1
|
Ali Z, Abdelkader K, Abdel-Fattah MM, Azmy AF, El-Gendy AO, Dishisha T. Therapeutic potential of a newly isolated bacteriophage against multi-drug resistant Enterococcus faecalis infections: in vitro and in vivo characterization. BMC Microbiol 2025; 25:80. [PMID: 39979834 PMCID: PMC11841226 DOI: 10.1186/s12866-025-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND In nosocomial settings, vancomycin-resistant Enterococcus faecalis is a major health threat leading to increased morbidities, mortalities, and treatment costs. Nowadays, several approaches are under investigation to enhance the activity of or replace the traditional antibiotics. Bacteriophage therapy was sought as a potential approach for combating E. faecalis infections. The present study focuses on isolating and characterizing bacteriophage against clinical multi-drug resistant (MDR) E. faecalis strain Lb-1492. The phage stability, lytic activity, host-range, latent period, burst size, the ability to detach the pre-formed biofilm and destroy entrapped cells were investigated. The phage genome was purified, sequenced, and subjected to bioinformatics analysis for identifying and characterizing its features, as well as, the suitability for clinical application. Finally, the ability of the phage to rescue mice from deadly, experimentally induced E. faecalis bacteremia was evaluated. RESULTS A virulent phage was isolated from sewage water against a clinical MDR E. faecalis isolate. Morphological and genomic studies indicated that the phage belongs to the Efquatrovirus genus, with a long tail, icosahedral head and a linear double-stranded DNA genome of approximately 42.9 kbp. The phage was named vB_Efa_ZAT1 (shortly ZAT1). It demonstrated a shorter latent period and larger burst size than regular-tailed phages, and a characteristic stability over a wide range of pH and temperatures, with the optimum activity at pH 7.4 and 37 °C, respectively. Phage ZAT1 showed a narrow spectrum of activity and a characteristic biofilm disruption ability. The phage managed successfully to control E. faecalis-induced bacteremia in mice models, which was lethal within 48 h in the control group. An intraperitoneal injection of 3 × 108 PFU of the phage solution given 1 h after the bacterial challenge was sufficient to save all the animals, completely reversing the trend of 100% mortality caused by this bacterium. CONCLUSIONS Phage therapy can be a promising alternative to traditional antibiotics in the post-antibiotic era with a significant antimicrobial and antibiofilm activities against MDR E. faecalis.
Collapse
Affiliation(s)
- Zienab Ali
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Karim Abdelkader
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Farag Azmy
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed O El-Gendy
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
2
|
Uskudar-Guclu A, Yalcin S. A novel Enterococcus faecalis bacteriophage Ef212: biological and genomic features. Int Microbiol 2025; 28:365-375. [PMID: 38935199 DOI: 10.1007/s10123-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to isolate and characterize biological and genomic features of a phage infecting Enterococcus faecalis. The phage was isolated from environmental water and temperature and pH stability, one-step growth curve, and multiplicity of infection (MOI) were determined. Whole genome sequencing (WGS) and structural and functional annotations were performed. Its antibiofilm activity was also evaluated. The optimal MOI was 0.01, the latency period was 5 min, and the burst size was 202 plaque forming unit (PFU). High phage survival rates were observed at between pH 4-10 and temperatures between 4-50 °C. WGS and Transmission electron microscopy (TEM) showed that it was an Efquatrovirus representing siphovirus morphotype respectively. It was named as Enterococcus phage Ef212 and has a linear 40,690 bp double-stranded DNA with 45.3% G + C content (GenBank accession number: OR052631). BACPHLIP tool demonstrated that Enterococcus phage Ef212 is a lytic phage (88%). A total of 80 open reading frames (ORFs) were found and there were no antibiotic resistance genes, pathogenicity, virulence genes, or tRNAs in the phage genome. It was diverged from the most similar phages (identity, 88.35%; coverage, 89%) by phylogenetic analysis. Phage Ef212 shared a large part of its genome (60/80) with several other phages, yet some unique parts were found in their genomes. Host range analysis showed that phage Ef212 showed lytic activity against vancomycin-resistant and vancomycin-susceptible E. faecalis clinical isolates. This novel phage Ef212 showed the ability to inhibit and reduce the biofilm formation by around 42% and 38%, respectively. The biological and genomic features indicate that having an effective antibacterial activity, phage Ef212 seemed a promising therapeutic and biocontrol agent.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Faculty of Medicine, Department of Medical Microbiology, Baskent University, Ankara, Türkiye.
| | - Suleyman Yalcin
- Microbiology References Laboratory, Ministry of Health General Directorate of Public Health, Ankara, Türkiye
| |
Collapse
|
3
|
Chahar M, Rana A, Gupta VK, Singh A, Singh N. Application of a novel lytic phage to control enterotoxigenic Escherichia coli in dairy food matrices. Int J Food Microbiol 2025; 426:110924. [PMID: 39348785 DOI: 10.1016/j.ijfoodmicro.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
A novel Escherichia coli phage designated as EC BD was isolated from cattle dung samples. Transmission electron microscopy demonstrated that the morphology of phage EC BD belongs to the family Myoviridae. The efficiency of plating (EOP) and scanning electron microscopy revealed the strong lytic activity of phage EC BD with a large burst size and a short latent period. Whole genome data analysis suggested that phage EC BD was inclined towards being completely lytic and revealed the absence of toxins, virulence and antibiotic resistance genes. Phylogenomic analysis of phage EC BD receptor binding proteins (RBPs) showed 74-100 % similarity with sixteen Enterobacter phages, representing their broad host range. The phage genome contains 262 ORFs, of which 107 displayed a unique pattern and additionally, the presence of a tRNA gene directed their fast replication and high stability. Comparative genome analysis suggested phage EC BD as a novel member of the genus Duplodnaviria and family Myoviridae. The efficiency of phage EC BD was determined in dairy food matrices (milk, cheese and paneer) artificially contaminated with enterotoxigenic E. coli strains ETEC H10407, ETEC K 12S and ETEC PB 176 with a significant reduction of 4.8, 6.0 and 5.3 log CFU/mL in milk and a substantial 4.9, 5.8 and 4.6 log CFU/mL reduction in cheese samples after 6 days at low storage temperature (4 °C); furthermore, within the similar conditions, paneer samples showed 4, 5.1 and 3.5 log CFU/mL reduction. EC BD phage treatment represents the complete eradication of three ETEC strains in liquid and semisolid dairy food matrices. This study suggested that phage EC BD might have potential as a biocontrol approach against ETEC foodborne infections.
Collapse
Affiliation(s)
- Madhvi Chahar
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India.
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Vinay Kumar Gupta
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Anu Singh
- Department of Microbiology, Swami Vivekanand University, Sagar, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India.
| |
Collapse
|
4
|
Kishimoto T, Fukuda K, Ishida W, Kuwana A, Todokoro D, Uchiyama J, Matsuzaki S, Yamashiro K. Disruption of the Enterococcus faecalis-Induced Biofilm on the Intraocular Lens Using Bacteriophages. Transl Vis Sci Technol 2024; 13:25. [PMID: 39680392 DOI: 10.1167/tvst.13.12.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Purpose To compare the effects of bacteriophages (phages) and vancomycin on Enterococcus faecalis-induced biofilms on the intraocular lens. Methods E. faecalis strains EF24, GU02, GU03, and phiEF14H1 were used. The expression of the enterococcus surface protein (esp) gene was analyzed using polymerase chain reaction. Phages or vancomycin was added to the biofilms formed on culture plates or acrylic intraocular lenses. The biofilms were quantified after staining with crystal violet. The structure of the biofilms was analyzed using scanning electron microscopy. Results E. faecalis strains EF24, GU02, and GU03 formed biofilms on cell culture plates; however, the esp-negative GU03 strain had a significantly lower biofilm-forming ability than the esp-positive strains EF24 and GU02. The addition of phiEF14H1 resulted in a significant reduction in biofilm mass produced by both EF24 and GU02 compared with the untreated control. However, the addition of vancomycin did not degrade the biofilms. Phages significantly degraded biofilms and reduced the viable EF24 and GU02 bacteria on the intraocular lens. Conclusions Phages can degrade biofilms formed on the intraocular lens and destroy the bacteria within it. Thus, phage therapy may be a new treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria. Translational Relevance Phage therapy, a novel treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria, effectively lyses E. faecalis-induced biofilms.
