1
|
Ruggeri M, Million WC, Hamilton L, Kenkel CD. Microhabitat acclimatization alters sea anemone-algal symbiosis and thermal tolerance across the intertidal zone. Ecology 2024; 105:e4388. [PMID: 39076113 DOI: 10.1002/ecy.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024]
Abstract
Contemporary symbioses in extreme environments can give an insight into mechanisms that stabilize species interactions during environmental change. The intertidal sea anemone, Anthopleura elegantissima, engages in a nutritional symbiosis with microalgae similar to tropical coral, but withstands more intense environmental fluctuations during tidal inundations. In this study, we compare baseline symbiotic traits and their sensitivity to thermal stress within and among anemone aggregations across the intertidal using a laboratory-based tank experiment to better understand how fixed genotypic and plastic environmental effects contribute to the successful maintenance of this symbiosis in extreme habitats. High intertidal anemones had lower baseline symbiont-to-host cell ratios under control conditions, but their symbionts had higher baseline photosynthetic efficiency compared to low intertidal anemone symbionts. Symbiont communities were identical across all samples, suggesting that shifts in symbiont density and photosynthetic performance could be an acclimatory mechanism to maintain symbiosis in different environments. Despite lower baseline symbiont-to-host cell ratios, high intertidal anemones maintained greater symbiont-to-host cell ratios under heat stress compared with low intertidal anemones, suggesting greater thermal tolerance of high intertidal holobionts. However, the thermal tolerance of clonal anemones acclimatized to different zones was not explained by tidal height alone, indicating additional environmental variables contribute to physiological differences. Host genotype significantly influenced anemone weight, but only explained a minor proportion of variation among symbiotic traits and their response to thermal stress, further implicating environmental history as the primary driver of holobiont tolerance. These results indicate that this symbiosis is highly plastic and may be able to acclimatize to climate change over ecological timescales, defying the convention that symbiotic organisms are more susceptible to environmental stress.
Collapse
Affiliation(s)
- Maria Ruggeri
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Wyatt C Million
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Lindsey Hamilton
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Carly D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Golo R, Santamaría J, Vergés A, Cebrian E. The role of species thermal plasticity for alien species invasibility in a changing climate: A case study of Lophocladia trichoclados. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106642. [PMID: 39024996 DOI: 10.1016/j.marenvres.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The Mediterranean Sea provides fertile ground for understanding the complex interplay between invasive species and native habitats, particularly within the context of climate change. This thermal tolerance study reveals the remarkable ability of Lophocladia trichoclados, a red algae species that has proven highly invasive, to adapt to varying temperatures, particularly thriving in colder Mediterranean waters, where it can withstand temperatures as low as 14 °C, a trait not observed in its native habitat. This rapid acclimation, occurring in less than a century, might entail a trade-off with high temperature resistance. Additionally, all sampled populations in the Mediterranean share the same haplotype, suggesting a common origin and the possibility that we might be facing an exceptionally acclimatable and invasive strain. This high degree of acclimatability could determine the future spread capacity in a changing scenario, highlighting the importance of considering both acclimation and adaptation in understanding the expansion of invasive species' ranges.
Collapse
Affiliation(s)
- R Golo
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - J Santamaría
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - A Vergés
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - E Cebrian
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
3
|
Li N, Flanagan BA, Edmands S. The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes. Proc Natl Acad Sci U S A 2024; 121:e2321267121. [PMID: 38838014 PMCID: PMC11181141 DOI: 10.1073/pnas.2321267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here, we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Results revealed pervasive sex differences in mitochondrial effects, including effects on energetics and aging involving nuclear interactions throughout the genome. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, and nuclear effects on mitochondrial expression. While based on a small set of crosses, sex-specific increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
4
|
Li N, Flanagan BA, Edmands S. The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570893. [PMID: 38106076 PMCID: PMC10723445 DOI: 10.1101/2023.12.08.570893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, as well as nuclear effects on mitochondrial expression. Across both sexes, increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions, and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | | | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Kayhani K, Barreto FS. Disproportionate role of nuclear-encoded proteins in organismal and mitochondrial thermal performance in a copepod. J Exp Biol 2023; 226:jeb246085. [PMID: 37947077 DOI: 10.1242/jeb.246085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Determining the mechanisms by which organisms evolve thermal tolerance is crucial to predicting how populations may respond to changes in local temperature regimes. Although evidence of relationships between mitochondrial background and thermal adaptation have been found, the presence of both nuclear-encoded and mitochondrial DNA (mtDNA)-encoded proteins warrants experiments aimed at parsing out the relative role of each genome in thermal adaptation. We investigated the relative role of mtDNA-encoded products in thermal tolerance between two divergent populations of Tigriopus californicus using first-generation (F1) hybrids that vary in maternally inherited mtDNA but are heterozygous for population-specific alleles across nuclear loci. We tested two measures of thermal tolerance, (1) survivorship to acute thermal stress and (2) thermal stability of mitochondrial performance in Complex I-fueled ATP synthesis, both across a range of increasing temperatures. We found that the southern population (San Diego, CA, USA) outperformed the northern population (Strawberry Hill, OR, USA) in survivorship, and that both reciprocal F1 hybrid crosses had intermediate survival. Mitochondria from the San Diego population displayed greater stability in ATP synthesis with increasing temperatures compared with those from Strawberry Hill. Interestingly, hybrids from both cross directions had synthesis profiles that were very similar to that of Strawberry Hill. Taken together, these results suggest that the relative role of the mtDNA in these phenotypes is negligible compared with that of elements encoded by nuclear DNA in this system.
Collapse
Affiliation(s)
- Kamron Kayhani
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Sasaki M, Woods C, Dam HG. Parasitism does not reduce thermal limits in the intermediate host of a bopyrid isopod. J Therm Biol 2023; 117:103712. [PMID: 37714113 DOI: 10.1016/j.jtherbio.2023.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Parasitism has strong effects on community dynamics. Given the detrimental effects parasites have on host health, infection or infestation might be expected to reduce upper thermal limits, increasing the vulnerability of host species to future climate change. Copepods are integral components of aquatic food webs and biogeochemical cycles. They also serve as intermediate hosts in the life cycle of parasitic isopods in the family Bopyridae. As both copepods and isopod parasites play important roles in aquatic communities, it is important to understand how the interaction between parasite and host affects thermal limits in order to better predict how community dynamics may change in a warming climate. Here we examined the effect of infestation by larvae of a bopyrid isopod on the cosmopolitan copepod Acartia tonsa to test the hypothesis that infestation reduces thermal limits. To aid with this work, we developed an affordable, highly portable system for measuring critical thermal maxima of small ectotherms. We also used meta-analysis to summarize the effects of parasitism on critical thermal maxima in a wider range of taxa to help contextualize our findings. Contrary to both our hypothesis and the results of previous studies, we observed no reduction of thermal limits by parasitism in A. tonsa. These results suggest that life history of the host and parasite may interact to determine how parasite infestation affects environmental sensitivity.
Collapse
Affiliation(s)
- Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA; Department of Biology, University of Vermont, Burlington, VT, 05401, USA.
| | - Charles Woods
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| |
Collapse
|
7
|
Noer NK, Nielsen KL, Sverrisdóttir E, Kristensen TN, Bahrndorff S. Temporal regulation of temperature tolerances and gene expression in an arctic insect. J Exp Biol 2023; 226:jeb245097. [PMID: 37283090 DOI: 10.1242/jeb.245097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Terrestrial arthropods in the Arctic are exposed to highly variable temperatures that frequently reach cold and warm extremes. Yet, ecophysiological studies on arctic insects typically focus on the ability of species to tolerate low temperatures, whereas studies investigating physiological adaptations of species to periodically warm and variable temperatures are few. In this study, we investigated temporal changes in thermal tolerances and the transcriptome in the Greenlandic seed bug Nysius groenlandicus, collected in the field across different times and temperatures in Southern Greenland. We found that plastic changes in heat and cold tolerances occurred rapidly (within hours) and at a daily scale in the field, and that these changes are correlated with diurnal temperature variation. Using RNA sequencing, we provide molecular underpinnings of the rapid adjustments in thermal tolerance across ambient field temperatures and in the laboratory. We show that transcriptional responses are sensitive to daily temperature changes, and days characterized by high temperature variation induced markedly different expression patterns than thermally stable days. Further, genes associated with laboratory-induced heat responses, including expression of heat shock proteins and vitellogenins, were shared across laboratory and field experiments, but induced at time points associated with lower temperatures in the field. Cold stress responses were not manifested at the transcriptomic level.
