1
|
Cisternas‐Fuentes A, Forehand C, Morris K, Busch JW, Koski MH. Drift in small populations predicts mate availability and the breakdown of self-incompatibility in a clonal polyploid. THE NEW PHYTOLOGIST 2025; 245:2268-2278. [PMID: 39716778 PMCID: PMC11798892 DOI: 10.1111/nph.20338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
Mate limitation in small populations can reduce reproductive fitness, hinder population growth, and increase extinction risk. Mate limitation is exacerbated in self-incompatible (SI) taxa, where shared S-alleles further restrict mating. Theory suggests genetic drift as a predictor of mate limitation and the breakdown of SI systems. We tested this prediction by evaluating mate availability and S-allele number in populations of a tetraploid herb with gametophytic SI (GSI) spanning a range of effective population sizes. We performed controlled crosses in 13 populations of Argentina anserina to quantify mate availability and S-allele diversity, which were compared with simulations of tetraploid populations with GSI. We further evaluated mechanisms at the pollen-pistil interface contributing to outcross failure and leakiness in self-recognition. Mate availability declined in small populations, and closely fit tetraploid GSI population genetic models where maternal plants receive pollen with diverse S-alleles generated through tetrasomic inheritance. The failure to arrest self-pollen in the style was common in some populations. Specifically, leaky SI was more common in small populations with low mate availability, where it explained higher seed production in natural populations. The restriction of leaky self-recognition to the smallest populations is consistent with mate limitation as a pressure driving the breakdown of self-incompatibility.
Collapse
Affiliation(s)
- Anita Cisternas‐Fuentes
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónCasilla 160‐CConcepciónChile
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Cameron Forehand
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
- Department of BiologyUniversity of OklahomaNormanOK73019USA
| | - Kate Morris
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Jeremiah W. Busch
- School of Biological SciencesWashington State UniversityPullmanWA99164‐4236USA
| | - Matthew H. Koski
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| |
Collapse
|
2
|
Ferrer MM, Vásquez-Cruz M, Verde-Cáceres MA, Magaña-Rosado UC, Good SV. The distribution of self-incompatibility systems in angiosperms: the relationship between mating system diversity, life span, growth habit and latitude in a changing global environment. ANNALS OF BOTANY 2025; 135:25-42. [PMID: 38716780 PMCID: PMC11805948 DOI: 10.1093/aob/mcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/25/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS There is ample theoretical and experimental evidence that angiosperms harbouring self-incompatibility (SI) systems are likely to respond to global changes in unique ways relative to taxa with other mating systems. In this paper, we present an updated database on the prevalence of SI systems across angiosperms and examine the relationship between the presence of SI and latitude, biomes, life-history traits and management conditions to evaluate the potential vulnerability of SI taxa to climate change and habitat disturbance. METHODS We performed literature searches to identify studies that employed controlled crosses, microscopic analyses and/or genetic data to classify taxa as having SI, self-compatibility (SC), partial self-compatibility (PSC) or self-sterility (SS). Where described, the site of the SI reaction and the presence of dimorphic versus monomorphic flowers were also recorded. We then combined this database on the distribution of mating systems with information about the life span, growth habit, management conditions and geographic distribution of taxa. Information about the geographic distribution of taxa was obtained from a manually curated version of the Global Biodiversity Information Facility database, and from vegetation surveys encompassing nine biomes. We employed multinomial logit regression to assess the relationship between mating system and life-history traits, management condition, latitude and latitude-squared using self-compatible taxa as the baseline. Additionally, we employed LOESS regression to examine the relationship between the probability of SI and latitude. Finally, by summarizing information at the family level, we plotted the distribution of SI systems across angiosperms, including information about the presence of SI or dioecy and the inferred reaction site of the SI system when known, as well as the proportion of taxa in a family for which information is available. KEY RESULTS We obtained information about the SI status of 5686 hermaphroditic taxa, of which 55% exhibit SC and the remaining 45% harbour SI, SS or PSC. Highlights of the multinomial logit regression include that taxa with PSC have a greater odds of being short-lived (OR = 1.3) or long-lived (OR = 1.57) perennials relative to SC ones, and that SS/SI taxa (pooled) are less likely to be annuals (OR = 0.64) and more likely to be long-lived perennials (OR = 1.32). SS/SI taxa had a greater odds of being succulent (OR = 2.4) or a tree (OR = 2.05), and were less likely to be weeds (OR = 0.34). Further, we find a quadratic relationship between the probability of being self-incompatible with latitude: SI taxa were more common in the tropics, a finding that was further supported by the vegetation surveys, which showed fewer species with SS/SI in temperate and northern latitudes compared with Mediterranean and tropical biomes. CONCLUSIONS We conclude that in the short-term habitat fragmentation, pollinator loss and temperature increases may negatively impact plants with SI systems, particularly long-lived perennial and woody species dominant in tropical forests. In the longer term, these and other global changes are likely to select for self-compatible or partially self-compatible taxa, which, due to the apparent importance of SI as a driver of plant diversification across the angiosperm tree of life, may globally influence plant species richness.
Collapse
Affiliation(s)
- Miriam Monserrat Ferrer
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, México
| | | | - Mirley Arlyn Verde-Cáceres
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, México
| | - Uriel Christopher Magaña-Rosado
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, México
| | - Sara Victoria Good
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Layek U, Das N, Samanta A, Karmakar P. Impact of Seasonal Atmospheric Factors and Photoperiod on Floral Biology, Plant-Pollinator Interactions, and Plant Reproduction on Turnera ulmifolia L. (Passifloraceae). BIOLOGY 2025; 14:100. [PMID: 39857330 PMCID: PMC11760852 DOI: 10.3390/biology14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Reproductive traits and plant-pollinator interactions largely depend on seasonal weather conditions, which are species-specific. Turnera ulmifolia is an ornamental plant distributed worldwide. There is little information about plant species' reproductive ecology and environmental factors' impact on it. Here, we aimed to examine the effects of seasonal atmospheric factors (e.g., temperature, light, relative humidity, rainfall) and photoperiod on flowering, interactions with flower visitors, and the reproductive success of Turnera ulmifolia in West Bengal, India. Flowering intensity peaked in hot summers and dropped in cold winters, correlating positively with temperature and humidity. Flower opening and closing occurred earlier on hot days, while flower longevity increased in winter, showing a negative correlation with temperature and humidity. Pollen and ovule production were lower in cold weather, positively linked to temperature and humidity. The self-compatible plant was moderately dependent on pollinators and had no pollination deficit in open conditions. Visitor abundance, richness, and diversity varied season-wise, with higher values during spring-summer. Based on pollinating agents, the plant showed multiple pollination modes (e.g., melittophily, myophily, myrmecophily, and psychophily). Effective pollinators were Amegilla zonata, Borbo cinnara, Halictus acrocephalus, Nomia (Curvinomia) strigata, and Tetragonula iridipennis. The fruit set (%) did not differ significantly season-wise, but the seed set remained higher in the hot days of summer than in cold winter. Therefore, it can be concluded that atmospheric factors and photoperiod significantly impact floral traits, plant-pollinator interactions, and plant reproduction.
Collapse
Affiliation(s)
- Ujjwal Layek
- Department of Botany, Rampurhat College, Rampurhat 731224, West Bengal, India;
| | - Nandita Das
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India;
| | - Arabinda Samanta
- Department of Botany, Jhargram Raj College, Jhargram 721507, West Bengal, India;
| | - Prakash Karmakar
- Department of Botany & Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| |
Collapse
|
4
|
Ramanauskas K, Jiménez‐López FJ, Sánchez‐Cabrera M, Escudero M, Ortiz PL, Arista M, Igić B. Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae). AMERICAN JOURNAL OF BOTANY 2025; 112:e16449. [PMID: 39806558 PMCID: PMC11744440 DOI: 10.1002/ajb2.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PREMISE Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis. METHODS We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L. monelli. We term this approach "SI detection with RNA-seq" (SIDR). RESULTS The results of sequencing, crossing, population genetics, and molecular evolutionary features each support a causal association linking the recovered genotypes with SI phenotypes. The finding of RNase-based SI in Primulaceae (Ericales) all but cements the long-held view that this mechanism was present in the ancestral pentapetal eudicot, whose descendants now comprise two-thirds of angiosperms. It also significantly narrows the plausible maximum age for the heterostyly evolution within the family. CONCLUSIONS SIDR is powerful, flexible, inexpensive, and most critically enables work in often-neglected species. It may be used with or without candidate genes to close enormous gaps in understanding the genetic basis of SI and the history of breeding system evolution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| | | | | | - Marcial Escudero
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| |
Collapse
|
5
|
Zell AN, Miranda CH, Grady EL, Grossenbacher DL, Igić B. Island colonization in flowering plants is determined by the interplay of breeding system, lifespan, floral symmetry, and arrival opportunity. THE NEW PHYTOLOGIST 2025; 245:420-432. [PMID: 39517112 PMCID: PMC11617658 DOI: 10.1111/nph.20234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Among flowering plants, self-compatibility, longer lifespan, and generalized pollination syndrome are each thought to increase the lifetime odds of finding a mate, particularly in isolated locales. An accumulated body of evidence supports the role of breeding system in island colonization, but less is known about the impact of other traits and their interactions during establishment. We employ a global dataset of 3222 flowering plant species from 169 families to estimate the effects of traits on the probability of island occurrence. Our analyses additionally account for taxonomic group membership and assess the role of island arrival opportunity. Self-compatibility is strongly associated with island colonization. A longer lifespan and generalized pollination syndrome are also associated with increased island colonization, although this is influenced by their interaction with breeding system. The probability of island colonization is highly dependent on taxonomically conserved unmeasured traits and arrival opportunity. As expected, mate limitation appears to increase with dispersal distance, although many other factors are at play. We find that arrival opportunity and breeding system are the primary drivers of island colonization relative to other life-history traits we account for here, lending additional support for the positive role of uniparental reproduction in establishment following long-distance dispersal.