Collapse
Affiliation(s)
- Tatsuma Kishimoto
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Waka Ishida
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Aozora Kuwana
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Daisuke Todokoro
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
5
|
Tariq MU, Muzammil S, Ashfaq UA, Arshad MI, Shafique M, Ejaz H, Khurshid M, Eltayeb LB, Mazhari BBZ, Elamir MYM, Al-Harthi HF, Rasool MH, Aslam B. Characterizing the bacteriophage PKp-V1 as a potential treatment for ESBL-producing hypervirulent K1 Klebsiella pneumoniae ST258 isolated from veterinary specimens. Vet World 2024:2008-2016. [DOI: doi.org/10.14202/vetworld.2024.2008-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 04/10/2025] Open
Abstract
Background and Aim: The dearth of new antibiotics necessitates alternative approaches for managing infections caused by resistant superbugs. This study aimed to evaluate the lytic potential of the purified bacteriophage PKp-V1 against extended-spectrum β-lactamase (ESBL) harboring hypervirulent Klebsiella pneumoniae (hvKp)-K1 recovered from veterinary specimens.
Materials and Methods: A total of 50 samples were collected from various veterinary specimens to isolate K. pneumoniae, followed by antimicrobial susceptibility testing and molecular detection of various virulence and ESBL genes. Multilocus sequence typing of the isolates was performed to identify prevalent sequence types. The bacteriophages were isolated using the double-agar overlay method and characterized using transmission electron microscopy, spot tests, plaque assays, stability tests, and one-step growth curve assays.
Results: Among 17 (34%) confirmed K. pneumoniae isolates, 6 (35%) were hvKp, whereas 13 (76%) isolates belonging to the K1 type were positive for the wzy (K1) virulence gene. All (100%) hvKp isolates exhibited the allelic profile of ST258. Overall, PKp-V1 exhibited an 88 % (15/17; (p ≤ 0.05) host range, among which all (100 %; p ≤ 0.01) hvKp isolates were susceptible to PKp-V1. PKp-V1 exhibited a lytic phage titer of 2.4 × 108 plaque forming unit (PFU)/mL at temperatures ranging from 25°C to 37°C. The lytic phage titers of PKp-V1 at pH = 8 and 0.5% chloroform were 2.1 × 108 PFU/mL and 7.2 × 109 PFU/mL, respectively.
Conclusion: Although the incidence of ESBL-infected K. pneumoniae in veterinary settings is worrisome, PKp-V1 phages showed considerable lytic action against the host bacterium, indicating the potential of PKp-V1 as a possible alternative therapeutic option against MDR K. pneumoniae.
Keywords: antibiotic resistance, bacteriophage, Klebsiella pneumoniae, veterinary.
Collapse
Affiliation(s)
- Muhammad Usama Tariq
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Shafique
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University-Al-Kharj, 11942 Riyadh, Saudi Arabia
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Qurayyat 75911, Saudi Arabia
| | - Mohammed Yagoub Mohammed Elamir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University 21995, Saudi Arabia
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Tariq MU, Muzammil S, Ashfaq UA, Arshad MI, Shafique M, Ejaz H, Khurshid M, Eltayeb LB, Mazhari BBZ, Elamir MYM, Al-Harthi HF, Rasool MH, Aslam B. Characterizing the bacteriophage PKp-V1 as a potential treatment for ESBL-producing hypervirulent K1 Klebsiella pneumoniae ST258 isolated from veterinary specimens. Vet World 2024; 17:2008-2016. [PMID: 39507776 PMCID: PMC11536733 DOI: 10.14202/vetworld.2024.2008-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim The dearth of new antibiotics necessitates alternative approaches for managing infections caused by resistant superbugs. This study aimed to evaluate the lytic potential of the purified bacteriophage PKp-V1 against extended-spectrum β-lactamase (ESBL) harboring hypervirulent Klebsiella pneumoniae (hvKp)-K1 recovered from veterinary specimens. Materials and Methods A total of 50 samples were collected from various veterinary specimens to isolate K. pneumoniae, followed by antimicrobial susceptibility testing and molecular detection of various virulence and ESBL genes. Multilocus sequence typing of the isolates was performed to identify prevalent sequence types. The bacteriophages were isolated using the double-agar overlay method and characterized using transmission electron microscopy, spot tests, plaque assays, stability tests, and one-step growth curve assays. Results Among 17 (34%) confirmed K. pneumoniae isolates, 6 (35%) were hvKp, whereas 13 (76%) isolates belonging to the K1 type were positive for the wzy (K1) virulence gene. All (100%) hvKp isolates exhibited the allelic profile of ST258. Overall, PKp-V1 exhibited an 88 % (15/17; (p ≤ 0.05) host range, among which all (100 %; p ≤ 0.01) hvKp isolates were susceptible to PKp-V1. PKp-V1 exhibited a lytic phage titer of 2.4 × 108 plaque forming unit (PFU)/mL at temperatures ranging from 25°C to 37°C. The lytic phage titers of PKp-V1 at pH = 8 and 0.5% chloroform were 2.1 × 108 PFU/mL and 7.2 × 109 PFU/mL, respectively. Conclusion Although the incidence of ESBL-infected K. pneumoniae in veterinary settings is worrisome, PKp-V1 phages showed considerable lytic action against the host bacterium, indicating the potential of PKp-V1 as a possible alternative therapeutic option against MDR K. pneumoniae.
Collapse
Affiliation(s)
- Muhammad Usama Tariq
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Shafique
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University-Al-Kharj, 11942 Riyadh, Saudi Arabia
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Qurayyat 75911, Saudi Arabia
| | - Mohammed Yagoub Mohammed Elamir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University 21995, Saudi Arabia
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Soro O, Kigen C, Nyerere A, Gachoya M, Georges M, Odoyo E, Musila L. Characterization and Anti-Biofilm Activity of Lytic Enterococcus Phage vB_Efs8_KEN04 against Clinical Isolates of Multidrug-Resistant Enterococcus faecalis in Kenya. Viruses 2024; 16:1275. [PMID: 39205249 PMCID: PMC11360260 DOI: 10.3390/v16081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Enterococcus faecalis (E. faecalis) is a growing cause of nosocomial and antibiotic-resistant infections. Treating drug-resistant E. faecalis requires novel approaches. The use of bacteriophages (phages) against multidrug-resistant (MDR) bacteria has recently garnered global attention. Biofilms play a vital role in E. faecalis pathogenesis as they enhance antibiotic resistance. Phages eliminate biofilms by producing lytic enzymes, including depolymerases. In this study, Enterococcus phage vB_Efs8_KEN04, isolated from a sewage treatment plant in Nairobi, Kenya, was tested against clinical strains of MDR E. faecalis. This phage had a broad host range against 100% (26/26) of MDR E. faecalis clinical isolates and cross-species activity against Enterococcus faecium. It was able to withstand acidic and alkaline conditions, from pH 3 to 11, as well as temperatures between -80 °C and 37 °C. It could inhibit and disrupt the biofilms of MDR E. faecalis. Its linear double-stranded DNA genome of 142,402 bp contains 238 coding sequences with a G + C content and coding gene density of 36.01% and 91.46%, respectively. Genomic analyses showed that phage vB_Efs8_KEN04 belongs to the genus Kochikohdavirus in the family Herelleviridae. It lacked antimicrobial resistance, virulence, and lysogeny genes, and its stability, broad host range, and cross-species lysis indicate strong potential for the treatment of Enterococcus infections.
Collapse
Affiliation(s)
- Oumarou Soro
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology, and Innovation, Nairobi P.O. Box 62000-00200, Kenya;
| | - Collins Kigen
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Andrew Nyerere
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Moses Gachoya
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Martin Georges
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Erick Odoyo
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Lillian Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| |
Collapse
|
8
|
Ely B, Lenski J, Mohammadi T. Structural and Genomic Diversity of Bacteriophages. Methods Mol Biol 2024; 2738:3-16. [PMID: 37966589 DOI: 10.1007/978-1-0716-3549-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophage diversity is a relatively unknown frontier that is rapidly being explored, leading to a wealth of new information. New bacteriophages are being discovered at an astounding rate via both phage isolation studies and metagenomic analyses. In addition, a nucleotide sequence-based viral taxonomic system has been developed to better handle this wealth of new information. As a result of these developments, phage scientists are transitioning from knowing that there must be huge numbers of diverse kinds of phage particles in natural environments to identifying the actual abundance and phage diversity that is present in specific environments. This review documents the beginning of this transition, offering a glimpse into the magnitude of change unfolding in the field. It stands as a testament to the expanding frontiers of phage research, illuminating the remarkable progress made in unraveling the intricate world of bacteriophage diversity and advancing our understanding of these enigmatic viral entities.
