS DISEASES 2018; 19:e2-e13. [PMID: 30340981 PMCID: PMC7106434 DOI: 10.1016/s1473-3099(18)30298-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023]
Abstract
Global terrorism is a rapidly growing threat to world security, and increases the risk of bioterrorism. In this Review, we discuss the potential threat of bioterrorism, agents that could be exploited, and recent developments in technologies and policy for detecting and controlling epidemics that have been initiated intentionally. The local and international response to infectious disease epidemics, such as the severe acute respiratory syndrome and west African Ebola virus epidemic, revealed serious shortcomings which bioterrorists might exploit when intentionally initiating an epidemic. Development of new vaccines and antimicrobial therapies remains a priority, including the need to expedite clinical trials using new methodologies. Better means to protect health-care workers operating in dangerous environments are also needed, particularly in areas with poor infrastructure. New and improved approaches should be developed for surveillance, early detection, response, effective isolation of patients, control of the movement of potentially infected people, and risk communication. Access to dangerous pathogens should be appropriately regulated, without reducing progress in the development of countermeasures. We conclude that preparedness for intentional outbreaks has the important added value of strengthening preparedness for natural epidemics, and vice versa.
Collapse
Affiliation(s)
- Manfred S Green
- School of Public Health, University of Haifa, Haifa, Israel.
| | - James LeDuc
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Cohen
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - David R Franz
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
43
|
Duintjer Tebbens RJ, Kalkowsa DA, Thompson KM. Poliovirus containment risks and their management. Future Virol 2018; 13:617-628. [PMID: 33598044 PMCID: PMC7885305 DOI: 10.2217/fvl-2018-0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
Abstract
AIM Assess risks related to breaches of poliovirus containment. METHOD Using a dynamic transmission model, we explore the variability among different populations in the vulnerability to poliovirus containment breaches as population immunity to transmission declines after oral poliovirus vaccine (OPV) cessation. RESULTS Although using OPV instead of wild poliovirus (WPV) seed strains for inactivated poliovirus vaccine (IPV) production offers some expected risk reintroduction of live polioviruses from IPV manufacturing facilities, OPV seed strain releases may become a significant threat within 5-10 years of OPV cessation in areas most conducive to fecal-oral poliovirus transmission, regardless of IPV use. CONCLUSIONS Efforts to quantify the risks demonstrate the challenges associated with understanding and managing relatively low-probability and high-consequence containment failure events.
Collapse
|
44
|
Duintjer Tebbens RJ, Thompson KM. Polio endgame risks and the possibility of restarting the use of oral poliovirus vaccine. Expert Rev Vaccines 2018; 17:739-751. [PMID: 30056767 PMCID: PMC6168953 DOI: 10.1080/14760584.2018.1506333] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Ending all cases of poliomyelitis requires successful cessation of all oral poliovirus vaccine (OPV), but the Global Polio Eradication Initiative (GPEI) partners should consider the possibility of an OPV restart. AREAS COVERED We review the risks of continued live poliovirus transmission after OPV cessation and characterize events that led to OPV restart in a global model that focused on identifying optimal strategies for OPV cessation and the polio endgame. Numerous different types of events that occurred since the globally coordinated cessation of serotype 2-containing OPV in 2016 highlight the possibility of continued outbreaks after homotypic OPV cessation. Modeling suggests a high risk of uncontrolled outbreaks once more than around 5,000 homotypic polio cases occur after cessation of an OPV serotype, at which point restarting OPV would become necessary to protect most populations. Current efforts to sunset the GPEI and transition its responsibilities to national governments poses risks that may limit the ability to implement management strategies needed to minimize the probability of an OPV restart. EXPERT COMMENTARY OPV restart remains a real possibility, but risk management choices made by the GPEI partners and national governments can reduce the risks of this low-probability but high-consequence event.
