1
|
Liu SH, Zhang J, Zuo YG. Macrophages in inflammatory skin diseases and skin tumors. Front Immunol 2024; 15:1430825. [PMID: 39703508 PMCID: PMC11656021 DOI: 10.3389/fimmu.2024.1430825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Macrophages, as specialized, long-lasting phagocytic cells of the innate immune system, have garnered increasing attention due to their wide distribution and various functions. The skin, being the largest immune organ in the human body, presents an intriguing landscape for macrophage research, particularly regarding their roles in inflammatory skin diseases and skin tumors. In this review, we compile the latest research on macrophages in conditions such as atopic dermatitis, psoriasis, systemic sclerosis, systemic lupus erythematosus, rosacea, bullous pemphigoid, melanoma and cutaneous T-cell lymphoma. We aim to contribute to illustrating the pathogenesis and potential new therapies for inflammatory skin diseases and skin tumors from the perspective of macrophages.
Collapse
Affiliation(s)
| | | | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
3
|
Sung B, Baek YY, Kim YM, You JC. Topical Administration of a Novel Acetylated Tetrapeptide Suppresses Vascular Permeability and Immune Responses and Alleviates Atopic Dermatitis in a Murine Model. Int J Mol Sci 2022; 23:ijms232113498. [PMID: 36362286 PMCID: PMC9658216 DOI: 10.3390/ijms232113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Although the pathogenesis of atopic dermatitis (AD) remains to be fully deciphered, skin barrier abnormality and immune dysregulation are known to be involved. Recently, the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) system has also been implicated in the pathogenesis of this multifactorial chronic inflammatory skin disorder. Previously, we showed that a novel tetrapeptide, N-acetyl-Arg-Leu-Tyr-Glu (Ac-RLYE), inhibits angiogenesis and vascular permeability effectively by selectively antagonizing VEGFR-2. The current study aimed to investigate the pharmacological effect of Ac-RLYE on AD in vitro and in vivo. The in vitro experiments demonstrated that Ac-RLYE inhibited VEGF-induced vascular permeability in endothelial cells. Moreover, in an in vivo animal model of AD, Ac-RLYE relieved AD-like symptoms such as ear thickness and dermatitis severity scores and infiltration of immune cells, including mast cells and eosinophils. Ac-RLYE inhibited IgE secretion, restored the skin barrier protein filaggrin level, and markedly downregulated gene expression of AD-related Th1, Th2, and Th17 cytokines. Collectively, these findings suggest that Ac-RLYE would be useful for the treatment of AD and associated inflammatory skin disorders.
Collapse
Affiliation(s)
- Bokyung Sung
- Avixgen Inc., 2477, Nambusunhwan-ro, Seocho-gu, Seoul 06725, Korea
| | - Yi-Yong Baek
- Avixgen Inc., 2477, Nambusunhwan-ro, Seocho-gu, Seoul 06725, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Ji Chang You
- Avixgen Inc., 2477, Nambusunhwan-ro, Seocho-gu, Seoul 06725, Korea
- National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
4
|
Unveiling the Ability of Witch Hazel ( Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int J Mol Sci 2022; 23:ijms23169279. [PMID: 36012541 PMCID: PMC9408886 DOI: 10.3390/ijms23169279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023] Open
Abstract
Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use by considering the impact of crucial biomarkers on AD pathogenesis. A standardized extract (HVE) (0.5−125 μg/mL) was compared to hamamelitannin (HT), its main compound (0.5−5 μg/mL), in a model of human keratinocytes (HaCaTs), challenged with an AD-like cytokine milieu (TNF-α, IFN-γ, and IL-4). HVE inhibited the release of mediators involved in skin autoimmunity (IL-6 and IL-17C) and allergy (TSLP, IL-6, CCL26, and MMP-9) with a concentration-dependent fashion (IC50s < 25 μg/mL). The biological mechanism was ascribed, at least in part, to the impairment of the NF-κB-driven transcription. Moreover, HVE counteracted the proliferative effects of IL-4 and recovered K10, a marker of skin differentiation. Notably, HT showed activity on well-known targets of IL-4 pathway (CCL26, K10, cell proliferation). To the best of our knowledge, this work represents the first demonstration of the potential role of Hamamelis virginiana in the control of AD symptoms, such as itch and skin barrier impairment, supporting the relevance of the whole phytocomplex.
Collapse
|
5
|
Espinosa Gonzalez M, Volk-Draper L, Bhattarai N, Wilber A, Ran S. Th2 cytokines IL-4, IL-13, and IL-10 promote differentiation of pro-lymphatic progenitors derived from bone marrow myeloid precursors. Stem Cells Dev 2022; 31:322-333. [PMID: 35442077 PMCID: PMC9232236 DOI: 10.1089/scd.2022.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myeloid-lymphatic endothelial cell progenitors (M-LECP) are a subset of bone marrow (BM)-derived cells characterized by expression of M2-type macrophage markers. We previously showed significant contribution of M-LECP to tumor lymphatic formation and metastasis in human clinical breast tumors and corresponding mouse models. Since M2-type is induced in macrophages by immunosuppressive Th2 cytokines IL-4, IL-13, and IL-10, we hypothesized that these factors might promote pro-lymphatic specification of M-LECP during their differentiation from BM myeloid precursors. To test this hypothesis, we analyzed expression of Th2 cytokines and their receptors in mouse BM cells under conditions leading to M-LECP differentiation, namely, CSF-1 treatment followed by activation of TLR4. We found that under these conditions, all three Th2 receptors were strongly upregulated in >95% of the cells that also secrete endogenous IL-10 but not IL-4 or IL-13 ligands. However, addition of any of the Th2 factors to CSF-1 primed cells significantly increased generation of myeloid-lymphatic progenitors as indicated by co-induction of lymphatic-specific (e.g., Lyve-1, integrin-a9, collectin-12, and stabilin-1) and M2-type markers (e.g., CD163, CD204, CD206, and PD-L1). Antibody-mediated blockade of either IL-10 receptor (IL-10R) or IL-10 ligand significantly reduced both immunosuppressive and lymphatic phenotypes. Moreover, tumor-recruited Lyve-1+ lymphatic progenitors in vivo expressed all Th2 receptors as well as corresponding ligands including IL-4 and IL-13 that were absent in BM cells. This study presents original evidence for the significant role of Th2 cytokines in co-development of immunosuppressive and lymphatic phenotypes in tumor-recruited M2-type myeloid cells. Progenitor-mediated increase in lymphatic vessels can enhance immunosuppression by physical removal of stimulatory immune cells. Thus, targeting Th2 pathways might simultaneously relieve immunosuppression and inhibit differentiation of pro-lymphatic progenitors that ultimately promote tumor spread.
