1
|
Safarikia S, Cirelli R, Spagnoletti G, Martinelli D, Bravetti G, Francalanci P, D'Alessandro A, Di Felice G, Maistri M, Baldissone E, Fratti AM, Simeoli R, Sacchetti E, Cairoli S, Rizzo C, Pariante R, Vacca M, Cappoli A, Albano C, Pietrobattista A, Spada M, Vici CD. Normothermic Machine Perfusion of Explanted Human Metabolic Livers: A Proof of Concept for Studying Inborn Errors of Metabolism. J Inherit Metab Dis 2025; 48:e70010. [PMID: 40026238 PMCID: PMC11874047 DOI: 10.1002/jimd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The human liver plays a central metabolic role; however, its physiology may become imbalanced in inborn errors of metabolism (IEM), a broad category of monogenic disorders. Liver transplantation has been increasingly used to improve patient metabolic control, especially in diseases related to amino acid metabolism, such as urea cycle disorders and organic acidurias, to provide enzyme replacement. Ex vivo liver normothermic machine perfusion (NMP) techniques have recently been developed to increase the number of transplantable grafts and improve transplantation outcomes. This study used seven NMP of explanted livers from patients with IEM undergoing transplantation as models to investigate disease-related liver metabolism and function. The perfused livers demonstrated positive viability indicators and disease-specific targeted metabolomics providing the proof-of-principle that our ex vivo model expresses the biochemical disease characteristics and responds to therapeutical intervention in a unique "physiological" milieu, offering an ideal tool to study novel treatments, in a setting closely mirroring human disease.
Collapse
Affiliation(s)
- Samira Safarikia
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Riccardo Cirelli
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Gionata Spagnoletti
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Diego Martinelli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Giulia Bravetti
- Cardiac Surgery Unit, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Paola Francalanci
- Division of Pathology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | | | - Giovina Di Felice
- Clinical Analysis Laboratory, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Marta Maistri
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Elena Baldissone
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Alberto M. Fratti
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Raffaele Simeoli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Elisa Sacchetti
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Sara Cairoli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Cristiano Rizzo
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Rosanna Pariante
- Division of Anesthesiology and Intensive Care, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Michele Vacca
- Division of Transfusion Medicine, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Andrea Cappoli
- Division of Nephrology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Christian Albano
- B Cell Research Unit, Immunology Research Area, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Andrea Pietrobattista
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Unit of Hepatology and Transplant Clinic, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Marco Spada
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Carlo Dionisi Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| |
Collapse
|
2
|
Slek C, Magnin M, Allaouchiche B, Bonnet JM, Junot S, Louzier V, Victoni T. Association between cytokines, nitric oxide, hemodynamic and microcirculation in a porcine model of sepsis. Microvasc Res 2024; 156:104730. [PMID: 39111365 DOI: 10.1016/j.mvr.2024.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Systemic inflammation and hemodynamic or microvascular alterations are a hallmark of sepsis and play a role in organs hypoperfusion and dysfunction. Pimobendan, an inodilator agent, could be an interesting option for inotropic support and microcirculation preservation during shock. The objectives of this study were to evaluate effect of pimobendan on cytokine and nitric oxide (NO) release and investigate whether changes of macro and microcirculation parameters are associated with the release of cytokines and NO in pigs sepsis model. After circulatory failure, induced by intravenous inoculation of live Pseudomonas aeruginosa, eight animals were treated with pimobendan and eight with placebo. Pimobendan did not affect cytokines secretion (TNF-α, IL-6 and IL-10), but decreased time-dependently NO release. Data of macro and microcirculation parameters, NO and TNF- α recorded at the time of circulatory failure (Thypotension) and the time maximum of production cytokines was used for analyses. A positive correlation was observed between TNF-α and cardiac index (r = 0.55, p = 0.03) and a negative with systemic vascular resistance (r = -0.52, p = 0.04). Positive correlations were seen both between IL-10, 30 min after resuscitation (T30min), and systolic arterial pressure (r = 0.57, p = 0.03) and cardiac index (r = 0.67, p = 0.01), and also between IL-6, taken 2 h after resuscitation and systolic arterial pressure (r = 0.53, p = 0.04). Negative correlations were found between IL-10 and lactate, measured resuscitation time (r = -0.58, p = 0.03). Regarding microcirculation parameters, we observed a positive correlation between IL-6 and IL-10 with the microvascular flow index (r = 0.52, p = 0.05; r = 0.84, p = 0.0003) and a negative correlation with the heterogeneity index with TNF-α and IL-10 (r = -0.51, p = 0.05; r = -0.74, p = 0.003) respectively. NO derivatives showed a positive correlation with temperature gradient (r = 0.54, p = 0.04). Pimobendan did not show anti-inflammatory effects in cytokines release. Our results also, suggest changes of macro- and microcirculation are associated mainly with low levels of IL-10 in sepsis.
Collapse
Affiliation(s)
- Charlotte Slek
- Université de Lyon, APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis-, UP 2021.A101, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France.
| | - Mathieu Magnin
- Université de Lyon, APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis-, UP 2021.A101, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France.
| | - Bernard Allaouchiche
- Université de Lyon, APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis-, UP 2021.A101, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France; Université de Lyon, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Réanimation Médicale, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, France
| | - Jeanne Marie Bonnet
- Université de Lyon, APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis-, UP 2021.A101, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France.
| | - Stéphane Junot
- Université de Lyon, APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis-, UP 2021.A101, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France.
| | - Vanessa Louzier
- Université de Lyon, APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis-, UP 2021.A101, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France.
| | - Tatiana Victoni
- Université de Lyon, APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis-, UP 2021.A101, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France.
| |
Collapse
|
3
|
Zhong J, Johansen SH, Bæk O, Nguyen DN. Citrulline supplementation exacerbates sepsis severity in infected preterm piglets via early induced immunosuppression. J Nutr Biochem 2024; 131:109674. [PMID: 38825026 DOI: 10.1016/j.jnutbio.2024.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Arginine (ARG)/Citrulline (CIT) deficiency is associated with increased sepsis severity after infection. Supplementation of CIT to susceptible patients with ARG/CIT deficiency such as preterm newborns with suspected infection might prevent sepsis, via maintaining immune and vascular function. Caesarean-delivered, parenterally nourished preterm pigs were treated with CIT (1g/kg bodyweight) via oral or continuous intravenous supplementation, then inoculated with live Staphylococcus epidermidis and clinically monitored for 14 h. Blood, liver, and spleen samples were collected for analysis. In vitro cord blood stimulation was performed to explore how CIT and ARG affect premature blood cell responses. After infection, oral CIT supplementation led to higher mortality, increased blood bacterial load, and systemic and hepatic inflammation. Intravenous CIT administration showed increased inflammation and bacterial burdens without significantly affecting mortality. Liver transcriptomics and data from in vitro blood stimulation indicated that CIT induces systemic immunosuppression in preterm newborns, which may impair resistance response to bacteria at the early stage of infection, subsequently causing later uncontrollable inflammation and tissue damage. The early stage of CIT supplementation exacerbates sepsis severity in infected preterm pigs, likely via inducing systemic immunosuppression.
Collapse
Affiliation(s)
- Jingren Zhong
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Sebastian Høj Johansen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Ole Bæk
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark; Department of Neonatology, Rigshospitalet, Denmark.
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
4
|
Watanabe K, Shiba T, Takahara A, Homma H, Komatsu T, Tanino Y, Nagasawa Y, Aimoto M, Hori Y. Evaluating the relationship between ocular blood flow and systemic organ blood flow in hemorrhagic shock using a rabbit model. Sci Rep 2024; 14:3749. [PMID: 38355984 PMCID: PMC10866860 DOI: 10.1038/s41598-024-54467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
This study aimed to investigate the feasibility of utilizing noninvasive ocular blood flow measurements as potential indicators of systemic circulation in rabbits experiencing hemorrhagic shock. Using Laser speckle flowgraphy, ocular blood flow indices, relative flow volume (RFV), and mean blur rate in the choroidal area (MBR-CH) were assessed in New Zealand White rabbits (n = 10) subjected to controlled blood removal and return. Hemodynamic parameters and biochemical markers were monitored alongside ocular circulation during blood removal and return phases. Additionally, correlations between ocular parameters and systemic indices were examined. The results indicated that RFV and MBR-CH exhibited significant correlations with renal and intestinal blood flows, with stronger correlations observed during blood removal. Additionally, ocular blood flow changes closely mirrored systemic dynamics, suggesting their potential as real-time indicators of shock progression and recovery. These findings indicate that ocular blood flow measurements may serve as real-time indicators of the systemic circulation status during hemorrhagic shock, offering potential insights into shock management and guiding tailored interventions. Thus, noninvasive ocular blood flow evaluation holds promise as an innovative tool for assessing systemic circulation dynamics during hemorrhagic shock.
Collapse
Affiliation(s)
- Kento Watanabe
- Department of Ophthalmology, Toho University, 6-11-1, Omorinishi, Oota-ku, Tokyo, 143-8541, Japan.
| | - Tomoaki Shiba
- Department of Ophthalmology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Hiroshi Homma
- Department of Emergency and Critical Care Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tetsuya Komatsu
- Department of Ophthalmology, Toho University, 6-11-1, Omorinishi, Oota-ku, Tokyo, 143-8541, Japan
| | - Yusuke Tanino
- Department of Emergency and Critical Care Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Yuichi Hori
- Department of Ophthalmology, Toho University, 6-11-1, Omorinishi, Oota-ku, Tokyo, 143-8541, Japan
| |
Collapse
|
5
|
Almazmomi MA, Esmat A, Naeem A. Acute Kidney Injury: Definition, Management, and Promising Therapeutic Target. Cureus 2023; 15:e51228. [PMID: 38283512 PMCID: PMC10821757 DOI: 10.7759/cureus.51228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Acute kidney injury (AKI) is caused by a sudden loss of renal function, resulting in the build-up of waste products and a significant increase in mortality and morbidity. It is commonly diagnosed in critically ill patients, with its occurrence estimated at up to 50% in patients hospitalized in the intensive critical unit. Despite ongoing efforts, the death rate associated with AKI has remained high over the past half-century. Thus, it is critical to investigate novel therapy options for preventing the epidemic. Many studies have found that inflammation and Toll-like receptor-4 (TLR-4) activation have a significant role in the pathogenesis of AKI. Noteworthy, challenges in the search for efficient pharmacological therapy for AKI have arisen due to the multifaceted origin and complexity of the clinical history of people with the disease. This article focuses on kidney injury's epidemiology, risk factors, and pathophysiological processes. Specifically, it focuses on the role of TLRs especially type 4 in disease development.