Collapse
Affiliation(s)
- Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | - Jacob Lenski
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Tannaz Mohammadi
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
9
|
Kondo K, Nakano S, Hisatsune J, Sugawara Y, Kataoka M, Kayama S, Sugai M, Kawano M. Characterization of 29 newly isolated bacteriophages as a potential therapeutic agent against IMP-6-producing Klebsiella pneumoniae from clinical specimens. Microbiol Spectr 2023; 11:e0476122. [PMID: 37724861 PMCID: PMC10581060 DOI: 10.1128/spectrum.04761-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/12/2023] [Indexed: 09/21/2023] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are one of the most detrimental species of antibiotic-resistant bacteria globally. Phage therapy has emerged as an effective strategy for the treatment of CPE infections. In western Japan, the rise of Klebsiella pneumoniae strains harboring the pKPI-6 plasmid encoding bla IMP-6 is of increasing concern. To address this challenge, we isolated 29 phages from Japanese sewage, specifically targeting 31 K. pneumoniae strains and one Escherichia coli strain harboring the pKPI-6 plasmid. Electron microscopy analysis revealed that among the 29 isolated phages, 21 (72.4%), 5 (17.2%), and 3 (10.3%) phages belonged to myovirus, siphovirus, and podovirus morphotypes, respectively. Host range analysis showed that 18 Slopekvirus strains within the isolated phages infected 25-26 K. pneumoniae strains, indicating that most of the isolated phages have a broad host range. Notably, K. pneumoniae strain Kp21 was exclusively susceptible to phage øKp_21, whereas Kp22 exhibited susceptibility to over 20 phages. Upon administering a phage cocktail composed of 10 phages, we observed delayed emergence of phage-resistant bacteria in Kp21 but not in Kp22. Intriguingly, phage-resistant Kp21 exhibited heightened sensitivity to other bacteriophages, indicating a "trade-off" for resistance to phage øKp_21. Our proposed phage set has an adequate number of phages to combat the K. pneumoniae strain prevalent in Japan, underscoring the potential of a well-designed phage cocktail in mitigating the occurrence of phage-resistant bacteria. IMPORTANCE The emergence of Klebsiella pneumoniae harboring the bla IMP-6 plasmid poses an escalating threat in Japan. In this study, we found 29 newly isolated bacteriophages that infect K. pneumoniae strains carrying the pKPI-6 plasmid from clinical settings in western Japan. Our phages exhibited a broad host range. We applied a phage cocktail treatment composed of 10 phages against two host strains, Kp21 and Kp22, which displayed varying phage susceptibility patterns. Although the phage cocktail delayed the emergence of phage-resistant Kp21, it was unable to hinder the emergence of phage-resistant Kp22. Moreover, the phage-resistant Kp21 became sensitive to other phages that were originally non-infective to the wild-type Kp21 strains. Our study highlights the potential of a well-tailored phage cocktail in reducing the occurrence of phage-resistant bacteria.
Collapse
Affiliation(s)
- Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Satoshi Nakano
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Mitsuoki Kawano
- Department of Nutritional Sciences, Nakamura Gakuen University, Jonan-Ku, Fukuoka, Japan
| |
Collapse
|
10
|
Jin X, Sun X, Wang Z, Dou J, Lin Z, Lu Q, Zhang T, Wen G, Shao H, Cheng G, Luo Q. Virulent Phage vB_EfaS_WH1 Removes Enterococcus faecalis Biofilm and Inhibits Its Growth on the Surface of Chicken Meat. Viruses 2023; 15:v15051208. [PMID: 37243294 DOI: 10.3390/v15051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Enterococcus faecalis is a potential animal and human pathogen. Improper use of antibiotics encourages resistance. Bacteriophages and their derivatives are promising for treating drug-resistant bacterial infections. In this study, phylogenetic and electron microscopy analyses of phage vB_EfaS_WH1 (WH1) isolated from chicken feces revealed it to be a novel phage in the family Siphoviridae. WH1 showed good pH stability (4-11), temperature tolerance (4-60 °C), and broad E. faecalis host range (60% of isolates). Genome sequencing revealed a 56,357 bp double-stranded DNA genome with a G+C content of 39.21%. WH1 effectively destroyed E. faecalis EF01 biofilms, even at low concentrations. When WH1 was applied at 1 × 105 to 1 × 109 PFU/g to chicken breast samples stored at 4 °C, surface growing E. faecalis were appreciably eradicated after 24 h. The phage WH1 showed good antibacterial activity, which could be used as a potential biocontrol agent to reduce the formation of E. faecalis biofilm, and could also be used as an alternative for the control of E. faecalis in chicken products.
Collapse
Affiliation(s)
- Xinxin Jin
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxiu Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zui Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Junfeng Dou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhengdan Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
11
|
Zaki BM, Mohamed AA, Dawoud A, Essam K, Hammouda ZK, Abdelsattar AS, El-Shibiny A. Isolation, screening and characterization of phage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:13-60. [PMID: 37739553 DOI: 10.1016/bs.pmbts.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Bacterial resistance threatens public health due to a lack of novel antibacterial classes since the 21st century. Bacteriophages, the most ubiquitous microorganism on Earth and natural predators of bacteria, have the potential to save the world from the post-antibiotic era. Therefore, phage isolation and characterization are in high demand to find suitable phages for therapeutic and bacterial control applications. The chapter presents brief guidance supported by recommendations on the isolation of phages, and initial screening of phage antimicrobial efficacy, in addition to, conducting comprehensive characterization addressing morphological, biological, genomic, and taxonomic features.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira A Mohamed
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Kareem Essam
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Zainab K Hammouda
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
12
|
Pradal I, Casado A, del Rio B, Rodriguez-Lucas C, Fernandez M, Alvarez MA, Ladero V. Enterococcus faecium Bacteriophage vB_EfaH_163, a New Member of the Herelleviridae Family, Reduces the Mortality Associated with an E. faecium vanR Clinical Isolate in a Galleria mellonella Animal Model. Viruses 2023; 15:179. [PMID: 36680219 PMCID: PMC9860891 DOI: 10.3390/v15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The rise of antimicrobial resistant (AMR) bacteria is a major health concern, especially with regard to members of the ESKAPE group, to which vancomycin-resistant (VRE) Enterococcus faecium belongs. Phage therapy has emerged as a novel alternative for the treatment of AMR infections. This, however, relies on the isolation and characterisation of a large collection of phages. This work describes the exploration of human faeces as a source of new E. faecium-infecting phages. Phage vB_EfaH_163 was isolated and characterised at the microbiological, genomic, and functional levels. vB_EfaH_163 phage, a new member of Herelleviridae, subfamily Brockvirinae, has a dsDNA genome of 150,836 bp that does not harbour any virulence factors or antibiotic resistance genes. It infects a wide range of E. faecium strains of different origins, including VRE strains. Interestingly, it can also infect Enterococcus faecalis strains, even some that are linezolid-resistant. Its capacity to control the growth of a clinical VRE isolate was shown in broth culture and in a Galleria mellonella animal model. The discovery and characterisation of vB_EfaH_163 increases the number of phages that might be used therapeutically against AMR bacteria.
Collapse
Affiliation(s)
- Inés Pradal
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Angel Casado
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Beatriz del Rio
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Rodriguez-Lucas
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Laboratory, Hospital el Bierzo, 24404 Ponferrada, Spain
- Microbiology Laboratory, Hospital Universitario de Cabueñes, 33394 Gijón, Spain
| | - Maria Fernandez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel A. Alvarez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
13
|
Aslam B, Siddique MH, Siddique AB, Shafique M, Muzammil S, Khurshid M, Rasool MH, Ahmad M, Chaudhry TH, Amir A, Salman M, Baloch Z, Alturki NA, Alzamami A. Distribution of mcr-1 Harboring Hypervirulent Klebsiella pneumoniae in Clinical Specimens and Lytic Activity of Bacteriophage KpnM Against Isolates. Infect Drug Resist 2022; 15:5795-5811. [PMID: 36213765 PMCID: PMC9534162 DOI: 10.2147/idr.s374503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) has declared the multi-drug resistant (MDR) Klebsiella pneumoniae as one of the critical bacterial pathogens. The dearth of new antibiotics and inadequate therapeutic options necessitate finding alternative options. Bacteriophages are known as enemies of bacteria and are well-recognized to fight MDR pathogens. METHODS A total of 150 samples were collected from different clinical specimens through a convenient sampling technique. Isolation, identification, and antibiotic susceptibility testing (AST) of K. pneumoniae were done by standard and validated microbiological procedures. Molecular identification of virulence factors and antibiotic resistance genes (ARGs) was carried out through polymerase chain reaction (PCR) by using specific primers. For bacteriophage isolation, hospital sewage samples were processed for phage enrichment, purification, and further characterization ie, transmission electron microscopy (TEM) and stability testing, etc. followed by evaluation of the lytic potential of the phage. RESULTS Overall, a total of 41% of isolates of K. pneumoniae were observed as hypervirulent K. pneumoniae (hvKp). Among hvKp, a total of 12 (42%) were detected as MDR hvKp. A total of 37% of all MDR isolates were found resistant to colistin, and 66% of the colistin resistance isolates were recorded as mcr-1 positive. Isolated phage KpnM had shown lytic activity against 53 (79%) K. pneumoniae isolates. Remarkably, all 8 mcr-1 harboring MDR hvKp and non-hvKp isolates were susceptible to KpnM phage. CONCLUSION Significant distribution of mcr-1 harboring hypervirulent Klebsiella pneumoniae was observed in clinical specimens, which is worrisome for the health system of the country. Characterized phage KpnM exhibited encouraging results and showed the lytic activity against the mcr-1 harboring hvKp isolates, which may be used as a prospective alternative control strategy to fight this ominous bacterium.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tamoor Hamid Chaudhry
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| |
Collapse
|
14
|
A Method for Isolation Bacteriophage Particles-Free Genomic DNA, Exemplified by TP-84, Infecting Thermophilic Geobacillus. Microorganisms 2022; 10:microorganisms10091782. [PMID: 36144384 PMCID: PMC9502220 DOI: 10.3390/microorganisms10091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
DNA purification methods are indispensable tools of molecular biology, used for many decades. Nevertheless, for certain specialized applications, the currently employed techniques are not sufficiently effective. While examining a number of the existing methods to purify the genomic DNA of the thermophilic bacteriophage TP-84, which infects Geobacillus stearothermophilus (G. stearothermophilus), we have found out that the obtained DNA is contaminated with trace amounts of infectious TP-84 particles. This was detrimental for the bacteriophage genetic manipulation purposes, as finding the recombinant TP-84 clones was essentially impossible due to the appearance of a high background of native bacteriophage plaques. Thus, we have developed a method, which enables the fast and efficient isolation of a bacteriophage genomic DNA from concentrated phage preparations, obtained using CsCl gradient ultracentrifugation, without the need to remove concentrated CsCl solutions. The method employs silica columns and mini-scale isolation of microgram amounts of high quality DNA. It is universal—the silica mini-columns from various manufacturers can be used to conduct the procedure. The purified DNA, free from infectious bacteriophage particles, is ready for further manipulations. This is particularly important for such thermophilic bacteriophages that may partially survive standard isolation procedures and contaminate the final DNA product.