Collapse
Affiliation(s)
- Annie N. Zell
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Charlotte H. Miranda
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Erin L. Grady
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Dena L. Grossenbacher
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607USA
| |
Collapse
|
6
|
Duncan GD, Ellis AG, Forest F, Verboom GA. Strong habitat and seasonal phenology effects on the evolution of self-compatibility, clonality and pollinator shifts in Lachenalia (Asparagaceae: Scilloideae). THE NEW PHYTOLOGIST 2024; 244:307-317. [PMID: 38702970 DOI: 10.1111/nph.19786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Plants employ a diversity of reproductive safeguarding strategies to circumvent the challenge of pollen limitation. Focusing on southern African Lachenalia (Asparagaceae: Scilloideae), we test the hypothesis that the evolution of reproductive safeguarding traits (self-compatibility, autonomous selfing, bird pollination and clonal propagation) is favoured in species occupying conditions of low insect abundance imposed by critically infertile fynbos heathland vegetation and by flowering outside the austral spring insect abundance peak. We trace the evolution of these traits and selective regimes on a dated, multi-locus phylogeny of Lachenalia and assess their evolutionary associations using ordinary and phylogenetic regression. Ancestral state reconstructions identify an association with non-fynbos vegetation and spring flowering as ancestral in Lachenalia, the transition to fynbos vegetation and non-spring flowering taking place multiple times. They also show that self-compatibility, autofertility, bird pollination and production of multiple clonal offsets have evolved repeatedly. Regression models suggest that bird pollination and self-compatibility are selected for in fynbos and in non-spring flowering lineages, with autofertility being positively associated with non-spring flowering. These patterns support the interpretation of these traits as reproductive safeguarding adaptations under reduced insect pollinator abundance. We find no evidence to support the interpretation of clonal propagation as a reproductive safeguarding strategy.
Collapse
Affiliation(s)
- Graham D Duncan
- Bolus Herbarium and Department of Biological Sciences, University of Cape Town, 7701, Rhodes Gift, South Africa
- Kirstenbosch National Botanical Garden, South African National Biodiversity Institute, 99 Rhodes Ave, Newlands, Cape Town, 7700, South Africa
| | - Allan G Ellis
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, Surrey, UK
| | - G Anthony Verboom
- Bolus Herbarium and Department of Biological Sciences, University of Cape Town, 7701, Rhodes Gift, South Africa
- Department of Biology and Environmental Science, University of Gothenburg, 40530, Gothenburg, Sweden
- Gothenburg Botanical Garden (Botaniska), 41319, Gothenburg, Sweden
| |
Collapse
|
7
|
Koptur S, Primoli AS, Valdes I, Nusrat M. Self-Incompatibility in Devil's Potato ( Echites umbellatus Jacq., Apocynaceae) May Explain Why Few Flowers Set Fruit. BIOLOGY 2024; 13:423. [PMID: 38927303 PMCID: PMC11200429 DOI: 10.3390/biology13060423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Pollinators are needed for the reproduction of Echites umbellatus, and only sphingid moths have mouthparts long enough to reach the nectar at the bottom of the species' long, twisted floral tube. Though plants produce many flowers over a period of several months, one observes very few fruits in nature. We asked: (1) Are plants self-compatible, or do they need pollen from another individual to set fruit and seed? (2) Are cross-pollinations between unrelated individuals more successful than crosses with relatives? (3) How does the relatedness of pollen and ovule parent plants affect fruit set, seed number, and seed quality? We investigated the breeding system of E. umbellatus by collecting fruits from seven sites, growing plants and performing hand pollinations over a period of several years, collecting and measuring fruits and counting seeds. Echites umbellatus is self-incompatible, though some individuals produce fruit by self-pollination. Cross-pollinations between unrelated individuals set the most fruit (59%), and those that were self-pollinated set the least (9%). Fruit set from cross-pollinations between related individuals was intermediate (32%). Although the number of seeds per fruit did not differ significantly among pollination treatments, fruits from self-pollinations had substantially fewer viable seeds than outcrossed fruits, with fruits from sibling crosses being intermediate. There were higher levels of self-compatibility in the fragment populations compared with plants from intact habitats. Self-incompatibility may explain why fruit set is low in this plant species; future investigation into the breakdown of self-incompatibility in smaller populations is warranted.
Collapse
Affiliation(s)
- Suzanne Koptur
- Department of Biological Sciences, International Center for Tropical Botany, Institute of the Environment, Florida International University, Miami, FL 33199, USA; (A.S.P.); (I.V.); (M.N.)
| | - Andrea Salas Primoli
- Department of Biological Sciences, International Center for Tropical Botany, Institute of the Environment, Florida International University, Miami, FL 33199, USA; (A.S.P.); (I.V.); (M.N.)
| | - Imeña Valdes
- Department of Biological Sciences, International Center for Tropical Botany, Institute of the Environment, Florida International University, Miami, FL 33199, USA; (A.S.P.); (I.V.); (M.N.)
- Program in Plant Biology and Conservation, Northwestern University, 2145 Sheridan Road, Tech F315633, Evanston, IL 60208, USA
| | - Maha Nusrat
- Department of Biological Sciences, International Center for Tropical Botany, Institute of the Environment, Florida International University, Miami, FL 33199, USA; (A.S.P.); (I.V.); (M.N.)
| |
Collapse
|
8
|
Ramanauskas K, Igić B. kakapo: easy extraction and annotation of genes from raw RNA-seq reads. PeerJ 2023; 11:e16456. [PMID: 38034874 PMCID: PMC10688300 DOI: 10.7717/peerj.16456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
kakapo (kākāpō) is a Python-based pipeline that allows users to extract and assemble one or more specified genes or gene families. It flexibly uses original RNA-seq read or GenBank SRA accession inputs without performing global assembly of entire transcriptomes or metatranscriptomes. The pipeline identifies open reading frames in the assembled gene transcripts and annotates them. It optionally filters raw reads for ribosomal, plastid, and mitochondrial reads, or reads belonging to non-target organisms (e.g., viral, bacterial, human). kakapo can be employed for targeted assembly, to extract arbitrary loci, such as those commonly used for phylogenetic inference in systematics or candidate genes and gene families in phylogenomic and metagenomic studies. We provide example applications and discuss how its use can offset the declining value of GenBank's single-gene databases and help assemble datasets for a variety of phylogenetic analyses.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
9
|
Xu YW, Sun L, Ma R, Gao YQ, Sun H, Song B. Does pollinator dependence decrease along elevational gradients? PLANT DIVERSITY 2023; 45:446-455. [PMID: 37601546 PMCID: PMC10435910 DOI: 10.1016/j.pld.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 08/22/2023]
Abstract
Plants have long been thought to be less dependent on pollinators for seed production at higher elevations due to adverse pollination environments. However, recent research has yet to consistently support the generality of this expectation. In this study, we asked whether pollinator dependence decreases along an elevational gradient and how it varies with various reproductive traits. To answer these questions, we quantified pollinator-plant associations and various reproductive traits for 112 flowering plants spanning a large elevational gradient (990-4260 m a.s.l.) in the Qinghai-Tibet Plateau. We found that flowering plants in the Qinghai-Tibet Plateau region are highly dependent on pollinators for seed production (76.2% of seed production was contributed by animal pollinators and 44.6% of plants would produce no seed without pollinator visitation). Contrary to our expectation, there was no significant elevational gradient in pollinator dependence index. Although the pollinator dependence index was not significantly correlated with pollen limitation, flower size, floral longevity, or reward type, it was correlated with compatibility status and flowering time. These findings indicate that pollinator dependence does not decrease along an elevational gradient in the Qinghai-Tibet Plateau. Our study also highlights the severe vulnerability of flowering plant seed production to pollinator declines under global change in the Qinghai-Tibet Plateau region, particularly for early-flowering or self-incompatible plants growing at higher elevations (e.g., subnival belt).
Collapse
Affiliation(s)
- Yue-Wen Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lu Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Rong Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yong-Qian Gao
- Yunnan Forestry Technological College, Kunming 650224, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bo Song
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
10
|
Intercropping with Pigeonpea ( Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010193. [PMID: 36676141 PMCID: PMC9866136 DOI: 10.3390/life13010193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Intercropping is practiced in modern intensive agriculture considering many benefits, including additive crop yield. However, it may have competitive or facilitative interactions between pollinator-dependant crops. Here, we investigated the reproductive aspects of pigeonpea (Cajanus cajan). We assessed the influence of blooming pigeonpea on pollinator's assemblage and the yield of neighbouring non-leguminous crops (e.g., coriander, mustard). For these, we recorded floral visitors and the yield of the targeted crops from two types of fields-closely situated and distantly situated concerning pigeonpea plantation. Pigeonpea is autogamous, but pollinator's visits enhance fruit and seed sets. Bright, nectariferous flowers emitted several volatile organic compounds and were visited by numerous insect species. The prime pollinators of pigeonpea are carpenter bees and leafcutter bees. In contrast, halictidae, honeybees and stingless bees mainly pollinate the co-blooming non-leguminous crops (coriander and mustard). The richness and abundance of pollinators on these co-blooming crops remain similar in closely situated and distantly situated fields. As a result, the yield of the neighbouring crops is not significantly influenced by the blooming pigeonpea. Therefore, it can be concluded that planting pigeonpea in ridges of agricultural fields will be an additional agricultural output without affecting the assemblage of pollinators and yields of neighbouring co-blooming crops.