Collapse
Affiliation(s)
- Natasja Krog Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Elsa Sverrisdóttir
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | | | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
8
|
Healy TM, Burton RS. Loss of mitochondrial performance at high temperatures is correlated with upper thermal tolerance among populations of an intertidal copepod. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110836. [PMID: 36801253 DOI: 10.1016/j.cbpb.2023.110836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Environmental temperatures have pervasive effects on the performance and tolerance of ectothermic organisms, and thermal tolerance limits likely play key roles underlying biogeographic ranges and responses to environmental change. Mitochondria are central to metabolic processes in eukaryotic cells, and these metabolic functions are thermally sensitive; however, potential relationships between mitochondrial function, thermal tolerance limits and local thermal adaptation in general remain unresolved. Loss of ATP synthesis capacity at high temperatures has recently been suggested as a mechanistic link between mitochondrial function and upper thermal tolerance limits. Here we use a common-garden experiment with seven locally adapted populations of intertidal copepods (Tigriopus californicus), spanning approximately 21.5° latitude, to assess genetically based variation in the thermal performance curves of maximal ATP synthesis rates in isolated mitochondria. These thermal performance curves displayed substantial variation among populations with higher ATP synthesis rates at lower temperatures (20-25 °C) in northern populations than in southern populations. In contrast, mitochondria from southern populations maintained ATP synthesis rates at higher temperatures than the temperatures that caused loss of ATP synthesis capacity in mitochondria from northern populations. Additionally, there was a tight correlation between the thermal limits of ATP synthesis and previously determined variation in upper thermal tolerance limits among populations. This suggests that mitochondria may play an important role in latitudinal thermal adaptation in T. californicus, and supports the hypothesis that loss of mitochondrial performance at high temperatures is linked to whole-organism thermal tolerance limits in this ectotherm.
Collapse
Affiliation(s)
- Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA.
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA
| |
Collapse
|
9
|
Hong GK, Kuo J, Tew KS. Iron Fertilization Can Enhance the Mass Production of Copepod, Pseudodiaptomus annandalei, for Fish Aquaculture. Life (Basel) 2023; 13:529. [PMID: 36836884 PMCID: PMC9963344 DOI: 10.3390/life13020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Copepods are proven nutritious food sources for the mariculture/larviculture industry, however, unreliable methods for mass production of copepods are a major bottleneck. In this study, we modified a previously reported inorganic fertilization method (N: 700 μg L-1 and P: 100 μg L-1) by the addition of iron (Fe: 10 μg L-1, using FeSO4·7H2O) (+Fe treatment) and compared its suitability for copepod culture (Pseudodiaptomus annandalei) to the original method (control). The experiment was conducted outdoors in 1000 L tanks for 15 days. The addition of iron prolonged the growth phase of the phytoplankton and resulted in the production of significantly more small phytoplankton (0.45-20 μm, average 2.01 ± 0.52 vs. 9.03 ± 4.17 µg L-1 in control and +Fe, respectively) and adult copepods (control: 195 ± 35, +Fe: 431 ± 109 ind L-1), whereas copepodid-stage was similar between treatments (control: 511 ± 107 vs. +Fe: 502 ± 68 ind L-1). Although adding iron increased the cost of production by 23% compared to the control, the estimated net profit was 97% greater. We concluded that inorganic fertilization, with the addition of iron (Fe: 10 μg L-1), could be an effective method for the mass production of copepods for larviculture.
Collapse
Affiliation(s)
- Guo-Kai Hong
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944401, Taiwan
| | - Jimmy Kuo
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944401, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung 944401, Taiwan
| | - Kwee Siong Tew
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944401, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung 944401, Taiwan
- International Graduate Program of Marine Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
10
|
Watson ET, Flanagan BA, Pascar JA, Edmands S. Mitochondrial effects on fertility and longevity in Tigriopus californicus contradict predictions of the mother's curse hypothesis. Proc Biol Sci 2022; 289:20221211. [PMID: 36382523 PMCID: PMC9667352 DOI: 10.1098/rspb.2022.1211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Strict maternal inheritance of mitochondria favours the evolutionary accumulation of sex-biased fitness effects, as mitochondrial evolution occurs exclusively in female lineages. The 'mother's curse' hypothesis proposes that male-harming mutations should accumulate in mitochondrial genomes when they have neutral or beneficial effects on female fitness. Rigorous empirical tests have largely focused on Drosophila, where support for the predictions of mother's curse has been mixed. We investigated the impact of mother's curse mutations in Tigriopus californicus, a minute crustacean. Using non-recombinant backcrosses, we introgressed four divergent mitochondrial haplotypes into two nuclear backgrounds and recorded measures of fertility and longevity. We found that the phenotypic effects of mitochondrial mutations were context dependent, being influenced by the nuclear background in which they were expressed, as well as the sex of the individual and rearing temperature. Mitochondrial haplotype effects were greater for fertility than longevity, and temperature effects were greater for longevity. However, in opposition to mother's curse expectations, females had higher mitochondrial genetic variance than males for fertility and longevity, little evidence of sexual antagonism favouring females was found, and the impacts of mitonuclear mismatch harmed females but not males. Together, this indicates that selection on mitochondrial variation has not resulted in the accumulation of male mutation load in Tigriopus californicus.
Collapse
Affiliation(s)
- Eric T. Watson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Jane A. Pascar
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0001, USA
| |
Collapse
|
11
|
Exogenous oxidative stressors elicit differing age and sex effects in Tigriopus californicus. Exp Gerontol 2022; 166:111871. [PMID: 35750273 DOI: 10.1016/j.exger.2022.111871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
As organisms age, cellular function declines in a time-dependent manner. Oxidative stress induced by reactive oxygen species damages cellular machinery and contributes to senescence which narrows the homeostatic window needed to maintain function and survive stress. Sex differences in longevity are apparent in many species and may be related to sex-specific homeostatic responses. Here we use the emerging aging model system Tigriopus californicus, the splashpool copepod, to estimate sex- and age-specific tolerances to two chemical oxidants, hydrogen peroxide and paraquat. Sex-specific tolerance was estimated for both oxidants simultaneously for 15 age-classes. As animals aged, hydrogen peroxide tolerance decreased but paraquat tolerance increased. Also, we observed no sex difference for hydrogen peroxide tolerance, while females were more tolerant of paraquat. Our results demonstrate that oxidative stressors can have dramatically different sex and age effects in Tigriopus californicus. These findings underscore the challenges ahead in understanding relationships among oxidative stressors, sex, and aging.