Collapse
|
15
|
Isolation, characterization and complete genome analysis of a novel bacteriophage vB_EfaS-SRH2 against Enterococcus faecalis isolated from periodontitis patients. Sci Rep 2022; 12:13268. [PMID: 35918375 PMCID: PMC9346004 DOI: 10.1038/s41598-022-16939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition that can damage soft tissues and supporting teeth. Enterococcus faecalis is an opportunistic pathogen usually living in the oral cavity and plays a critical role in apical periodontitis that significantly threatens human health. The use of bacteriophages as an alternative way to eliminate bacterial infections is a promising approach. E. faecalis was isolated from the depth of dental packets of patients with periodontitis. Antimicrobial susceptibility was tested using 16 antimicrobial agents. Also, a specific virulent bacteriophage (vB_EfaS-SRH2) with an irregular pentagonal morphology of the head and a non-contractile tail belonging to the Siphoviridae, was isolated from wastewater in East of Isfahan, Iran, and its physiological and genomic specifications were investigated. The genome was double-strand DNA with 38,746 bp length and encoded 62 putative ORFs. In addition, eight Anti-CRISPERs and 30 Rho-dependent terminators were found. No tRNA was found. It had a short latent period of 15 min and a large burst size of ~ 125. No undesirable genes (antibiotic resistance, lysogenic dependence, and virulence factors) were identified in the genome. Based on physiological properties and genomic characteristics, this phage can be used as a suitable choice in phage therapy for periodontitis and root canal infection.
Collapse
|
16
|
El Haddad L, Angelidakis G, Clark JR, Mendoza JF, Terwilliger AL, Chaftari CP, Duna M, Yusuf ST, Harb CP, Stibich M, Maresso A, Chemaly RF. Genomic and Functional Characterization of Vancomycin-Resistant Enterococci-Specific Bacteriophages in the Galleria mellonella Wax Moth Larvae Model. Pharmaceutics 2022; 14:1591. [PMID: 36015218 PMCID: PMC9414631 DOI: 10.3390/pharmaceutics14081591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are naturally occurring viruses that selectively kill bacterial species without disturbing the individual's normal flora, averting the collateral damage of antimicrobial usage. The safety and the effectiveness of phages have been mainly confirmed in the food industry as well as in animal models. In this study, we report on the successful isolation of phages specific to Vancomycin-resistant Enterococci, including Enterococcus faecium (VREfm) and Enterococcus faecalis from sewage samples, and demonstrate their efficacy and safety for VREfm infection in the greater wax moth Galleria mellonella model. No virulence-associated genes, antibiotic resistance genes or integrases were detected in the phages' genomes, rendering them safe to be used in an in vivo model. Phages may be considered as potential agents for therapy for bacterial infections secondary to multidrug-resistant organisms such as VREfm.
Collapse
Affiliation(s)
- Lynn El Haddad
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Georgios Angelidakis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Jesus F. Mendoza
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Austen L. Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Christopher P. Chaftari
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Duna
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Serena T. Yusuf
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Cynthia P. Harb
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Stibich
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
- Xenex Disinfection Services, San Antonio, TX 78216, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| |
Collapse
|
17
|
Buttimer C, Sutton T, Colom J, Murray E, Bettio PH, Smith L, Bolocan AS, Shkoporov A, Oka A, Liu B, Herzog JW, Sartor RB, Draper LA, Ross RP, Hill C. Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo. Front Microbiol 2022; 13:936083. [PMID: 35935217 PMCID: PMC9355613 DOI: 10.3389/fmicb.2022.936083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023] Open
Abstract
Escherichia coli and Enterococcus faecalis have been implicated as important players in human gut health that have been associated with the onset of inflammatory bowel disease (IBD). Bacteriophage (phage) therapy has been used for decades to target pathogens as an alternative to antibiotics, but the ability of phage to shape complex bacterial consortia in the lower gastrointestinal tract is not clearly understood. We administered a cocktail of six phages (either viable or heat-inactivated) targeting pro-inflammatory Escherichia coli LF82 and Enterococcus faecalis OG1RF as members of a defined community in both a continuous fermenter and a murine colitis model. The two target strains were members of a six species simplified human microbiome consortium (SIHUMI-6). In a 72-h continuous fermentation, the phage cocktail caused a 1.1 and 1.5 log (log10 genome copies/mL) reduction in E. faecalis and E. coli numbers, respectively. This interaction was accompanied by changes in the numbers of other SIHUMI-6 members, with an increase of Lactiplantibacillus plantarum (1.7 log) and Faecalibacterium prausnitzii (1.8 log). However, in germ-free mice colonized by the same bacterial consortium, the same phage cocktail administered twice a week over nine weeks did not cause a significant reduction of the target strains. Mice treated with active or inactive phage had similar levels of pro-inflammatory cytokines (IFN-y/IL12p40) in unstimulated colorectal colonic strip cultures. However, histology scores of the murine lower GIT (cecum and distal colon) were lower in the viable phage-treated mice, suggesting that the phage cocktail did influence the functionality of the SIHUMI-6 consortium. For this study, we conclude that the observed potential of phages to reduce host populations in in vitro models did not translate to a similar outcome in an in vivo setting, with this effect likely brought about by the reduction of phage numbers during transit of the mouse GIT.
Collapse
Affiliation(s)
- Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tom Sutton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Joan Colom
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ellen Murray
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pedro H. Bettio
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Akihiko Oka
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Bo Liu
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy W. Herzog
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Kishimoto T, Ishida W, Nakajima I, Ujihara T, Suzuki T, Uchiyama J, Matsuzaki S, Fukuda K. Intracameral Bacteriophage Injection as Postoperative Prophylaxis for Enterococcus faecalis-Induced Endophthalmitis After Cataract Surgery in Rabbits. Transl Vis Sci Technol 2022; 11:2. [PMID: 35363260 PMCID: PMC8976926 DOI: 10.1167/tvst.11.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose Post–cataract surgery bacterial endophthalmitis is a serious postoperative complication, and Enterococcus spp.–induced endophthalmitis reportedly has a particularly poor visual prognosis. This study aimed to demonstrate the prophylactic effect of postoperative intracameral phage administration in Enterococcus faecalis–induced endophthalmitis after cataract surgery in rabbits. Methods Endophthalmitis was induced in rabbits by injecting E. faecalis into the anterior chamber just after lensectomy while simultaneously administering either phage phiEF24C-P2 or vehicle. Retinal function was evaluated using electroretinography. The number of viable bacteria and myeloperoxidase (MPO) activity in the eye and histopathologic examinations were analyzed 48 hours after infection. Results In the vehicle-treated group, retinal function at 24 hours after infection was impaired, and the number of viable bacteria and MPO activity in the eye increased 48 hours later. In the phage-administered group, retinal function was maintained; the number of viable bacteria and MPO activity were significantly suppressed. Histopathologic examinations showed disruption of the retinal layers and the presence of numerous E. faecalis in the lens capsule and vitreous cavity in vehicle-treated eyes. In contrast, retinal structures were intact, and no E. faecalis staining was observed in phage-treated eyes. No retinal dysfunction was observed in the group that received phage only without lensectomy; almost no phage was detected in the eyes after 14 days of treatment. Conclusions Phage administration in the anterior chamber did not cause retinal dysfunction and suppressed postoperative endophthalmitis in rabbits. Translational Relevance In vivo results of intracameral phage administration suggest that phages are a promising prophylactic candidate for postoperative endophthalmitis.