Collapse
Affiliation(s)
- Maria Espinosa Gonzalez
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Lisa Volk-Draper
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Nihit Bhattarai
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Andrew Wilber
- Southern Illinois University School of Medicine, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Sophia Ran
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, 801 N. Rutledge, P.O. Box 19626, Springfield, Illinois, United States, 62794;
| |
Collapse
|
6
|
Du XJ, Zhou HM, Wang Z, Liu J, Wang JF, Li D, Wu TT, Chen B, Zeng WH. Comparative study of 1064 nm nanosecond, 1064 nm picosecond, 755 nm, and 595 nm lasers for tattoo removal: An essential role by macrophage. Lasers Surg Med 2022; 54:737-746. [PMID: 35289435 DOI: 10.1002/lsm.23535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Tattoo removal is in high demand, and many types of lasers can be used for tattoo removal. Macrophages play an important role in the persistence of tattoos. However, comparative studies of the efficacy of tattoo removal with different lasers versus the relationship between the destruction of pigment particles or recruitment of macrophages after laser treatment are lacking. MATERIALS AND METHODS Tattoo models were established on the rat dorsal surface and randomly treated with 1064 nm nanosecond, 1064 nm picosecond, 755 nm, and 595 nm lasers for one session. Clinical photographic evaluation, melanin index, hematoxylin and eosin staining, identification of macrophages by CD68 staining, and transmission electron microscopy were conducted at different time points. RESULTS Regardless of the pulse duration, all lasers included were effective for the removal of black tattoos, with 1064 nm lasers having the best efficacy, followed by 755 and 595 nm lasers. The diameter of the pigment particles and recruitment of dermal macrophages correlated with the efficacy of tattoo removal. CONCLUSIONS In this study, the 1064 nm lasers were found to be the most effective for black tattoo removal. However, there was no significant difference between the 1064 nm picosecond and the nanosecond lasers. Macrophage recruitment plays an essential role in pigment metabolism during laser-tattoo removal.
Collapse
Affiliation(s)
- Xiao-Jie Du
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong-Mei Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhao Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia-Feng Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Dong Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ting-Ting Wu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wei-Hui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Anis N, Assaf M, Diab N, Soliman A, Salah E. Morphometric study of lymphangiogenesis in different lesions of psoriasis vulgaris with correlation to disease activity. J Cosmet Dermatol 2021; 21:3110-3116. [PMID: 34716748 DOI: 10.1111/jocd.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES In the last decades, attention to the role of lymphangiogenesis in psoriasis has been paid. Our study was conducted to evaluate podoplanin-stained lymphatic vessels and the level of lymphangiogenesis in papular psoriatic lesions and psoriatic plaques and ascertain if podoplanin provides any additional prognostic information. MATERIALS AND METHODS Number of lymphatic vessels and total lymphatic vessel area were morphometrically analyzed in podoplanin-stained sections, using anti-D2-40, together with the immunohistochemical study of epidermal Ki-67 in psoriasis vulgaris (n = 20) (papules = 7 and plaques = 13) and control skin specimens (n = 20). RESULTS The number of lymphatic vessels and total lymphatic vessel area were higher in psoriasis cases compared with normal skin (p = 0.01, p = 0.01 respectively). In psoriatic plaques, the number of lymphatic vessels, total lymphatic vessel area, and epidermal Ki-67 immunoreactivity were higher than in papular lesions (p = 0.002, p = 0.008, and p = 0.01, respectively). CONCLUSIONS Psoriasis vulgaris is found to be a lymphangiogenesis-dependent disease, and the lymphatic vascular network is in remodeling and expanding process. Podoplanin may be implicated in the pathogenesis of psoriasis and could be used as a prognostic biomarker for disease severity and progression.
Collapse
Affiliation(s)
- Nourhan Anis
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Magda Assaf
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nagwa Diab
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Soliman
- Pathology Department- Medical Division, National Research Center, Cairo, Egypt
| | - Eman Salah
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Nakai K. Multiple roles of macrophage in skin. J Dermatol Sci 2021; 104:2-10. [PMID: 34493430 DOI: 10.1016/j.jdermsci.2021.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023]
Abstract
More than 100 years have passed since Elie Metchnikoff discovered macrophage. Over the recent decade, attracting information about macrophage polarization have been reported. This is because many molecules have been identified as markers of macrophage polarization. Additionally, mechanistic insights have been demonstrated by experiments with various stimuli-induced macrophage polarization. Historically and simply, macrophages are divided into M1 (classically activated) and M2 (alternatively activated). However, some of them are not specific yet. Studies in the field of cardiology revealed the plasticity of macrophages and their subsets are divided into details: Mhem, MHb, Mox and M4 macrophages. M2 macrophages were further divided in M2a, M2b, M2c and M2d. There appears to be more phenotypes of macrophages. However, there still lack studies in dermatological field. This review summarizes the spectrum of macrophage activation and finding about various roles of macrophages in the dermatological field.
Collapse
Affiliation(s)
- Kozo Nakai
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
9
|
Kimura S, Noguchi H, Nanbu U, Nakayama T. Macrophage CCL22 expression promotes lymphangiogenesis in patients with tongue squamous cell carcinoma via IL-4/STAT6 in the tumor microenvironment. Oncol Lett 2021; 21:383. [PMID: 33777206 PMCID: PMC7988704 DOI: 10.3892/ol.2021.12644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The C-C motif chemokine ligand 22 (CCL22) chemokine is produced by M2-like tumor-associated macrophages (TAMs) in the tumor microenvironment. Chemokine C-C motif receptor 4 (CCR4), the CCL22 receptor, on T helper2 (Th2) cells leads to a Th2 cytokine-dominant environment. In our previous study, lymph node metastasis was the main predictor of tongue squamous cell carcinoma (SCC) via CCL22. Therefore, the present study aimed to investigate the effects of CCL22 and a Th2 cytokine-predominant tumor microenvironment on vascular endothelial growth factor (VEGF)-C expression and lymphangiogenesis. The post-operative courses of 110 patients with early-stage tongue SCC with a histopathological diagnosis based on the 8th TNM classification were followed up (mean/median follow-up time, 47.1/42.0 months) from surgery until death or the last follow-up visit, and subsequent lymph node relapse was assessed. Lymphangiogenesis and the immunohistochemical expression of several markers (CCL22, CCR4 and VEGF-C) were evaluated. The Kaplan-Meier method was used to plot lymph node relapse-free survival and overall survival curves, which were compared using the log-rank test. In vitro, the association between CCL22 and VEGF-C by interleukin (IL)-4/signal transducer and activator of transcription 6 (STAT6) stimulation was examined. Lymphangiogenesis was significantly associated with lymph node relapse (P<0.001) and a CCL22+ macrophage ratio (P<0.001). CCL22+ TAMs were positive for VEGF-C and surrounded by CCR4+ cells. Additionally, VEGF-C expression was increased in IL-4/STAT6-stimulated macrophages. In addition, the STAT6 signaling pathway was activated in the SCC cells in the deeply invaded part of the tumor along with the aggregated macrophages. In conclusion, TAM CCL22 expression led to lymph node relapse via VEGF-C expression within the tumor microenvironment and the IL-4/STAT6 signaling pathway in early stage tongue SCC. Additionally, the worst pattern of invasion and depth of invasion were revealed to be useful parameters for lymph node relapse in patients with tongue SCC. The present study suggested that CCL22 contributed to the role of M2-like differentiated TAMs in prognosis and lymph node relapse via IL-4/STAT6 and VEGF. The IL-4/STAT6 signaling pathway may be a new molecular target for tongue SCC.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Clinical Pathology, Kitakyushu City Yahata Hospital, Kitakyushu, Fukuoka 805-8534, Japan.,Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Uki Nanbu
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
10
|
Bao L, Chau CS, Lei Z, Hu H, Chan AG, Amber KT, Maienschein-Cline M, Tsoukas MM. Dysregulated microRNA expression in IL-4 transgenic mice, an animal model of atopic dermatitis. Arch Dermatol Res 2021; 313:837-846. [PMID: 33433718 DOI: 10.1007/s00403-020-02176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
IL-4 plays an important role in the pathogenesis of atopic dermatitis (AD). Previously we showed that the expression of genes in chemotaxis, angiogenesis, inflammation and barrier functions is dysregulated in IL-4 transgenic (Tg) mice, a well-characterized AD mouse model. In this study, we aim to study differential expression of microRNAs in IL-4 Tg mice. As compared with wild-type mice, we found that 10 and 79 microRNAs are dysregulated in the skin of IL-4 mice before and after the onset of skin lesions, respectively. Bioinformatic analysis and previous reports show that these dysregulated microRNAs may be involved in the NF-κB, TLRs, IL-4/IL-13, MAPK and other pathways. We also found that miR-139-5p and miR-196b-3p are significantly up-regulated in the peripheral blood of IL-4 Tg mice. Taken together, our data have identified many dysregulated microRNAs in IL-4 Tg mice, which may play important roles in AD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA.