Collapse
Affiliation(s)
- Meaad A Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Anjum Naeem
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
| |
Collapse
|
6
|
Dony CA, Illipparambil LC, Maeda T, Mroczek SK, Rovitelli A, Wexler O, Malnoske M, Bice T, Fe AZ, Storms CR, Zhang J, Schultz RD, Pietropaoli AP. Plasma Nitric Oxide Consumption Is Elevated and Associated With Adverse Outcomes in Critically Ill Patients. Crit Care Med 2023; 51:1706-1715. [PMID: 37607081 PMCID: PMC10645105 DOI: 10.1097/ccm.0000000000006006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Impaired nitric oxide (NO) bioavailability may contribute to microvascular dysfunction in sepsis. Excessive plasma NO consumption has been attributed to scavenging by circulating cell-free hemoglobin. This may be a mechanism for NO deficiency in sepsis and critical illness. We hypothesized that plasma NO consumption is high in critically ill patients, particularly those with sepsis, acute respiratory distress syndrome (ARDS), shock, and in hospital nonsurvivors. We further hypothesized that plasma NO consumption is correlated with plasma cell-free hemoglobin concentration. DESIGN Retrospective cohort study. SETTING Adult ICUs of an academic medical center. PATIENTS AND SUBJECTS Three hundred sixty-two critically ill patients and 46 healthy control subjects. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma NO consumption was measured using reductive chemiluminescence and cell-free hemoglobin was measured with a colorimetric assay. Mean (95% CI) plasma NO consumption (µM) was higher in critically ill patients versus healthy control subjects (3.9 [3.7-4.1] vs 2.1 [1.8-2.5]), septic versus nonseptic patients (4.1 [3.8-4.3] vs 3.6 [3.3-3.8]), ARDS versus non-ARDS patients (4.4 [4.0-4.9] vs 3.7 [3.6-3.9]), shock vs nonshock patients (4.4 [4.0-4.8] vs 3.6 [3.4-3.8]), and hospital nonsurvivors versus survivors (5.3 [4.4-6.4] vs 3.7 [3.6-3.9]). These relationships remained significant in multivariable analyses. Plasma cell-free hemoglobin was weakly correlated with plasma NO consumption. CONCLUSIONS Plasma NO consumption is elevated in critically ill patients and independently associated with sepsis, ARDS, shock, and hospital death. These data suggest that excessive intravascular NO scavenging characterizes sepsis and adverse outcomes of critical illness.
Collapse
Affiliation(s)
- Christina A Dony
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Lijo C Illipparambil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Tetsuro Maeda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Susan K Mroczek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Amy Rovitelli
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Orren Wexler
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | | | - Tristan Bice
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Alex Z Fe
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Casey R Storms
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Jimmy Zhang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Hospital, New York, NY
| | - Rebecca D Schultz
- Department of Respiratory Care, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Anthony P Pietropaoli
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
7
|
Pei XB, Liu B. Research Progress on the Mechanism and Management of Septic Cardiomyopathy: A Comprehensive Review. Emerg Med Int 2023; 2023:8107336. [PMID: 38029224 PMCID: PMC10681771 DOI: 10.1155/2023/8107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as a kind of life-threatening organ dysfunction due to a dysregulated host immune response to infection and is a leading cause of mortality in the intensive care unit. Sepsis-induced myocardial dysfunction, also called septic cardiomyopathy, is a common and serious complication in patients with sepsis, which may indicate a bad prognosis. Although efforts have been made to uncover the pathophysiology of septic cardiomyopathy, a number of uncertainties remain. This article sought to review available literature to summarize the existing knowledge on current diagnostic tools and biomarkers, pathogenesis, and treatments for septic cardiomyopathy.
Collapse
Affiliation(s)
- Xue-Bin Pei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Liu
- Department of Emergency Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Arteaga GM, Crow S. End organ perfusion and pediatric microcirculation assessment. Front Pediatr 2023; 11:1123405. [PMID: 37842022 PMCID: PMC10576530 DOI: 10.3389/fped.2023.1123405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Cardiovascular instability and reduced oxygenation are regular perioperative critical events associated with anesthesia requiring intervention in neonates and young infants. This review article addresses the current modalities of assessing this population's adequate end-organ perfusion in the perioperative period. Assuring adequate tissue oxygenation in critically ill infants is based on parameters that measure acceptable macrocirculatory hemodynamic parameters such as vital signs (mean arterial blood pressure, heart rate, urinary output) and chemical parameters (lactic acidosis, mixed venous oxygen saturation, base deficit). Microcirculation assessment represents a promising candidate for assessing and improving hemodynamic management strategies in perioperative and critically ill populations. Evaluation of the functional state of the microcirculation can parallel improvement in tissue perfusion, a term coined as "hemodynamic coherence". Less information is available to assess microcirculatory disturbances related to higher mortality risk in critically ill adults and pediatric patients with septic shock. Techniques for measuring microcirculation have substantially improved in the past decade and have evolved from methods that are limited in scope, such as velocity-based laser Doppler and near-infrared spectroscopy, to handheld vital microscopy (HVM), also referred to as videomicroscopy. Available technologies to assess microcirculation include sublingual incident dark field (IDF) and sublingual sidestream dark field (SDF) devices. This chapter addresses (1) the physiological basis of microcirculation and its relevance to the neonatal and pediatric populations, (2) the pathophysiology associated with altered microcirculation and endothelium, and (3) the current literature reviewing modalities to detect and quantify the presence of microcirculatory alterations.
Collapse
Affiliation(s)
- Grace M. Arteaga
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| | - Sheri Crow
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| |
Collapse
|
9
|
Jávor P, Donka T, Horváth T, Sándor L, Török L, Szabó A, Hartmann P. Impairment of Mesenteric Perfusion as a Marker of Major Bleeding in Trauma Patients. J Clin Med 2023; 12:jcm12103571. [PMID: 37240677 DOI: 10.3390/jcm12103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of potentially preventable mortality in trauma patients is related to bleeding; therefore, early recognition and effective treatment of hemorrhagic shock impose a cardinal challenge for trauma teams worldwide. The reduction in mesenteric perfusion (MP) is among the first compensatory responses to blood loss; however, there is no adequate tool for splanchnic hemodynamic monitoring in emergency patient care. In this narrative review, (i) methods based on flowmetry, CT imaging, video microscopy (VM), measurement of laboratory markers, spectroscopy, and tissue capnometry were critically analyzed with respect to their accessibility, and applicability, sensitivity, and specificity. (ii) Then, we demonstrated that derangement of MP is a promising diagnostic indicator of blood loss. (iii) Finally, we discussed a new diagnostic method for the evaluation of hemorrhage based on exhaled methane (CH4) measurement. Conclusions: Monitoring the MP is a feasible option for the evaluation of blood loss. There are a wide range of experimentally used methodologies; however, due to their practical limitations, only a fraction of them could be integrated into routine emergency trauma care. According to our comprehensive review, breath analysis, including exhaled CH4 measurement, would provide the possibility for continuous, non-invasive monitoring of blood loss.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tibor Donka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Lilla Sándor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - László Török
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
10
|
Guarino M, Perna B, Cesaro AE, Maritati M, Spampinato MD, Contini C, De Giorgio R. 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. J Clin Med 2023; 12:jcm12093188. [PMID: 37176628 PMCID: PMC10179263 DOI: 10.3390/jcm12093188] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Sepsis/septic shock is a life-threatening and time-dependent condition that requires timely management to reduce mortality. This review aims to update physicians with regard to the main pillars of treatment for this insidious condition. METHODS PubMed, Scopus, and EMBASE were searched from inception with special attention paid to November 2021-January 2023. RESULTS The management of sepsis/septic shock is challenging and involves different pathophysiological aspects, encompassing empirical antimicrobial treatment (which is promptly administered after microbial tests), fluid (crystalloids) replacement (to be established according to fluid tolerance and fluid responsiveness), and vasoactive agents (e.g., norepinephrine (NE)), which are employed to maintain mean arterial pressure above 65 mmHg and reduce the risk of fluid overload. In cases of refractory shock, vasopressin (rather than epinephrine) should be combined with NE to reach an acceptable level of pressure control. If mechanical ventilation is indicated, the tidal volume should be reduced from 10 to 6 mL/kg. Heparin is administered to prevent venous thromboembolism, and glycemic control is recommended. The efficacy of other treatments (e.g., proton-pump inhibitors, sodium bicarbonate, etc.) is largely debated, and such treatments might be used on a case-to-case basis. CONCLUSIONS The management of sepsis/septic shock has significantly progressed in the last few years. Improving knowledge of the main therapeutic cornerstones of this challenging condition is crucial to achieve better patient outcomes.