Collapse
|
45
|
Duintjer Tebbens RJ, Pallansch MA, Cochi SL, Ehrhardt D, Farag N, Hadler S, Hampton LM, Martinez M, Wassilak SG, Thompson KM. Modeling Poliovirus Transmission in Pakistan and Afghanistan to Inform Vaccination Strategies in Undervaccinated Subpopulations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:1701-1717. [PMID: 29314143 PMCID: PMC7879700 DOI: 10.1111/risa.12962] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 05/11/2023]
Abstract
Due to security, access, and programmatic challenges in areas of Pakistan and Afghanistan, both countries continue to sustain indigenous wild poliovirus (WPV) transmission and threaten the success of global polio eradication and oral poliovirus vaccine (OPV) cessation. We fitted an existing differential-equation-based poliovirus transmission and OPV evolution model to Pakistan and Afghanistan using four subpopulations to characterize the well-vaccinated and undervaccinated subpopulations in each country. We explored retrospective and prospective scenarios for using inactivated poliovirus vaccine (IPV) in routine immunization or supplemental immunization activities (SIAs). The undervaccinated subpopulations sustain the circulation of serotype 1 WPV and serotype 2 circulating vaccine-derived poliovirus. We find a moderate impact of past IPV use on polio incidence and population immunity to transmission mainly due to (1) the boosting effect of IPV for individuals with preexisting immunity from a live poliovirus infection and (2) the effect of IPV-only on oropharyngeal transmission for individuals without preexisting immunity from a live poliovirus infection. Future IPV use may similarly yield moderate benefits, particularly if access to undervaccinated subpopulations dramatically improves. However, OPV provides a much greater impact on transmission and the incremental benefit of IPV in addition to OPV remains limited. This study suggests that despite the moderate effect of using IPV in SIAs, using OPV in SIAs remains the most effective means to stop transmission, while limited IPV resources should prioritize IPV use in routine immunization.
Collapse
Affiliation(s)
| | - Mark A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen L. Cochi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Derek Ehrhardt
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Noha Farag
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen Hadler
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lee M. Hampton
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maureen Martinez
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steve G.F Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
46
|
Shaghaghi M, Irannejad M, Abolhassani H, Shahmahmoodi S, Hamidieh AA, Soleyman-Jahi S, Yazdani R, Azizi G, Aghamohammadi A. Clearing Vaccine-Derived Poliovirus Infection Following Hematopoietic Stem Cell Transplantation: a Case Report and Review of Literature. J Clin Immunol 2018; 38:610-616. [PMID: 29948575 DOI: 10.1007/s10875-018-0521-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
The use of oral poliovirus vaccine in a worldwide scale has led to a 99.9% decrease in annual incidence of wild-type poliomyelitis and the eradication of serotype 2 poliovirus. However, the emergence of vaccine-derived polioviruses (VDPVs) is endangering the eradication program. Patients with combined immunodeficiencies are at increased risk of both vaccine-associated poliomyelitis and prolonged asymptomatic infection with immunodeficiency-associated VDPVs (iVDPVs). Herein, we present a severe combined immunodeficiency patient with prolonged and asymptomatic iVDPV infection. He continued to shed poliovirus during immunoglobulin replacement therapy and cleared the infection following successful hematopoietic stem cell transplantation (HSCT). To explain the efficiency of HSCT in clearing the infection, we reviewed the literature for all reports of HSCT in iVDPV-excreting patients and discussed novel ideas about the role of different immune mechanisms, including cell-mediated interactions, in mounting immune responses against poliovirus infections. This study could provide further insights into the immune mechanisms contributing to the clearance of enteroviral infections.