Collapse
Affiliation(s)
- Tatsuma Kishimoto
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Waka Ishida
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Isana Nakajima
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Takashi Suzuki
- Department of Ophthalmology, Toho University, Tokyo, Japan
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Japan
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
19
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
20
|
Alternatives to Fight Vancomycin-Resistant Staphylococci and Enterococci. Antibiotics (Basel) 2021; 10:antibiotics10091116. [PMID: 34572698 PMCID: PMC8471638 DOI: 10.3390/antibiotics10091116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Gram positive pathogens are a significant cause of healthcare-associated infections, with Staphylococci and Enterococci being the most prevalent ones. Vancomycin, a last resort glycopeptide, is used to fight these bacteria but the emergence of resistance against this drug leaves some patients with few therapeutic options. To counter this issue, new generations of antibiotics have been developed but resistance has already been reported. In this article, we review the strategies in place or in development to counter vancomycin-resistant pathogens. First, an overview of traditional antimicrobials already on the market or in the preclinical or clinical pipeline used individually or in combination is summarized. The second part focuses on the non-traditional antimicrobials, such as antimicrobial peptides, bacteriophages and nanoparticles. The conclusion is that there is hitherto no substitute equivalent to vancomycin. However, promising strategies based on drugs with multiple mechanisms of action and treatments based on bacteriophages possibly combined with conventional antibiotics are hoped to provide treatment options for vancomycin-resistant Gram-positive pathogens.
Collapse
|
21
|
Kizheva Y, Eftimova M, Rangelov R, Micheva N, Urshev Z, Rasheva I, Hristova P. Broad host range bacteriophages found in rhizosphere soil of a healthy tomato plant in Bulgaria. Heliyon 2021; 7:e07084. [PMID: 34095579 PMCID: PMC8167218 DOI: 10.1016/j.heliyon.2021.e07084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 12/02/2022] Open
Abstract
The urgent need of research of new approaches to control bacterial disease on economical important crops, focuses our attention on bacteriophages as alternative biocontrol agents. Thus, the purpose of this paper is to present the isolation and initial characterization of three bacteriophages (SfXv124t/1, 2 and 3) isolated from rhizosphere soil of a healthy tomato plant in Bulgaria that are capable to lyse three phytopathogenic bacteria. The initial characterization includes determination of: their host range, plaque morphology, optimal storage temperature of pure phage lysates, their sensitivity to UV light, thermal inactivation, optimal multiplicity of infection (MOI) and virion morphology. The obtained results showed that one of the phage isolates was capable to lyse wild strains from three phytopathogenic bacterial species: Xanthomonas vesicatoria, Xanthomonas euvesicatoria and Xanthomonas gardneri, and the two remaining phages were active against X. vesicatoria and X. euvesicatoria. On X. vesicatoria lawn, the phages produced the same plaque types that differed only in their size. Storage at 4 °C for 26 days did not lead to decrease in phage titer as opposed to storage at 28 °C followed by decrease to varying degree for all three phages. The results obtained after exposure of the phage lysates to sunlight (UVA + B) and UVC light in separate experiments showed that UVC had a potent phagocidal effect as after 50 min of exposure there were no viable phages in the samples. UVA an UVB had lethal effect for two of the phage isolates and absolutely no lethal effect for the third one as after 50 min of exposure to sunlight there was no decrease in the initial phage titer. Phage isolates were tested for their thermal inactivation after incubation of pure phage lysates at three different temperatures: 55 °C, 75 °C and 95 °C for a period of 10 and 30 min. The most lethal temperature turned out to be 95 °C as after 10 min there were no viable phages in the samples. Phage isolate SfXv124t/1 was the most susceptible as its titer decreased by 1 lg after 10 min of incubation at 55 °C and by another 1 lg after 30 min. The most thermally resistant isolate was SfXv124t/3 as its titer remained stable after 30 min of incubation at 55 °C and decreased only by lg after incubation at 75 °C for 10 min. The optimal MOI for SfXv124t/3 was 0,01 (tested range 0,01–100) with maximal phage titer, reported at the 24th hour of incubation. TEM micrographs of the same isolates reveals that it belongs to family Podoviridae.
Collapse
Affiliation(s)
- Yoana Kizheva
- Sofia University St. "Kliment Ohridski", Faculty of Biology, Department of General and Industrial Microbiology, 8 Dragan Tsankov Blvd, Sofia 1000, Bulgaria
| | - Melani Eftimova
- Sofia University St. "Kliment Ohridski", Faculty of Biology, Department of General and Industrial Microbiology, 8 Dragan Tsankov Blvd, Sofia 1000, Bulgaria
| | - Radoslav Rangelov
- Sofia University St. "Kliment Ohridski", Faculty of Biology, Department of General and Industrial Microbiology, 8 Dragan Tsankov Blvd, Sofia 1000, Bulgaria
| | - Neli Micheva
- Sofia University St. "Kliment Ohridski", Faculty of Biology, Department of General and Industrial Microbiology, 8 Dragan Tsankov Blvd, Sofia 1000, Bulgaria
| | - Zoltan Urshev
- LB Bulgaricum Plc., R&D Department, 14 Malashevska Str., Sofia, Bulgaria
| | - Iliyana Rasheva
- Sofia University St. "Kliment Ohridski", Faculty of Biology, Department of General and Industrial Microbiology, 8 Dragan Tsankov Blvd, Sofia 1000, Bulgaria
| | - Petya Hristova
- Sofia University St. "Kliment Ohridski", Faculty of Biology, Department of General and Industrial Microbiology, 8 Dragan Tsankov Blvd, Sofia 1000, Bulgaria
| |
Collapse
|
22
|
Isolation and Characterization of Two Virulent Phages to Combat Staphylococcus aureus and Enterococcus faecalis causing Dental Caries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to isolate and characterize bacteriophages, as a biocontrol agent, against certain antibiotic-resistant bacteria causing dental caries. Here, two dental caries-causing bacteria S. aureus and E. faecalis were isolated and characterized biochemically using the automated VITEK® 2 system. Antibiotic sensitivity pattern of the isolated dental caries bacteria was assessed against selection of antibiotics. The two isolates showed resistance against most of the tested antibiotics. To overcome this problem, two lytic phages vB_SauM-EG-AE3 and vB_EfaP-EF01 were isolated, identified, and applied to control the growth of S. aureus and E. faecalis, respectively. Phages were identified morphologically using TEM and showed that vB_SauM-EG-AE3 phage is related to Myoviridae and vB_EfaP-EF01 phage belongs to Podoviridae. The two phages exhibited high lytic activity, high stability, and a narrow host range. The one-step growth curve of phages showed burst sizes of 78.87 and 113.55 PFU/cell with latent periods of 25 and 30 minutes for S. aureus phage and E. faecalis phage respectively. In addition, the two phages showed different structural protein profiles and exhibited different patterns using different restriction enzymes. The genome sizes were estimated to be 13.30 Kb and 15.60 Kb for phages vB_SauM-EGAE3, vB_EfaP-EGAE1, respectively. Complete inhibition of bacterial growth was achieved using phages with MOIs of 103, 102 and 10 after 1, 3, 5, and 24 h of incubation at 37°C. Hence, this study indicates that the isolated bacteriophages are promising biocontrol agents that could challenge antibiotic-resistant dental caries bacteria to announce new successful alternatives to antibiotics.