Collapse
|
11
|
Song B, Sun L, Barrett SCH, Moles AT, Luo YH, Armbruster WS, Gao YQ, Zhang S, Zhang ZQ, Sun H. Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates. THE NEW PHYTOLOGIST 2022; 235:2054-2065. [PMID: 35611604 DOI: 10.1111/nph.18271] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The length of time a flower remains open and functional - floral longevity - governs important reproductive processes influencing pollination and mating and varies considerably among angiosperm species. However, little is known about large-scale biogeographic patterns and the correlates of floral longevity. Using published data on floral longevity from 818 angiosperm species in 134 families and 472 locations world-wide, we present the first global quantification of the latitudinal pattern of floral longevity and the relationships between floral longevity and a range of biotic and abiotic factors. Floral longevity exhibited a significant phylogenetic signal and was longer at higher latitudes in both northern and southern hemispheres, even after accounting for elevation. This latitudinal variation was associated with several biotic and abiotic variables. The mean temperature of the flowering season had the highest predictive power for floral longevity, followed by pollen number per flower. Surprisingly, compatibility status, flower size, pollination mode, and growth form had no significant effects on flower longevity. Our results suggest that physiological processes associated with floral maintenance play a key role in explaining latitudinal variation in floral longevity across global ecosystems, with potential implications for floral longevity under global climate change and species distributions.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Ya-Huang Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Yong-Qian Gao
- Yunnan Forestry Technological College, Kunming, 650224, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhi-Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
12
|
Cisternas‐Fuentes A, Jogesh T, Broadhead GT, Raguso RA, Skogen KA, Fant JB. Evolution of selfing syndrome and its influence on genetic diversity and inbreeding: A range-wide study in Oenothera primiveris. AMERICAN JOURNAL OF BOTANY 2022; 109:789-805. [PMID: 35596689 PMCID: PMC9320852 DOI: 10.1002/ajb2.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
PREMISE To avoid inbreeding depression, plants have evolved diverse breeding systems to favor outcrossing, such as self-incompatibility. However, changes in biotic and abiotic conditions can result in selective pressures that lead to a breakdown in self-incompatibility. The shift to increased selfing is commonly associated with reduced floral features, lower attractiveness to pollinators, and increased inbreeding. We tested the hypothesis that the loss of self-incompatibility, a shift to self-fertilization (autogamy), and concomitant evolution of the selfing syndrome (reduction in floral traits associated with cross-fertilization) will lead to increased inbreeding and population differentiation in Oenothera primiveris. Across its range, this species exhibits a shift in its breeding system and floral traits from a self-incompatible population with large flowers to self-compatible populations with smaller flowers. METHODS We conducted a breeding system assessment, evaluated floral traits in the field and under controlled conditions, and measured population genetic parameters using RADseq data. RESULTS Our results reveal a bimodal transition to the selfing syndrome from the west to the east of the range of O. primiveris. This shift includes variation in the breeding system and the mating system, a reduction in floral traits (flower diameter, herkogamy, and scent production), a shift to greater autogamy, reduced genetic diversity, and increased inbreeding. CONCLUSIONS The observed variation highlights the importance of range-wide studies to understand breeding system variation and the evolution of the selfing syndrome within populations and species.
Collapse
Affiliation(s)
- Anita Cisternas‐Fuentes
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60035USA
- Plant Biology and ConservationNorthwestern University2205 Tech DriveEvanstonIllinois60208USA
- Department of Biological ScienceClemson University132 Long HallClemsonSouth Carolina29631USA
| | - Tania Jogesh
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60035USA
| | - Geoffrey T. Broadhead
- Department of Entomology and NematologyUniversity of Florida1881 Natural Area DriveGainesvilleFlorida32611USA
| | - Robert A. Raguso
- Department of Neurobiology and BehaviorCornell UniversityW361 Mudd HallIthacaNew York14853USA
| | - Krissa A. Skogen
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60035USA
- Plant Biology and ConservationNorthwestern University2205 Tech DriveEvanstonIllinois60208USA
| | - Jeremie B. Fant
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60035USA
- Plant Biology and ConservationNorthwestern University2205 Tech DriveEvanstonIllinois60208USA
| |
Collapse
|
13
|
Kudo G. Outcrossing syndrome in alpine plants: Implications for flowering phenology and pollination success. Ecol Res 2022. [DOI: 10.1111/1440-1703.12314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gaku Kudo
- Faculty of Environmental Earth Science Hokkaido University Sapporo Japan
| |
Collapse
|
14
|
Gavin‐Smyth N, Kramer AT, Urbina‐Casanova R, Vitt P, Fant JB. Genetic rescue reduces mate limitation in a threatened, clonal, and self‐incompatible plant species. Restor Ecol 2021. [DOI: 10.1111/rec.13458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nora Gavin‐Smyth
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| | - Andrea T. Kramer
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| | - Rafael Urbina‐Casanova
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| | - Pati Vitt
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
- Lake County Forest Preserve District 1899 W. Winchester Road, Libertyville IL 60048 U.S.A
| | - Jeremie B. Fant
- Plant Biology and Conservation Northwestern University Evanston IL 60201 U.S.A
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60022 U.S.A
| |
Collapse
|
15
|
Rodger JG, Bennett JM, Razanajatovo M, Knight TM, van Kleunen M, Ashman TL, Steets JA, Hui C, Arceo-Gómez G, Burd M, Burkle LA, Burns JH, Durka W, Freitas L, Kemp JE, Li J, Pauw A, Vamosi JC, Wolowski M, Xia J, Ellis AG. Widespread vulnerability of flowering plant seed production to pollinator declines. SCIENCE ADVANCES 2021; 7:eabd3524. [PMID: 34644118 PMCID: PMC8514087 DOI: 10.1126/sciadv.abd3524] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Despite evidence of pollinator declines from many regions across the globe, the threat this poses to plant populations is not clear because plants can often produce seeds without animal pollinators. Here, we quantify pollinator contribution to seed production by comparing fertility in the presence versus the absence of pollinators for a global dataset of 1174 plant species. We estimate that, without pollinators, a third of flowering plant species would produce no seeds and half would suffer an 80% or more reduction in fertility. Pollinator contribution to plant reproduction is higher in plants with tree growth form, multiple reproductive episodes, more specialized pollination systems, and tropical distributions, making these groups especially vulnerable to reduced service from pollinators. These results suggest that, without mitigating efforts, pollinator declines have the potential to reduce reproduction for most plant species, increasing the risk of population declines.
Collapse
Affiliation(s)
- James G. Rodger
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
- Biodiversity Informatics Unit, Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Corresponding author.
| | - Joanne M. Bennett
- Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Mialy Razanajatovo
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Tiffany M. Knight
- Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research—UFZ, Theodor-Lieser-Straße 4, 06120 Halle (Saale), Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260, USA
| | - Janette A. Steets
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
- Illumination Works, 2689 Commons Blvd., Suite 120, Beavercreek, OH 45431, USA
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
- Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town 7945, South Africa
- International Initiative for Theoretical Ecology, Unit 10, 317 Essex Road, London N1 2EE, UK
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Laura A. Burkle
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
| | - Jean H. Burns
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research—UFZ, Theodor-Lieser-Straße 4, 06120 Halle (Saale), Germany
| | | | - Jurene E. Kemp
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Jana C. Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marina Wolowski
- Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Allan G. Ellis
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
16
|
Ramanauskas K, Igić B. RNase-based self-incompatibility in cacti. THE NEW PHYTOLOGIST 2021; 231:2039-2049. [PMID: 34101188 DOI: 10.1111/nph.17541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Approximately one-half of all flowering plants express genetically based physiological mechanisms that prevent self-fertilisation. One such mechanism, termed RNase-based self-incompatibility, employs ribonucleases as the pistil component. Although it is widespread, it has only been characterised in a handful of distantly related families, partly due to the difficulties presented by life history traits of many plants, which complicate genetic research. Many species in the cactus family are known to express self-incompatibility but the underlying mechanisms remain unknown. We demonstrate the utility of a candidate-based RNA-seq approach, combined with some unusual features of self-incompatibility-causing genes, which we use to uncover the genetic basis of the underlying mechanisms. Specifically, we assembled transcriptomes from Schlumbergera truncata (crab cactus or false Christmas cactus), and interrogated them for tissue-specific expression of candidate genes, structural characteristics, correlation with expressed phenotype(s), and phylogenetic placement. The results were consistent with operation of the RNase-based self-incompatibility mechanism in Cactaceae. The finding yields additional evidence that the ancestor of nearly all eudicots possessed RNase-based self-incompatibility, as well as a clear path to better conservation practices for one of the most charismatic plant families.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Il, 60607, USA
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Il, 60607, USA
| |
Collapse
|
17
|
Yomai VMH, Williams JH. Breeding systems of naturalized versus indigenous species provide support for Baker's law on Pohnpei island. AOB PLANTS 2021; 13:plab038. [PMID: 34336178 PMCID: PMC8317631 DOI: 10.1093/aobpla/plab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The factors that facilitate successful colonization of islands should be especially evident where the establishment filter is strongest. Colonizers of small, remote oceanic islands should be initially rare, extremely mate-limited and often without pollinators. Hence, plant communities on such islands should reflect an establishment history in which young 'naturalized' species are most likely to display self-compatibility and autonomous selfing, whereas 'indigenous' species may exhibit more diverse reproductive strategies. To test this prediction, we characterized breeding systems of 28 species on Pohnpei, in the Federated States of Micronesia, a group of remote Pacific islands that are considered a global biodiversity hotspot. Three families with both naturalized and indigenous species were selected-Fabaceae, Malvaceae and Melastomataceae. Measurements included field observations of dichogamy/herkogamy and floral attraction traits, pollen:ovule (P:O) ratios and experimental hand-pollinations for self-compatibility and pollen limitation. Phylogenetic generalized least squares analyses tested for trait correlations between naturalized and indigenous species. Flowers of all 28 species were bisexual, and pollinator attraction features were common. Pollen:ovule ratios ranged from 9 to 557 (median = 87), and all 11 hand-pollinated species were self-compatible. All species had >5 ovules and <3500 pollen grains per flower. Indigenous species did not differ significantly from naturalized species for any trait. There is a dearth of data from remote islands bearing on the question of establishment history. In this study, we inferred all species to have some degree of autogamy and indigenous species were no more likely than naturalized species to display outcrossing mechanisms. On Pohnpei, high ovule numbers, and the inaccessibility of wind pollination and obligate outcrossing strategies, reflect the importance of retaining reproductive assurance mechanisms in the face of pollinator uncertainty.