Collapse
|
12
|
Powers MJ, Baty JA, Dinga AM, Mao JH, Hill GE. Chemical manipulation of mitochondrial function affects metabolism of red carotenoids in a marine copepod (Tigriopus californicus). J Exp Biol 2022; 225:275691. [PMID: 35695335 DOI: 10.1242/jeb.244230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023]
Abstract
The shared-pathway hypothesis offers a cellular explanation for the connection between ketocarotenoid pigmentation and individual quality. Under this hypothesis, ketocarotenoid metabolism shares cellular pathways with mitochondrial oxidative phosphorylation such that red carotenoid-based coloration is inextricably linked mitochondrial function. To test this hypothesis, we exposed Tigriopus californicus copepods to a mitochondrially targeted protonophore, 2,4-dinitrophenol (DNP), to induce proton leak in the inner mitochondrial membranes. We then measured whole-animal metabolic rate and ketocarotenoid accumulation. As observed in prior studies of vertebrates, we observed that DNP treatment of copepods significantly increased respiration and that DNP-treated copepods accumulated more ketocarotenoid than control animals. Moreover, we observed a relationship between ketocarotenoid concentration and metabolic rate, and this association was strongest in DNP-treated copepods. These data support the hypothesis that ketocarotenoid and mitochondrial metabolism are biochemically intertwined. Moreover, these results corroborate observations in vertebrates, perhaps suggesting a fundamental connection between ketocarotenoid pigmentation and mitochondrial function that should be explored further.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James A Baty
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alexis M Dinga
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James H Mao
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Li N, Flanagan BA, Edmands S. Food deprivation exposes sex‐specific trade‐offs between stress tolerance and life span in the copepod
Tigriopus californicus. Ecol Evol 2022; 12:e8822. [PMID: 35432933 PMCID: PMC9005923 DOI: 10.1002/ece3.8822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Long life is standardly assumed to be associated with high stress tolerance. Previous work shows that the copepod Tigriopus californicus breaks this rule, with longer life span under benign conditions found in males, the sex with lower stress tolerance. Here, we extended this previous work, raising animals from the same families in food‐replete conditions until adulthood and then transferring them to food‐limited conditions until all animals perished. As in previous work, survivorship under food‐replete conditions favored males. However, under food deprivation life span strongly favored females in all crosses. Compared to benign conditions, average life span under nutritional stress was reduced by 47% in males but only 32% in females. Further, the sex‐specific mitonuclear effects previously found under benign conditions were erased under food limited conditions. Results thus demonstrate that sex‐specific life span, including mitonuclear interactions, are highly dependent on nutritional environment.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences University of Southern California Los Angeles California USA
| | - Ben A. Flanagan
- Department of Biological Sciences University of Southern California Los Angeles California USA
| | - Suzanne Edmands
- Department of Biological Sciences University of Southern California Los Angeles California USA
| |
Collapse
|
14
|
Liguori A. Multigenerational Life-History Responses to pH in Distinct Populations of the Copepod Tigriopus californicus. THE BIOLOGICAL BULLETIN 2022; 242:97-117. [PMID: 35580028 DOI: 10.1086/719573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intertidal zones are highly dynamic and harsh habitats: organisms that persist there must face many stressors, including drastic changes in seawater pH, which can be strongly influenced by biological processes. Coastal ecosystems are heterogeneous in space and time, and populations can be exposed to distinct selective pressures and evolve different capacities for acclimation to changes in pH. Tigriopus californicus is a harpacticoid copepod found in high-shore rock pools on the west coast of North America. It is a model system for studying population dynamics in diverse environments, but little is known about its responses to changes in seawater pH. I quantified the effects of pH on the survivorship, fecundity, and development of four T. californicus populations from San Juan Island, Washington, across three generations. For all populations and generations, copepod cultures had lower survivorship and delayed development under extended exposure to higher pH treatments (pH 7.5 and pH 8.0), whereas cultures maintained in lower pH (7.0) displayed stable population growth over time. Reciprocal transplants between treatments demonstrated that these pH effects were reversible. Life histories were distinct between populations, and there were differences in the magnitudes of pH effects on development and culture growth that persisted through multiple generations. These results suggest that T. californicus might not have the generalist physiology that might be expected of an intertidal species, and it could be adapted to lower average pH conditions than those that occur in adjacent open waters.
Collapse
|
15
|
How moonlight shapes environments, life histories, and ecological interactions on coral reefs. Emerg Top Life Sci 2022; 6:45-56. [PMID: 35019136 DOI: 10.1042/etls20210237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
The lunar cycle drives variation in nocturnal brightness. For the epipelagic larvae of coral reef organisms, nocturnal illumination may have widespread and underappreciated consequences. At sea, the onset of darkness coincides with an influx of mesopelagic organisms to shallow water (i.e. 'diel vertical migrants') that include predators (e.g. lanternfishes) and prey (zooplankton) of zooplanktivorous coral reef larvae. Moonlight generally suppresses this influx, but lunar periodicity in the timing and intensity of nocturnal brightness may affect vertically migrating predators and prey differently. A major turnover of species occurs at sunset on the reef, with diurnal species seeking shelter and nocturnal species emerging to hunt. The hunting ability of nocturnal reef-based predators is aided by the light of the moon. Consequently, variation in nocturnal illumination is likely to shape the timing of reproduction, larval development, and settlement for many coral reef organisms. This synthesis underscores the potential importance of trophic linkages between coral reefs and adjacent pelagic ecosystems, facilitated by the diel migrations of mesopelagic organisms and the ontogenetic migrations of coral reef larvae. Research is needed to better understand the effects of lunar cycles on life-history strategies, and the potentially disruptive effects of light pollution, turbidity, and climate-driven changes to nocturnal cloud cover. These underappreciated threats may alter patterns of nocturnal illumination that have shaped the evolutionary history of many coral reef organisms, with consequences for larval survival and population replenishment that could rival or exceed other effects arising from climate change.
Collapse
|
16
|
Denny MW, Dowd WW. Elevated Salinity Rapidly Confers Cross-Tolerance to High Temperature in a Splash-Pool Copepod. Integr Org Biol 2022; 4:obac037. [PMID: 36003414 PMCID: PMC9394168 DOI: 10.1093/iob/obac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accurate forecasting of organismal responses to climate change requires a deep mechanistic understanding of how physiology responds to present-day variation in the physical environment. However, the road to physiological enlightenment is fraught with complications: predictable environmental fluctuations of any single factor are often accompanied by substantial stochastic variation and rare extreme events, and several factors may interact to affect physiology. Lacking sufficient knowledge of temporal patterns of co-variation in multiple environmental stressors, biologists struggle to design and implement realistic and relevant laboratory experiments. In this study, we directly address these issues, using measurements of the thermal tolerance of freshly collected animals and long-term field records of environmental conditions to explore how the splash-pool copepod Tigriopus californicus adjusts its physiology as its environment changes. Salinity and daily maximum temperature-two dominant environmental stressors experienced by T. californicus-are extraordinarily variable and unpredictable more than 2-3 days in advance. However, they substantially co-vary such that when temperature is high salinity is also likely to be high. Copepods appear to take advantage of this correlation: median lethal temperature of field-collected copepods increases by 7.5°C over a roughly 120 parts-per-thousand range of ambient salinity. Complementary laboratory experiments show that exposure to a single sublethal thermal event or to an abrupt shift in salinity also elicits rapid augmentation of heat tolerance via physiological plasticity, although the effect of salinity dwarfs that of temperature. These results suggest that T. californicus's physiology keeps pace with the rapid, unpredictable fluctuations of its hypervariable physical environment by responding to the cues provided by recent sublethal stress and, more importantly, by leveraging the mechanistic cross-talk between responses to salinity and heat stress.
Collapse
Affiliation(s)
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, 100 Dairy Road, Eastlick G81, Pullman, WA99164, USA
| |
Collapse
|
17
|
Powers MJ, Martz LD, Burton RS, Hill GE, Weaver RJ. Evidence for hybrid breakdown in production of red carotenoids in the marine invertebrate Tigriopus californicus. PLoS One 2021; 16:e0259371. [PMID: 34748608 PMCID: PMC8575244 DOI: 10.1371/journal.pone.0259371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astaxanthin from yellow dietary precursors. This ‘bioconversion’ of yellow carotenoids to red is hypothesized to be linked to individual condition, possibly through shared metabolic pathways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the disruption of coadapted sets nuclear and mitochondrial genes within the parental populations. These hybrid incompatibilities can increase variability in life history traits and energy production among hybrid lines. Here, we tested if production of astaxanthin was compromised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carotenoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines fed a yeast diet produced less ATP and had slower offspring development compared to lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated with development among lines fed a yeast diet but was negatively related to development in early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results suggest that astaxanthin bioconversion may still be related to mitochondrial performance and reproductive success.