Collapse
Affiliation(s)
- Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mona Irannejad
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Soleyman-Jahi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Kalkowska DA, Duintjer Tebbens RJ, Thompson KM. Another look at silent circulation of poliovirus in small populations. Infect Dis Model 2018; 3:107-117. [PMID: 30839913 PMCID: PMC6326228 DOI: 10.1016/j.idm.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 06/01/2018] [Indexed: 11/26/2022] Open
Abstract
Background Silent circulation of polioviruses complicates the polio endgame and motivates analyses that explore the probability of undetected circulation for different scenarios. A recent analysis suggested a relatively high probability of unusually long silent circulation of polioviruses in small populations (defined as 10,000 people or smaller). Methods We independently replicated the simple, hypothetical model by Vallejo et al. (2017) and repeated their analyses to explore the model behavior, interpretation of the results, and implications of simplifying assumptions. Results We found a similar trend of increasing times between detected cases with increasing basic reproduction number (R0) and population size. However, we found substantially lower estimates of the probability of at least 3 years between successive polio cases than they reported, which appear more consistent with the prior literature. While small and isolated populations may sustain prolonged silent circulation, our reanalysis suggests that the existing rule of thumb of less than a 5% chance of 3 or more years of undetected circulation with perfect surveillance holds for most conditions of the model used by Vallejo et al. and most realistic conditions. Conclusions Avoiding gaps in surveillance remains critical to declaring wild poliovirus elimination with high confidence as soon as possible after the last detected poliovirus, but concern about transmission in small populations with adequate surveillance should not significantly change the criteria for the certification of wild polioviruses.
Collapse
Key Words
- AFP, acute flaccid paralysis
- CFP, case-free period
- CNC, confidence about no circulation
- CNCx%, time when the confidence about no circulation exceeds x%
- DEFP, detected-event-free period
- OPV, oral poliovirus vaccine
- POE, Probability of eradication
- Polio
- Silent circulation
- Small populations
- Stochastic modeling
- TBC, time between detected cases
- TUC, time of undetected circulation after the last detected-event
- TUCx%, xth percentile of the TUC
- WPV, wild poliovirus
Collapse
Affiliation(s)
| | | | - Kimberly M. Thompson
- Corresponding author. Kid Risk, Inc., 605 N. High St. #253, Columbus, OH 43215, USA.
| |
Collapse
|
48
|
Tebbens RJD, Thompson KM. Using integrated modeling to support the global eradication of vaccine-preventable diseases. SYSTEM DYNAMICS REVIEW 2018; 34:78-120. [PMID: 34552305 PMCID: PMC8455164 DOI: 10.1002/sdr.1589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/11/2018] [Indexed: 05/17/2023]
Abstract
The long-term management of global disease eradication initiatives involves numerous inherently dynamic processes, health and economic trade-offs, significant uncertainty and variability, rare events with big consequences, complex and inter-related decisions, and a requirement for cooperation among a large number of stakeholders. Over the course of more than 16 years of collaborative modeling efforts to support the Global Polio Eradication Initiative, we developed increasingly complex integrated system dynamics models that combined numerous analytical approaches, including differential equation-based modeling, risk and decision analysis, discrete-event and individual-based simulation, probabilistic uncertainty and sensitivity analysis, health economics, and optimization. We discuss the central role of systems thinking and system dynamics in the overall effort and the value of integrating different modeling approaches to appropriately address the trade-offs involved in some of the policy questions. We discuss practical challenges of integrating different analytical tools and we provide our perspective on the future of integrated modeling.