Collapse
Affiliation(s)
| | - Joseph Hill Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
18
|
Petrén H, Toräng P, Ågren J, Friberg M. Evolution of floral scent in relation to self-incompatibility and capacity for autonomous self-pollination in the perennial herb Arabis alpina. ANNALS OF BOTANY 2021; 127:737-747. [PMID: 33555338 PMCID: PMC8103803 DOI: 10.1093/aob/mcab007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic-alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer. METHODS In a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece. KEY RESULTS The self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories. CONCLUSIONS Our study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.
Collapse
Affiliation(s)
- Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
- SLU Swedish Species Information Centre, Box 7007, SE-750 07 Uppsala, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
19
|
Sharples MT, Bentz PC, Manzitto-Tripp EA. Evolution of apetaly in the cosmopolitan genus Stellaria. AMERICAN JOURNAL OF BOTANY 2021; 108:869-882. [PMID: 33982285 DOI: 10.1002/ajb2.1650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/29/2020] [Indexed: 05/22/2023]
Abstract
PREMISE Apetaly is widespread across distantly related lineages of flowering plants and is associated with abiotic (or self-) pollination. It is particularly prevalent in the carnation family, and the cosmopolitan genus Stellaria contains many lineages that are hypothesized to have lost petals from showy petalous ancestors. But the pollination biology of apetalous species of Stellaria remains unclear. METHODS Using a substantial species-level sampling (~92% of known taxonomic diversity), we describe the pattern of petal evolution within Stellaria using ancestral character state reconstructions. To help shed light on the reproductive biology of apetalous Stellaria, we conducted a field experiment at an alpine tundra site in the southern Rocky Mountains to test whether an apetalous species (S. irrigua) exhibits higher levels of selfing than a sympatric, showy petalous congener (S. longipes). RESULTS Analyses indicated that the ancestor of Stellaria was likely showy petalous and that repeated, parallel reductions of petals occurred in clades across much of the world, with uncommon reversal back to showy petals. Field experiments supported high rates of selfing in the apetalous species and high rates of outcrossing in the petalous species. CONCLUSIONS Petal loss is rampant across major clades of Stellaria and is potentially linked with self-pollination worldwide. Self-pollination occurs within the buds in S. irrigua, and high propensities for this and other forms of selfing known in many other taxa of arctic-alpine habitats may reflect erratic availability of pollinators.
Collapse
Affiliation(s)
- Mathew T Sharples
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Philip C Bentz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Erin A Manzitto-Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Museum of Natural History, COLO Herbarium, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
20
|
Sexual reproductive strategies of Puya nitida (Bromeliaceae) in a Colombian paramo, a tropical high-elevation ecosystem. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467420000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe low availability of pollinators in high-elevation ecosystems can lead to flowering plants showing different adaptive responses in order to assure their reproductive success. Shifts toward autogamy and asexual reproductive rates (the reproductive assurance hypothesis) and the compensatory measures to maintain outcrossing such as flower longevity and more prolonged pistil receptivity (the increased pollination probability hypothesis) are some of these responses. Several studies have tested both hypotheses, but investigations of plants of tropical alpine environments such as paramos that support these assumptions are still scarce. Puya nitida, an endemic Colombian plant species distributed in the paramo and subparamo in the Eastern Cordillera of Cundinamarca department, was used as a case study to test its reproductive characteristics that assure its sexual reproduction. We analysed the species’ floral morphology and development, its phenological patterns and its plant mating-system. We found that Puya nitida showed floral characteristics that promote pollination by birds, herkogamy and dichogamy, flowers and receptive stigmas with 9 and 12 days of longevity, respectively and an index of self-incompatibility that shows that it is mostly self-incompatible. We found a synchronic phenological pattern with an annual frequency and an intermediate duration with a peak in the period of lowest rainfall. Our results suggested that longer floral development, prolonged stigma receptivity, herkogamy and dichogamy and self-incompatibility might assure reproductive success, since the cross-pollination might be favoured when few pollinators are in attendance. Overall, these reproductive mechanisms add evidence to the increased pollination probability hypothesis, specifically for a plant species of a tropical high-elevation ecosystem where pollinators are scarce.
Collapse
|
21
|
Wang H, Barrett SCH, Li XY, Niu Y, Duan YW, Zhang ZQ, Li QJ. Sexual conflict in protandrous flowers and the evolution of gynodioecy. Evolution 2020; 75:278-293. [PMID: 33080057 DOI: 10.1111/evo.14113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022]
Abstract
Sexual interference between male and female function in hermaphrodite plants is reduced by protandry. In environments with insufficient pollinator service, prolongation of male function owing to limited pollen removal could restrict the duration of female function and lower seed production. We provide evidence that this form of sexual conflict has played a role in the spread of females in gynodioecious populations of Cyananthus delavayi in the pollen-limited environments in which this subalpine species occurs. Using field experiments involving artificial pollen removal from the strongly protandrous flowers of hermaphrodites, we demonstrated a trade-off between male- and female-phase duration with no influence on overall floral longevity. Pollen removal at the beginning of anthesis resulted in hermaphrodite seed production matching that of females. In contrast, restricted pollen removal increased the duration of male function at the expense of female function lowering maternal fertility compared to females. This pattern was evident in five populations with females experiencing a twofold average seed fertility advantage compared to hermaphrodites. Gynodioecy often appears to evolve from protandrous ancestors and pollen limitation is widespread in flowering plants suggesting that sexual conflict may play an unappreciated role in the evolution of this form of sexual dimorphism.
Collapse
Affiliation(s)
- Hao Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Xue-Yan Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| | - Yang Niu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuan-Wen Duan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhi-Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| | - Qing-Jun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
22
|
Friedman J. The Evolution of Annual and Perennial Plant Life Histories: Ecological Correlates and Genetic Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024638] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flowering plants exhibit two principal life-history strategies: annuality (living and reproducing in one year) and perenniality (living more than one year). The advantages of either strategy depend on the relative benefits of immediate reproduction balanced against survivorship and future reproduction. This trade-off means that life-history strategies are associated with particular environments, with annuals being found more often in unpredictable habitats. Annuality and perenniality are the outcome of developmental genetic programs responding to their environment, with perennials being distinguished by their delayed competence to flower and reversion to growth after flowering. Evolutionary transitions between these strategies are frequent and have consequences for mating systems and genome evolution, with perennials being more likely to outcross with higher inbreeding depression and lower rates of molecular evolution. Integrating expectations from life-history theory with knowledge of the developmental genetics of flowering and seasonality is required to understand the mechanisms involved in the evolution of annual and perennial life histories.
Collapse
Affiliation(s)
- Jannice Friedman
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
23
|
Liu R, Gao Y, Fan Z, Wang X, Xiao J, Zhang Q. Within-day temporal isolation of two species of Iris (Iridaceae) sharing the same pollinator. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Knowledge of factors driving reproductive isolation is essential to understand the process of speciation. To study the reproductive isolation of two closely related species with overlapping flowering seasons, Iris domestica and Iris dichotoma, we compared their reproductive system, floral biology and pollination biology. The results indicated that I. domestica was facultatively xenogamous, whereas I. dichotoma was facultatively autogamous. Although the two species differed significantly in floral colour, floral diameter, floral structure, nectar volume, flower opening and closing times, they shared the same diurnal pollinator, the honeybee Apis cerana. The frequency of pollination by A. cerana did not differ significantly between the two species, but honeybee pollination of I. domestica was more efficient compared with that of I. dichotoma. Despite the difference in floral structure between the two species, both species deposited pollen on the same parts of the body of honeybees. The temporal partitioning of within-day flowering times between I. domestica (from 07.15 to 08.15 h to 18.00 to 19.00 h) and I. dichotoma (from 15.45 to 16.15 h to 22.00 to 23.00 h), together with the time memory of honeybees, meant that the two species did not overlap in the time of their pollination, thus leading to temporal isolation as a major driver of reproductive isolation between the two species.
Collapse
Affiliation(s)
- Rong Liu
- Department of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yike Gao
- Department of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Zhuping Fan
- Department of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xinzi Wang
- Department of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jianhua Xiao
- Department of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Department of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
24
|
Oleques SS, Radaeski JN, Bauerman S, Chauveau O, de Souza-Chies TT. The specialization–generalization continuum in oil-bee pollination systems: a case study of six Brazilian species of Tigridieae (Iridaceae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blz185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Several South American species of Iridaceae, especially those of Tigridieae, produce floral oils as rewards to oil-bee pollinators. The present study aimed to contribute to a deeper understanding of the reproductive biology, pollination ecology and level of specialization of the interactions of species encompassed in Tigridieae. Data on breeding and pollination systems were acquired from six species native to Southern Brazil. The visitation frequency and pollen load of pollen- and oil-collecting bees were also investigated. The results strongly suggest that the studied species are distributed along a specialization–generalization continuum. Three oil-producing taxa, Cypella herbertii, Cypella pusilla and Cypella amplimaculata, were pollinated effectively by oil-bees, whereas in the other two studied species, Kelissa brasiliensis and Herbertia pulchella, the oil-bees appeared to function as oil thieves, owing to failure to contact the plant reproductive parts during oil-foraging behaviour. New insights into aspects of the specialization–generalization continuum of pollination systems, differences in pollinator behaviour during oil and pollen foraging, and reproductive outputs of the studied species are provided. Taken together, our results provide a significant contribution towards a better understanding of reproductive biology and plant–pollinator interactions between Iridaceae and oil-collecting bees.