Collapse
Affiliation(s)
- Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Benedetta Perna
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Alice Eleonora Cesaro
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Infectious and Dermatology Diseases, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Domenico Spampinato
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Contini
- Infectious and Dermatology Diseases, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Li P, Wu Y, Goodwin AJ, Wolf B, Halushka PV, Wang H, Zingarelli B, Fan H. Circulating extracellular vesicles are associated with the clinical outcomes of sepsis. Front Immunol 2023; 14:1150564. [PMID: 37180111 PMCID: PMC10167034 DOI: 10.3389/fimmu.2023.1150564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Sepsis is associated with endothelial cell (EC) dysfunction, increased vascular permeability and organ injury, which may lead to mortality, acute respiratory distress syndrome (ARDS) and acute renal failure (ARF). There are no reliable biomarkers to predict these sepsis complications at present. Recent evidence suggests that circulating extracellular vesicles (EVs) and their content caspase-1 and miR-126 may play a critical role in modulating vascular injury in sepsis; however, the association between circulating EVs and sepsis outcomes remains largely unknown. Methods We obtained plasma samples from septic patients (n=96) within 24 hours of hospital admission and from healthy controls (n=45). Total, monocyte- or EC-derived EVs were isolated from the plasma samples. Transendothelial electrical resistance (TEER) was used as an indicator of EC dysfunction. Caspase-1 activity in EVs was detected and their association with sepsis outcomes including mortality, ARDS and ARF was analyzed. In another set of experiments, total EVs were isolated from plasma samples of 12 septic patients and 12 non-septic critical illness controls on days 1, and 3 after hospital admission. RNAs were isolated from these EVs and Next-generation sequencing was performed. The association between miR-126 levels and sepsis outcomes such as mortality, ARDS and ARF was analyzed. Results Septic patients with circulating EVs that induced EC injury (lower transendothelial electrical resistance) were more likely to experience ARDS (p<0.05). Higher caspase-1 activity in total EVs, monocyte- or EC-derived EVs was significantly associated with the development of ARDS (p<0.05). MiR-126-3p levels in EC EVs were significantly decreased in ARDS patients compared with healthy controls (p<0.05). Moreover, a decline in miR-126-5p levels from day 1 to day 3 was associated with increased mortality, ARDS and ARF; while decline in miR-126-3p levels from day 1 to day 3 was associated with ARDS development. Conclusions Enhanced caspase-1 activity and declining miR-126 levels in circulating EVs are associated with sepsis-related organ failure and mortality. Extracellular vesicular contents may serve as novel prognostic biomarkers and/or targets for future therapeutic approaches in sepsis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Andrew J. Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Perry V. Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, United States
| | - Hongjun Wang
- Departments of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Stasi A, Franzin R, Caggiano G, Losapio R, Fiorentino M, Alfieri C, Gesualdo L, Stallone G, Castellano G. New Frontiers in Sepsis-Induced Acute Kidney Injury and Blood Purification Therapies: The Role of Polymethylmethacrylate Membrane Hemofilter. Blood Purif 2023; 52 Suppl 1:71-84. [PMID: 36693337 PMCID: PMC10210082 DOI: 10.1159/000528685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
Acute kidney injury (AKI) is a common consequence of sepsis with a mortality rate of up to 40%. The pathogenesis of septic AKI is complex and involves several mechanisms leading to exacerbated inflammatory response associated with renal injury. A large body of evidence suggests that inflammation is tightly linked to AKI through bidirectional interaction between renal and immune cells. Preclinical data from our and other laboratories have identified in complement system activation a crucial mediator of AKI. Partial recovery following AKI could lead to long-term consequences that predispose to chronic dysfunction and may also accelerate the progression of preexisting chronic kidney disease. Recent findings have revealed striking morphological and functional changes in renal parenchymal cells induced by mitochondrial dysfunction, cell cycle arrest via the activation of signaling pathways involved in aging process, microvascular rarefaction, and early fibrosis. Although major advances have been made in our understanding of the pathophysiology of AKI, there are no available preventive and therapeutic strategies in this field. The identification of ideal clinical biomarkers for AKI enables prompt and effective therapeutic strategy that could prevent the progression of renal injury and promote repair process. Therefore, the use of novel biomarkers associated with clinical and functional criteria could provide early interventions and better outcome. Several new drugs for AKI are currently being investigated; however, the complexity of this disease might explain the failure of pharmacological intervention targeting just one of the many systems involved. The hypothesis that blood purification could improve the outcome of septic AKI has attracted much attention. New relevant findings on the role of polymethylmethacrylate-based continuous veno-venous hemofiltration in septic AKI have been reported. Herein, we provide a comprehensive literature review on advances in the pathophysiology of septic AKI and potential therapeutic approaches in this field.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Gianvito Caggiano
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Rosa Losapio
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Carlo Alfieri
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Lu Z, Fang P, Xia D, Li M, Li S, Wang Y, Fu L, Sun G, You Q. The impact of aspirin exposure prior to intensive care unit admission on the outcomes for patients with sepsis-associated acute respiratory failure. Front Pharmacol 2023; 14:1125611. [PMID: 36937880 PMCID: PMC10014538 DOI: 10.3389/fphar.2023.1125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives: This present study aimed to infer the association between aspirin exposure prior to ICU admission and the clinical outcomes of patients with Sepsis-associated acute respiratory failure (S-ARF). Methods: We obtained data from the Medical Information Mart for Intensive Care IV 2.0. Patients were divided into pre-ICU aspirin exposure group and Non-aspirin exposure group based on whether they took aspirin before ICU admission. The primary outcome is 28-day mortality. Augmented inverse propensity weighted was used to explore the average treatment effect (ATE) of the pre-ICU aspirin exposure. A generalized additive mixed model was used to analyze the longitudinal data of neutrophil to lymphocyte ratio (NLR), red cell distribution width (RDW), oxygenation index (P/F), dynamic lung compliance (Cdyn), mechanical power (MP), and mechanical power normalized to predicted body weight (WMP) in the two groups. A multiple mediation model was constructed to explore the possible mediators between pre-ICU aspirin exposure and outcomes of patients with S-ARF. Results: A total of 2090 S-ARF patients were included in this study. Pre-ICU aspirin exposure decreased 28-day mortality (ATE, -0.1945, 95% confidence interval [CI], -0.2786 to -0.1103, p < 0.001), 60-day mortality (ATE, -0.1781, 95% Cl, -0.2647 to -0.0915, p < 0.001), and hospital mortality (ATE, -0.1502, 95%CI, -0.2340 to -0.0664, p < 0.001). In subgroup analysis, the ATE for 28-day mortality, 60-day mortality, and hospital mortality were not statistically significant in the coronary care unit group, high-dose group (over 100 mg/d), and no invasive mechanical ventilation (IMV) group. After excluding these non-beneficiaries, Cdyn and P/F ratio of the pre-ICU aspirin exposure group increased by 0.31mL/cmH2O (SE, 0.21, p = 0.016), and 0.43 mmHg (SE, 0.24, p = 0.041) every hour compared to that of non-aspirin exposure group after initialing IMV. The time-weighted average of NLR, Cdyn, WMP played a mediating role of 8.6%, 24.7%, and 13% of the total effects of pre-ICU aspirin exposure and 28-day mortality, respectively. Conclusion: Pre-ICU aspirin exposure was associated with decreased 28-day mortality, 60-day mortality, and hospital mortality in S-ARF patients except those admitted to CCU, and those took a high-dose aspirin or did not receive IMV. The protective effect of aspirin may be mediated by a low dynamic level of NLR and a high dynamic level of Cdyn and WMP. The findings should be interpreted cautiously, given the sample size and potential for residual confounding.