Collapse
Affiliation(s)
- Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
- * E-mail: (MJP); (LDM)
| | - Lucas D. Martz
- University of California, Scripps Institution of Oceanography, San Diego, CA, United States of America
- * E-mail: (MJP); (LDM)
| | - Ronald S. Burton
- University of California, Scripps Institution of Oceanography, San Diego, CA, United States of America
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
| | - Ryan J. Weaver
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
18
|
Buckley LB, Kingsolver JG. Evolution of Thermal Sensitivity in Changing and Variable Climates. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011521-102856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, Washington 98195‐1800, USA
| | - Joel G. Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
19
|
Mauro AA, Torres-Dowdall J, Marshall CA, Ghalambor CK. A genetically based ecological trade-off contributes to setting a geographic range limit. Ecol Lett 2021; 24:2739-2749. [PMID: 34636129 DOI: 10.1111/ele.13900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Understanding the ecological factors that shape geographic range limits and the evolutionary constraints that prevent populations from adaptively evolving beyond these limits is an unresolved question. Here, we investigated why the euryhaline fish, Poecila reticulata, is confined to freshwater within its native range, despite being tolerant of brackish water. We hypothesised that competitive interactions with a close relative, Poecilia picta, in brackish water prevents P. reticulata from colonising brackish water. Using a combination of field transplant, common garden breeding, and laboratory behaviour experiments, we find support for this hypothesis, as P. reticulata are behaviourally subordinate and have lower survival in brackish water with P. picta. We also found a negative genetic correlation between P. reticulata growth in brackish water versus freshwater in the presence of P. picta, suggesting a genetically based trade-off between salinity tolerance and competitive ability could constrain adaptive evolution at the range limit.
Collapse
Affiliation(s)
- Alexander A Mauro
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Craig A Marshall
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
20
|
Faillace CA, Sentis A, Montoya JM. Eco-evolutionary consequences of habitat warming and fragmentation in communities. Biol Rev Camb Philos Soc 2021; 96:1933-1950. [PMID: 33998139 PMCID: PMC7614044 DOI: 10.1111/brv.12732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023]
Abstract
Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, temperature influences traits related to metabolism, such as resource acquisition and activity levels. Such traits are also likely to have trade-offs with other energetically costly traits, like antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as well as properties of populations, such as genetic structure. The combined effects of warming and fragmentation on communities should thus reflect their collective impact on traits of individuals and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics when effects are not additive and when evolutionary responses modulate them. Here, we provide a road map to navigate this complexity. First, we review single-species responses to warming and fragmentation. Second, we focus on consumer-resource interactions, considering how eco-evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. Third, we illustrate our perspective with several example scenarios in which trait trade-offs could result in significant eco-evolutionary dynamics. Specifically, we consider the possible eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in a consumer-resource interaction, (ii) ecological or evolutionary changes to encounter and attack rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. Some of these expectations contrast with those solely based on ecological dynamics, for example, evolutionary responses in unexpected directions for resource species or unanticipated population declines in top consumers. Finally, we identify several unanswered questions about the conditions most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to warming in fragmented communities.
Collapse
Affiliation(s)
- Cara A. Faillace
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France,Address for correspondence (Tel: +33 5 61 04 05 89; )
| | - Arnaud Sentis
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France,INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne- CS 40061, Aix-en-Provence Cedex 5, 13182, France
| | - José M. Montoya
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France
| |
Collapse
|
21
|
Kelly MW, Griffiths JS. Selection Experiments in the Sea: What Can Experimental Evolution Tell Us About How Marine Life Will Respond to Climate Change? THE BIOLOGICAL BULLETIN 2021; 241:30-42. [PMID: 34436966 DOI: 10.1086/715109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractRapid evolution may provide a buffer against extinction risk for some species threatened by climate change; however, the capacity to evolve rapidly enough to keep pace with changing environments is unknown for most taxa. The ecosystem-level consequences of climate adaptation are likely to be the largest in marine ecosystems, where short-lived phytoplankton with large effective population sizes make up the bulk of primary production. However, there are substantial challenges to predicting climate-driven evolution in marine systems, including multiple simultaneous axes of change and considerable heterogeneity in rates of change, as well as the biphasic life cycles of many marine metazoans, which expose different life stages to disparate sources of selection. A critical tool for addressing these challenges is experimental evolution, where populations of organisms are directly exposed to controlled sources of selection to test evolutionary responses. We review the use of experimental evolution to test the capacity to adapt to climate change stressors in marine species. The application of experimental evolution in this context has grown dramatically in the past decade, shedding light on the capacity for evolution, associated trade-offs, and the genetic architecture of stress-tolerance traits. Our goal is to highlight the utility of this approach for investigating potential responses to climate change and point a way forward for future studies.
Collapse
|
22
|
deMayo JA, Girod A, Sasaki MC, Dam HG. Adaptation to simultaneous warming and acidification carries a thermal tolerance cost in a marine copepod. Biol Lett 2021; 17:20210071. [PMID: 34256577 PMCID: PMC8278047 DOI: 10.1098/rsbl.2021.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO2) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO2). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.
Collapse
Affiliation(s)
- James A. deMayo
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340-6048, USA
| | - Amanda Girod
- Department of Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Matthew C. Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340-6048, USA
| | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340-6048, USA
| |
Collapse
|
23
|
Pereira RJ, Lima TG, Pierce-Ward NT, Chao L, Burton RS. Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities. Mol Ecol 2021; 30:6403-6416. [PMID: 34003535 DOI: 10.1111/mec.15985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Reproductive isolation is often achieved when genes that are neutral or beneficial in their genomic background become functionally incompatible in a foreign genomic background, causing inviability, sterility or other forms of low fitness in hybrids. Recent studies suggest that mitonuclear interactions are among the initial incompatibilities to evolve at early stages of population divergence across taxa. Yet, the genomic architecture of mitonuclear incompatibilities has rarely been elucidated. We employ an experimental evolution approach starting with low-fitness F2 interpopulation hybrids of the copepod Tigriopus californicus, in which frequencies of compatible and incompatible nuclear alleles change in response to an alternative mitochondrial background. After about nine generations, we observe a generalized increase in population size and in survivorship, suggesting efficiency of selection against maladaptive phenotypes. Whole genome sequencing of evolved populations showed some consistent allele frequency changes across three replicates of each reciprocal cross, but markedly different patterns between mitochondrial backgrounds. In only a few regions (~6.5% of the genome), the same parental allele was overrepresented irrespective of the mitochondrial background. About 33% of the genome showed allele frequency changes consistent with divergent selection, with the location of these genomic regions strongly differing between mitochondrial backgrounds. In 87% and 89% of these genomic regions, the dominant nuclear allele matched the associated mitochondrial background, consistent with mitonuclear co-adaptation. These results suggest that mitonuclear incompatibilities have a complex polygenic architecture that differs between populations, potentially generating genome-wide barriers to gene flow between closely related taxa.
Collapse
Affiliation(s)
- Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thiago G Lima
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - N Tessa Pierce-Ward
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lin Chao
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Block S, Levine JM. How Dispersal Evolution and Local Adaptation Affect the Range Dynamics of Species Lagging Behind Climate Change. Am Nat 2021; 197:E173-E187. [PMID: 33989146 DOI: 10.1086/714130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAs climate changes, species' ability to spatially track suitable climate depends on their spread velocity, a function of their population growth and dispersal capacity. When climate changes faster than species can spread, the climate experienced at species' expanding range edges may ameliorate as conditions become increasingly similar to those of the range core. When this boosts species' growth rates, their spread accelerates. Here, we use simulations of a spreading population with an annual life history to explore how climatic amelioration interacts with dispersal evolution and local adaptation to determine the dynamics of spread. We found that depending on the timing of dispersal evolution, spread velocity can show contrasting trajectories, sometimes transiently exceeding the climate velocity before decelerating. Climatic amelioration can also accelerate the spread of populations composed of genotypes best adapted to local climatic conditions, but the exact dynamics depends on the pattern of climatic adaptation. We conclude that failing to account for demographic variation across climatic gradients can lead to erroneous conclusions about species' capacity to spatially track suitable climate.