| | - Cecilia S Chau
- Sequencing Core, Genome Research Division, Research Resources Center, Chicago, USA
| | - Zhengdeng Lei
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Hong Hu
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Angelina G Chan
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Kyle T Amber
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Maria M Tsoukas
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| |
Collapse
|
11
|
Ju S, Xu C, Wang G, Zhang L. VEGF-C Induces Alternative Activation of Microglia to Promote Recovery from Traumatic Brain Injury. J Alzheimers Dis 2020; 68:1687-1697. [PMID: 30958378 DOI: 10.3233/jad-190063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI), a brain disorder that causes death and long-term disability in humans, is increasing in prevalence, though there is a lack of protective or therapeutic strategies for mitigating the damage after TBI and for preserving neurological functionality. Microglia cells play a key role in neuroinflammation following TBI, but their regulation and polarization by a member of the vascular endothelial growth factor (VEGF) family, VEGF-C, is unknown. Here, we show that VEGF-C induced M2 polarization in a murine microglia cell line, BV-2, in vitro, by a mechanism that required signaling from its unique receptor, VEGF receptor 3 (VEGFR3). Moreover, in a TBI model in rats, VEGF-C administration induced M2 polarization of microglia cells, significantly improved motor deficits after experimental TBI, and significantly improved neurological function following TBI, likely through a reduction in cell apoptosis. Together, our data reveal a previously unknown role of VEGF-C/VEGFR3 signaling in the regulation of post-TBI microglia cell polarization, which appears to be crucial for recovery from TBI.
Collapse
Affiliation(s)
- Shiming Ju
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Xu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gan Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Munir H, Mazzaglia C, Shields JD. Stromal regulation of tumor-associated lymphatics. Adv Drug Deliv Rev 2020; 161-162:75-89. [PMID: 32783989 DOI: 10.1016/j.addr.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Recent advances have identified a growing array of roles played by lymphatics in the tumor microenvironment, from providing a route of metastasis to immune modulation. The tumor microenvironment represents an exceptionally complex, dynamic niche comprised of a diverse mixture of cancer cells and normal host cells termed the stroma. This review discusses our current understanding of stromal elements and how they regulate lymphatic growth and functional properties in the tumor context.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Corrado Mazzaglia
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ.
| |
Collapse
|
13
|
Lucas ED, Tamburini BAJ. Lymph Node Lymphatic Endothelial Cell Expansion and Contraction and the Programming of the Immune Response. Front Immunol 2019; 10:36. [PMID: 30740101 PMCID: PMC6357284 DOI: 10.3389/fimmu.2019.00036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Lymphatic endothelial cells (LECs) form the structure of the lymphatic vessels and the sinuses of the lymph nodes, positioning them to be key players in many different aspects of the immune response. Following an inflammatory stimulus, LECs produce chemokines that recruit immune cells to the lymph nodes. The recruitment of immune cells aids in the coordination of both LEC and lymph node expansion and contraction. More recent data has demonstrated that to coordinate LEC division and death, cell surface molecules, such as PD-L1 and interferon receptors, are required. During homeostasis, LECs use PD-L1 to maintain peripheral tolerance by presenting specific peripheral tissue antigens in order to eliminate tissue specific responses. LECs also have the capacity to acquire, present, and exchange foreign antigens following viral infection or immunization. Here we will review how lymph node LECs require immune cells to expand and contract in response to an immune stimulus, the factors involved and how direct LEC-immune cell interactions are important for programming immunity.
Collapse
Affiliation(s)
- Erin D Lucas
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Beth A J Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
14
|
IL-4 driven transcription factor FoxQ1 is expressed by monocytes in atopic dermatitis and stimulates monocyte migration. Sci Rep 2017; 7:16847. [PMID: 29203829 PMCID: PMC5715145 DOI: 10.1038/s41598-017-17307-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Monocytes are actively recruited at sites of chronic inflammation. However, molecular factors involved in this process are not fully elucidated. Here, we show that cytokine IL-4 which is implicated in the development of chronic inflammatory disease atopic dermatitis (AD) induces expression of transcription factor FoxQ1 in human monocytes and macrophages. FoxQ1 mRNA levels were elevated in monocytes of AD patients compared to healthy donors. Overexpression of FoxQ1 in RAW 264.7 monocytic cells facilitated their migration towards MCP-1 and was associated with decreased expression of migration-regulating genes (claudin 11 and plexin C1). Furthermore, FoxQ1 overexpression in RAW cells accelerated TNFα secretion after LPS challenge. Overall, our results indicate that FoxQ1 stimulates monocyte motility, increases pro-inflammatory potential, and directs monocyte migration towards MCP-1 that is crucial for monocyte influx into inflammatory sites. This mechanism could contribute to the pathogenesis of chronic inflammatory disorders such as AD.
Collapse
|
15
|
Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD, Raviv Z, Merquiol E, Ben-Nun Y, Miller V, Rachman-Tzemah C, Timaner M, Mumblat Y, Ilan N, Loven D, Hershkovitz D, Satchi-Fainaro R, Blum G, Sleeman JP, Vlodavsky I, Shaked Y. Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3. Cell Rep 2017; 17:1344-1356. [PMID: 27783948 PMCID: PMC5098117 DOI: 10.1016/j.celrep.2016.09.083] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 08/22/2016] [Accepted: 09/24/2016] [Indexed: 12/24/2022] Open
Abstract
While chemotherapy strongly restricts or reverses tumor growth, the response of host tissue to therapy can counteract its anti-tumor activity by promoting tumor re-growth and/or metastases, thus limiting therapeutic efficacy. Here, we show that vascular endothelial growth factor receptor 3 (VEGFR3)-expressing macrophages infiltrating chemotherapy-treated tumors play a significant role in metastasis. They do so in part by inducing lymphangiogenesis as a result of cathepsin release, leading to VEGF-C upregulation by heparanase. We found that macrophages from chemotherapy-treated mice are sufficient to trigger lymphatic vessel activity and structure in naive tumors in a VEGFR3-dependent manner. Blocking VEGF-C/VEGFR3 axis inhibits the activity of chemotherapy-educated macrophages, leading to reduced lymphangiogenesis in treated tumors. Overall, our results suggest that disrupting the VEGF-C/VEGFR3 axis not only directly inhibits lymphangiogenesis but also blocks the pro-metastatic activity of macrophages in chemotherapy-treated mice. Chemotherapy promotes macrophage colonization of tumors Macrophages induce lymphangiogenesis in chemotherapy-treated tumors Macrophages secrete cathepsins, VEGF-C, and heparanase in a VEGFR3-dependent manner Blocking VEGFR3 in macrophages inhibits lymphangiogenesis and subsequent metastasis
Collapse
Affiliation(s)
- Dror Alishekevitz
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Svetlana Gingis-Velitski
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | | | - Lilach Gutter-Kapon
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Sandra D Scherer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Ziv Raviv
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Emmanuelle Merquiol
- The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Yael Ben-Nun
- The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Valeria Miller
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Chen Rachman-Tzemah
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Michael Timaner
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Yelena Mumblat
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Neta Ilan
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - David Loven
- Department of Oncology, Ha'Emek Medical Center, 1834111 Afula, Israel
| | - Dov Hershkovitz
- Department of Pathology, Rambam Health Care Campus, 3109601 Haifa, Israel
| | - Ronit Satchi-Fainaro
- Department of Pharmacology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Galia Blum
- The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Jonathan P Sleeman
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Israel Vlodavsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3109601 Haifa, Israel.