Collapse
Affiliation(s)
- Zongqing Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pu Fang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dunling Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengdie Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Seruo Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lin Fu, ; Gengyun Sun, ; Qinghai You,
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lin Fu, ; Gengyun Sun, ; Qinghai You,
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lin Fu, ; Gengyun Sun, ; Qinghai You,
| |
Collapse
|
14
|
Wang S, Liu G, Chen L, Xu X, Jia T, Zhu C, Xiong J. EFFECTS OF SHENFU INJECTION ON SUBLINGUAL MICROCIRCULATION IN SEPTIC SHOCK PATIENTS: A RANDOMIZED CONTROLLED TRIAL. Shock 2022; 58:196-203. [PMID: 35959775 DOI: 10.1097/shk.0000000000001975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Background and Objective: The optimization of macrocirculatory hemodynamics is recommended by current sepsis guidelines. However, microcirculatory dysfunction is considered the cause of severe sepsis. In the present study, we designed to verify whether the application of Shenfu injection (SFI) restores microcirculation, thereby improving tissue perfusion and inhibiting organ dysfunction, resulting in improved outcomes. Design: We conducted a prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Intervention: Patients were randomly assigned to group receiving SFI (n = 20) or placebo (n = 20) for 5 days. We administered SFI or glucose injection for 5 days and blinded the investigators and clinical staff by applying light-proof infusion equipment that concealed therapy allocation. Measurements and Results: We measured the systemic dynamics and lactate levels, biomarkers of endothelial dysfunction, and inflammatory cytokines in the plasma. The parameters of sublingual microcirculation were assessed using side-stream dark-field imaging. Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) score, total dose, and duration of vasopressor use, emergency intensive care unit (EICU) stay, and 28-day mortality were evaluated. After treatment with SFI, the disturbance of the sublingual microcirculation was considerably alleviated, as indicated by the significant increase in total vessel density, perfused vessel density, and microvascular flow index. Moreover, the plasma biomarker levels of endothelial dysfunction, including Ang-2, Syn-1, and ET-1, were reversed after SFI treatment. Importantly, the SFI group had a more favorable prognosis than the control group in terms of the APACHE-II score, SOFA score, duration of vasopressor administration, and length of EICU stay. However, the difference in mortality at day 28 was not statistically different between the SFI (15%, 3/20) and placebo (25%, 5/20) groups ( P = 0.693). Conclusions : Shenfu injection provided apparent effects in improving sublingual microcirculatory perfusion in patients with septic shock, and this protection may be related with the inhibition of endothelial dysfunction and vasodilatory effects.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
15
|
RESEARCH PAPER Microcirculation assessment of dexmedetomidine constant rate infusion during anesthesia of dogs with sepsis from pyometra: a randomized clinical study. Vet Anaesth Analg 2022; 49:536-545. [DOI: 10.1016/j.vaa.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
|
16
|
Karimi A, Naeini F, Niazkar HR, Tutunchi H, Musazadeh V, Mahmoodpoor A, Asghariazar V, Mobasseri M, Tarighat-Esfanjani A. Nano-curcumin supplementation in critically ill patients with sepsis: a randomized clinical trial investigating the inflammatory biomarkers, oxidative stress indices, endothelial function, clinical outcomes and nutritional status. Food Funct 2022; 13:6596-6612. [PMID: 35621073 DOI: 10.1039/d1fo03746c] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sepsis is a severe reaction and excessive immune response to infection, which can lead to organ dysfunction, and death. This study aimed to investigate the protective effect of nano-curcumin (NC) on inflammatory biomarkers, endothelial function, oxidative stress indices, biochemical factors, nutritional status, and clinical outcomes in patients with sepsis. In the present double-blind placebo-controlled randomized clinical trial, 40 ICU-admitted patients were randomly allocated into either NC or placebo group for 10 days. Both nano-curcumin (160 mg) and placebo were administered via a nasogastric tube twice a day. The mRNA expression of nuclear-related factor 2 (Nrf-2), BCL2 associated X (BAX), B-cell lymphoma 2 (BCL-2), and toll-like receptor 4 (TLR-4) genes in the peripheral blood mononuclear cells (PBMCs), and the serum levels of primary, secondary, tertiary, and exploratory outcomes were assessed before the baseline and on days 5 and 10. There were significant improvements in the primary outcomes, including inflammatory markers (IL-6, IL-18, IL-1β, IL-10, TLR-4, BCL-2 and BAX), markers of endothelial function (ICAM-1 and VCAM-1), and oxidative stress indices (malondialdehyde (MDA), nuclear-related factor 2 (Nrf-2), catalase, superoxide dismutase (SOD), and TAC) (p < 0.005) in the NC group compared to the placebo group after 10 days, while no significant increase was observed in the glutathione peroxidase (GPx) level between the two groups. However, no significant decrease was observed in the levels of secondary outcomes, including biochemical factors (creatinine, fasting blood sugar (FBS), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin, triglycerides (TG) and total cholesterol (TC)) (P > 0.05). Our results showed that in the tertiary outcome (nutritional status), there was no significant increase (P > 0.05) except for TLC (P = 0.003). NC supplementation also resulted in a significant decrease in the exploratory outcomes including the SOFA score and the duration of mechanical ventilation (P < 0.05). Supplementation with NC may be a promising treatment strategy for critically ill patients with sepsis. However, further experiments are suggested to investigate the effects of nano-curcumin on biochemical pathways involved in sepsis.
Collapse
Affiliation(s)
- Arash Karimi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Reza Niazkar
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Helda Tutunchi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Asghariazar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Redaelli S, Magliocca A, Malhotra R, Ristagno G, Citerio G, Bellani G, Berra L, Rezoagli E. Nitric oxide: Clinical applications in critically ill patients. Nitric Oxide 2022; 121:20-33. [PMID: 35123061 PMCID: PMC10189363 DOI: 10.1016/j.niox.2022.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.
Collapse
Affiliation(s)
- Simone Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Giuseppe Ristagno
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Neuroscience Department, NeuroIntensive Care Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, ECMO Center, San Gerardo University Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, ECMO Center, San Gerardo University Hospital, Monza, Italy.
| |
Collapse
|
18
|
Alazouny ZM, Alghonamy NM, Mohamed SR, Abdel Aal SM. Mesenchymal stem cells microvesicles versus granulocytes colony stimulating factor efficacy in ameliorating septic induced acute renal cortical injury in adult male albino rats (Histological and Immunohistochemical Study). Ultrastruct Pathol 2022; 46:164-187. [PMID: 35193482 DOI: 10.1080/01913123.2022.2039826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sepsis is the most common cause of acute kidney injury in ICU patients, with increasing mortalities. Treatment septic AKI is unsatisfactory; therefore, more effective therapies must be investigated. MSCs-MVs have the same effectiveness in tissue repair as their original cells. Granulocyte colony-stimulating factor (G-CSF) is considered a simple and convenient tool in regenerative medicine. This study aimed to compare the probable therapeutic effect of MSCs-MVs versus G-CSF on septic AKI in rats. Forty-eight adult male rats were divided into four groups; I control group (IA-ID), II induced-sepsis group, III G-CSF, and IV MSC-MVs groups. Sepsis was induced in groups II, III, IV through a single IV injection of 10 mg/ kg of E.Coli-LPS dissolved in 1 ml saline. Four hours later, group IV received a single IV injection of MSCs-MVs, while group III received a SC injection of Neupogen for 5 days. All animals were sacrificed 7 days from the start. Serum and tissue samples of each group were used for biochemical study. Sections from all groups were subjected to light and electron microscopic examination. A fluorescent microscope examination for subgroup ID and group IV was done. Morphometric and statistical analyses were performed. Group II showed features of acute tubular injury. Group III showed some improvement (biochemically, LM & EM level) however, group IV showed more improvement. MVs injection caused a marked improvement in septic AKI; G-CSF can also meliorate the degenerative effect of sepsis on renal cortex, but to a lesser extent than MSCs-MVs.
Collapse
Affiliation(s)
- Zeinab M Alazouny
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nabila M Alghonamy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar R Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara M Abdel Aal
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Boudart C, Su F, Pitisci L, Dhoine A, Duranteau O, Jespers P, Herpain A, Vanderpool R, Brimioulle S, Creteur J, Naeije R, Van Obbergh L, Dewachter L. Early Hyperdynamic Sepsis Alters Coronary Blood Flow Regulation in Porcine Fecal Peritonitis. Front Physiol 2021; 12:754570. [PMID: 34925058 PMCID: PMC8678271 DOI: 10.3389/fphys.2021.754570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sepsis is a common condition known to impair blood flow regulation and microcirculation, which can ultimately lead to organ dysfunction but such contribution of the coronary circulation remains to be clarified. We investigated coronary blood flow regulatory mechanisms, including autoregulation, metabolic regulation, and endothelial vasodilatory response, in an experimental porcine model of early hyperdynamic sepsis. Methods: Fourteen pigs were randomized to sham (n = 7) or fecal peritonitis-induced sepsis (n = 7) procedures. At baseline, 6 and 12 h after peritonitis induction, the animals underwent general and coronary hemodynamic evaluation, including determination of autoregulatory breakpoint pressure and adenosine-induced maximal coronary vasodilation for coronary flow reserve and hyperemic microvascular resistance calculation. Endothelial-derived vasodilatory response was assessed both in vivo and ex vivo using bradykinin. Coronary arteries were sampled for pathobiological evaluation. Results: Sepsis resulted in a right shift of the autoregulatory breakpoint pressure, decreased coronary blood flow reserve and increased hyperemic microvascular resistance from the 6th h after peritonitis induction. In vivo and ex vivo endothelial vasomotor function was preserved. Sepsis increased coronary arteries expressions of nitric oxide synthases, prostaglandin I2 receptor, and prostaglandin F2α receptor. Conclusion: Autoregulation and metabolic blood flow regulation were both impaired in the coronary circulation during experimental hyperdynamic sepsis, although endothelial vasodilatory response was preserved.
Collapse
Affiliation(s)
- Céline Boudart
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fuhong Su
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Pitisci
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Dhoine
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Duranteau
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Pascale Jespers
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Serge Brimioulle
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Van Obbergh
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
20
|
Wijnands KAP, Meesters DM, Vandendriessche B, Briedé JJ, van Eijk HMH, Brouckaert P, Cauwels A, Lamers WH, Poeze M. Microcirculatory Function during Endotoxemia-A Functional Citrulline-Arginine-NO Pathway and NOS3 Complex Is Essential to Maintain the Microcirculation. Int J Mol Sci 2021; 22:ijms222111940. [PMID: 34769369 PMCID: PMC8584871 DOI: 10.3390/ijms222111940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 μg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3−/− compared to Nos2−/− mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2−/− mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3−/− or Nos2−/−/Nos3−/− mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2−/− mice), as this beneficial effect was absent in Nos3−/− or Nos2−/−/Nos3−/− mice.