Collapse
|
25
|
Kabeya N, Ogino M, Ushio H, Haga Y, Satoh S, Navarro JC, Monroig Ó. A complete enzymatic capacity for biosynthesis of docosahexaenoic acid (DHA, 22 : 6n-3) exists in the marine Harpacticoida copepod Tigriopus californicus. Open Biol 2021; 11:200402. [PMID: 33906414 PMCID: PMC8080000 DOI: 10.1098/rsob.200402] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The long-standing paradigm establishing that global production of Omega-3 (n–3) long-chain polyunsaturated fatty acids (LC-PUFA) derived almost exclusively from marine single-cell organisms, was recently challenged by the discovery that multiple invertebrates possess methyl-end (or ωx) desaturases, critical enzymes enabling the biosynthesis of n–3 LC-PUFA. However, the question of whether animals with ωx desaturases have complete n–3 LC-PUFA biosynthetic pathways and hence can contribute to the production of these compounds in marine ecosystems remained unanswered. In the present study, we investigated the complete enzymatic complement involved in the n–3 LC-PUFA biosynthesis in Tigriopus californicus, an intertidal harpacticoid copepod. A total of two ωx desaturases, five front-end desaturases and six fatty acyl elongases were successfully isolated and functionally characterized. The T. californicus ωx desaturases enable the de novo biosynthesis of C18 PUFA such as linoleic and α-linolenic acids, as well as several n–3 LC-PUFA from n–6 substrates. Functions demonstrated in front-end desaturases and fatty acyl elongases unveiled various routes through which T. californicus can biosynthesize the physiologically important arachidonic and eicosapentaenoic acids. Moreover, T. californicus possess a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid via the ‘Δ4 pathway’. In conclusion, harpacticoid copepods such as T. californicus have complete n–3 LC-PUFA biosynthetic pathways and such capacity illustrates major roles of these invertebrates in the provision of essential fatty acids to upper trophic levels.
Collapse
Affiliation(s)
- Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, Japan
| | - Masanari Ogino
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, Japan
| | - Hideki Ushio
- Department of Aquatic Bioscience, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, Japan
| | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, Japan
| | - Shuichi Satoh
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, Japan
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| |
Collapse
|
26
|
Lee J, Phillips MC, Lobo M, Willett CS. Tolerance Patterns and Transcriptomic Response to Extreme and Fluctuating Salinities across Populations of the Intertidal Copepod Tigriopus californicus. Physiol Biochem Zool 2020; 94:50-69. [PMID: 33306461 DOI: 10.1086/712031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPopulations that tolerate extreme environmental conditions with frequent fluctuations can give valuable insights into physiological limits and adaptation. In some estuarine and marine ecosystems, organisms must adapt to extreme and fluctuating salinities, but not much is known about how varying salinities impact local adaptation across a wide geographic range. We used eight geographically and genetically divergent populations of the intertidal copepod Tigriopus californicus to test whether northern populations have greater tolerance to low salinity stresses, as they experience greater precipitation and less evaporation. We used a common-garden experiment approach and exposed all populations to acute low (1 and 3 ppt) and high (110 and 130 ppt) salinities for 24 h and to a fluctuation between baseline salinity and moderate low (7 ppt) and high (80 ppt) salinities for over 49 h. We also performed RNA sequencing at several time points during the fluctuation between baseline and salinity of 7 ppt to understand the molecular basis of divergence between two populations with differing physiological responses. We present these novel findings: (1) acute low salinity conditions caused more deaths than high salinity; (2) molecular processes that elevate proline levels increased in salinity of 7 ppt, which contrasts with other physiological studies in T. californicus that mainly associated accumulation of proline with hyperosmotic stress; and (3) tolerance to a salinity fluctuation did not follow a latitudinal trend but was instead governed by a complex interplay of factors, including population and duration of salinity stress. This highlights the importance of including a wider variety of environmental conditions in empirical studies to understand local adaptation.
Collapse
|
27
|
Tangwancharoen S, Semmens BX, Burton RS. Allele-Specific Expression and Evolution of Gene Regulation Underlying Acute Heat Stress Response and Local Adaptation in the Copepod Tigriopus californicus. J Hered 2020; 111:539-547. [PMID: 33141173 DOI: 10.1093/jhered/esaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023] Open
Abstract
Geographic variation in environmental temperature can select for local adaptation among conspecific populations. Divergence in gene expression across the transcriptome is a key mechanism for evolution of local thermal adaptation in many systems, yet the genetic mechanisms underlying this regulatory evolution remain poorly understood. Here we examine gene expression in 2 locally adapted Tigriopus californicus populations (heat tolerant San Diego, SD, and less tolerant Santa Cruz, SC) and their F1 hybrids during acute heat stress response. Allele-specific expression (ASE) in F1 hybrids was used to determine cis-regulatory divergence. We found that the number of genes showing significant allelic imbalance increased under heat stress compared to unstressed controls. This suggests that there is significant population divergence in cis-regulatory elements underlying heat stress response. Specifically, the number of genes showing an excess of transcripts from the more thermal tolerant (SD) population increased with heat stress while that number of genes with an SC excess was similar in both treatments. Inheritance patterns of gene expression also revealed that genes displaying SD-dominant expression phenotypes increase in number in response to heat stress; that is, across loci, gene expression in F1's following heat stress showed more similarity to SD than SC, a pattern that was absent in the control treatment. The observed patterns of ASE and inheritance of gene expression provide insight into the complex processes underlying local adaptation and thermal stress response.
Collapse
Affiliation(s)
- Sumaetee Tangwancharoen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA.,Department of Biology, University of Vermont, Burlington, VT
| | - Brice X Semmens
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| |
Collapse
|
28
|
Li N, Flanagan BA, Partridge M, Huang EJ, Edmands S. Sex differences in early transcriptomic responses to oxidative stress in the copepod Tigriopus californicus. BMC Genomics 2020; 21:759. [PMID: 33143643 PMCID: PMC7607713 DOI: 10.1186/s12864-020-07179-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus. Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were more similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H2O2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07179-5.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA.
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - MacKenzie Partridge
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Elaine J Huang
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| |
Collapse
|
29
|
Moyen NE, Somero GN, Denny MW. Mussel acclimatization to high, variable temperatures is lost slowly upon transfer to benign conditions. J Exp Biol 2020; 223:jeb222893. [PMID: 32457061 DOI: 10.1242/jeb.222893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Climate change is increasing the temperature variability animals face, and thermal acclimatization allows animals to adjust adaptively to this variability. Although the rate of heat acclimatization has received some study, little is known about how long these adaptive changes remain without continuing exposure to heat stress. This study explored the rate at which field acclimatization states are lost when temperature variability is minimized during constant submersion. California mussels (Mytilus californianus) with different acclimatization states were collected from high- and low-zone sites (∼12 versus ∼5°C daily temperature ranges, respectively) and then kept submerged at 15°C for 8 weeks. Each week, the cardiac thermal performance of mussels was measured as a metric of acclimatization state: critical (Tcrit) and flatline (Tflat) temperatures were recorded. Over 8 weeks of constant submersion, the mean Tcrit of high-zone mussels decreased by 1.07°C from baseline, but low-zone mussels' mean Tcrit was unchanged. High- and low-zone mussels' mean maximum heart rate (HR) and resting HR decreased ∼12 and 35%, respectively. Tflat was unchanged in both groups. These data suggest that Tcrit and HR are more physiologically plastic in response to the narrowing of an animal's daily temperature range than Tflat is, and that an animal's prior acclimatization state (high versus low) influences the acclimatory capacity of Tcrit Approximately 2 months were required for the cardiac thermal performance of the high-zone mussels to reach that of the low-zone mussels, suggesting that acclimatization to high and variable temperatures may persist long enough to enable these animals to cope with intermittent bouts of heat stress.
Collapse
Affiliation(s)
- Nicole E Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 94305, USA
| | - George N Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 94305, USA
| | - Mark W Denny
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 94305, USA
| |
Collapse
|
30
|
Schneck DT, Barreto FS. Phenotypic Variation in Growth and Gene Expression Under Different Photoperiods in Allopatric Populations of the Copepod Tigriopus californicus. THE BIOLOGICAL BULLETIN 2020; 238:106-118. [PMID: 32412840 DOI: 10.1086/708678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Daylength is a major environmental condition that varies seasonally and predictably along a latitudinal cline, where higher latitudes exhibit greater ranges in total daylengths. Generally, the circadian clock acts as a network of genes whose expression dynamics are known to control daily rhythms in response to daylength, and it enables the control of many physiological processes such as growth and development. While well studied in many model animals, the influence of daylength variation on phenotypic evolution is poorly examined in marine species. In this study we demonstrate that two allopatric populations of the intertidal crustacean Tigriopus californicus exhibit plastic and divergent phenotypic responses to changes in daylength. Using common-garden experiments, we discovered that shorter daylengths promoted decreased adult body size and faster growth rates in the two divergent populations, suggesting a plastic response to shortened days. In addition, the higher-latitude population exhibited a faster growth rate at any daylength condition, indicating a fixed response, possibly as a result of adaptation to respective natural light regimes. Gene expression profiles of several circadian clock genes, monitored throughout the day by quantitative polymerase chain reaction, revealed that the key core clock genes reach higher daily transcription maxima in the southern population compared to the northern population, pointing to divergent strategies used to respond to changes in daylength. Many modifier genes to the circadian clock showed similar plastic responses to the different daylengths, supporting the existence of at least some conserved gene expression across both populations. Ultimately, our results suggest that photoperiod and daylength exert a potent selective pressure underexplored in marine systems and warranting further future research.