| |
Collapse
|
16
|
Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. Nat Commun 2017; 8:367. [PMID: 28848229 PMCID: PMC5573728 DOI: 10.1038/s41467-017-00504-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Lymphatic growth (lymphangiogenesis) within lymph nodes functions to promote dendritic cell entry and effector lymphocyte egress in response to infection or inflammation. Here we demonstrate a crucial role for lymphotoxin-beta receptor (LTβR) signaling to fibroblastic reticular cells (FRCs) by lymphotoxin-expressing B cells in driving mesenteric lymph node lymphangiogenesis following helminth infection. LTβR ligation on fibroblastic reticular cells leads to the production of B-cell-activating factor (BAFF), which synergized with interleukin-4 (IL-4) to promote the production of the lymphangiogenic factors, vascular endothelial growth factors (VEGF)-A and VEGF-C, by B cells. In addition, the BAFF-IL-4 synergy augments expression of lymphotoxin by antigen-activated B cells, promoting further B cell–fibroblastic reticular cell interactions. These results underlie the importance of lymphotoxin-dependent B cell–FRC cross talk in driving the expansion of lymphatic networks that function to promote and maintain immune responsiveness. The growth of lymph nodes in response to infection requires lymphangiogenesis. Dubey et al. show that the mesenteric lymph node lymphangiogenesis upon helminth infection depends on the signaling loop between the B and fibroblastic reticular cells (FRCs), whereby the FRCs respond to lymphotoxin secreted by B cells by releasing B cell activating factor.
Collapse
|
17
|
Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv Drug Deliv Rev 2017; 114:43-59. [PMID: 28694027 PMCID: PMC6026542 DOI: 10.1016/j.addr.2017.07.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy.
Collapse
Affiliation(s)
- Katharina Maisel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Maria Stella Sasso
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lambert Potin
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Hayashi T, Usui T, Yamagami S. Suppression of Allograft Rejection with Soluble VEGF Receptor 2 Chimeric Protein in a Mouse Model of Corneal Transplantation. TOHOKU J EXP MED 2017; 239:81-8. [PMID: 27212075 DOI: 10.1620/tjem.239.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When a transparent cornea becomes opaque due to infectious diseases, trauma, or ophthalmic surgery, the impaired cornea is replaced with a donor cornea to improve visual function. In this corneal transplantation, the graft survival rate is comparatively high, partly because of lacking vascular and lymphatic vessel in cornea. However, the transplanted corneas sometimes become opaque if allograft rejection occurs. Suppression of allograft rejection is critical for favorable outcomes of corneal transplantation. The essential effects of endogenous monomeric soluble vascular endothelial growth factor receptors (VEGFRs) 1 and 2 have been reported in corneal angiogenesis and lymphangiogenesis. This study investigated the effects of dimeric soluble VEGFR2/Fc chimera protein on corneal allograft rejection for future clinical application. Allogeneic full-thickness corneal transplantation was performed in C57BL/6 to BALB/c mice. The recipients were treated by intrastromal injection of soluble VEGFR1/Fc chimera (sR1/Fc group), soluble VEGFR2/Fc chimera (sR2/Fc group), or human IgG1/Fc protein (IgG/Fc group) at 0, 7, and 14 days after surgery. Both hemangiogenesis and lymphangiogenesis were significantly suppressed in the corneas of the sR2/Fc group compared with the IgG/Fc group. All grafts failed due to corneal wound rupture in the sR1/Fc group. In the sR2/Fc group, respective donor-derived MHC class II(+)/CD11c(+) cells and CD11b-positive macrophage infiltration were reduced in the DLNs and the corneas showing a negative delayed-type hypersensitivity, compared with the IgG/Fc group. Our findings demonstrate that soluble VEGFR2/Fc chimera protein efficiently suppresses corneal allo-rejection, while reducing hemangiogenesis and lymhangiogenesis, and immune-competent cell-trafficking and may be a powerful tool for corneal allograft survival.
Collapse
|
19
|
Ran S, Wilber A. Novel role of immature myeloid cells in formation of new lymphatic vessels associated with inflammation and tumors. J Leukoc Biol 2017; 102:253-263. [PMID: 28408396 DOI: 10.1189/jlb.1mr1016-434rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Inflammation triggers an immune cell-driven program committed to restoring homeostasis to injured tissue. Central to this process is vasculature restoration, which includes both blood and lymphatic networks. Generation of new vessels or remodeling of existing vessels are also important steps in metastasis-the major cause of death for cancer patients. Although roles of the lymphatic system in regulation of inflammation and cancer metastasis are firmly established, the mechanisms underlying the formation of new lymphatic vessels remain a subject of debate. Until recently, generation of new lymphatics in adults was thought to occur exclusively through sprouting of existing vessels without help from recruited progenitors. However, emerging findings from clinical and experimental studies show that lymphoendothelial progenitors, particularly those derived from immature myeloid cells, play an important role in this process. This review summarizes current evidence for the existence and significant roles of myeloid-derived lymphatic endothelial cell progenitors (M-LECPs) in generation of new lymphatics. We describe specific markers of M-LECPs and discuss their biologic behavior in culture and in vivo, as well as currently known molecular mechanisms of myeloid-lymphatic transition (MLT). We also discuss the implications of M-LECPs for promoting adaptive immunity, as well as cancer metastasis. We conclude that improved mechanistic understanding of M-LECP differentiation and its role in adult lymphangiogenesis may lead to new therapeutic approaches for correcting lymphatic insufficiency or excessive formation of lymphatic vessels in human disorders.