Collapse
Affiliation(s)
- Karolina A. P. Wijnands
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Correspondence: ; Tel.: +31-650-513-913
| | - Dennis M. Meesters
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Department of Genetics & Cell Biology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Benjamin Vandendriessche
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Byteflies, 2600 Antwerp, Belgium
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob J. Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Hans M. H. van Eijk
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| | - Peter Brouckaert
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Anje Cauwels
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Orionis Biosciences, 9052 Ghent, Belgium
| | - Wouter H. Lamers
- Department of Anatomy & Embryology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Martijn Poeze
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| |
Collapse
|
21
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
22
|
Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges. Int J Nephrol Renovasc Dis 2021; 14:235-253. [PMID: 34267538 PMCID: PMC8276826 DOI: 10.2147/ijnrd.s239157] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24–59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI’s impact on long-term health in malaria-endemic areas are urgently needed.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Zachary Berrens
- Department of Pediatrics, Pediatric Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristin Murphy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivan Mufumba
- CHILD Research Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Karimi A, Naeini F, Asghari Azar V, Hasanzadeh M, Ostadrahimi A, Niazkar HR, Mobasseri M, Tutunchi H. A comprehensive systematic review of the therapeutic effects and mechanisms of action of quercetin in sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153567. [PMID: 33940332 DOI: 10.1016/j.phymed.2021.153567] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Several studies have indicated that flavonoids exhibit a wide variety of biological actions including free radical scavenging and antioxidant activities. Quercetin, one of the most extensively distributed flavonoids in the vegetables and fruits, presents various biological activities including modulation of oxidative stress, anti-infectious, anti-inflammatory, and neuroprotective activities. METHODS The present systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements. We searched Web of Sciences, Google Scholar, PubMed, Scopus, and Embase databases up to February 2021 by using the relevant keywords. RESULTS Out of 672 records screened, 35 articles met the study criteria. The evidence reviewed here indicates that quercetin supplementation may exert beneficial effects on sepsis by attenuating inflammation and oxidative stress, downregulating the mRNA expression of toll-like receptors (TLRs), modulating the immune response, and alleviating sepsis-related organ dysfunctions. CONCLUSION Due to the promising therapeutic effects of quercetin on sepsis complications and the lack of clinical trials in this regard, future human randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Vahid Asghari Azar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Hasanzadeh
- Department of Biology, Ardabil Branch Islamic Azad University, Ardabil, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Niazkar
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Longhitano Y, Zanza C, Thangathurai D, Taurone S, Kozel D, Racca F, Audo A, Ravera E, Migneco A, Piccioni A, Franceschi F. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev Recent Clin Trials 2021; 15:289-297. [PMID: 32781963 DOI: 10.2174/1574887115666200811105251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction with high mortality and morbidity rate and with the disease progression many alterations are observed in different organs. The gastrointestinal tract is often damaged during sepsis and septic shock and main symptoms are related to increased permeability, bacterial translocation and malabsorption. These intestinal alterations can be both cause and effect of sepsis. OBJECTIVE The aim of this review is to analyze different pathways that lead to intestinal alteration in sepsis and to explore the most common methods for intestinal permeability measurement and, at the same time to evaluate if their use permit to identify patients at high risk of sepsis and eventually to estimate the prognosis. MATERIAL AND METHODS The peer-reviewed articles analyzed were selected from PubMed databases using the keywords "sepsis" "gut alteration", "bowel permeability", "gut alteration", "bacterial translocation", "gut permeability tests", "gut inflammation". Among the 321 papers identified, 190 articles were selected, after title - abstract examination and removing the duplicates and studies on pediatric population,only 105 articles relating to sepsis and gut alterations were analyzed. RESULTS Integrity of the intestinal barrier plays a key role in the preventing of bacterial translocation and gut alteration related to sepsis. It is obvious that this dysfunction of the small intestine can have serious consequences and the early identification of patients at risk - to develop malabsorption or already malnourished - is very recommended to increase the survivor rate. Until now, in critical patients, the dosage of citrullinemia is easily applied test in clinical setting, in fact, it is relatively easy to administer and allows to accurately assess the functionality of enterocytes. CONCLUSION The sepsis can have an important impact on the gastrointestinal function. In addition, the alteration of the permeability can become a source of systemic infection. At the moment, biological damage markers are not specific, but the dosage of LPS, citrulline, lactulose/mannitol test, FABP and fecal calprotectin are becoming an excellent alternative with high specificity and sensitivity.
Collapse
Affiliation(s)
- Yaroslava Longhitano
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Christian Zanza
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Duraiyah Thangathurai
- Department of Anesthesiology, Keck Medical School of University of Southern California, Los Angeles, United States
| | - Samanta Taurone
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Daniela Kozel
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Andrea Audo
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Enrico Ravera
- Department of Emergency, Anesthesia and Critical Care, Michele and Pietro Ferrero Hospital, Verduno, Italy
| | - Alessio Migneco
- Department of Anesthesiology and Emergency Sciences,, Policlinico Gemelli/IRCCS - Catholic University of Sacred Heart, Rome, Italy
| | - Andrea Piccioni
- Department of Anesthesiology and Emergency Sciences,, Policlinico Gemelli/IRCCS - Catholic University of Sacred Heart, Rome, Italy
| | - Francesco Franceschi
- Department of Anesthesiology and Emergency Sciences,, Policlinico Gemelli/IRCCS - Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
25
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
26
|
Lupu F, Kinasewitz G, Dormer K. The role of endothelial shear stress on haemodynamics, inflammation, coagulation and glycocalyx during sepsis. J Cell Mol Med 2020; 24:12258-12271. [PMID: 32951280 PMCID: PMC7687012 DOI: 10.1111/jcmm.15895] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a multifactorial syndrome primarily determined by the host response to an invading pathogen. It is common, with over 48 million cases worldwide in 2017, and often lethal. The sequence of events in sepsis begins with the damage of endothelium within the microvasculature, as a consequence of the inflammatory and coagulopathic responses to the pathogen that can progress to multiple organ failure and death. Most therapeutic interventions target the inflammation and coagulation pathways that act as an auto-amplified vicious cycle, which, if unchecked can be fatal. Normal blood flow and shear stress acting on a healthy endothelium and intact glycocalyx have anti-inflammatory, anticoagulant and self-repairing effects. During early stages of sepsis, the vascular endothelium and its glycocalyx become dysfunctional, yet they are essential components of resuscitation and recovery from sepsis. The effects of shear forces on sepsis-induced endothelial dysfunction, including inflammation, coagulation, complement activation and microcirculatory breakdown are reviewed. It is suggested that early therapeutic strategies should prioritize on the restoration of shear forces and endothelial function and on the preservation of the endothelial-glycocalyx barrier.
Collapse
Affiliation(s)
- Florea Lupu
- Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Gary Kinasewitz
- Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | | |
Collapse
|
27
|
Simvastatin Posttreatment Controls Inflammation and Improves Bacterial Clearance in Experimental Sepsis. Mediators Inflamm 2020; 2020:1839762. [PMID: 33110395 PMCID: PMC7582071 DOI: 10.1155/2020/1839762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1β. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.
Collapse
|
28
|
Assessment of tissue oxygenation to personalize mean arterial pressure target in patients with septic shock. Microvasc Res 2020; 132:104068. [PMID: 32877698 DOI: 10.1016/j.mvr.2020.104068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate whether assessment of tissue oxygenation could help personalizing the mean arterial pressure (MAP) target in patients with septic shock. METHODS We prospectively measured near-infrared spectroscopy variables in 22 patients with septic shock receiving norepinephrine with a MAP>75 mmHg within the first six hours of intensive care unit (ICU) stay for patients with community-acquired septic shock and within the first six hours of resuscitation for patients with ICU-acquired septic shock. All measurements were performed at MAP>75 mmHg ("high-MAP") and at MAP 65-70 mmHg ("low-MAP") after decreasing the norepinephrine dose. Relative changes in StO2 recovery slope (RS) >8% were considered clinically relevant. RESULTS After decreasing the norepinephrine dose by 45 ± 24%, MAP significantly decreased from 81[78;84] to 68[67;69]mmHg, whereas cardiac index did not change. On average, the StO2-RS significantly decreased between high and low-MAP from 2.86[1.87;4.32] to 2.41[1.14;3.72]%/sec with a large interindividual variability: the StO2-RS decreased by >8% in 14 patients, increased by >8% in 4 patients and changes were < 8% in 4 patients. These changes in StO2-RS were correlated with the StO2-RS at low-MAP (r = 0.57,p = 0.006). At high-MAP, there was no difference between patients exhibiting a relevant decrease or increase in StO2-RS. CONCLUSIONS A unique MAP target may not be suitable for all patients with septic shock as its impact on peripheral oxygenation may widely differ among patients. It could make sense to personalize MAP target through a multimodal assessment including peripheral oxygenation.
Collapse
|
29
|
Kingston HWF, Ghose A, Rungpradubvong V, Satitthummanid S, Herdman MT, Plewes K, Ishioka H, Leopold SJ, Sinha I, Intharabut B, Piera K, McNeil Y, Mohanty S, Maude RJ, White NJ, Day NPJ, Yeo TW, Hossain MA, Anstey NM, Dondorp AM. Cell-Free Hemoglobin Is Associated With Increased Vascular Resistance and Reduced Peripheral Perfusion in Severe Malaria. J Infect Dis 2020; 221:127-137. [PMID: 31693729 DOI: 10.1093/infdis/jiz359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In severe falciparum malaria, unlike sepsis, hypotension on admission is uncommon. We hypothesized that low nitric oxide bioavailability due to the presence of cell-free hemoglobin (CFH) increases vascular tone in severe malaria. METHODS Patients with severe malaria (n = 119), uncomplicated malaria (n = 91), or suspected bacterial sepsis (n = 56), as well as healthy participants (n = 50), were recruited. The systemic vascular resistance index (SVRI) was estimated from the echocardiographic cardiac index and the mean arterial pressure. RESULTS SVRI and hematocrit levels were lower and plasma CFH and asymmetric dimethylarginine levels were higher in patients with malaria, compared with healthy participants. In multivariate linear regression models for mean arterial pressure or SVRI in patients with severe malaria, hematocrit and CFH but not asymmetric dimethylarginine were significant predictors. The SVRI was lower in patients with suspected bacterial sepsis than in those with severe malaria, after adjustment for hematocrit and age. Plasma CFH levels correlated positively with the core-peripheral temperature gradient and plasma lactate levels and inversely with the perfusion index. Impaired peripheral perfusion, as reflected by a low perfusion index or a high core-peripheral temperature gradient, predicted mortality in patients with severe malaria. CONCLUSIONS CFH is associated with mean arterial pressure, SVRI, and peripheral perfusion in patients with severe malaria. This may be mediated through the nitric oxide scavenging potency of CFH, increasing basal vascular tone and impairing tissue perfusion.