Collapse
Affiliation(s)
- Suiane Santos Oleques
- Departamento de Botânica, Programa de Pós-graduação em Botânica, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Interações Ecológicas, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Jefferson Nunes Radaeski
- Departamento de Biologia, Universidade Luterana do Brasil – ULBRA, Laboratório de Palinologia, Canoas, Rio Grande do Sul, Brazil
| | - Soraia Bauerman
- Departamento de Biologia, Universidade Luterana do Brasil – ULBRA, Laboratório de Palinologia, Canoas, Rio Grande do Sul, Brazil
| | - Olivier Chauveau
- Departamento de Botânica, Programa de Pós-graduação em Botânica, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Interações Ecológicas, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Université Paris Sud, Agro Paris Tech, —Unité Écologie, Systématique et Évolution, Orsay, France
| | - Tatiana Teixeira de Souza-Chies
- Departamento de Botânica, Programa de Pós-graduação em Botânica, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Interações Ecológicas, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Mattila TM, Laenen B, Slotte T. Population Genomics of Transitions to Selfing in Brassicaceae Model Systems. Methods Mol Biol 2020; 2090:269-287. [PMID: 31975171 DOI: 10.1007/978-1-0716-0199-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems. The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major effects on population genetic variation and adaptive potential, as well as on genome evolution. In the Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of population genomics datasets have allowed detailed investigation of where, when and how the transition to selfing occurred. Future studies will take advantage of the development of population genetics theory on the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems including recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the same transition will facilitate dissecting the effects of mating system variation from processes driven by demography.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
26
|
Bartoš M, Janeček Š, Janečková P, Padyšáková E, Tropek R, Götzenberger L, Klomberg Y, Jersáková J. Self-compatibility and autonomous selfing of plants in meadow communities. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:120-128. [PMID: 31549455 DOI: 10.1111/plb.13049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
One of the most fundamental, although controversial, questions related to the evolution of plant mating systems is the distribution of outcrossing rates. Self-compatibility, and especially autonomous self-pollination, can become particularly beneficial in anthropogenically degraded habitats with impoverished pollinator assemblages and increased pollen limitation. In a hand-pollination experiment with 46 meadow plants from the Železné hory Mts., Czech Republic, we evaluated the species' ability to adopt different mating systems. For a subset of the species, we also tested seed germination for inbreeding depression. Subsequently, we analysed relationships between the species' mating systems and 12 floral and life-history traits. We found a relatively discrete distribution of the studied species into four groups. Fully and partially self-incompatible species formed the largest group, followed by self-compatible non-selfers and mixed mating species. The germination experiment showed an absence of inbreeding depression in 19 out of 22 examined species. Nectar sugar per flower, nectar sugar per shoot and dichogamy were significant associated with the mating system. Spontaneous selfing ability and self-incompatibility in species of the meadow communities had a discrete distribution, conforming to the general distribution of mating and breeding systems in angiosperms. The low frequency of spontaneous selfers and the lack of inbreeding depression at germination suggest the existence of a selection against selfing at the later ontogenetic stages. Some floral traits, such as the level of dichogamy and amount of nectar reward, may strongly impact the balance between selfing and outcrossing rates in the self-compatible species and thus shape the evolution of mating systems.
Collapse
Affiliation(s)
- M Bartoš
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Š Janeček
- Department of Ecology, Faculty of Science, Charles University, Praha, Czech Republic
| | - P Janečková
- Department of Ecology, Faculty of Science, Charles University, Praha, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - E Padyšáková
- Department of Ecology, Faculty of Science, Charles University, Praha, Czech Republic
- Biology Centre, Institute of Entomology, The Czech Academy of Sciences, České Budějovice, Czech Republic
| | - R Tropek
- Department of Ecology, Faculty of Science, Charles University, Praha, Czech Republic
- Biology Centre, Institute of Entomology, The Czech Academy of Sciences, České Budějovice, Czech Republic
| | - L Götzenberger
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Y Klomberg
- Department of Ecology, Faculty of Science, Charles University, Praha, Czech Republic
| | - J Jersáková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
27
|
Johnson SD, Butler HC, Robertson AW. Breeding systems in Cyrtanthus (Amaryllidaceae): variation in self-sterility and potential for ovule discounting. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1008-1015. [PMID: 31271495 DOI: 10.1111/plb.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Breeding systems of plants determine their reliance on pollinators and ability to produce seeds following self-pollination. Self-sterility, where ovules that are penetrated by self-pollen tubes that do not develop into seeds, is usually considered to represent either a system of late-acting self-incompatibility or strong early inbreeding depression. Importantly, it can lead to impaired female function through ovule or seed discounting when stigmas receive mixtures of self and cross pollen, unless cross pollen is able to reach the ovary ahead of self pollen ('prepotency'). Self-sterility associated with ovule penetration by self-pollen tubes appears to be widespread among the Amaryllidaceae. We tested for self-sterility in three Cyrtanthus species - C. contractus, C. ventricosus and C. mackenii - by means of controlled hand-pollination experiments. To determine the growth rates and frequency of ovule penetration by self- versus cross-pollen tubes, we used fluorescence microscopy to examine flowers of C. contractus harvested 24, 48 and 72 h after pollination, in conjunction with a novel method of processing these images digitally. To test the potential for ovule discounting (loss of cross-fertilisation opportunities when ovules are disabled by self-pollination), we pollinated flowers of C. contractus and C. mackenii with mixtures of self- and cross pollen. We recorded full self-sterility for C. contractus and C. ventricosus, and partial self-sterility for C. mackenii. In C. contractus, we found no differences in the growth rates of self- and cross-pollen tubes, nor in the proportions of ovules penetrated by self- and cross-pollen tubes. In this species, seed set was depressed (relative to cross-pollinated controls) when flowers received a mixture of self and cross pollen, but this was not the case for C. mackenii. These results reveal variation in breeding systems among Cyrtanthus species and highlight the potential for gender conflict in self-sterile species in which ovules are penetrated and disabled by pollen tubes from self pollen.
Collapse
Affiliation(s)
- S D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - H C Butler
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - A W Robertson
- Wildlife & Ecology, School of Agriculture & Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
28
|
Zenil-Ferguson R, Burleigh JG, Freyman WA, Igić B, Mayrose I, Goldberg EE. Interaction among ploidy, breeding system and lineage diversification. THE NEW PHYTOLOGIST 2019; 224:1252-1265. [PMID: 31617595 DOI: 10.1111/nph.16184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/14/2019] [Indexed: 05/28/2023]
Abstract
If particular traits consistently affect rates of speciation and extinction, broad macroevolutionary patterns can be interpreted as consequences of selection at high levels of the biological hierarchy. Identifying traits associated with diversification rates is difficult because of the wide variety of characters under consideration and the statistical challenges of testing for associations from comparative phylogenetic data. Ploidy (diploid vs polyploid states) and breeding system (self-incompatible vs self-compatible states) are both thought to be drivers of differential diversification in angiosperms. We fit 29 diversification models to extensive trait and phylogenetic data in Solanaceae and investigate how speciation and extinction rate differences are associated with ploidy, breeding system, and the interaction between these traits. We show that diversification patterns in Solanaceae are better explained by breeding system and an additional unobserved factor, rather than by ploidy. We also find that the most common evolutionary pathway to polyploidy in Solanaceae occurs via direct breakdown of self-incompatibility by whole genome duplication, rather than indirectly via breakdown followed by polyploidization. Comparing multiple stochastic diversification models that include complex trait interactions alongside hidden states enhances our understanding of the macroevolutionary patterns in plant phylogenies.
Collapse
Affiliation(s)
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - William A Freyman
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Emma E Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
29
|
Koski MH, Galloway LF, Busch JW. Pollen limitation and autonomous selfing ability interact to shape variation in outcrossing rate across a species range. AMERICAN JOURNAL OF BOTANY 2019; 106:1240-1247. [PMID: 31415107 DOI: 10.1002/ajb2.1342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Hermaphroditic plants commonly reproduce through a mixture of selfing and outcrossing. The degree to which outcrossing rates reflect the availability of outcross pollen, genetic differentiation in the ability to autonomously self-fertilize, or both is often unclear. Despite the potential for autonomy and the pollination environment to jointly influence outcrossing, this interaction is rarely studied. METHODS We reviewed studies from the literature that tested whether the pollination environment or floral traits that cause autonomous selfing predict variation in outcrossing rate among populations. We also measured outcrossing rates in 23 populations of Campanula americana and examined associations with the pollination environment, autonomy, and their interaction. RESULTS Our review revealed that traits that facilitate selfing were often negatively associated with outcrossing rates whereas most aspects of the pollination environment poorly predicted outcrossing. Populations of C. americana varied from mixed mating to highly outcrossing, but variation was unrelated to population size, density, pollen limitation, or autonomous selfing ability. Outcrossing rate was significantly influenced by an interaction between autonomous selfing ability and pollen limitation. Across highly autonomous populations, elevated pollen limitation was associated with reduced outcrossing, while there was no relationship for less autonomous populations. CONCLUSIONS Both the ability to self autonomously and pollen limitation interact to shape outcrossing rates in C. americana. This work suggests that autonomy affords mating-system flexibility, though it is not ubiquitous in all populations across the species range. Interactions between traits influencing autonomy and pollen limitation are likely to explain variation in outcrossing rates among populations of flowering plants.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904, USA
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina, 29631, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904, USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, Washington, 99164, USA
| |
Collapse
|
30
|
Ramírez N, Hokche O. Outbreeding and inbreeding strategies in herbaceous-shrubby communities in the Venezuelan Gran Sabana Plateau. AOB PLANTS 2019; 11:plz032. [PMID: 31308924 PMCID: PMC6621913 DOI: 10.1093/aobpla/plz032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Breeding system, sexual system, temporal variation in sex expression and herkogamy were evaluated in seven herbaceous-shrubby communities from the Gran Sabana Plateau, Venezuela. This analysis was conducted considering the life form, substrate type, succulence, carbon metabolism, nutritional relation, successional stage, pollination system specificity and endemism of plant species. Of the 348 plant species studied, 73.8 % were hermaphrodite, 16.9 % were monoecious and 9.2 % were dioecious. Plant sexual systems such as dichogamy and herkogamy were associated with life form, nutritional relations, carbon metabolism and pollination systems. Most species were adichogamous, followed by protandrous and protogynous. Protandry was high for perennial herbs, annual herbs and trees, and protogyny was most frequent in perennial herbs. Protandrous and protogynous species were frequently anemophilous. Herkogamy was higher than non-herkogamy. Herkogamy was higher for trees, shrubs and liana; higher in monophilous and lower in anemophilous species. Most of the hermaphrodites were herkogamous and adichogamous species. In contrast, monoecy were commonly perennial herb and dichogamous species and frequently associated with anemophily. Dioecious species were trees and shrubs and with polyphilous pollination. Dioecy was the most frequent sexual system for endemic species. Hermaphrodite species were similarly distributed across plant communities. Monoecy was slightly higher for savanna and fallow than the other communities, and dioecy was higher for shrublands and secondary bushland. Most plant species were non-agamospermous, non-spontaneous self-pollinated and xenogamous. Partially self-incompatible dominated, followed by self-incompatible, partially cross-incompatible and the lowest frequency corresponded to cross-incompatible species. All these results are discussed in the context of evolutionary and ecological trends.