Collapse
Affiliation(s)
- Sophia Ran
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, and Simmons Cancer Institute, Springfield, Illinois, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, and Simmons Cancer Institute, Springfield, Illinois, USA
| |
Collapse
|
20
|
Yeo KP, Angeli V. Bidirectional Crosstalk between Lymphatic Endothelial Cell and T Cell and Its Implications in Tumor Immunity. Front Immunol 2017; 8:83. [PMID: 28220121 PMCID: PMC5292621 DOI: 10.3389/fimmu.2017.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Lymphatic vessels have been traditionally considered as passive transporters of fluid and lipids. However, it is apparent from recent literature that the function of lymphatic vessels is not only restricted to fluid balance homeostasis but also extends to regulation of immune cell trafficking, antigen presentation, tolerance, and immunity, all which may impact the progression of inflammatory responses and diseases such as cancer. The lymphatic system and the immune system are intimately connected, and there is emergent evidence for a crosstalk between T cell and lymphatic endothelial cell (LEC). This review describes how LECs in lymph nodes can affect multiple functional properties of T cells and the impact of these LEC-driven effects on adaptive immunity and, conversely, how T cells can modulate LEC growth. The significance of such crosstalk between T cells and LECs in cancer will also be discussed.
Collapse
Affiliation(s)
- Kim Pin Yeo
- Immunology Programme, Department of Microbiology and Immunology, Yoon Loo Lin School of Medicine, Life Science Institute, National University of Singapore , Singapore , Singapore
| | - Veronique Angeli
- Immunology Programme, Department of Microbiology and Immunology, Yoon Loo Lin School of Medicine, Life Science Institute, National University of Singapore , Singapore , Singapore
| |
Collapse
|
21
|
Kim H, Kim BH, Huh BK, Yoo YC, Heo CY, Choy YB, Park JH. Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for an enhanced anti-inflammatory effect. Biomater Sci 2017; 5:1670-1677. [DOI: 10.1039/c7bm00345e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An anti-inflammatory nanoparticle-coated suture reduces inflammation and pain at the wound site.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Bio and Brain Engineering and KAIST Institute of Health Science and Technology
- Korea Advanced Institute of Science and Technology
- Daejeon
- Republic of Korea
| | - Byung Hwi Kim
- Department of Biomedical Engineering
- College of Medicine
- Seoul National University
- Seoul
- Republic of Korea
| | - Beom Kang Huh
- Interdisciplinary Program in Bioengineering
- College of Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Yeon Chun Yoo
- Research center
- Metabiomed Co. Ltd
- Cheongju
- Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery
- College of Medicine
- Seoul National University
- Seoul
- Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering
- College of Medicine
- Seoul National University
- Seoul
- Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute of Health Science and Technology
- Korea Advanced Institute of Science and Technology
- Daejeon
- Republic of Korea
| |
Collapse
|
22
|
HogenEsch H, Sola M, Stearns TM, Silva KA, Kennedy VE, Sundberg JP. Angiogenesis in the skin of SHARPIN-deficient mice with chronic proliferative dermatitis. Exp Mol Pathol 2016; 101:303-307. [PMID: 27794420 DOI: 10.1016/j.yexmp.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 01/16/2023]
Abstract
Angiogenesis is a common feature of pathological processes including wound healing, tumor formation, and chronic inflammation. Chronic inflammation can also be associated with dilation or proliferation of lymph vessels. We examined blood vessels and lymphatics and the expression of pro- and anti-angiogenic genes in the skin of SHARPIN-deficient mice which spontaneously develop a chronic proliferative dermatitis (cpdm). The number of blood vessels in the dermis of cpdm mice increased with age as the inflammation progressed. Lymphatics identified by labeling for LYVE1 and podoplanin were moderately dilated, but they were not increased in number. The expression of proangiogenic Vegfa, Flt1 and anti-angiogenic Sema3a mRNA was increased. VEGFA was primarily localized in keratinocytes of cpdm skin. There was also increased expression of Ece1 and Pdpn mRNA. Podoplanin was restricted to lymphatic endothelial cells in normal skin, but fibroblasts in cpdm skin also reacted with anti-podoplanin antibodies indicating that they were activated. The expression of other angiogenic and lymphangiogenic factors was not altered or decreased. These results indicate that cpdm mice may be a useful model to study the pathogenesis of angiogenesis in chronic inflammation.
Collapse
Affiliation(s)
- Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Immunology, Inflammation and Infectious Diseases, Purdue University, West Lafayette, IN 47907, United States; The Jackson Laboratory, Bar Harbor, ME 04609, United States.
| | - Mario Sola
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | | | | | | | - John P Sundberg
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; The Jackson Laboratory, Bar Harbor, ME 04609, United States
| |
Collapse
|
23
|
Dashkevich A, Hagl C, Beyersdorf F, Nykänen AI, Lemström KB. VEGF Pathways in the Lymphatics of Healthy and Diseased Heart. Microcirculation 2016; 23:5-14. [PMID: 26190445 DOI: 10.1111/micc.12220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022]
Abstract
Cardiac lymphatic system is a rare focus of the modern cardiovascular research. Nevertheless, the growing body of evidence is depicting lymphatic endothelium as an important functional unit in healthy and diseased myocardium. Since the discovery of angiogenic VEGF-A in 1983 and lymphangiogenic VEGF-C in 1997, an increasing amount of knowledge has accumulated on the essential roles of VEGF ligands and receptors in physiological and pathological angiogenesis and lymphangiogenesis. Tissue adaptation to several stimuli such as hypoxia, pathogen invasion, degenerative process and inflammation often involves coordinated changes in both blood and lymphatic vessels. As lymphatic vessels are involved in the initiation and resolution of inflammation and regulation of tissue edema, VEGF family members may have important roles in myocardial lymphatics in healthy and in cardiac disease. We will review the properties of VEGF ligands and receptors concentrating on their lymphatic vessel effects first in normal myocardium and then in cardiac disease.
Collapse
Affiliation(s)
- Alexey Dashkevich
- Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Christian Hagl
- Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | | | - Antti I Nykänen
- Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Karl B Lemström
- Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Du HT, Liu P. Matrix metalloproteinase 14 participates in corneal lymphangiogenesis through the VEGF-C/VEGFR-3 signaling pathway. Exp Ther Med 2016; 12:2120-2128. [PMID: 27698700 PMCID: PMC5038200 DOI: 10.3892/etm.2016.3601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the roles of matrix metalloproteinase 14 (MMP-14) in corneal inflammatory lymphangiogenesis. The expression of MMP-14 in vivo was detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays, under various corneal conditions. pCMV-MMP-14 or empty pCMV vectors were injected into mouse corneal stroma, 3 days after suture placement in a standard suture-induced inflammatory corneal neovascularization assay. The outgrowth of blood and lymphatic vessels and macrophage recruitment were analyzed using immunofluorescence. The expression levels of vascular endothelial growth factor (VEGF) subtypes were tested by RT-qPCR. MMP-14 expression was upregulated significantly following various corneal injuries. The results demonstrated, for the first time, that MMP-14 strongly promotes corneal lymphangiogenesis and macrophage infiltration during inflammation. Furthermore, expression levels of VEGF-C and VEGF receptor-3, but not other VEGF components, were significantly upregulated by the intrastromal delivery of MMP-14 during corneal lymphangiogenesis. In conclusion, this study indicates that MMP-14 is critically involved in the processes of lymphangiogenesis. Inhibition of MMP-14 may provide a viable treatment for transplant rejection and other lymphatic disorders.