Collapse
|
23
|
In Vitro and In Vivo Evaluation of Three Newly Isolated Bacteriophage Candidates, phiEF7H, phiEF14H1, phiEF19G, for Treatment of Enterococcus faecalis Endophthalmitis. Microorganisms 2021; 9:microorganisms9020212. [PMID: 33498561 PMCID: PMC7909552 DOI: 10.3390/microorganisms9020212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 01/21/2023] Open
Abstract
Post-operative endophthalmitis caused by Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Therefore, novel alternative treatments that are effective against enterococcal endophthalmitis are required. Bacteriophage therapy has the potential to be an optional therapy for infectious diseases. Therefore, we investigated the therapeutic potential of three newly isolated enterococcal phages, phiEF7H, phiEF14H1, and phiEF19G, in E. faecalis-induced endophthalmitis. These phages could lyse the broad-range E. faecalis, including strains derived from endophthalmitis and vancomycin-resistant E. faecalis in vitro, as determined by the streak test. Morphological and genomic analyses revealed that these phages were classified into the Herelleviridae genus Kochikohdavirus. The whole genomes of these phages contained 143,399, 143,280, and 143,400 bp, respectively. Endophthalmitis was induced in mice by injection of three strains of E. faecalis derived from post-operative endophthalmitis or vancomycin-resistant strains into the vitreous body. The number of viable bacteria and infiltration of neutrophils in the eye were both decreased by intravitreous injection of phiEF7H, phiEF14H1, and phiEF19G 6 h after injection of all E. faecalis strains. Thus, these results suggest that these newly isolated phages may serve as promising candidates for phage therapy against endophthalmitis.
Collapse
|
24
|
Characterization of a Lytic Bacteriophage vB_EfaS_PHB08 Harboring Endolysin Lys08 Against Enterococcus faecalis Biofilms. Microorganisms 2020; 8:microorganisms8091332. [PMID: 32878334 PMCID: PMC7564645 DOI: 10.3390/microorganisms8091332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen that causes illnesses ranging from urinary tract infections to sepsis in humans and animals. However, the overuse of antibiotics has increased rates of drug resistance among E. faecalis isolates. Bacteriophages and their derivatives have recently been identified as good candidates for the treatment of drug-resistant bacterial infections. Here, we isolated a virulent E. faecalis phage, PHB08, using the double-layer plate method. The bioactivity of the phage was determined via one-step growth curve testing and bacterial killing assays, and whole-genome sequencing was performed using the Illumina HiSeq platform. In addition, protein expression and antibiofilm assays were performed to investigate the activity of the phage lysin. Results showed that PHB08 has a 55,244-bp linear double-stranded DNA genome encoding 91 putative coding sequences. PHB08 inhibited the growth of host strain EF3964 at 37 °C in tryptic soy broth (TSB) medium, while in vegetable models, PHB08 caused a 4.69-log decrease in viable E. faecalis cells after 24 h. Both PHB08 and its endolysin lys08 showed antibiofilm activity against E. faecalis biofilms, which was enhanced by Mn2+ ions. Thus, virulent phage PHB08 and endolysin lys08 may be good candidates for reducing and/or eradicating E. faecalis infections.
Collapse
|
25
|
Kitamura N, Sasabe E, Matsuzaki S, Daibata M, Yamamoto T. Characterization of two newly isolated Staphylococcus aureus bacteriophages from Japan belonging to the genus Silviavirus. Arch Virol 2020; 165:2355-2359. [PMID: 32748178 PMCID: PMC7497331 DOI: 10.1007/s00705-020-04749-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Two Staphylococcus aureus bacteriophages, KSAP7 and KSAP11, were isolated from sewage and characterized. Based on morphology and DNA sequences, they were assigned to the genus Silviavirus, subfamily Twortvirinae, family Herelleviridae, whose members are hypothesized to be suitable for bacteriophage therapy. The KSAP7 and KSAP11 genomes were 137,950 and 138,307 bp in size, respectively. Although their DNA sequences were almost identical, evidence of site-specific DNA rearrangements was found in two regions. Changes in the number of PIEPEK amino acid sequence repeats encoded by orf10 and the insertion/deletion of a 541-bp sequence that includes a possible tail-related gene were identified.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Kochi 780-0955, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
26
|
Sofy AR, Abd El Haliem NF, Refaey EE, Hmed AA. Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods 2020; 9:E673. [PMID: 32456227 PMCID: PMC7278617 DOI: 10.3390/foods9050673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Naglaa F. Abd El Haliem
- Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| |
Collapse
|
27
|
Lee D, Im J, Na H, Ryu S, Yun CH, Han SH. The Novel Enterococcus Phage vB_EfaS_HEf13 Has Broad Lytic Activity Against Clinical Isolates of Enterococcus faecalis. Front Microbiol 2019; 10:2877. [PMID: 31921055 PMCID: PMC6927925 DOI: 10.3389/fmicb.2019.02877] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive, facultative anaerobic bacterium frequently found in the gastrointestinal tract, oral cavity, and periodontal tissue. Although it is considered a commensal, it can cause bacteremia, endocarditis, endodontic infections, and urinary tract infections. Because antibiotics are cytotoxic not only to pathogens, but also to health-beneficial commensals, phage therapy has emerged as an alternative strategy to specifically control pathogenic bacteria with minimal damage to the normal flora. In this study, we isolated a novel phage, Enterococcus phage vB_EfaS_HEf13 (phage HEf13), with broad lytic activity against 12 strains of E. faecalis among the three laboratory strains and 14 clinical isolates of E. faecalis evaluated. Transmission electron microscopy showed that phage HEf13 has morphological characteristics of the family Siphoviridae. Phage HEf13 was stable at a wide range of temperature (4–60°C) and showed tolerance to acid or alkaline (pH 3–12) growth conditions. Phage HEf13 had a short latent period (25 min) with a large burst size (approximately 352 virions per infected cell). The lytic activity of phage HEf13 at various multiplicities of infection consistently inhibited the growth of diverse clinical isolates of E. faecalis without any lysogenic process. Moreover, phage HEf13 showed an effective lytic activity against E. faecalis on human dentin ex vivo infection model. Whole genome analysis demonstrated that the phage HEf13 genome contains 57,811 bp of double-stranded DNA with a GC content of 40.1% and 95 predicted open reading frames (ORFs). Annotated functional ORFs were mainly classified into four groups: DNA replication/packaging/regulation, phage structure, host cell lysis, and additional functions such as RNA transcription. Comparative genomic analysis demonstrated that phage HEf13 is a novel phage that belongs to the Sap6virus lineage. Furthermore, the results of multiple sequence alignment showed that polymorphism of phage infection protein of E. faecalis (PIPEF) contributes to determine the host specificity of phage HEf13 against various E. faecalis strains. Collectively, these results suggest that phage HEf13 has characteristics of a lytic phage, and is a potential therapeutic agent for treatment or prevention of E. faecalis-associated infectious diseases.
Collapse
Affiliation(s)
- Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hongjun Na
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
28
|
The lytic bacteriophage vB_EfaH_EF1TV, a new member of the Herelleviridae family, disrupts biofilm produced by Enterococcus faecalis clinical strains. J Glob Antimicrob Resist 2019; 21:68-75. [PMID: 31678321 DOI: 10.1016/j.jgar.2019.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The aim of this study is to characterize a new bacteriophage able to infect Enterococcus faecalis, and to evaluate its ability to disrupt biofilm. METHODS The vB_EfaH_EF1TV (EF1TV) host-range was determined by spot test and efficiency of plating using a collection of 15E. faecalis clinical strains. The phage genome was sequenced with a next generation sequencing approach. Anti-biofilm activity was tested by crystal violet method and confocal laser scanning microscopy. Phage-resistant mutants were selected and sequenced to investigate receptors exploited by phage for infection. RESULTS EF1TV is a newly discoveredE. faecalis phage which belongs to the Herelleviridae family. EF1TV, whose genome is 98% identical to φEF24C, is characterized by a linear dsDNA genome of 143,507 bp with direct terminal repeats of 1,911 bp. The phage is able to infect E. faecalis and shows also the ability to degrade biofilm produced by strains of this species. The results were confirmed by confocal laser scanning microscopy analyzing the biofilm reduction in the same optical field before and after phage infection. CONCLUSIONS The EF1TV phage shows promising features such as an obligatory lytic nature, an anti-biofilm activity and the absence of integration-related proteins, antibiotic resistance determinants and virulence factors, and therefore could be a promising tool for therapeutic applications.
Collapse
|
29
|
Therapeutic Effects of Intravitreously Administered Bacteriophage in a Mouse Model of Endophthalmitis Caused by Vancomycin-Sensitive or -Resistant Enterococcus faecalis. Antimicrob Agents Chemother 2019; 63:AAC.01088-19. [PMID: 31451497 DOI: 10.1128/aac.01088-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023] Open
Abstract
Endophthalmitis due to infection with Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Given that the frequency of this condition caused by vancomycin-resistant Enterococcus faecalis has been increasing, the development of novel therapeutics is urgently required. We have demonstrated the therapeutic potential of bacteriophage ΦEF24C-P2 in a mouse model of endophthalmitis caused by vancomycin-sensitive (EF24) or vancomycin-resistant (VRE2) strains of E. faecalis Phage ΦEF24C-P2 induced rapid and pronounced bacterial lysis in turbidity reduction assays with EF24, VRE2, and clinical isolates derived from patients with E. faecalis-related postoperative endophthalmitis. Endophthalmitis was induced in mice by injection of EF24 or VRE2 (1 × 104 cells) into the vitreous. The number of viable bacteria in the eye increased to >1 × 107 CFU, and neutrophil infiltration into the eye was detected as an increase in myeloperoxidase activity at 24 h after infection. A clinical score based on loss of visibility of the fundus as well as the number of viable bacteria and the level of myeloperoxidase activity in the eye were all significantly decreased by intravitreous injection of ΦEF24C-P2 6 h after injection of EF24 or VRE2. Whereas histopathologic analysis revealed massive infiltration of inflammatory cells and retinal detachment in vehicle-treated eyes, the number of these cells was greatly reduced and retinal structural integrity was preserved in phage-treated eyes. Our results thus suggest that intravitreous phage therapy is a potential treatment for endophthalmitis caused by vancomycin-sensitive or -resistant strains of E. faecalis.