Collapse
Affiliation(s)
- Nelson Ramírez
- Facultad de Ciencias, Instituto de Biología Experimental, Centro de Botánica Tropical, Universidad Central de Venezuela, Caracas 1041-A, Venezuela
| | - Omaira Hokche
- Herbario Nacional de Venezuela, Instituto Experimental Jardín Botánico Dr. Tobías Lasser, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
31
|
D'Antraccoli M, Roma-Marzio F, Benelli G, Canale A, Peruzzi L. Dynamics of secondary pollen presentation in Campanula medium (Campanulaceae). JOURNAL OF PLANT RESEARCH 2019; 132:251-261. [PMID: 30758751 DOI: 10.1007/s10265-019-01090-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
After several decades of research, dynamics and patterns of mating system in floral evolution remain incompletely understood, especially with regards to strategies that combine both outcrossing and selfing, as frequently recorded in the genus Campanula. Data about temporal and spatial dynamics of secondary pollen presentation are still scarce in literature: we investigated them using Campanula medium (Campanulaceae) as case study. Experimental pollinations were conducted under natural conditions, to characterise the breeding system of this species. Effects on stigma opening and stigma receptivity of stylar pollen presence were investigated in manipulated flowers. The temporal dynamics and fitness of male and female functional phases were estimated. Flower visitors and their interactions with sexual parts of the flower were also annotated. C. medium is xenogamous and self-incompatible, with a clear temporal separation between sexual functional phases. Floral lifespan is shortened by experimental outcrossing. Removal of pollen from the style shortened the time span of male function. Pollen viability was highest at the beginning of the anthesis, decreasing during the flowering period, whereas stigmatic receptivity shows an opposite trend. We found a severe pollen limitation in the studied population. Bees were the most frequent floral visitors. In some of these insects we observed stereotyped interactions with the reproductive structures of the flower, in particular with the pollen, exposed along the upper and median portion of the style. Sexual phases in C. medium are inversely correlated and finely spatially and temporally coordinated, since stigma maturation is scalar along its length and depends on pollen presence on the style. Overall, our findings push forward the knowledge on reproductive strategies in Campanula.
Collapse
Affiliation(s)
- Marco D'Antraccoli
- Department of Biology, Unit of Botany, University of Pisa, Via Derna 1, 56126, Pisa, Italy.
| | - Francesco Roma-Marzio
- Department of Biology, Unit of Botany, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lorenzo Peruzzi
- Department of Biology, Unit of Botany, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| |
Collapse
|
32
|
Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int J Mol Sci 2018; 19:ijms19113612. [PMID: 30445779 PMCID: PMC6274852 DOI: 10.3390/ijms19113612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Self-incompatibility (SI) is one of the most efficient mechanisms to promote out-crossing in plants. However, SI could be a problem for fruit production. An example is apricot (Prunus armeniaca), in which, as in other species of the Rosaceae, SI is determined by an S-RNase-based-Gametophytic Self-Incompatibility (GSI) system. Incompatibility relationships between cultivars can be established by an S-allele genotyping PCR strategy. Until recently, most of the traditional European apricot cultivars were self-compatible but several breeding programs have introduced an increasing number of new cultivars whose pollination requirements are unknown. To fill this gap, we have identified the S-allele of 44 apricot genotypes, of which 43 are reported here for the first time. The identification of Sc in 15 genotypes suggests that those cultivars are self-compatible. In five genotypes, self-(in)compatibility was established by the observation of pollen tube growth in self-pollinated flowers, since PCR analysis could not allowed distinguishing between the Sc and S8 alleles. Self-incompatible genotypes were assigned to their corresponding self-incompatibility groups. The knowledge of incompatibility relationships between apricot cultivars can be a highly valuable tool for the development of future breeding programs by selecting the appropriate parents and for efficient orchard design by planting self-compatible and inter-compatible cultivars.
Collapse
|
33
|
Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Nonself-Recognition System. Genetics 2018; 209:861-883. [PMID: 29716955 DOI: 10.1534/genetics.118.300748] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/28/2018] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) is a genetically based recognition system that functions to prevent self-fertilization and mating among related plants. An enduring puzzle in SI is how the high diversity observed in nature arises and is maintained. Based on the underlying recognition mechanism, SI can be classified into two main groups: self-recognition (SR) and nonself-recognition (NSR). Most work has focused on diversification within SR systems despite expected differences between the two groups in the evolutionary pathways and outcomes of diversification. Here, we use a deterministic population genetic model and stochastic simulations to investigate how novel S-haplotypes evolve in a gametophytic NSR [SRNase/S Locus F-box (SLF)] SI system. For this model, the pathways for diversification involve either the maintenance or breakdown of SI and can vary in the order of mutations of the female (SRNase) and male (SLF) components. We show analytically that diversification can occur with high inbreeding depression and self-pollination, but this varies with evolutionary pathway and level of completeness (which determines the number of potential mating partners in the population), and, in general, is more likely for lower haplotype number. The conditions for diversification are broader in stochastic simulations of finite population size. However, the number of haplotypes observed under high inbreeding and moderate-to-high self-pollination is less than that commonly observed in nature. Diversification was observed through pathways that maintain SI as well as through self-compatible intermediates. Yet the lifespan of diversified haplotypes was sensitive to their level of completeness. By examining diversification in a NSR SI system, this model extends our understanding of the evolution and maintenance of haplotype diversity observed in a recognition system common in flowering plants.
Collapse
|
34
|
Abstract
Pollinator-mediated selection on plants can favor transitions to a new pollinator depending on the relative abundances and efficiencies of pollinators present in the community. A frequently observed example is the transition from bee pollination to hummingbird pollination. We present a population genetic model that examines whether the ability to inbreed can influence evolutionary change in traits that underlie pollinator attraction. We find that a transition to a more efficient but less abundant pollinator is favored under a broadened set of ecological conditions if plants are capable of delayed selfing rather than obligately outcrossing. Delayed selfing allows plants carrying an allele that attracts the novel pollinator to reproduce even when this pollinator is rare, providing reproductive assurance. In addition, delayed selfing weakens the effects of Haldane's sieve by increasing the fixation probability for recessive alleles that confer adaptation to the new pollinator. Our model provides novel insight into the paradoxical abundance of recessive mutations in adaptation to hummingbird attraction. It further predicts that transitions to efficient but less abundant pollinators (such as hummingbirds in certain communities) should disproportionately occur in self-compatible lineages. Currently available mating system data sets are consistent with this prediction, and we suggest future areas of research that will enable a rigorous test of this theory.
Collapse
|
35
|
Sutherland BL, Quarles BM, Galloway LF. Intercontinental dispersal and whole-genome duplication contribute to loss of self-incompatibility in a polyploid complex. AMERICAN JOURNAL OF BOTANY 2018; 105:249-256. [PMID: 29578295 DOI: 10.1002/ajb2.1027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Angiosperm species often shift from self-incompatibility to self-compatibility following population bottlenecks. Across the range of a species, population bottlenecks may result from multiple factors, each of which may affect the geographic distribution and magnitude of mating-system shifts. We describe how intercontinental dispersal and genome duplication facilitate loss of self-incompatibility. METHODS Self and outcross pollinations were performed on plants from 24 populations of the Campanula rotundifolia polyploid complex. Populations spanned the geographic distribution and three dominant cytotypes of the species (diploid, tetraploid, hexaploid). KEY RESULTS Loss of self-incompatibility was associated with both intercontinental dispersal and genome duplication. European plants were largely self-incompatible, whereas North American plants were intermediately to fully self-compatible. Within both European and North American populations, loss of self-incompatibility increased as ploidy increased. Ploidy change and intercontinental dispersal both contributed to loss of self-incompatibility in North America, but range expansion did not affect self-incompatibility within Europe or North America. CONCLUSIONS When species are subject to population bottlenecks arising through multiple factors, each factor can contribute to self-incompatibility loss. In a widespread polyploid complex, the loss of self-incompatibility can be predicted by the cumulative effects of whole-genome duplication and intercontinental dispersal.
Collapse
Affiliation(s)
- Brittany L Sutherland
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904-4328, USA
| | - Brandie M Quarles
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904-4328, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904-4328, USA
| |
Collapse
|
36
|
Frye CT, Neel MC. Benefits of gene flow are mediated by individual variability in self-compatibility in small isolated populations of an endemic plant species. Evol Appl 2017; 10:551-562. [PMID: 28616063 PMCID: PMC5469166 DOI: 10.1111/eva.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 09/05/2016] [Indexed: 11/30/2022] Open
Abstract
Many rare and endemic species experience increased rates of self-fertilization and mating among close relatives as a consequence of existing in small populations within isolated habitat patches. Variability in self-compatibility among individuals within populations may reflect adaptation to local demography and genetic architecture, inbreeding, or drift. We use experimental hand-pollinations under natural field conditions to assess the effects of gene flow in 21 populations of the central Appalachian endemic Trifolium virginicum that varied in population size and degree of isolation. We quantified the effects of distance from pollen source on pollination success and fruit set. Rates of self-compatibility varied dramatically among maternal plants, ranging from 0% to 100%. This variation was unrelated to population size or degree of isolation. Nearly continuous variation in the success of selfing and near-cross-matings via hand pollination suggests that T. virginicum expresses pseudo-self-fertility, whereby plants carrying the same S-allele mate successfully by altering the self-incompatibility reaction. However, outcrossing among populations produced significantly higher fruit set than within populations, an indication of drift load. These results are consistent with strong selection acting to break down self-incompatibility in these small populations and/or early-acting inbreeding depression expressed upon selfing.