Collapse
Affiliation(s)
- Hugh W F Kingston
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | | | - Voravut Rungpradubvong
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University.,Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sudarat Satitthummanid
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University.,Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - M Trent Herdman
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Katherine Plewes
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Haruhiko Ishioka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Stije J Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Ipsita Sinha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Benjamas Intharabut
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Yvette McNeil
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore
| | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
30
|
Martini R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin Hemorheol Microcirc 2020; 75:27-34. [PMID: 32568186 PMCID: PMC7458519 DOI: 10.3233/ch-200895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The burden of pandemic COVID-19 is growing worldwide, as the continuous increases of contagion. Only 10–15% of the entire infected population has the necessity of intensive care unit (ICU) treatments. But, this relatively low rate of patients has absorbed almost the whole availability of ICU during few days, becoming at least in Italy, an emergency for the national health system. In COVID-19 ICU patients massive aggression of lung with severe pulmonary failure, as well as kidney and liver injuries, heart, brain, bowel and spleen damages with lymph nodes necrosis and even cutaneous manifestations have been observed. Moreover, increased levels of cytokines so-called “cytokines storm (CS), and overt intravascular disseminated coagulation have been also reported. The hypercoagulation and CS would speculate about a microvascular dysfunction. Unfortunately, no specific observations have been performed on microcirculatory dysfunction in COVID-19 patients. Hence the presumed pathophysiological pathways and models about a microvascular involvement can be gathered by sepsis models studies. But despite this lack of evidence, the COVID-19 has emphasized the compelling need for microcirculation monitoring at the bedside in ICU patients.
Collapse
Affiliation(s)
- Romeo Martini
- Unità Operativa di Angiologia, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| |
Collapse
|
31
|
Cardinali M, Magnin M, Bonnet-Garin JM, Paquet C, Ayoub JY, Allaouchiche B, Junot S. A new photoplethysmographic device for continuous assessment of urethral mucosa perfusion: evaluation in a porcine model. J Clin Monit Comput 2020; 35:585-598. [PMID: 32361961 DOI: 10.1007/s10877-020-00515-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/27/2020] [Indexed: 01/25/2023]
Abstract
This study proposes to evaluate an innovative device consisting of an indwelling urinary catheter equipped with a photoplethysmography (PPG) sensor in contact with the urethral mucosa that provides a continuous index called urethral perfusion index (uPI). The goal of this study was to determine if the uPI could bring out tissue perfusion modifications induced by hypotension and vasopressors in a porcine model. Twelve piglets were equipped for heart rate, MAP, cardiac index, stroke volume index, systemic vascular resistance index and uPI monitoring. The animals were exposed to different levels of mean arterial pressure (MAP), ranging from low to high values. Friedman tests with a posteriori multiple comparison were performed and a generalized linear mixed model (GLMM) was used to assess the relationship between uPI and MAP. Urethral Perfusion Index and other haemodynamic parameters varied significantly at the different time-points of interest. There was a positive correlation between MAP and uPI below a specific MAP value, called dissociation threshold (DT). Above this threshold, uPI and MAP were negatively correlated. This relationship, assessed with the GLMM, yielded a significant positive fixed effect coefficient (+ 0.2, P < 0.00001) below the DT and a significant negative fixed effect (- 0.14, P < 0.00001) above DT. In an experimental setting, the PPG device and its index uPI permitted the detection of urethral mucosa perfusion alterations associated with hypotension or excessive doses of vasopressors. Further studies are needed to evaluate this device in a clinical context.
Collapse
Affiliation(s)
- Martina Cardinali
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Mathieu Magnin
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Jeanne-Marie Bonnet-Garin
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Christian Paquet
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Jean-Yves Ayoub
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Bernard Allaouchiche
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Réanimation Médicale, Université Claude Bernard Lyon 1, Unité APCSe, 5 place d'Arsonval, 69437, Lyon, Cedex 03, France
| | - Stephane Junot
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France.
| |
Collapse
|
32
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
33
|
Inhibition of Dimethylarginine Dimethylaminohydrolase 1 Improves the Outcome of Sepsis in Pregnant Mice. Shock 2019; 54:498-506. [PMID: 31821207 DOI: 10.1097/shk.0000000000001490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Blockade of IL-17A/IL-17R Pathway Protected Mice from Sepsis-Associated Encephalopathy by Inhibition of Microglia Activation. Mediators Inflamm 2019; 2019:8461725. [PMID: 31686986 PMCID: PMC6800921 DOI: 10.1155/2019/8461725] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a poorly understood condition that leads to long-term cognitive impairment and increased mortality in survivors. Recent research revealed that IL-17A/IL-17R might serve as a checkpoint in microglia-mediated neuroinflammation. The present study was designed to determine the specific role of IL-17A-mediated microglia activation in the development of SAE. A mouse model of SAE was induced by cecal ligation and puncture (CLP), and behavior performance was evaluated by the inhibitory avoidance test and the open field test. Cytokine expression and microglia activation in brain tissue were determined at 6 h, 12 h, 24 h, 48 h, and day 7 post surgery. Further, septic mice were intracerebral ventricle- (i.c.v.-) injected with recombinant IL-17A, anti-IL-17A ab, anti-IL-17R ab, or isotype controls to evaluate the potential effects of IL-17A/IL-17R blockade in the prevention of SAE. Septic peritonitis induced significant impairment of learning memory and exploratory activity, which was associated with a higher expression of IL-17A, IL-1β, and TNF-α in the brain homogenate. Fluorescence intensity of Iba-1 and IL-17R in the hippocampus was significantly increased following CLP. Treatment with recombinant IL-17A enhanced the neuroinflammation and microglia activation in CLP mice. On the contrary, neutralizing anti-IL-17A or anti-IL-17R antibodies mitigated the CNS inflammation and microglia activation, thus alleviating the cognitive dysfunction. Furthermore, as compared to the sham control, microglia cultured from CLP mice produced significantly higher levels of cytokines and expressed with higher fluorescence intensity of Iba-1 in response to IL-17A or LPS. Pretreatment with anti-IL-17R ab suppressed the Iba-1 expression and cytokine production in microglia stimulated by IL-17A. In conclusion, blockade of the IL-17A/IL-17R pathway inhibited microglia activation and neuroinflammation, thereby partially reversing sepsis-induced cognitive impairment. The present study suggested that the IL-17A/IL-17R signaling pathway had an important, nonredundant role in the development of SAE.
Collapse
|
35
|
Wardi G, Brice J, Correia M, Liu D, Self M, Tainter C. Demystifying Lactate in the Emergency Department. Ann Emerg Med 2019; 75:287-298. [PMID: 31474479 DOI: 10.1016/j.annemergmed.2019.06.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023]
Abstract
The role of lactic acid and its conjugate base, lactate, has evolved during the past decade in the care of patients in the emergency department (ED). A recent national sepsis quality measure has led to increased use of serum lactate in the ED, but many causes for hyperlactatemia exist outside of sepsis. We provide a review of the biology of lactate production and metabolism, the many causes of hyperlactatemia, and evidence on its use as a marker in prognosis and resuscitation. Additionally, we review the evolving role of lactate in sepsis care. We provide recommendations to aid lactate interpretation in the ED and highlight areas for future research.
Collapse
Affiliation(s)
- Gabriel Wardi
- Department of Emergency Medicine, University of California at San Diego, San Diego, CA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California at San Diego, San Diego, CA.
| | - Jessica Brice
- Department of Emergency Medicine, University of California at San Diego, San Diego, CA
| | - Matthew Correia
- Department of Emergency Medicine, University of California at San Diego, San Diego, CA
| | - Dennis Liu
- Department of Emergency Medicine, University of California at San Diego, San Diego, CA
| | - Michael Self
- Department of Emergency Medicine, University of California at San Diego, San Diego, CA
| | - Christopher Tainter
- Department of Emergency Medicine, University of California at San Diego, San Diego, CA; Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, University of California at San Diego, San Diego, CA
| |
Collapse
|
36
|
Abstract
Microcirculation is the motor of sepsis. In the present study, we investigated whether microcirculatory alterations occur before changes of systemic hemodynamics in a rat model of cecum ligation and puncture (CLP)-induced sepsis. We further investigated renal microcirculatory changes during sepsis and compared those with buccal microcirculation. Twelve male Sprague-Dawley rats were randomized into a sham control group (n = 6) and a CLP group (n = 6). Perfused microvessel density (PVD) and microvascular flow index (MFI) were evaluated using sidestream dark field (SDF) video microscopy at baseline-60, 120, 180, 240, 300, and 360 min following CLP. A semiquantitative score was calculated for vessels of less than 20 μm, primarily representing the capillaries. Hemodynamic measurements such as cardiac output (CO), aortic pressure (AP), heart rate (HR), end-tidal CO2 (ETCO2), blood pH, and lactate were measured simultaneously. The serum cytokine interleukin 6 (IL-6) was measured at baseline-120, 240, and 360 min. In the CLP group, buccal PVD and MFI were reduced at 180 min (P < 0.05 vs. baseline); renal PVD and MFI were reduced at 180 min (P < 0.05 vs. baseline), but MAP and CO did not change until 300 min after CLP. In the rat model of peritonitis-induced sepsis, microcirculatory alterations of both peripheral mucosa and kidney occurred earlier than global hemodynamics. Monitoring the microcirculation may provide a means of early detection of circulatory failure during sepsis. The changes of renal microcirculation correlate with that of buccal during sepsis and septic shock.