Collapse
Affiliation(s)
- Hai-Tao Du
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
25
|
Lymph vessels: the forgotten second circulation in health and disease. Virchows Arch 2016; 469:3-17. [PMID: 27173782 PMCID: PMC4923112 DOI: 10.1007/s00428-016-1945-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022]
Abstract
The lymphatic circulation is still a somewhat forgotten part of the circulatory system. Despite this, novel insights in lymph angiogenesis in health and disease, application of immune markers for lymphatic growth and differentiation and also the introduction of new imaging techniques to visualize the lymphatic circulation have improved our understanding of lymphatic function in both health and disease, especially in the last decade. These achievements yield better understanding of the various manifestations of lymph oedemas and malformations, and also the patterns of lymphovascular spread of cancers. Immune markers that recognize lymphatic endothelium antigens, such as podoplanin, LYVE-1 and Prox-1, can be successfully applied in diagnostic pathology and have revealed (at least partial) lymphatic differentiation in many types of vascular lesions.
Collapse
|
26
|
Kimura Y, Sumiyoshi M. Resveratrol Prevents Tumor Growth and Metastasis by Inhibiting Lymphangiogenesis and M2 Macrophage Activation and Differentiation in Tumor-associated Macrophages. Nutr Cancer 2016; 68:667-78. [PMID: 27145432 DOI: 10.1080/01635581.2016.1158295] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antitumor and antimetastatic effects of resveratrol on tumor-induced lymphangiogenesis through the regulation of M2 macrophages in tumor-associated macrophages currently remain unknown. Therefore, we herein examined the effects of resveratrol on M2 macrophage activation and differentiation, and those of resveratrol-treated condition medium (CM) in M2 macrophages on vascular endothelial cell growth factor (VEGF)-C-induced migration, invasion, and tube formation by human lymphatic endothelial cells (HLECs). Resveratrol (50 μM or 5-50 μM) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, whereas it promoted that of transforming growth factor-β1. Resveratrol (25 and 50 μM) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation process of M2 macrophages. Furthermore, resveratrol-treated CM of M2 macrophages inhibited VEGF-C-induced HLEC migration, invasion, and lymphangiogenesis. Resveratrol (25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung and also reduced the area of lymphatic endothelial cells in tumors (in vivo). These results suggest that the antitumor and antimetastatic effects of resveratrol were partly due to antilymphangiogenesis through the regulation of M2 macrophage activation and differentiation.
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- a Division of Biochemical Pharmacology, Department of Basic Medical Research, Ehime University Graduate School of Medicine , Toon City , Ehime , Japan
| | - Maho Sumiyoshi
- a Division of Biochemical Pharmacology, Department of Basic Medical Research, Ehime University Graduate School of Medicine , Toon City , Ehime , Japan
| |
Collapse
|
27
|
Bao L, Alexander JB, Zhang H, Shen K, Chan LS. Interleukin-4 Downregulation of Involucrin Expression in Human Epidermal Keratinocytes Involves Stat6 Sequestration of the Coactivator CREB-Binding Protein. J Interferon Cytokine Res 2016; 36:374-81. [PMID: 26918372 DOI: 10.1089/jir.2015.0056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Skin barrier defects play an important role in atopic dermatitis (AD). Involucrin, an important barrier protein suppressed in human AD, is downregulated by interleukin-4 (IL-4). However, the molecular mechanism for IL-4 downregulation of involucrin has not been delineated, and especially how Stat6, a transcriptional activator, represses involucrin expression is unknown. Since Stats usually recruit p300/CBP in the general transcription machinery of their target genes and involucrin expression also involves p300/CBP, we hypothesize that Stat6 activated by IL-4 may sequestrate p300/CBP from the involucrin transcription complex, thus suppressing involucrin expression in keratinocytes. Using IL-4 transgenic mice, an AD mouse model, we find that involucrin expression is similarly downregulated as in human AD. In HaCat cells, the Jak inhibitor and dominant negative studies indicate that the Jaks-Stat6 pathway is involved in IL-4 downregulation of involucrin. Next, we transfected HaCat cells with an involucrin promoter-luciferase construct and then treated them with IL-4. IL-4 greatly suppresses the promoter activity, which is totally abolished by cotransfecting the CREB-binding protein (CBP) expression vector, indicating that IL-4 cannot downregulate involucrin in the presence of excess CBP. Finally, chromatin immunoprecipitation assay demonstrates that IL-4 decreases CBP binding to the involucrin transcription complex. For the first time, we defined a molecular mechanism for IL-4 downregulation of involucrin in keratinocytes, which may play an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Jaime B Alexander
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Huayi Zhang
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Kui Shen
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Lawrence S Chan
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois.,2 Department of Microbiology & Immunology, University of Illinois at Chicago , Chicago, Illinois.,3 Medical Service, Jesse Brown VA Med Center , Chicago, Illinois
| |
Collapse
|
28
|
Bao L, Zhang H, Mohan GC, Shen K, Chan LS. Differential expression of inflammation-related genes in IL-4 transgenic mice before and after the onset of atopic dermatitis skin lesions. Mol Cell Probes 2015; 30:30-8. [PMID: 26585782 DOI: 10.1016/j.mcp.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023]
Abstract
IL-4 plays an important role in the pathogenesis of atopic dermatitis (AD), a common chronic inflammatory skin disease. We have generated IL-4 transgenic (Tg) mice by over-expressing IL-4 in the epidermis. These mice spontaneously develop chronic pruritic inflammatory skin lesions, which meet the clinical and histological diagnostic criteria for human AD. Systemic survey of immune-related genes in this mouse model, however, has not been performed. In this study, we utilize PCR array technique to examine hundreds of inflammation-related genes in the IL-4 Tg mice before and after the onset of skin lesions as well as in their wild type (WT) littermates. Only those genes with at least 2-fold up-regulation or down-regulation and with a P-value of less than 0.05 in comparison to WT controls were identified and analyzed. In the skin lesions, many chemokines, pro-inflammatory cytokines, and other AD-related factors are dysregulated compared to the wild type mice. Particularly, CXCL5, IL-1β, IL-24, IL-6, oncostatin M, PTGS2, FPR1 and REG3γ are up-regulated several hundred-fold. In the pre-lesional group that shows no obvious skin abnormality on clinical observation, 30 dysregulated genes are nevertheless identified though the fold changes are much less than that of the lesional group, including CCL6, CCL8, CCL11, CCL17, CXCL13, CXCL14, CXCR3 and IL-12Rβ2. Finally using ELISA, we demonstrate that 4 most dramatically up-regulated factors in the skin are also elevated in the peripheral blood of the IL-4 Tg mice. Taken together, our data have identified hundreds of dysregulated factors in the IL-4 Tg mice before and after the onset of skin lesions. Future detailed examination of these factors will shed light on our understanding of the development and progression of AD and help to discover important biomarkers for clinical AD diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA.
| | - Huayi Zhang
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Girish C Mohan
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Kui Shen
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Lawrence S Chan
- Department of Dermatology, University of Illinois, Chicago, IL, USA; Department of Microbiology/Immunology, University of Illinois, Chicago, IL, USA; Medical Service, Jesse Brown VA Med Center, Chicago, IL, USA.