Collapse
|
31
|
Park JS. Cyclical environments drive variation in life-history strategies: a general theory of cyclical phenology. Proc Biol Sci 2020; 286:20190214. [PMID: 30862286 DOI: 10.1098/rspb.2019.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cycles, such as seasons or tides, characterize many systems in nature. Overwhelming evidence shows that climate change-driven alterations to environmental cycles-such as longer seasons-are associated with phenological shifts around the world, suggesting a deep link between environmental cycles and life cycles. However, general mechanisms of life-history evolution in cyclical environments are still not well understood. Here, I build a demographic framework and ask how life-history strategies optimize fitness when the environment perturbs a structured population cyclically and how strategies should change as cyclicality changes. I show that cycle periodicity alters optimality predictions of classic life-history theory because repeated cycles have rippling selective consequences over time and generations. Notably, fitness landscapes that relate environmental cyclicality and life-history optimality vary dramatically depending on which trade-offs govern a given species. The model tuned with known life-history trade-offs in a marine intertidal copepod Tigriopus californicus successfully predicted the shape of life-history variation across natural populations spanning a gradient of tidal periodicities. This framework shows how environmental cycles can drive life-history variation-without complex assumptions of individual responses to cues such as temperature-thus expanding the range of life-history diversity explained by theory and providing a basis for adaptive phenology.
Collapse
Affiliation(s)
- John S Park
- Committee on Evolutionary Biology, University of Chicago , 1025 E. 57th Street, Culver Hall 402, Chicago, IL 60637 , USA
| |
Collapse
|
32
|
Uno H, Stillman JH. Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect. Oecologia 2020; 192:647-656. [PMID: 31989318 DOI: 10.1007/s00442-020-04605-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
Abstract
Organisms with annual life cycles are exposed to life stage specific thermal environments across seasons. Seasonal variation in thermal environments can vary across years and among sites. We investigated how organisms with annual life cycles respond to predictable seasonal changes in temperature and unpredictable thermal variation between habitats and years throughout their lives. Field surveys and historical records reveal that the spatially and temporally heterogeneous thermal environments inhabited by the annual mayfly Ephemerella maculata (Ephemerellidae) shift the date for transition to the next, life stage, so that the thermal phenotype of each life stage matches the thermal environment of the specific habitat and year. Laboratory studies of three distinct life stages of this mayfly reveal that life stage transitions are temperature dependent, facilitating timing shifts that are synchronized with the current season's temperatures. Each life stage exhibited specific thermal sensitivity and performance phenotypes that matched the ambient temperature typically experienced during that life stage. Our study across the whole life cycle reveals mechanisms that allow organisms to achieve lifetime eurythermy in a dynamic seasonal environment, despite having narrower thermal ranges for growth and development in each life stage.
Collapse
Affiliation(s)
- Hiromi Uno
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Center for Ecological Research, Kyoto University, Kyoto, Japan.
| | - Jonathon H Stillman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Biology, Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, USA
| |
Collapse
|
33
|
Pinsky ML, Selden RL, Kitchel ZJ. Climate-Driven Shifts in Marine Species Ranges: Scaling from Organisms to Communities. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:153-179. [PMID: 31505130 DOI: 10.1146/annurev-marine-010419-010916] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The geographic distributions of marine species are changing rapidly, with leading range edges following climate poleward, deeper, and in other directions and trailing range edges often contracting in similar directions. These shifts have their roots in fine-scale interactions between organisms and their environment-including mosaics and gradients of temperature and oxygen-mediated by physiology, behavior, evolution, dispersal, and species interactions. These shifts reassemble food webs and can have dramatic consequences. Compared with species on land, marine species are more sensitive to changing climate but have a greater capacity for colonization. These differences suggest that species cope with climate change at different spatial scales in the two realms and that range shifts across wide spatial scales are a key mechanism at sea. Additional research is needed to understand how processes interact to promote or constrain range shifts, how the dominant responses vary among species, and how the emergent communities of the future ocean will function.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901, USA;
| | - Rebecca L Selden
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901, USA;
| | - Zoë J Kitchel
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901, USA;
| |
Collapse
|
34
|
Thyrring J, Tremblay R, Sejr MK. Local cold adaption increases the thermal window of temperate mussels in the Arctic. CONSERVATION PHYSIOLOGY 2019; 7:coz098. [PMID: 31890211 PMCID: PMC6933310 DOI: 10.1093/conphys/coz098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/08/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Species expand towards higher latitudes in response to climate warming, but the pace of this expansion is related to the physiological capacity to resist cold stress. However, few studies exist that have quantified the level of inter-population local adaptation in marine species freeze tolerance, especially in the Arctic. We investigated the importance of cold adaptation and thermal window width towards high latitudes from the temperate to the Arctic region. We measured upper and lower lethal air temperatures (i.e. LT and LT50) in temperate and Arctic populations of blue mussels (Mytilus edulis), and analysed weather data and membrane fatty acid compositions, following emersion simulations. Both populations had similar upper LT (~38 °C), but Arctic mussels survived 4°C colder air temperatures than temperate mussels (-13 vs. -9°C, respectively), corresponding to an 8% increase in their thermal window. There were strong latitudinal relationships between thermal window width and local air temperatures, indicating Arctic mussels are highly adapted to the Arctic environment where the seasonal temperature span exceeds 60°C. Local adaptation and local habitat heterogeneity thus allow leading-edge M. edulis to inhabit high Arctic intertidal zones. This intraspecific pattern provides insight into the importance of accounting for cold adaptation in climate change, conservation and biogeographic studies.
Collapse
Affiliation(s)
- J Thyrring
- British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, United Kingdom
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4, Vancouver, British Columbia, Canada
- Homerton College, Hills Road, CB2 8PH, Cambridge, United Kingdom
| | - R Tremblay
- Institut des sciences de la mer, Université du Québec à Rimouski, G5L 3A Rimouski, Canada
| | - M K Sejr
- Arctic Research Centre, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Wong ELY, Nevado B, Osborne OG, Papadopulos AST, Bridle JR, Hiscock SJ, Filatov DA. Strong divergent selection at multiple loci in two closely related species of ragworts adapted to high and low elevations on Mount Etna. Mol Ecol 2019; 29:394-412. [PMID: 31793091 DOI: 10.1111/mec.15319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
Recently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S. chrysanthemifolius, which grow at high and low elevations, respectively, on Mount Etna, Sicily and form a hybrid zone at intermediate elevations. We used a newly generated genome-wide single nucleotide polymorphism (SNP) dataset from 192 individuals collected over 18 localities along an elevational gradient to reconstruct the likely history of speciation, identify highly differentiated SNPs, and estimate the strength of divergent selection. We found that speciation in this system involved heterogeneous and bidirectional gene flow along the genome, and species experienced marked population size changes in the past. Furthermore, we identified highly-differentiated SNPs between the species, some of which are located in genes potentially involved in ecological differences between species (such as photosynthesis and UV response). We analysed the shape of these SNPs' allele frequency clines along the elevational gradient. These clines show significantly variable coincidence and concordance, indicative of the presence of multifarious selective forces. Selection against hybrids is estimated to be very strong (0.16-0.78) and one of the highest reported in literature. The combination of strong cumulative selection across the genome and previously identified intrinsic incompatibilities probably work together to maintain the genetic and phenotypic differentiation between these species - pointing to the importance of considering both intrinsic and extrinsic factors when studying divergence and speciation.