Collapse
|
37
|
Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M. Challenge to the Intestinal Mucosa During Sepsis. Front Immunol 2019; 10:891. [PMID: 31114571 PMCID: PMC6502990 DOI: 10.3389/fimmu.2019.00891] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex of life-threating organ dysfunction in critically ill patients, with a primary infectious cause or through secondary infection of damaged tissues. The systemic consequences of sepsis have been intensively examined and evidences of local alterations and repercussions in the intestinal mucosal compartment is gradually defining gut-associated changes during sepsis. In the present review, we focus on sepsis-induced dysfunction of the intestinal barrier, consisting of an increased permeability of the epithelial lining, which may facilitate bacterial translocation. We discuss disturbances in intestinal vascular tonus and perfusion and coagulopathies with respect to their proposed underlying molecular mechanisms. The consequences of enzymatic responses by pancreatic proteases, intestinal alkaline phosphatases, and several matrix metalloproteases are also described. We conclude our insight with a discussion on novel therapeutic interventions derived from crucial aspects of the gut mucosal dynamics during sepsis.
Collapse
Affiliation(s)
- Felix Haussner
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
38
|
Devia Jaramillo G, Castro Canoa J, Valverde Galván E. Approach of minimal invasive monitoring and initial treatment of the septic patient in emergency medicine. Open Access Emerg Med 2018; 10:183-191. [PMID: 30538590 PMCID: PMC6251353 DOI: 10.2147/oaem.s177349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis and septic shock constitute a complex disease condition that requires the engagement of several medical specialties. A great number of patients with this disease are constantly admitted to the emergency department, which warrants the need for emergency physicians to lead in the recognition and early management of septic patients. Timely and appropriate interventions may help reduce mortality in a disease with an unacceptably high mortality rate. Poor control of cellular hypoperfusion is one of the most influential mechanisms contributing to the high mortality rate in these patients. This article aims to make an evidence-based approach and an algorithm for the active identification of hypoperfusion in patients with suspicion of severe infection, based on both clinical variables (capillary refill, mottling index, left ventricular function by ultrasound, temperature gradient, etc.) and laboratory-measured variables (lactate, central venous oxygen saturation [ScvO2], and venous-to-arterial carbon dioxide tension difference [P (v-a) CO2]). Such variables are feasible to use in the emergency department and would help to explain the cause behind the inadequate oxygen use by cells, thereby guiding treatment at the macrovascular, microvascular, or cellular level.
Collapse
Affiliation(s)
- German Devia Jaramillo
- Emergency Medicine Department, Hospital Universitario Mayor Méderi Universidad del Rosario, Bogotá, Colombia,
| | - Jenny Castro Canoa
- Emergency Medicine Department, Hospital Universitario Mayor Méderi Universidad del Rosario, Bogotá, Colombia,
| | | |
Collapse
|
39
|
Massey MJ, Hou PC, Filbin M, Wang H, Ngo L, Huang DT, Aird WC, Novack V, Trzeciak S, Yealy DM, Kellum JA, Angus DC, Shapiro NI. Microcirculatory perfusion disturbances in septic shock: results from the ProCESS trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:308. [PMID: 30458880 PMCID: PMC6245723 DOI: 10.1186/s13054-018-2240-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/15/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND We sought to determine the effects of alternative resuscitation strategies on microcirculatory perfusion and examine any association between microcirculatory perfusion and mortality in sepsis. METHODS This was a prospective, formally designed substudy of participants in the Protocolized Care in Early Septic Shock (ProCESS) trial. We recruited from six sites with the equipment and training to perform these study procedures. All subjects were adults with septic shock, and each was assigned to alternative resuscitation strategies. The two main analyses assessed (1) the impact of resuscitation strategies on microcirculatory perfusion parameters and (2) the association of microcirculatory perfusion with 60-day in-hospital mortality. We measured sublingual microcirculatory perfusion using sidestream dark field in vivo video microscopy at the completion of the 6-h ProCESS resuscitation protocol and then again at 24 and 72 h. RESULTS We enrolled 207 subjects (demographics were similar to the overall ProCESS cohort) and observed 40 (19.3%) deaths. There were no differences in average perfusion characteristics between treatment arms. Analyzing the relationship between microcirculatory perfusion and mortality, we found an association between vascular density parameters and mortality. Total vascular density (beta = 0.006, p < 0.003), perfused vascular density (beta = 0.005, p < 0.04), and De Backer score (beta = 0.009, p < 0.01) were higher overall in survivors in a generalized estimating equation model, and this association was significant at the 72-h time point (p < 0.05 for each parameter). CONCLUSIONS Microcirculatory perfusion did not differ between three early septic shock treatment arms. We found an association between microcirculatory perfusion parameters of vascular density at 72 h and mortality. TRIAL REGISTRATION ClinicalTrials.gov, NCT00510835 . Registered on August 2, 2007.
Collapse
Affiliation(s)
- Michael J Massey
- Department of Emergency Medicine and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, 1 Deaconess Road, CC2-W, Boston, MA, 02215, USA
| | - Peter C Hou
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Filbin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Henry Wang
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Long Ngo
- Division of General Medicine, Department of Medicine, Beth Isarel Deaconess Medical Center, Boston, MA, USA
| | - David T Huang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C Aird
- Division of Molecular Medicine, Department of Medicine, and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Novack
- Clinical Research Center, Soroka University Medical Center, Be'er-Sheva, Israel
| | - Stephen Trzeciak
- Center for Critical Care Services, Cooper University Hospital, Camden, NJ, USA
| | - Donald M Yealy
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Derek C Angus
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, 1 Deaconess Road, CC2-W, Boston, MA, 02215, USA.
| | | |
Collapse
|
40
|
Omega-9 Oleic Acid, the Main Compound of Olive Oil, Mitigates Inflammation during Experimental Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6053492. [PMID: 30538802 PMCID: PMC6260523 DOI: 10.1155/2018/6053492] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism. Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol, massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9 supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines TNF-α and IL-1β in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.
Collapse
|
41
|
Caldwell A, Morick JN, Jentsch AM, Wegner A, Pavlovic D, Al-Banna N, Lehmann C. Impact of insulin on the intestinal microcirculation in a model of sepsis-related hyperglycemia. Microvasc Res 2018; 119:117-128. [PMID: 29778648 DOI: 10.1016/j.mvr.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/22/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sepsis involves dysfunctional glucose metabolism. Among patients with sepsis, hyperglycemia is frequent and insulin administration has been evaluated for glycemic control to improve patient outcomes. Only few studies have examined the hyperglycemic microcirculation and the impact of insulin on the microvasculature in sepsis. OBJECTIVE To study the functional capillary density (FCD) and leukocyte activation within the intestinal microcirculation in endotoxin-induced experimental sepsis. METHODS In 50 male Lewis rats, endotoxemia was induced with lipopolysaccharide (LPS; 5 mg/kg). Low dose (LD) glucose was administered to avoid insulin-induced hypoglycemia. High dose (HD) glucose was administered to model sepsis-related hyperglycemia. Animals in LD and HD glucose groups received an insulin bolus (1.4 IU/kg). Two hours after LPS administration, intravital microscopy (IVM) of the terminal ileum was performed, and FCD and leukocyte adherence were measured in a blinded fashion. Blood glucose levels were measured every 30 min following the onset of endotoxemia. Plasma samples were collected 3 h after the onset of endotoxemia to measure IFN-γ, TNF-α, IL-1α, IL-4, GM-CSF and MCP-1 levels using multiplex bead immunoassay. RESULTS Endotoxemia significantly reduced FCD and increased leukocyte adherence within the intestinal microvasculature. LD and HD glucose administration combined with insulin improved the FCD and decreased the adherence of leukocytes in endotoxemic animals as did HD glucose administration alone. Consistent with these results, IL-4, IL-1α, GM-CSF and IFN-γ levels were decreased following combined HD glucose and insulin administration in endotoxemic animals. CONCLUSIONS Insulin administration, as well as an endogenous insulin response triggered by HD glucose administration, improved the FCD and decreased leukocyte activation in endotoxemic rats. The results of this study give insight into the immune and vaso-modulatory role of insulin administration during experimental endotoxemia, and may be extrapolated for clinical sepsis and other critical illnesses with marked microcirculatory dysfunction.
Collapse
Affiliation(s)
- Alexa Caldwell
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada
| | - Jan Niklas Morick
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Anne-Marie Jentsch
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Annette Wegner
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Dragan Pavlovic
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Nadia Al-Banna
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Sepsis is a common and frequently fatal condition in which mortality has been consistently linked to increasing organ dysfunction. For example, acute kidney injury (AKI) occurs in 40-50% of septic patients and increases mortality six to eight-fold. However, the mechanisms by which sepsis causes organ dysfunction are not well understood and hence current therapy remains reactive and nonspecific. RECENT FINDINGS Recent studies have challenged the previous notion that organ dysfunction is solely secondary to hypoperfusion, by showing, for example, that AKI occurs in the setting of normal or increased renal blood flow; and that it is characterized not by acute tubular necrosis or apoptosis, but rather by heterogeneous areas of colocalized sluggish peritubular blood flow and tubular epithelial cell oxidative stress. Evidence has also shown that microvascular dysfunction, inflammation, and the metabolic response to inflammatory injury are fundamental pathophysiologic mechanisms that may explain the development of sepsis-induced AKI. SUMMARY The implications of these findings are significant because in the context of decades of negative clinical trials in the field, the recognition that other mechanisms are at play opens the possibility to better understand the processes of injury and repair, and provides an invaluable opportunity to design mechanism-targeted therapeutic interventions.