| |
Collapse
|
29
|
Protein Phosphatase 2A in Lipopolysaccharide-Induced Cyclooxygenase-2 Expression in Murine Lymphatic Endothelial Cells. PLoS One 2015; 10:e0137177. [PMID: 26317424 PMCID: PMC4552685 DOI: 10.1371/journal.pone.0137177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023] Open
Abstract
The lymphatic endothelium plays an important role in the maintenance of tissue fluid homeostasis. It also participates in the pathogenesis of several inflammatory diseases. However, little is known about the underlying mechanisms by which lymphatic endothelial cell responds to inflammatory stimuli. In this study, we explored the mechanisms by which lipopolysaccharide (LPS) induces cyclooxygenase (COX)-2 expression in murine lymphatic endothelial cells (SV-LECs). LPS caused increases in cox-2 mRNA and protein levels, as well as in COX-2 promoter luciferase activity in SV-LECs. These actions were associated with protein phosphatase 2A (PP2A), apoptosis signal-regulating kinase 1 (ASK1), JNK1/2 and p38MAPK activation, and NF-κB subunit p65 and C/EBPβ phosphorylation. PP2A-ASK1 signaling blockade reduced LPS-induced JNK1/2, p38MAPK, p65 and C/EBPβ phosphorylation. Transfection with PP2A siRNA reduced LPS's effects on p65 and C/EBPβ binding to the COX-2 promoter region. Transfected with the NF-κB or C/EBPβ site deletion of COX-2 reporter construct also abrogated LPS's enhancing effect on COX-2 promoter luciferase activity in SV-LECs. Taken together, the induction of COX-2 in SV-LECs exposed to LPS may involve PP2A-ASK1-JNK and/or p38MAPK-NF-κB and/or C/EBPβ cascade.
Collapse
|
30
|
Namkung JH, Kim E, Park YD, Park G, Yang JM. Are Podoplanin Gene Polymorphisms Associated with Atopic Dermatitis in Koreans? Ann Dermatol 2015; 27:275-82. [PMID: 26082584 PMCID: PMC4466280 DOI: 10.5021/ad.2015.27.3.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 01/25/2023] Open
Abstract
Background The histologic characteristics of atopic dermatitis (AD) include perivascular edema and dilated tortuous vessels in the papillary dermis. A single nucleotide polymorphism (SNP) of the fms-related tyrosine kinase 4 (FLT4) gene is associated with AD. Objective To investigate the associations between podoplanin (PDPN) gene SNPs and AD. Methods We genotyped 9 SNPs from 5 genes of 1,119 subjects (646 AD patients and 473 controls). We determined the promoter activity of 1 SNP (rs355022) by luciferase assay; this SNP was further investigated using 1,133 independent samples (441 AD patients and 692 controls). Results The rs355022 and rs425187 SNPs and the C-A haplotype in the PDPN gene were significantly associated with intrinsic AD in the initial experiment. The rs355022 SNP significantly affected promoter activity in the luciferase assay. However, these results were not replicated in the replication study. Conclusion Two SNPs and the C-A haplotype in the PDPN gene are significantly associated with intrinsic AD; although, the results were confirmed by luciferase assay, they could not be replicated with independent samples. Nevertheless, further replication experiments should be performed in future studies.
Collapse
Affiliation(s)
- Jung-Hyun Namkung
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. ; Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eugene Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Doo Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. ; Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Geontae Park
- Laboratory of Cellular Neurobiology, Department of Oral Anatomy, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jun-Mo Yang
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Bao L, Alexander JB, Shi VY, Mohan GC, Chan LS. Interleukin-4 up-regulation of epidermal interleukin-19 expression in keratinocytes involves the binding of signal transducer and activator of transcription 6 (Stat6) to the imperfect Stat6 sites. Immunology 2015; 143:601-8. [PMID: 24943510 DOI: 10.1111/imm.12339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/21/2023] Open
Abstract
Interleukin-19 (IL-19) plays an important role in asthma by stimulating T helper type 2 (Th2) cytokine production. Interestingly, IL-4, a key Th2 cytokine, in turn up-regulates IL-19 expression in bronchial epithelial cells, so forming a positive feedback loop. In atopic dermatitis (AD), another Th2 disease closely related to asthma, IL-19 is up-regulated in the skin. We propose to use IL-4 transgenic (Tg) mice and human keratinocyte culture to delineate the molecular mechanisms involved in the up-regulation of IL-19 in AD. IL-19 is similarly up-regulated in the skin of IL-4 Tg mice as in human AD. Next we show that IL-4 up-regulates IL-19 expression in keratinocytes. Interestingly, the up-regulation was suppressed by a pan-Janus kinase (Jak) inhibitor, suggesting that the Jak-signal transducer and activator of transcription (Jak-STAT) pathway may be involved. Dominant negative studies further indicate that STAT6, but not other STATs, mediates the up-regulation. Serial 5' deletion of the IL-19 promoter and mutagenesis studies demonstrate that IL-4 up-regulation of IL-19 in keratinocytes involves two imperfect STAT6 response elements. Finally, chromatin immunoprecipitation assay studies indicate that IL-4 increases the binding of STAT6 to its response elements in the IL-19 promoter. Taken together, we delineate the detailed molecular pathway for IL-4 up-regulation of IL-19 in keratinocytes, which may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
32
|
Bae ON, Noh M, Chun YJ, Jeong TC. Keratinocytic vascular endothelial growth factor as a novel biomarker for pathological skin condition. Biomol Ther (Seoul) 2015; 23:12-8. [PMID: 25593638 PMCID: PMC4286744 DOI: 10.4062/biomolther.2014.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022] Open
Abstract
Skin is an emerging target tissue in pharmaceutical and cosmetic science. Safety assessment for dermal toxicity is a critical step for development of topically applicable pharmaceutical agents and ingredients in cosmetics. Urgent needs exist to set up toxicity testing methods for dermal safety, and identification of novel biomarkers for pathological cutaneous alteration is highly required. Here we will discuss if vascular endothelial growth factor (VEGF) has a potential as a biomarker for dermal impairment. Experimental and clinical evidences for induction of keratinocytic VEGF under pathological conditions will be reviewed.
Collapse
Affiliation(s)
- Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791
| | - Minsoo Noh
- Collge of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| |
Collapse
|
33
|
Sano M, Sasaki T, Hirakawa S, Sakabe J, Ogawa M, Baba S, Zaima N, Tanaka H, Inuzuka K, Yamamoto N, Setou M, Sato K, Konno H, Unno N. Lymphangiogenesis and angiogenesis in abdominal aortic aneurysm. PLoS One 2014; 9:e89830. [PMID: 24651519 PMCID: PMC3961250 DOI: 10.1371/journal.pone.0089830] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/23/2014] [Indexed: 01/13/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) is characterized to be inflammation-associated degeneration of vascular wall. Neovascularization is regularly found in human AAA and considered to play critical roles in the development and rupture of AAA. However, little is known about lymphangiogenesis in AAA. The purpose of this study was to demonstrate both angiogenesis and lymphangiogenesis in AAA. Abdominal aortic tissue was harvested either from autopsy (control group) and during open-repair surgery for AAA (AAA group). Adventitial lymphatic vasa vasorum was observed in both groups, but seemed to be no significant morphological changes in AAA. Immunohistochemical studies identified infiltration of lymphatic vessel endothelial hyaluronan receptor (LYVE) -1, vascular endothelial growth factor (VEGF)-C, and matrix metalloproteinase (MMP)-9-positive macrophages and podoplanin and Prox-1-positive microvessels in the intima/media in AAA wall, where hypoxia-inducible factors (HIF)-1α was expressed. VEGF-C and MMP-9 were not expressed in macrophages infiltrating in the adventitia. Intraoperative indocyanine green fluorescence lymphography revealed lymph stasis in intima/medial in AAA. Fluorescence microscopy of the collected samples also confirmed the accumulation of lymph in the intima/media but not in adventitia. These results demonstrate that infiltration of macrophages in intima/media is associated with lymphangiogenesis and angiogenesis in AAA. Lymph-drainage appeared to be insufficient in the AAA wall.