Collapse
Affiliation(s)
- Christopher T. Frye
- Natural Heritage ProgramMaryland Department of Natural ResourcesWildlife and Heritage ServiceWye MillsMDUSA
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Maile C. Neel
- Department of Plant Science and Landscape Architecture and Department of EntomologyUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|
37
|
Grossenbacher DL, Brandvain Y, Auld JR, Burd M, Cheptou PO, Conner JK, Grant AG, Hovick SM, Pannell JR, Pauw A, Petanidou T, Randle AM, Rubio de Casas R, Vamosi J, Winn A, Igic B, Busch JW, Kalisz S, Goldberg EE. Self-compatibility is over-represented on islands. THE NEW PHYTOLOGIST 2017; 215:469-478. [PMID: 28382619 DOI: 10.1111/nph.14534] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/20/2017] [Indexed: 06/07/2023]
Abstract
Because establishing a new population often depends critically on finding mates, individuals capable of uniparental reproduction may have a colonization advantage. Accordingly, there should be an over-representation of colonizing species in which individuals can reproduce without a mate, particularly in isolated locales such as oceanic islands. Despite the intuitive appeal of this colonization filter hypothesis (known as Baker's law), more than six decades of analyses have yielded mixed findings. We assembled a dataset of island and mainland plant breeding systems, focusing on the presence or absence of self-incompatibility. Because this trait enforces outcrossing and is unlikely to re-evolve on short timescales if it is lost, breeding system is especially likely to reflect the colonization filter. We found significantly more self-compatible species on islands than mainlands across a sample of > 1500 species from three widely distributed flowering plant families (Asteraceae, Brassicaceae and Solanaceae). Overall, 66% of island species were self-compatible, compared with 41% of mainland species. Our results demonstrate that the presence or absence of self-incompatibility has strong explanatory power for plant geographical patterns. Island floras around the world thus reflect the role of a key reproductive trait in filtering potential colonizing species in these three plant families.
Collapse
Affiliation(s)
- Dena L Grossenbacher
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Josh R Auld
- Department of Biology, West Chester University, West Chester, PA, 19383, USA
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Pierre-Olivier Cheptou
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valery Montpellier, EPHE, CEFE, 34293, Montpellier Cedex 05, France
| | - Jeffrey K Conner
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, 49060, USA
| | - Alannie G Grant
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Stephen M Hovick
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, 81100, Mytilene, Lesvos, Greece
| | - April M Randle
- Department of Environmental Science, University of San Francisco, San Francisco, CA, 94117, USA
| | - Rafael Rubio de Casas
- Departmento Ecología, Facultad de Ciencias, Universidad de Granada, Granada, UGR, 18071, Granada, Spain
| | - Jana Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Alice Winn
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Boris Igic
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Susan Kalisz
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Emma E Goldberg
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
38
|
|
39
|
Layman NC, Fernando MTR, Herlihy CR, Busch JW. Costs of selfing prevent the spread of a self‐compatibility mutation that causes reproductive assurance. Evolution 2017; 71:884-897. [DOI: 10.1111/evo.13167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Nathan C. Layman
- School of Biological Sciences Washington State University Pullman Washington 99164
| | - M. Thilina R. Fernando
- Department of Biology, Evolution and Ecology Group Middle Tennessee State University Murfreesboro Tennessee 37132
| | - Christopher R. Herlihy
- Department of Biology, Evolution and Ecology Group Middle Tennessee State University Murfreesboro Tennessee 37132
| | - Jeremiah W. Busch
- School of Biological Sciences Washington State University Pullman Washington 99164
| |
Collapse
|
40
|
Carleial S, van Kleunen M, Stift M. Small reductions in corolla size and pollen: ovule ratio, but no changes in flower shape in selfing populations of the North American Arabidopsis lyrata. Oecologia 2016; 183:401-413. [DOI: 10.1007/s00442-016-3773-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
|
41
|
What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity (Edinb) 2016; 118:52-63. [PMID: 27804968 PMCID: PMC5176122 DOI: 10.1038/hdy.2016.99] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023] Open
Abstract
The genetic breakdown of self-incompatibility (SI) and subsequent mating system shifts to inbreeding has intrigued evolutionary geneticists for decades. Most of our knowledge is derived from interspecific comparisons between inbreeding species and their outcrossing relatives, where inferences may be confounded by secondary mutations that arose after the initial loss of SI. Here, we study an intraspecific breakdown of SI and its consequences in North American Arabidopsis lyrata to test whether: (1) particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding; (2) a population bottleneck may have played a role in driving the transition to inbreeding; and (3) the mutation(s) underlying the loss of SI are likely to have occurred at the S-locus. Combining multiple approaches for genotyping, we found that outcrossing populations on average harbour 5 to 9 S-locus receptor kinase (SRK) alleles, but only two, S1 and S19, are shared by most inbreeding populations. Self-compatibility (SC) behaved genetically as a recessive trait, as expected from a loss-of-function mutation. Bulked segregant analysis in SC × SI F2 individuals using deep sequencing confirmed that all SC plants were S1 homozygotes but not all S1 homozygotes were SC. This was also revealed in population surveys, where only a few S1 homozygotes were SC. Together with crossing data, this suggests that there is a recessive factor that causes SC that is physically unlinked to the S-locus. Overall, our results emphasise the value of combining classical genetics with advanced sequencing approaches to resolve long outstanding questions in evolutionary biology.
Collapse
|
42
|
Melen MK, Herman JA, Lucas J, O'Malley RE, Parker IM, Thom AM, Whittall JB. Reproductive success through high pollinator visitation rates despite self incompatibility in an endangered wallflower. AMERICAN JOURNAL OF BOTANY 2016; 103:1979-1989. [PMID: 27864264 DOI: 10.3732/ajb.1600193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Self incompatibility (SI) in rare plants presents a unique challenge-SI protects plants from inbreeding depression, but requires a sufficient number of mates and xenogamous pollination. Does SI persist in an endangered polyploid? Is pollinator visitation sufficient to ensure reproductive success? Is there evidence of inbreeding/outbreeding depression? We characterized the mating system, primary pollinators, pollen limitation, and inbreeding/outbreeding depression in Erysimum teretifolium to guide conservation efforts. METHODS We compared seed production following self pollination and within- and between-population crosses. Pollen tubes were visualized after self pollinations and between-population pollinations. Pollen limitation was tested in the field. Pollinator observations were quantified using digital video. Inbreeding/outbreeding depression was assessed in progeny from self and outcross pollinations at early and later developmental stages. KEY RESULTS Self-pollination reduced seed set by 6.5× and quadrupled reproductive failure compared with outcross pollination. Pollen tubes of some self pollinations were arrested at the stigmatic surface. Seed-set data indicated strong SI, and fruit-set data suggested partial SI. Pollinator diversity and visitation rates were high, and there was no evidence of pollen limitation. Inbreeding depression (δ) was weak for early developmental stages and strong for later developmental stages, with no evidence of outbreeding depression. CONCLUSIONS The rare hexaploid E. teretifolium is largely self incompatible and suffers from late-acting inbreeding depression. Reproductive success in natural populations was accomplished through high pollinator visitation rates consistent with a lack of pollen limitation. Future reproductive health for this species will require large population sizes with sufficient mates and a robust pollinator community.
Collapse
Affiliation(s)
- Miranda K Melen
- Department of Environmental Studies, San Jose State University, One Washington Square, San Jose, California 95192 USA
| | - Julie A Herman
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053 USA
| | - Jessica Lucas
- Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62902 USA
| | - Rachel E O'Malley
- Department of Environmental Studies, San Jose State University, One Washington Square, San Jose, California 95192 USA
| | - Ingrid M Parker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064 USA
| | - Aaron M Thom
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053 USA
| | - Justen B Whittall
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053 USA
| |
Collapse
|
43
|
Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, van Kleunen M. Plants capable of selfing are more likely to become naturalized. Nat Commun 2016; 7:13313. [PMID: 27796365 PMCID: PMC5095580 DOI: 10.1038/ncomms13313] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Many plant species have established self-sustaining populations outside their natural range because of human activities. Plants with selfing ability should be more likely to establish outside their historical range because they can reproduce from a single individual when mates or pollinators are not available. Here, we compile a global breeding-system database of 1,752 angiosperm species and use phylogenetic generalized linear models and path analyses to test relationships between selfing ability, life history, native range size and global naturalization status. Selfing ability is associated with annual or biennial life history and a large native range, which both positively correlate with the probability of naturalization. Path analysis suggests that a high selfing ability directly increases the number of regions where a species is naturalized. Our results provide robust evidence across flowering plants at the global scale that high selfing ability fosters alien plant naturalization both directly and indirectly.
Collapse
Affiliation(s)
- Mialy Razanajatovo
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz D-78457, Germany
| | - Noëlie Maurel
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz D-78457, Germany
| | - Wayne Dawson
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Franz Essl
- Division of Conservation, Vegetation and Landscape Ecology, University of Vienna, Wien 1030, Austria
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Büsgenweg 1, Göttingen D-37077, Germany
| | - Jan Pergl
- Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, Průhonice, CZ-25243, Czech Republic
| | - Petr Pyšek
- Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, Průhonice, CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Büsgenweg 1, Göttingen D-37077, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz D-78457, Germany
| |
Collapse
|
44
|
Silva JL, Brennan AC, Mejías JA. Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species. AOB PLANTS 2016; 8:plw029. [PMID: 27154621 PMCID: PMC4940477 DOI: 10.1093/aobpla/plw029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6-1.0) compared to S. fragilis (ISI = 0.1-0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group.