Collapse
|
30
|
Identification of Novel Bacteriophages with Therapeutic Potential That Target Enterococcus faecalis. Infect Immun 2019; 87:IAI.00512-19. [PMID: 31451618 PMCID: PMC6803325 DOI: 10.1128/iai.00512-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-positive opportunistic pathogen Enterococcus faecalis is frequently responsible for nosocomial infections in humans and represents one of the most common bacteria isolated from recalcitrant endodontic (root canal) infections. E. faecalis is intrinsically resistant to several antibiotics routinely used in clinical settings (such as cephalosporins and aminoglycosides) and can acquire resistance to vancomycin (vancomycin-resistant enterococci). The resistance of E. faecalis to several classes of antibiotics and its capacity to form biofilms cause serious therapeutic problems. Here, we report the isolation of several bacteriophages that target E. faecalis strains isolated from the oral cavity of patients suffering root canal infections. All phages isolated were Siphoviridae with similar tail lengths (200 to 250 nm) and icosahedral heads. The genome sequences of three isolated phages were highly conserved with the exception of predicted tail protein genes that diverge in sequence, potentially reflecting the host range. The properties of the phage with the broadest host range (SHEF2) were further characterized. We show that this phage requires interaction with components of the major and variant region enterococcal polysaccharide antigen to engage in lytic infection. Finally, we explored the therapeutic potential of this phage and show that it can eradicate E. faecalis biofilms formed in vitro on a standard polystyrene surface but also on a cross-sectional tooth slice model of endodontic infection. We also show that SHEF2 cleared a lethal infection of zebrafish when applied in the circulation. We therefore propose that the phage described here could be used to treat a broad range of antibiotic-resistant E. faecalis infections.
Collapse
|
31
|
Ahamed ST, Roy B, Basu U, Dutta S, Ghosh AN, Bandyopadhyay B, Giri N. Genomic and Proteomic Characterizations of Sfin-1, a Novel Lytic Phage Infecting Multidrug-Resistant Shigella spp. and Escherichia coli C. Front Microbiol 2019; 10:1876. [PMID: 31507544 PMCID: PMC6714547 DOI: 10.3389/fmicb.2019.01876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Shigellosis is a public health threat in developed as well as developing countries like “India.” While antibiotic therapy is the mainstay of treatment for shigellosis, current emergence of multidrug-resistant strains of Shigella spp. has posed the problem more challenging. Lytic bacteriophages which destroy antibiotic resistant Shigella spp. have great potential in this context and hence their identification and detailed characterization is necessary. In this study we presented the isolation and a detailed characterization of a novel bacteriophage Sfin-1, which shows potent lytic activity against multidrug-resistant isolates of Shigella flexneri, Shigella dysenteriae, Shigella sonnei obtained from clinical specimens from shigellosis patients. It is also active against Escherichia coli C. The purified phage is lytic in nature, exhibited absorption within 5–10 min, a latent period of 5–20 min and burst size of ∼28 to ∼146 PFU/cell. The isolated phage shows stability in a broad pH range and survives an hour at 50°C. Genome sequencing and phylogenetic analyses showed that Sfin-1 is a novel bacteriophage, which is very closely related to T1-like phages (89.59% identity with Escherichia virus T1). In silico analysis indicates that Sfin-1 genome consists of double stranded linear DNA of 50,403 bp (GC content of 45.2%) encoding 82 potential coding sequences, several potential promoters and transcriptional terminators. Under electron microscopy, Sfin-1 shows morphology characteristics of the family Siphoviridae with an isometric head (61 nm) and a non-contractile tail (155 nm). This is most likely the first report of a lytic bacteriophage that is active against three of the most virulent multidrug-resistant Shigella species and therefore might have a potential role in phage therapy of patients infected with these organisms.
Collapse
Affiliation(s)
- Sk Tousif Ahamed
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, India
| | - Banibrata Roy
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, India
| | - Utpal Basu
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - A N Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Nabanita Giri
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, India
| |
Collapse
|
32
|
Yildirim Z, Sakin T, Akçelik M, Akçelik N. Characterization of SE-P3, P16, P37, and P47 bacteriophages infectingSalmonellaEnteritidis. J Basic Microbiol 2019; 59:1049-1062. [DOI: 10.1002/jobm.201900102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/30/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Zeliha Yildirim
- Department of Food Engineering, Faculty of Engineering; Niğde Ömer Halisdemir University; Niğde Turkey
| | - Tuba Sakin
- Department of Food Engineering, Faculty of Engineering; Niğde Ömer Halisdemir University; Niğde Turkey
| | - Mustafa Akçelik
- Department of Biology, Faculty of Science; Ankara University; Ankara Turkey
| | - Nesife Akçelik
- Department of Biotecnology, Institute of Biotechnology; Ankara University; Ankara Turkey
| |
Collapse
|
33
|
Contreras GA, Munita JM, Arias CA. Novel Strategies for the Management of Vancomycin-Resistant Enterococcal Infections. Curr Infect Dis Rep 2019; 21:22. [PMID: 31119397 DOI: 10.1007/s11908-019-0680-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens that commonly affect critically ill patients. VRE have a remarkable genetic plasticity allowing them to acquire genes associated with antimicrobial resistance. Therefore, the treatment of deep-seated infections due to VRE has become a challenge for the clinician. The purpose of this review is to assess the current and future strategies for the management of recalcitrant deep-seated VRE infections and efforts for infection control in the hospital setting. RECENT FINDINGS Preventing colonization and decolonization of multidrug-resistant bacteria are becoming the most promising novel strategies to control and eradicate VRE from the hospital environment. Fecal microbiota transplantation (FMT) has shown remarkable results on treating colonization and infection due to Clostridiodes difficille and VRE, as well as to recover the integrity of the gut microbiota under antibiotic pressure. Initial reports have shown the efficacy of FMT on reestablishing patient microbiota diversity in the gut and reducing the dominance of VRE in the gastrointestinal tract. In addition, the use of bacteriophages may be a promising strategy in eradicating VRE from the gut of patients. Until these strategies become widely available in the hospital setting, the implementation of infection control measures and stewardship programs are paramount for the control of this pathogen and each program should provide recommendations for the proper use of antibiotics and develop strategies that help to detect populations at risk of VRE colonization, prevent and control nosocomial transmission of VRE, and develop educational programs for all healthcare workers addressing the epidemiology of VRE and the potential impact of these pathogens on the cost and outcomes of patients. In terms of antibiotic strategies, daptomycin has become the standard of care for the management of deep-seated infections due to VRE. However, recent evidence indicates that the efficacy of this antibiotic is limited, and higher (10-12 mg/kg) doses and/or combination with β-lactams is needed for therapeutic success. Clinical data to support the best use of daptomycin against VRE are urgently needed. This review provides an overview of recent developments regarding the prevention, treatment, control, and eradication of VRE in the hospital setting. We aim to provide an update of the most recent therapeutic strategies to treat deep-seated infections due to VRE.
Collapse
Affiliation(s)
- German A Contreras
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics (CARMiG), UTHealth McGovern Medical School, Houston, TX, USA
- Department of Internal Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jose M Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cesar A Arias
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics (CARMiG), UTHealth McGovern Medical School, Houston, TX, USA.
- Department of Internal Medicine, UTHealth McGovern Medical School, Houston, TX, USA.
- Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile.
- Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Houston, TX, USA.
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, TX, USA.
- Molecular Genetics and Antimicrobial Resistance Unit-International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.