Collapse
|
43
|
Yadav S, Pathak S, Sarikhani M, Majumdar S, Ray S, Chandrasekar BS, Adiga V, Sundaresan NR, Nandi D. Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free Radic Biol Med 2018; 116:73-87. [PMID: 29309892 DOI: 10.1016/j.freeradbiomed.2017.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
Sepsis, a leading cause of death in intensive care units, is primarily caused due to an exaggerated immune response. The hyperactive inflammatory response mediated by immune cells against infectious organisms and their toxins results in host cell death and tissue damage, the hallmarks of septic shock. Therefore, molecules that modulate inflammatory responses are attractive therapeutic targets for sepsis. Nitric oxide (NO) is a signaling molecule, which is implicated in regulating diverse immune functions. Although, the protective roles of NO in infectious diseases are well documented, its importance in sepsis is controversial. In the present study, the effects of intra-peritoneal injection of mice with Salmonella Typhimurium, a Gram-negative intracellular pathogen, were studied which leads to a rapid upregulation of serum cytokines and infiltration of neutrophils to the peritoneal cavity. Surprisingly, the induction of inflammatory cytokines and chemokines, e.g. IL6 and CCL2, and the infiltration of neutrophils into the peritoneal cavity are mitigated in mice lacking Nitric oxide synthase 2 (NOS2). The reduced inflammatory response in Nos2-/- mice is accompanied by greater bacterial burden in the peritoneal cavity, lower thymic atrophy, higher liver damage and cardiovascular dysfunction followed by decreased survival. However, no significant differences are observed in other responses between C57BL/6 wild type (WT) and Nos2-/- mice: induction of glucocorticoids, phagocytic ability and apoptosis of peritoneal cells. This study clearly highlights the NOS2-dependent and -independent responses in this mouse model of peritonitis induced sepsis. Importantly, pre-treatment of Nos2-/- mice with DETA-NO, a NO donor, upon infection, restores neutrophil recruitment, reduces bacterial numbers in the peritoneal cavity, improves liver and cardio-vascular function and enhances survival. Interestingly, DETA-NO treatment does not significantly increase the survival of infected WT mice. The implications of these results and the complex roles of NO as a target molecule during sepsis are discussed.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mohsen Sarikhani
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nagalingam R Sundaresan
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India; Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
44
|
Wendelbo Ø, Hervig T, Haugen O, Seghatchian J, Reikvam H. Microcirculation and red cell transfusion in patients with sepsis. Transfus Apher Sci 2017; 56:900-905. [PMID: 29158076 DOI: 10.1016/j.transci.2017.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Early identification of sepsis followed by diagnostic blood cultures and prompt administration of appropriate intravenous antibiotics covering all likely pathogen remains the corner stone in the initial management of sepsis. Source control, obtained by harvesting microbiological cultures and removal or drainage of the infected foci, is mandatory. However, optimization of hemodynamically unstable patients including volume support supplemented with vasopressor, inotropic and transfusion of red blood cells (RBCs) in case of persistent hypoperfusion have the potential to reduce morbidity and mortality. Given the imbalance between the ability of the cardiovascular system to deliver enough oxygen to meet the oxygen demand, transfusion of RBCs should theoretically provide the ideal solution to the challenge. However, both changes in the septic patients' RBCs induced by endogenous factors as well as the storage lesion affecting transfused RBCs have negative effects on the microcirculation. RBC morphology, distribution of fatty acids on the membrane surface, RBC deformability needed for capillary circulation and the nitrogen oxide (NO) signaling systems are involved. Although these deteriorating effects develop during storage, transfusion of fresh RBCs has not proven to be beneficial, possibly due to limitations of the studies performed. Until better evidence exists, transfusion guidelines recommend a restrictive strategy of RBC transfusion i.e. transfuse when hemoglobin (Hb)<7g/dL in septic patients.
Collapse
Affiliation(s)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of immunology and Transfusion Medicine, Haukeland University Hospital, Norway
| | - Oddbjørn Haugen
- Department of Clinical Medicine, University of Bergen, Norway; Department of Anesthesiology, Haukeland University Hospital, Norway
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement and DDR Strategies, London, United Kingdom.
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
45
|
Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever. Cell Host Microbe 2017; 22:354-365.e5. [DOI: 10.1016/j.chom.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
|
46
|
Intravenous Arginine Administration Promotes Proangiogenic Cells Mobilization and Attenuates Lung Injury in Mice with Polymicrobial Sepsis. Nutrients 2017; 9:nu9050507. [PMID: 28513569 PMCID: PMC5452237 DOI: 10.3390/nu9050507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
This study investigated the influence of intravenous arginine (Arg) administration on alteration of circulating proangiogenic cells and remote lung injury in a model of polymicrobial sepsis. Mice were assigned to one normal control group (NC) and two sepsis groups that were induced by cecal ligation and puncture (CLP). One of the sepsis groups was injected with saline (SS), whereas the other (SA) was administered with a single bolus of 300 mg Arg/kg body weight via the tail vein 1 h after CLP. Septic mice were sacrificed at either 24 or 48 h after CLP, with their blood and lung tissues collected for analysis. Results showed that septic groups had higher proangiogenic cells releasing factors and proangiogenic cells percentage in blood. Also, concentration of inflammatory cytokines and expression of angiopoietin (Angpt)/Tie-2 genes in lung tissues were upregulated. Arg administration promoted mobilization of circulating proangiogenic cells while it downregulated the production of inflammatory cytokines and expression of Angpt/Tie-2 genes in the lung. The results of this investigation suggested that intravenous administration of Arg shortly after the onset of sepsis enhanced the mobilization of circulating proangiogenic cells, maintained the homeostasis of the Angpt/Tie-2 axis, and attenuated remote organ injury in polymicrobial sepsis.
Collapse
|
47
|
Aamer HG, El-Ashker MR, Nour EM, Wafa EW, Youssef MA. Sepsis-Induced Acute Kidney Injury in Equine: Current Knowledge and Future Perspectives. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Dumbarton TC, Maxan A, Farah N, Sharawy N, Zhou J, Nantais J, Lehmann C. Tetrahydrobiopterin improves microcirculation in experimental sepsis. Clin Hemorheol Microcirc 2017; 67:15-24. [PMID: 28598830 DOI: 10.3233/ch-160207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tetrahydrobiopterin (BH4), an endogenous nucleic acid derivative, acts as an important cofactor for several enzymes found within the vascular endothelium, which is deranged in sepsis. OBJECTIVE We hypothesized that BH4 would improve capillary density and decrease inflammation within the intestinal microcirculation of septic rats. METHODS We conducted a randomized, controlled trial using two previously validated models of sepsis in rats: 1) A fecal peritonitis model using a stent perforating the ascending colon, and 2) An endotoxemia model using lipopolysaccharide (LPS) toxin from E. coli. Experimental groups receiving BH4 (60 mg/kg) were compared to otherwise healthy controls and to untreated groups with sepsis-like physiology. RESULTS BH4 decreased leukocyte-endothelial adhesion by 55% and 58% (P < 0.05) in the peritonitis model and endotoxemia models, respectively. In the endotoxemia model but not the peritonitis model, BH4 improved functional capillary density in capillary beds within the intestine (141.3 vs. 106.7 mm/cm2, p < 0.05). Macrohemodynamic parameters were no different between placebo treatment and BH4-treated groups. CONCLUSIONS This study demonstrates that BH4 improves capillary density and inflammation in two separate models of sepsis. BH4 may represent a novel adjunct in the treatment of sepsis and septic shock in clinical practice. Further dose-finding studies and clinical trials are warranted.
Collapse
Affiliation(s)
- Tristan C Dumbarton
- Departments of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Alexander Maxan
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Nizam Farah
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Nivin Sharawy
- Departments of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Juan Zhou
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jordan Nantais
- Department of General Surgery, Dalhousie University, Halifax, NS, Canada
| | - Christian Lehmann
- Departments of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
49
|
Hemodynamic coherence in sepsis. Best Pract Res Clin Anaesthesiol 2016; 30:453-463. [PMID: 27931649 DOI: 10.1016/j.bpa.2016.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/31/2016] [Indexed: 12/26/2022]
Abstract
Microvascular alterations are a hallmark of sepsis and play a crucial role in its pathophysiology. Such alterations are the result of overwhelming inflammation, which negatively affects all the components of the microcirculation. As the severity of microvascular alterations is associated with organ dysfunction and mortality, several strategies have been tested for improving microcirculation. Nevertheless, they are mainly based on the conventional manipulation of systemic hemodynamics to increase the total flow to the organs and tissues. Other therapeutic interventions are still being investigated. In this review, we discuss the pathophysiology of septic microcirculatory dysfunction and its implications for possible treatments.
Collapse
|
50
|
Miranda M, Balarini M, Caixeta D, Bouskela E. Microcirculatory dysfunction in sepsis: pathophysiology, clinical monitoring, and potential therapies. Am J Physiol Heart Circ Physiol 2016; 311:H24-35. [DOI: 10.1152/ajpheart.00034.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Abstract
Abnormal microvascular perfusion, including decreased functional capillary density and increased blood flow heterogeneity, is observed in early stages of the systemic inflammatory response to infection and appears to have prognostic significance in human sepsis. It is known that improvements in systemic hemodynamics are weakly correlated with the correction of microcirculatory parameters, despite an appropriate treatment of macrohemodynamic abnormalities. Furthermore, conventional hemodynamic monitoring systems available in clinical practice fail to detect microcirculatory parameter changes and responses to treatments, as they do not evaluate intrinsic events that occur in the microcirculation. Fortunately, some bedside diagnostic methods and therapeutic options are specifically directed to the assessment and treatment of microcirculatory changes. In the present review we discuss fundamental aspects of septic microcirculatory abnormalities, including pathophysiology, clinical monitoring, and potential therapies.
Collapse
Affiliation(s)
- Marcos Miranda
- Laboratory for Clinical and Experimental Research in Vascular Biology, BioVasc, Biomedical Center, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Michelle Balarini
- Internal Medicine Department, Andaraí Federal Hospital, Rio de Janeiro, RJ, Brazil; and
| | | | - Eliete Bouskela
- Laboratory for Clinical and Experimental Research in Vascular Biology, BioVasc, Biomedical Center, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|