Collapse
Affiliation(s)
- Jose L Silva
- Departamento De Biología Vegetal Y Ecología, Universidad De Sevilla, Sevilla, CP 41012, España
| | - Adrian C Brennan
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | - José A Mejías
- Departamento De Biología Vegetal Y Ecología, Universidad De Sevilla, Sevilla, CP 41012, España
| |
Collapse
|
45
|
Rodger JG, Ellis AG. Distinct effects of pollinator dependence and self-incompatibility on pollen limitation in South African biodiversity hotspots. Biol Lett 2016; 12:rsbl.2016.0253. [PMID: 27277954 DOI: 10.1098/rsbl.2016.0253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/13/2016] [Indexed: 11/12/2022] Open
Abstract
Global synthesis indicates that limitation of plant fecundity by pollen receipt (pollen limitation) is positively related to regional plant diversity and is higher for self-incompatible than self-compatible species. While self-incompatible species are always dependent on pollinating agents, self-compatible species may be pollinator-dependent or autofertile. This should cause variation in pollen limitation among self-compatible species, with lower pollen limitation in autofertile species because they do not depend on pollinators. We hypothesized that the intensity of pollen limitation in self-incompatible compared with pollinator-dependent self-compatible species should depend on whether pollen limitation is determined more by quantity than quality of pollen received. We compared pollen limitation between these three groups using a dataset of 70 biotically pollinated species from biodiverse regions of South Africa. Comparison with a global dataset indicated that pollen limitation in the South African biodiversity hotspots was generally comparable to other regions, despite expectations of higher pollen limitation based on the global plant diversity-pollen limitation relationship. Pollen limitation was lowest for autofertile species, as expected. It was also higher for pollinator-dependent self-compatible species than self-incompatible species, consistent with increased pollen-quality limitation in the former group due to negative consequences of pollinator-mediated self-pollination. However, there was a higher frequency of plants with zygomorphic flowers, which were also more pollen-limited, among pollinator-dependent self-compatible species. Thus, we could not attribute this difference in pollen limitation exclusively to a difference in pollen quality. Nevertheless, our results indicate that comparative studies should control for both pollinator dependence and self-incompatiblity when evaluating effects of other factors on pollen limitation.
Collapse
Affiliation(s)
- James G Rodger
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Allan G Ellis
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
46
|
Ferreira C, Maruyama PK, Oliveira PE. Convergence beyond flower morphology? Reproductive biology of hummingbird-pollinated plants in the Brazilian Cerrado. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:316-324. [PMID: 26370490 DOI: 10.1111/plb.12395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Convergent reproductive traits in non-related plants may be the result of similar environmental conditions and/or specialised interactions with pollinators. Here, we documented the pollination and reproductive biology of Bionia coriacea (Fabaceae), Esterhazya splendida (Orobanchaceae) and Ananas ananassoides (Bromeliaceae) as case studies in the context of hummingbird pollination in Cerrado, the Neotropical savanna of Central South America. We combined our results with a survey of hummingbird pollination studies in the region to investigate the recently suggested association of hummingbird pollination and self-compatibility. Plant species studied here differed in their specialisation for ornithophily, from more generalist A. ananassoides to somewhat specialist B. coriacea and E. splendida. This continuum of specialisation in floral traits also translated into floral visitor composition. Amazilia fimbriata was the most frequent pollinator for all species, and the differences in floral display and nectar energy availability among plant species affect hummingbirds' behaviour. Most of the hummingbird-pollinated Cerrado plants (60.0%, n = 20), including those studied here, were self-incompatible, in contrast to other biomes in the Neotropics. Association to more generalist, often territorial, hummingbirds, and resulting reduced pollen flow in open savanna areas may explain predominance of self-incompatibility. But it is possible that mating system is more associated with the predominance of woody hummingbird plants in the Cerrado plant assemblage than to the pollination system itself.
Collapse
Affiliation(s)
- C Ferreira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - P K Maruyama
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - P E Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
47
|
Razanajatovo M, Kleunen M. Non‐invasive naturalized alien plants were not more pollen‐limited than invasive aliens and natives in a common garden. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mialy Razanajatovo
- Ecology Department of Biology University of Konstanz Universitätsstrasse 10 D‐78457 Konstanz Germany
| | - Mark Kleunen
- Ecology Department of Biology University of Konstanz Universitätsstrasse 10 D‐78457 Konstanz Germany
| |
Collapse
|
48
|
Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW, Cheptou PO, Conner JK, Goldberg EE, Grant AG, Grossenbacher DL, Hovick SM, Igic B, Kalisz S, Petanidou T, Randle AM, de Casas RR, Pauw A, Vamosi JC, Winn AA. The scope of Baker's law. THE NEW PHYTOLOGIST 2015; 208:656-67. [PMID: 26192018 DOI: 10.1111/nph.13539] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/27/2015] [Indexed: 05/13/2023]
Abstract
Baker's law refers to the tendency for species that establish on islands by long-distance dispersal to show an increased capacity for self-fertilization because of the advantage of self-compatibility when colonizing new habitat. Despite its intuitive appeal and broad empirical support, it has received substantial criticism over the years since it was proclaimed in the 1950s, not least because it seemed to be contradicted by the high frequency of dioecy on islands. Recent theoretical work has again questioned the generality and scope of Baker's law. Here, we attempt to discern where the idea is useful to apply and where it is not. We conclude that several of the perceived problems with Baker's law fall away when a narrower perspective is adopted on how it should be circumscribed. We emphasize that Baker's law should be read in terms of an enrichment of a capacity for uniparental reproduction in colonizing situations, rather than of high selfing rates. We suggest that Baker's law might be tested in four different contexts, which set the breadth of its scope: the colonization of oceanic islands, metapopulation dynamics with recurrent colonization, range expansions with recurrent colonization, and colonization through species invasions.
Collapse
Affiliation(s)
- John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Josh R Auld
- Department of Biology, West Chester University, West Chester, PA, 19383, USA
| | - Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Pierre-Olivier Cheptou
- CEFE UMR 5175, CNRS, Universite de Montpellier, Université Paul-Valery Montpellier, EPHE, CEFE 34293, Montpellier Cedex 05, France
| | - Jeffrey K Conner
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, 49060, USA
| | - Emma E Goldberg
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | | | | | - Stephen M Hovick
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Boris Igic
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor St, M/C 067, Chicago, IL, 60607, USA
| | - Susan Kalisz
- Department of Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, 81100 Mytilene, Lesvos, Greece
| | - April M Randle
- Department of Environmental Science, University of San Francisco, San Francisco, CA, 94117-1049, USA
| | - Rafael Rubio de Casas
- CEFE UMR 5175, CNRS, Universite de Montpellier, Université Paul-Valery Montpellier, EPHE, CEFE 34293, Montpellier Cedex 05, France
- Departmento Ecología, Facultad de Ciencias, Universidad de Granada, UGR, 18071, Granada, Spain
- Estación Experimental de Zonas Áridas, EEZA-CSIC, Carretera de Sacramento s/n, La Cañada de San Urbano, EEZA 04120, Almeria, Spain
| | - Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Alice A Winn
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
49
|
Muir CD. Making pore choices: repeated regime shifts in stomatal ratio. Proc Biol Sci 2015; 282:20151498. [PMID: 26269502 PMCID: PMC4632635 DOI: 10.1098/rspb.2015.1498] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/22/2015] [Indexed: 11/12/2022] Open
Abstract
Ecologically important traits do not evolve without limits. Instead, evolution is constrained by the set of available and viable phenotypes. In particular, natural selection may only favour a narrow range of adaptive optima constrained within selective regimes. Here, I integrate data with theory to test whether selection explains phenotypic constraint. A global database of 599 plant species from 94 families shows that stomatal ratio, a trait affecting photosynthesis and defence against pathogens, is highly constrained. Most plants have their stomata on the lower leaf surface (hypostomy), but species with half their stomata on each surface (amphistomy) form a distinct mode in the trait distribution. A model based on a trade-off between maximizing photosynthesis and a fitness cost of upper stomata predicts a limited number of adaptive solutions, leading to a multimodal trait distribution. Phylogenetic comparisons show that amphistomy is the most common among fast-growing species, supporting the view that CO2 diffusion is under strong selection. These results indicate that selective optima stay within a relatively stable set of selective regimes over macroevolutionary time.
Collapse
Affiliation(s)
- Christopher D Muir
- Biodiversity Research Centre and Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
50
|
Van de Paer C, Saumitou-Laprade P, Vernet P, Billiard S. The joint evolution and maintenance of self-incompatibility with gynodioecy or androdioecy. J Theor Biol 2015; 371:90-101. [PMID: 25681148 DOI: 10.1016/j.jtbi.2015.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Mating systems show two kinds of frequent transitions: from hermaphroditism to dioecy, gynodioecy or androdioecy, or from self-incompatibility (SI) to self-compatibility (SC). While models have mostly investigated these two kinds of transitions as independent, empirical observations suggest that, to some extent, they can evolve jointly. Here, we study the joint evolution and maintenance of SI and androdioecy or SI and gynodioecy by the means of phenotypic models. Our models focus on three parameters: the unisexuals׳ advantage relative to that of the hermaphrodites due to resource reallocation, inbreeding depression and the selfing rate. We assume no pollen limitation or discounting. We show that SI helps the maintenance of androdioecy, but favors the loss of gynodioecy, and also that androdioecy facilitates the maintenance of SI, whereas gynodioecy does not affect it. We finally investigate how gynodioecy and androdioecy may affect the diversification of SI groups, especially considering an evolutionary pathway through SC intermediates. We show that while androdioecy prevents the increase of the number of SI groups, under certain conditions of inbreeding depression and selfing rates, gynodioecy allows it.
Collapse
Affiliation(s)
- Céline Van de Paer
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Pierre Saumitou-Laprade
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Philippe Vernet
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Sylvain Billiard
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| |
Collapse
|