Collapse
Affiliation(s)
- Edgar L Y Wong
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Owen G Osborne
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Jon R Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Simon J Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
36
|
Healy TM, Bock AK, Burton RS. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in Tigriopus californicus. ACTA ACUST UNITED AC 2019; 222:jeb.213405. [PMID: 31597734 DOI: 10.1242/jeb.213405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
In response to environmental change, organisms rely on both genetic adaptation and phenotypic plasticity to adjust key traits that are necessary for survival and reproduction. Given the accelerating rate of climate change, plasticity may be particularly important. For organisms in warming aquatic habitats, upper thermal tolerance is likely to be a key trait, and many organisms express plasticity in this trait in response to developmental or adulthood temperatures. Although plasticity at one life stage may influence plasticity at another life stage, relatively little is known about this possibility for thermal tolerance. Here, we used locally adapted populations of the copepod Tigriopus californicus to investigate these potential effects in an intertidal ectotherm. We found that low latitude populations had greater critical thermal maxima (CTmax) than high latitude populations, and variation in developmental temperature altered CTmax plasticity in adults. After development at 25°C, CTmax was plastic in adults, whereas no adulthood plasticity in this trait was observed after development at 20°C. This pattern was identical across four populations, suggesting that local thermal adaptation has not shaped this effect among these populations. Differences in the capacities to maintain ATP synthesis rates and to induce heat shock proteins at high temperatures, two likely mechanisms of local adaptation in this species, were consistent with changes in CTmax owing to phenotypic plasticity, which suggests that there is likely mechanistic overlap between the effects of plasticity and adaptation. Together, these results indicate that developmental effects may have substantial impacts on upper thermal tolerance plasticity in adult ectotherms.
Collapse
Affiliation(s)
- Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| | - Antonia K Bock
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| |
Collapse
|
37
|
Coyle AE, Voss ER, Tepolt CK, Carlon DB. Mitochondrial genotype influences the response to cold stress in the European green crab, Carcinus maenas. J Exp Biol 2019; 222:jeb203521. [PMID: 31285243 DOI: 10.1242/jeb.203521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
Abstract
Hybrid zones provide natural experiments in recombination within and between genomes that may have strong effects on organismal fitness. On the East Coast of North America, two distinct lineages of the European green crab (Carcinus maenas) have been introduced in the last two centuries. These two lineages with putatively different adaptive properties have hybridized along the coast of the eastern Gulf of Maine, producing new nuclear and mitochondrial combinations that show clinal variation correlated with water temperature. To test the hypothesis that mitochondrial or nuclear genes have effects on thermal tolerance, we first measured the response to cold stress in crabs collected throughout the hybrid zone, then sequenced the mitochondrial CO1 gene and two nuclear single nucleotide polymorphisms (SNPs) representative of nuclear genetic lineage. Mitochondrial haplotype had a strong association with the ability of crabs to right themselves at 4.5°C that was sex specific: haplotypes originally from northern Europe gave male crabs an advantage while there was no haplotype effect on righting in female crabs. By contrast, the two nuclear SNPs that were significant outliers in a comparison between northern and southern C. maenas populations had no effect on righting response at low temperature. These results add C. maenas to the shortlist of ectotherms in which mitochondrial variation has been shown to affect thermal tolerance, and suggest that natural selection is shaping the structure of the hybrid zone across the Gulf of Maine. Our limited genomic sampling does not eliminate the strong possibility that mito-nuclear co-adaptation may play a role in the differences in thermal phenotypes documented here. Linkage between mitochondrial genotype and thermal tolerance suggests a role for local adaptation in promoting the spread of invasive populations of C. maenas around the world.
Collapse
Affiliation(s)
- Aspen E Coyle
- Department of Biology & Schiller Coastal Studies Center, Bowdoin College, Brunswick, ME 04011, USA
| | - Erin R Voss
- Department of Biology & Schiller Coastal Studies Center, Bowdoin College, Brunswick, ME 04011, USA
| | - Carolyn K Tepolt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David B Carlon
- Department of Biology & Schiller Coastal Studies Center, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
38
|
Li N, Arief N, Edmands S. Effects of oxidative stress on sex-specific gene expression in the copepod Tigriopus californicus revealed by single individual RNA-seq. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100608. [PMID: 31325755 DOI: 10.1016/j.cbd.2019.100608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress reflects the imbalance of pro-oxidants and antioxidants. Prolonged oxidative stress can induce cellular damage, diseases and aging, and the effects may be sex-specific. Tigriopus californicus has recently been proposed as an alternative model system for sex-specific studies due to the absence of sex chromosomes. In this study, we used comparative transcriptomic analyses to assess sex-specific transcriptional responses to oxidative stress. Male and female individuals were maintained separately in one of three treatments: 1) control conditions with an algae diet, 2) pro-oxidant (H2O2) conditions with an algae diet or 3) decreased antioxidant conditions (reduced carotenoids due to a yeast diet). Single individual RNA-seq was then conducted for twenty-four libraries using Ligation Mediated RNA sequencing (LM-Seq). Variance in gene expression was partitioned into 62.3% between sexes, 26.85% among individuals and 10.85% among treatments. Within each of the three treatments, expression was biased toward females. However, compared to the control treatment, males in both pro-oxidant and decreased antioxidant treatments differentially expressed more genes while females differentially expressed fewer genes but with a greater magnitude of fold change. As the first study of copepods to apply single individual RNA-seq, the findings will contribute to a better understanding of transcriptomic variation among individuals as well as sex-specific response mechanisms to oxidative stress in the absence of sex chromosomes.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Natasha Arief
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| |
Collapse
|
39
|
Loss of the HIF pathway in a widely distributed intertidal crustacean, the copepod Tigriopus californicus. Proc Natl Acad Sci U S A 2019; 116:12913-12918. [PMID: 31182611 PMCID: PMC6600937 DOI: 10.1073/pnas.1819874116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oxygen availability is essential for development, growth, and viability of aerobic organisms. The genes in the hypoxia-inducible factor (HIF) pathway are considered master regulators of oxygen sensitivity and distribution inside cells, and they are hence highly conserved across animal groups. These genes are frequent targets of natural selection in organisms living in low-oxygen environments, such as high-altitude humans and birds. Here, we show that the abundant tidepool copepod Tigriopus californicus can withstand prolonged exposure to extreme oxygen deprivation, despite having secondarily lost key HIF-pathway members. Our results suggest the existence of alternative mechanisms of response to hypoxic stress in animals, and we show that genes involved in cuticle reorganization and ion transport may play a major role. Hypoxia is a major physiological constraint for which multicellular eukaryotes have evolved robust cellular mechanisms capable of addressing dynamic changes in O2 availability. In animals, oxygen sensing and regulation is primarily performed by the hypoxia-inducible factor (HIF) pathway, and the key components of this pathway are thought to be highly conserved across metazoans. Marine intertidal habitats are dynamic environments, and their inhabitants are known to tolerate wide fluctuations in salinity, temperature, pH, and oxygen. In this study, we show that an abundant intertidal crustacean, the copepod Tigriopus californicus, has lost major genetic components of the HIF pathway, but still shows robust survivorship and transcriptional response to hypoxia. Mining of protein domains across the genome, followed by phylogenetic analyses of gene families, did not identify two key regulatory elements of the metazoan hypoxia response, namely the transcription factor HIF-α and its oxygen-sensing prolyl hydroxylase repressor, EGLN. Despite this loss, phenotypic assays revealed that this species is tolerant to extremely low levels of available O2 for at least 24 h at both larval and adult stages. RNA-sequencing (seq) of copepods exposed to nearly anoxic conditions showed differential expression of over 400 genes, with evidence for induction of glycolytic metabolism without a depression of oxidative phosphorylation. Moreover, genes involved in chitin metabolism and cuticle reorganization show categorically a consistent pattern of change during anoxia, highlighting this pathway as a potential solution to low oxygen availability in this small animal with no respiratory structures or pigment.