Collapse
Affiliation(s)
- Masaki Sano
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Satoshi Hirakawa
- Department of Dermatology, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Junichi Sakabe
- Department of Dermatology, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Mikako Ogawa
- Department of Molecular Imaging, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nobuhiro Zaima
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Department of Applied Biological Chemistry, Kinki University, Osaka, Japan
| | - Hiroki Tanaka
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazunori Inuzuka
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naoto Yamamoto
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naoki Unno
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
34
|
Inflammatory lymphangiogenesis: cellular mediators and functional implications. Angiogenesis 2014; 17:373-81. [DOI: 10.1007/s10456-014-9419-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
|
35
|
Expansion of the lymphatic vasculature in cancer and inflammation: New opportunities for in vivo imaging and drug delivery. J Control Release 2013; 172:550-7. [DOI: 10.1016/j.jconrel.2013.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
|
36
|
Dieterich LC, Seidel CD, Detmar M. Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 2013; 17:359-71. [PMID: 24212981 DOI: 10.1007/s10456-013-9406-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
The lymphatic system plays an important role in the physiological control of the tissue fluid balance and in the initiation of immune responses. Recent studies have shown that lymphangiogenesis, the growth of new lymphatic vessels and/or the expansion of existing lymphatic vessels, is a characteristic feature of acute inflammatory reactions and of chronic inflammatory diseases. In these conditions, lymphatic vessel expansion occurs at the tissue level but also within the draining lymph nodes. Surprisingly, activation of lymphatic vessel function by delivery of vascular endothelial growth factor-C exerts anti-inflammatory effects in several models of cutaneous and joint inflammation. These effects are likely mediated by enhanced drainage of extravasated fluid and inflammatory cells, but also by lymphatic vessel-mediated modulation of immune responses. Although some of the underlying mechanisms are just beginning to be identified, lymphatic vessels have emerged as important targets for the development of new therapeutic strategies to treat inflammatory conditions. In this context, it is of great interest that some of the currently used anti-inflammatory drugs also potently activate lymphatic vessels.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Strasse 10, HCI H 303, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
37
|
Aebischer D, Iolyeva M, Halin C. The inflammatory response of lymphatic endothelium. Angiogenesis 2013; 17:383-93. [PMID: 24154862 DOI: 10.1007/s10456-013-9404-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Lymphatic vessels have traditionally been regarded as a rather inert drainage system, which just passively transports fluids, leukocytes and antigen. However, it is becoming increasingly clear that the lymphatic vasculature is highly dynamic and plays a much more active role in inflammatory and immune processes. Tissue inflammation induces a rapid, stimulus-specific upregulation of chemokines and adhesion molecules in lymphatic endothelial cells and a proliferative expansion of the lymphatic network in the inflamed tissue and in draining lymph nodes. Moreover, increasing evidence suggests that inflammation-induced changes in the lymphatic vasculature have a profound impact on the course of inflammatory and immune responses, by modulating fluid drainage, leukocyte migration or the removal of inflammatory mediators from tissues. In this review we will summarize and discuss current knowledge of the inflammatory response of lymphatic endothelium and of inflammation-induced lymphangiogenesis and the current perspective on the overall functional significance of these processes.
Collapse
Affiliation(s)
- David Aebischer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli Str. 10, HCI H413, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
38
|
Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT 2013; 2:e24137. [PMID: 24069552 PMCID: PMC3772104 DOI: 10.4161/jkst.24137] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD), a common chronic inflammatory skin disease, is characterized by inflammatory cell skin infiltration. The JAK-STAT pathway has been shown to play an essential role in the dysregulation of immune responses in AD, including the exaggeration of Th2 cell response, the activation of eosinophils, the maturation of B cells, and the suppression of regulatory T cells (Tregs). In addition, the JAK-STAT pathway, activated by IL-4, also plays a critical role in the pathogenesis of AD by upregulating epidermal chemokines, pro-inflammatroy cytokines, and pro-angiogenic factors as well as by downregulating antimicrobial peptides (AMPs) and factors responsible for skin barrier function. In this review, we will highlight the recent advances in our understanding of the JAK-STAT pathway in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology; University of Illinois; Chicago, IL USA
| | | | | |
Collapse
|
39
|
Role of macrophages in the pathogenesis of atopic dermatitis. Mediators Inflamm 2013; 2013:942375. [PMID: 23533313 PMCID: PMC3603294 DOI: 10.1155/2013/942375] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/22/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common and most intensively studied chronic inflammatory skin diseases. Several cofactors, such as an impaired skin barrier function, modifications of the immune system, and a complex genetic background, direct the course of AD. Within this complex network, macrophages play a pivotal role in enhanced susceptibility to cutaneous infections and act as central connecting components in the pathogenesis of AD on the cellular level. In AD, macrophages are known to accumulate in acutely and chronically inflamed skin. During the early and short inflammatory phase, macrophages exert proinflammatory functions like antigen-presenting phagocytosis and the production of inflammatory cytokines and growth factors that facilitate the resolution of inflammation. However, persistence of pro-inflammatory activity and altered function of macrophages result in the development of chronic inflammatory diseases such as AD. The exact mechanism of macrophages activation in these processes is not yet completely understood. Further studies should be performed to clarify the dysregulated mechanism of macrophages activation in AD, and this would allow us to target these cells with versatile functions for therapeutic purpose and improve and control the disease.
In this paper, we highlight the new findings on dysregulated function of macrophages and the importance of these cells in the pathogenesis of AD in general and the contribution of these cells in enhanced susceptibility against microbial infections in particular.
Collapse
|
40
|
Harvey NL, Gordon EJ. Deciphering the roles of macrophages in developmental and inflammation stimulated lymphangiogenesis. Vasc Cell 2012; 4:15. [PMID: 22943568 PMCID: PMC3444946 DOI: 10.1186/2045-824x-4-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022] Open
Abstract
Lymphatic vessels share an intimate relationship with hematopoietic cells that commences during embryogenesis and continues throughout life. Lymphatic vessels provide a key conduit for immune cell trafficking during immune surveillance and immune responses and in turn, signals produced by immune lineage cells in settings of inflammation regulate lymphatic vessel growth and activity. In the majority of cases, the recruitment and activation of immune cells during inflammation promotes the growth and development of lymphatic vessels (lymphangiogenesis) and enhances lymph flow, effects that amplify cell trafficking to local lymph nodes and facilitate the mounting of effective immune responses. Macrophages comprise a major, heterogeneous lineage of immune cells that, in addition to key roles in innate and adaptive immunity, perform diverse tasks important for tissue development, homeostasis and repair. Here, we highlight the emerging roles of macrophages in lymphangiogenesis, both during development and in settings of pathology. While much attention has focused on the production of pro-lymphangiogenic stimuli including VEGF-C and VEGF-D by macrophages in models of inflammation including cancer, there is ample evidence to suggest that macrophages provide additional signals important for the regulation of lymphatic vascular growth, morphogenesis and function.
Collapse
Affiliation(s)
- Natasha L Harvey
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.
| | | |
Collapse
|