Collapse
|
49
|
Duintjer Tebbens RJ, Hampton LM, Thompson KM. Planning for globally coordinated cessation of bivalent oral poliovirus vaccine: risks of non-synchronous cessation and unauthorized oral poliovirus vaccine use. BMC Infect Dis 2018; 18:165. [PMID: 29631539 PMCID: PMC5892013 DOI: 10.1186/s12879-018-3074-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oral polio vaccine (OPV) containing attenuated serotype 2 polioviruses was globally withdrawn in 2016, and bivalent OPV (bOPV) containing attenuated serotype 1 and 3 polioviruses needs to be withdrawn after the certification of eradication of all wild polioviruses to eliminate future risks from vaccine-derived polioviruses (VDPVs). To minimize risks from VDPVs, the planning and implementation of bOPV withdrawal should build on the experience with withdrawing OPV containing serotype 2 polioviruses while taking into account similarities and differences between the three poliovirus serotypes. METHODS We explored the risks from (i) a failure to synchronize OPV cessation and (ii) unauthorized post-cessation OPV use for serotypes 1 and 3 in the context of globally-coordinated future bOPV cessation and compared the results to similar analyses for serotype 2 OPV cessation. RESULTS While the risks associated with a failure to synchronize cessation and unauthorized post-cessation OPV use appear to be substantially lower for serotype 3 polioviruses than for serotype 2 polioviruses, the risks for serotype 1 appear similar to those for serotype 2. Increasing population immunity to serotype 1 and 3 poliovirus transmission using pre-cessation bOPV supplemental immunization activities and inactivated poliovirus vaccine in routine immunization reduces the risks of circulating VDPVs associated with non-synchronized cessation or unauthorized OPV use. CONCLUSIONS The Global Polio Eradication Initiative should synchronize global bOPV cessation during a similar window of time as occurred for the global cessation of OPV containing serotype 2 polioviruses and should rigorously verify the absence of bOPV in immunization systems after its cessation.
Collapse
Affiliation(s)
| | - Lee M. Hampton
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | |
Collapse
|
50
|
Shaghaghi M, Soleyman-Jahi S, Abolhassani H, Yazdani R, Azizi G, Rezaei N, Barbouche MR, McKinlay MA, Aghamohammadi A. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 2018; 36:1711-1719. [PMID: 29478755 DOI: 10.1016/j.vaccine.2018.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Widespread administration of oral poliovirus vaccine (OPV) has decreased global incidence of poliomyelitis by ≈99.9%. However, the emergence of vaccine-derived polioviruses (VDPVs) is threatening polio-eradication program. Primary immunodeficiency (PID) patients are at higher risks of vaccine-associated paralytic poliomyelitis (VAPP) and prolonged excretion of immunodeficiency-associated VDPV (iVDPV). We searched Embase, Medline, Science direct, Scopus, Web of Science, and CDC and WHO databases by 30 September 2016, for all reports of iVDPV cases. Patient-level data were extracted form eligible studies. Data on immunization coverage and income-level of countries were extracted from WHO/UNICEF and the WORLD BANK databases, respectively. We assessed bivariate associations between immunological, clinical, and virological parameters, and exploited multivariable modeling to identify independent determinants of poliovirus evolution and patients' outcomes. Study protocol was registered with PROSPERO (CRD42016052931). 4329 duplicate-removed titles were screened. A total of 107 iVDPV cases were identified from 68 eligible articles. The majority of cases were from higher income countries with high polio-immunization coverage. 74 (69.81%) patients developed VAPP. Combined immunodeficiency patients showed lower rates of VAPP (p < .001) and infection clearance (p = .02), compared to humoral immunodeficiency patients. The rate of poliovirus genomic evolution was higher at early stages of replication, decreasing over time until reaching a steady state. Independent of replication duration, higher extent (p = .04) and rates (p = .03) of genome divergence contributed to a less likelihood of virus clearance. PID type (p < .001), VAPP occurrence (p = .008), and income-level of country (p = .04) independently influenced patients' survival. With the use of OPV, new iVDPVs will emerge independent of the rate of immunization coverage. Inherent features of PIDs contribute to the clinical course of iVDPV infection and virus evolution. This finding could shed further light on poliomyelitis pathogenesis and iVDPV evolution pattern. It also has implications for public health, the polio eradication effort and the development of effective antiviral interventions.
Collapse
Affiliation(s)
- Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeed Soleyman-Jahi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamed-Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El-Manar, Tunis, Tunisia
| | - Mark A McKinlay
- Center for Vaccine Equity, Task Force for Global Health, Atlanta, GA, United States
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|