Collapse
|
40
|
Scheffler ML, Barreto FS, Mueller CA. Rapid metabolic compensation in response to temperature change in the intertidal copepod, Tigriopus californicus. Comp Biochem Physiol A Mol Integr Physiol 2019; 230:131-137. [DOI: 10.1016/j.cbpa.2019.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
|
41
|
Harada AE, Healy TM, Burton RS. Variation in Thermal Tolerance and Its Relationship to Mitochondrial Function Across Populations of Tigriopus californicus. Front Physiol 2019; 10:213. [PMID: 30930787 PMCID: PMC6429002 DOI: 10.3389/fphys.2019.00213] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Variation in thermal tolerance plays a key role in determining the biogeographic distribution of organisms. Consequently, identifying the mechanistic basis for thermal tolerance is necessary for understanding not only current species range limits but also the capacity for range limits to shift in response to climate change. Although variation in mitochondrial function likely contributes to variation in thermal tolerance, the extent to which mitochondrial function underlies local thermal adaptation is not fully understood. In the current study, we examine variation in thermal tolerance and mitochondrial function among three populations of the intertidal copepod Tigriopus californicus found across a latitudinal thermal gradient along the coast of California, USA. We tested (1) acute thermal tolerance using survivorship and knockdown assays, (2) chronic thermal tolerance using survivorship of nauplii and developmental rate, and (3) mitochondrial performance at a range of temperatures using ATP synthesis fueled by complexes I, II, and I&II, as well as respiration of permeabilized fibers. We find evidence for latitudinal thermal adaptation: the southernmost San Diego population outperforms the northernmost Santa Cruz in measures of survivorship, knockdown temperature, and ATP synthesis rates during acute thermal exposures. However, under a chronic thermal regime, survivorship and developmental rate are more similar in the southernmost and northernmost population than in the mid-range population (Abalone Cove). Though this pattern is unexpected, it aligns well with population-specific rates of ATP synthesis at these chronic temperatures. Combined with the tight correlation of ATP synthesis decline and knockdown temperature, these data suggest a role for mitochondria in setting thermal range limits and indicate that divergence in mitochondrial function is likely a component of adaptation across latitudinal thermal gradients.
Collapse
Affiliation(s)
- Alice E Harada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Harada AE, Burton RS. Ecologically Relevant Temperature Ramping Rates Enhance the Protective Heat Shock Response in an Intertidal Ectotherm. Physiol Biochem Zool 2019; 92:152-162. [DOI: 10.1086/702339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Sasaki M, Hedberg S, Richardson K, Dam HG. Complex interactions between local adaptation, phenotypic plasticity and sex affect vulnerability to warming in a widespread marine copepod. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182115. [PMID: 31032052 PMCID: PMC6458359 DOI: 10.1098/rsos.182115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/27/2019] [Indexed: 05/06/2023]
Abstract
Predicting the response of populations to climate change requires an understanding of how various factors affect thermal performance. Genetic differentiation is well known to affect thermal performance, but the effects of sex and developmental phenotypic plasticity often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity and individual sex on thermal performance of the ubiquitous copepod, Acartia tonsa (Calanoida, Crustacea) from two populations strongly differing in thermal regimes (Florida and Connecticut, USA). Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared with the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Our results show clearly that thermal performance is affected by complex interactions of the three tested variables. Ignoring sex-specific differences in thermal performance may result in a severe underestimation of population-level impacts of warming because of population decline due to sperm limitation. Furthermore, despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.
Collapse
Affiliation(s)
- Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
- Author for correspondence: Matthew Sasaki e-mail:
| | | | | | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
44
|
Foley HB, Sun PY, Ramirez R, So BK, Venkataraman YR, Nixon EN, Davies KJA, Edmands S. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Exp Gerontol 2019; 119:146-156. [PMID: 30738921 DOI: 10.1016/j.exger.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.
Collapse
Affiliation(s)
- Helen B Foley
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Y Sun
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rocio Ramirez
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Brandon K So
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Yaamini R Venkataraman
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily N Nixon
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular & Computational Biology Division, Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
45
|
Graham AM, Barreto FS. Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod. Mol Ecol 2018; 28:584-599. [PMID: 30548575 DOI: 10.1111/mec.14973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
The role of gene expression in adaptation to differing thermal environments has been assayed extensively. Yet, in most natural systems, analyses of gene expression reveal only one level of the complexity of regulatory machineries. MicroRNAs (miRNAs) are small noncoding RNAs which are key components of many gene regulatory networks, and they play important roles in a variety of cellular pathways by modulating post-transcriptional quantities of mRNA available for protein synthesis. The characterization of miRNA loci and their regulatory dynamics in nonmodel systems are still largely understudied. In this study, we examine the role of miRNAs in response to high thermal stress in the intertidal copepod Tigriopus californicus. Allopatric populations of this species show varying levels of local adaptation with respect to thermal regimes, and previous studies showed divergence in gene expression between populations from very different thermal environments. We examined the transcriptional response to temperature stress in two populations separated by only 8 km by utilizing RNA-seq to quantify both mRNA and miRNA levels. Using the currently available genome sequence, we first describe the repertoire of miRNAs in T. californicus and assess the degree to which transcriptional response to temperature stress is governed by miRNA activity. The two populations showed large differences in the number of genes involved, the magnitude of change in commonly used genes and in the number of miRNAs involved in transcriptional modulation during stress. Our results suggest that an increased level of regulatory network complexity may underlie improved survivorship under thermal stress in one of the populations.
Collapse
Affiliation(s)
- Allie M Graham
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
46
|
Willett CS, Son C. The Evolution of the Thermal Niche Across Locally Adapted Populations of the Copepod Tigriopus californicus. ACTA ACUST UNITED AC 2018. [DOI: 10.3160/3712.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Christopher S. Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Christine Son
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
47
|
Tangwancharoen S, Moy GW, Burton RS. Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene. Mol Biol Evol 2018; 35:2110-2119. [DOI: 10.1093/molbev/msy138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sumaetee Tangwancharoen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| |
Collapse
|
48
|
DeBiasse MB, Kawji Y, Kelly MW. Phenotypic and transcriptomic responses to salinity stress across genetically and geographically divergent Tigriopus californicus populations. Mol Ecol 2018; 27:1621-1632. [PMID: 29509986 DOI: 10.1111/mec.14547] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Species inhabiting the North American west coast intertidal must tolerate an extremely variable environment, with large fluctuations in both temperature and salinity. Uncovering the mechanisms for this tolerance is key to understanding species' persistence. We tested for differences in salinity tolerance between populations of Tigriopus californicus copepods from locations in northern (Bodega Reserve) and southern (San Diego) California known to differ in temperature, precipitation and humidity. We also tested for differences between populations in their transcriptomic responses to salinity. Although these two populations have ~20% mtDNA sequence divergence and differ strongly in other phenotypic traits, we observed similarities in their phenotypic and transcriptomic responses to low and high salinity stress. Salinity significantly affected respiration rate (increased under low salinity and reduced under high salinity), but we found no significant effect of population on respiration or a population by salinity interaction. Under high salinity, there was no population difference in knock-down response, but northern copepods had a smaller knock-down under low salinity stress, corroborating previous results for T. californicus. Northern and southern populations had a similar transcriptomic response to salinity based on a principle components analysis, although differential gene expression under high salinity stress was three times lower in the northern population compared to the southern population. Transcripts differentially regulated under salinity stress were enriched for "amino acid transport" and "ion transport" annotation categories, supporting previous work demonstrating that the accumulation of free amino acids is important for osmotic regulation in T. californicus.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Yasmeen Kawji
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
49
|
Culumber ZW, Tobler M. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes. J Evol Biol 2018; 31:722-734. [DOI: 10.1111/jeb.13260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/13/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
50
|
Pereira RJ, Sasaki MC, Burton RS. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity. Proc Biol Sci 2018; 284:rspb.2017.0236. [PMID: 28446698 DOI: 10.1098/rspb.2017.0236] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/23/2017] [Indexed: 01/26/2023] Open
Abstract
Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes.
Collapse
Affiliation(s)
- Ricardo J Pereira
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA .,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Matthew C Sasaki
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA.,Marine Science Department, University of Connecticut, Groton, CT, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|