- University of Texas Health Science Center, 6431 Fannin St. MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Bolocan AS, Upadrasta A, Bettio PHDA, Clooney AG, Draper LA, Ross RP, Hill C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019; 11:E366. [PMID: 31010053 PMCID: PMC6521178 DOI: 10.3390/v11040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
Collapse
Affiliation(s)
- Andrei S Bolocan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Aditya Upadrasta
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Pedro H de Almeida Bettio
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
35
|
del Rio B, Sánchez-Llana E, Redruello B, Magadan AH, Fernández M, Martin MC, Ladero V, Alvarez MA. Enterococcus faecalis Bacteriophage 156 Is an Effective Biotechnological Tool for Reducing the Presence of Tyramine and Putrescine in an Experimental Cheese Model. Front Microbiol 2019; 10:566. [PMID: 30949154 PMCID: PMC6435515 DOI: 10.3389/fmicb.2019.00566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Biogenic amines (BA) - nitrogenous compounds of low molecular weight - are the result of metabolism of certain amino acids. They are biologically present in all living organisms and play essential physiological roles. However, their accumulation in foodstuffs due to the metabolic activity of certain microorganisms represents a toxicological risk. Containing such microorganisms, and with an abundance of precursor substrate amino acids, fermented foods in general, and cheeses in particular, provide an ideal matrix for the accumulation of these toxic compounds. Unfortunately, the main microorganisms responsible for BA accumulation are members of the lactic acid bacteria (LAB) group, which are also essential for the development of the organoleptic characteristics of the final product. The methods used to reduce the BA content of cheese, such as milk pasteurization, commonly fail to do so, and affect desirable non-BA-producing LAB as well. Bacteriophages have been proposed as biotechnological tools for diminishing the presence of undesirable microorganisms in dairy products. Given their specificity, they could be used to target the population of BA-producing bacteria. In this work, we aimed to explore the use of Enterococcus faecalis infecting phages as a tool to reduce the content of BA in dairy products. For this, we proceeded to the isolation and characterization of E. faecalis bacteriophage 156, a member of the family Myoviridae. Its genome was sequenced and compared with that of E. faecalis family Myoviridae phages available in public databases. Its capacity to decrease the accumulation of the BA tyramine and putrescine in an experimental laboratory-scale cheese model was proven.
Collapse
Affiliation(s)
- Beatriz del Rio
- Department of Biotechnology of Dairy Products, Institute of Dairy Products of Asturias – Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Esther Sánchez-Llana
- Department of Biotechnology of Dairy Products, Institute of Dairy Products of Asturias – Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Begoña Redruello
- Department of Biotechnology of Dairy Products, Institute of Dairy Products of Asturias – Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Alfonso H. Magadan
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université de Bretagne Occidentale, Plouzané, France
| | - María Fernández
- Department of Biotechnology of Dairy Products, Institute of Dairy Products of Asturias – Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Maria Cruz Martin
- Department of Biotechnology of Dairy Products, Institute of Dairy Products of Asturias – Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Victor Ladero
- Department of Biotechnology of Dairy Products, Institute of Dairy Products of Asturias – Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Miguel A. Alvarez
- Department of Biotechnology of Dairy Products, Institute of Dairy Products of Asturias – Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
36
|
Potential Application of Bacteriophages in Enrichment Culture for Improved Prenatal Streptococcus agalactiae Screening. Viruses 2018; 10:v10100552. [PMID: 30308933 PMCID: PMC6213948 DOI: 10.3390/v10100552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Vertical transmission of Streptococcus agalactiae can cause neonatal infections. A culture test in the late stage of pregnancy is used to screen for the presence of maternal S. agalactiae for intrapartum antibiotic prophylaxis. For the test, a vaginal–rectal sample is recommended to be enriched, followed by bacterial identification. In some cases, Enterococcus faecalis overgrows in the enrichment culture. Consequently, the identification test yields false-negative results. Bacteriophages (phages) can be used as antimicrobial materials. Here, we explored the feasibility of using phages to minimize false-negative results in an experimental setting. Phage mixture was prepared using three phages that specifically infect E. faecalis: phiEF24C, phiEF17H, and phiM1EF22. The mixture inhibited the growth of 86.7% (26/30) of vaginal E. faecalis strains. The simple coculture of E. faecalis and S. agalactiae was used as an experimental enrichment model. Phage mixture treatment led to suppression of E. faecalis growth and facilitation of S. agalactiae growth. In addition, testing several sets of S. agalactiae and E. faecalis strains, the treatment with phage mixture in the enrichment improved S. agalactiae detection on chromogenic agar. Our results suggest that the phage mixture can be usefully employed in the S. agalactiae culture test to increase test accuracy.
Collapse
|
37
|
Booncharoen N, Mongkolsuk S, Sirikanchana K. Comparative persistence of human sewage-specific enterococcal bacteriophages in freshwater and seawater. Appl Microbiol Biotechnol 2018; 102:6235-6246. [DOI: 10.1007/s00253-018-9079-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/07/2018] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
|
38
|
Litt PK, Saha J, Jaroni D. Characterization of Bacteriophages Targeting Non-O157 Shiga Toxigenic Escherichia coli. J Food Prot 2018; 81:785-794. [PMID: 29624104 DOI: 10.4315/0362-028x.jfp-17-460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-O157 Shiga toxigenic Escherichia coli (STEC) are an important group of foodborne pathogens, implicated in several outbreaks and recalls in the past 2 decades. It is therefore crucial to devise effective control strategies against these pathogens. Bacteriophages present an attractive alternative to conventional pathogen control methods in the food industry. Bacteriophages, targeting non-O157 STEC (O26, O45, O103, O111, O121, O145), were isolated from beef cattle operations in Oklahoma. Their host range and lytic ability were determined against several ( n = 21) non-O157 STEC isolates, by using the spot-on-lawn assay. Isolated phages were purified, and their morphology was determined under a transmission electron microscope. Infection kinetics of selected phages ( n = 19), particularly adsorption rate, rise period, latent period, and burst size, were determined. Phages were also evaluated for stability at a wide pH range (1 to 11) and temperature range (-80 to 90°C). In total, 45 phages were isolated and classified into Myoviridae, Siphoviridae, or Tectiviridae. The phages had a latent period between 8 and 37 min, a rise period between 19 and 40 min, and a large burst size (12 to 794 virions per infected cell), indicating high lytic activity. Tested phages were stable at pH 5 to 9 for 24 h, whereas a decrease in phage titer was observed at pHs 1, 2, and 11. Phages were stable at 40 and 60°C, except for O103-specific phages. At 70°C, all the phages lost viability after 20 min, except three phages targeting O26 and O121 and one phage targeting O45 and O111 STEC, which remained viable for 60 min. All the phages lost activity after 10 min at 90°C, except one each of O26 and O121 STEC-infecting phages that remained viable for 60 min. Phages remained stable for 90 days under refrigerated (4°C) and frozen (-20 and -80°C) storage. Characterization of phages, targeting diverse non-O157 STEC serotypes, could help in the development of effective biocontrol strategies for this group of pathogens in the food industry.
Collapse
Affiliation(s)
- Pushpinder Kaur Litt
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| | - Joyjit Saha
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| | - Divya Jaroni
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| |
Collapse
|
39
|
Isolation of Potential Phages against Multidrug-Resistant Bacterial Isolates: Promising Agents in the Rivers of Kathmandu, Nepal. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3723254. [PMID: 29359149 PMCID: PMC5735621 DOI: 10.1155/2017/3723254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Bacteriophages are being the subject of interest for alternative antimicrobial therapy for infectious diseases in recent years. Therapeutic effectiveness regarding phage therapy is a matter of concern since it is the most promising biological treatment of this era. Hence, the present study was aimed to isolate the potential bacteriophages present in river water samples and to analyze their host range among clinical strains of bacteria. Ten different locations of Kathmandu valley were selected for the collection of river water for the detection of probable phages. Bacteriophages were isolated from water samples using the double agar overlay method. Isolated phages were purified by diluting in the SM-buffer and filtering through 0.22 μm filter. Purified lysate was further processed for analyzing its host range by using spot method. Their host range was characterized against 20 bacterial strains, including multidrug-resistant. Total 67 different phages were isolated against 8 different host organisms. Out of them, forty-seven phages were selected for analyzing its host range. Among them, Serratia phages (ΦSER) had the broad host range infecting 17 different bacterial strains including multidrug-resistant harboring ESBL and MBL genotypes. However, Klebsiella phages (ΦKP) had narrow host range in comparison to other phages. Isolated phages had the potential effect against clinical strains of bacteria along with their broader host spectrum. Most importantly, promising effect against MDR pathogens in this study has raised the probable chances of the utility of these phages for biological control of bacterial infection including MBL and ESBL strains.
Collapse
|
40
|
Litt PK, Jaroni D. Isolation and Physiomorphological Characterization of Escherichia coli O157:H7-Infecting Bacteriophages Recovered from Beef Cattle Operations. Int J Microbiol 2017; 2017:7013236. [PMID: 29123549 PMCID: PMC5662819 DOI: 10.1155/2017/7013236] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages, recovered from beef cattle environment and specifically targeting Escherichia coli O157:H7, were examined for their physiological and morphological characteristics. Degree of bacterial lysis and host range of isolated bacteriophages was determined against 55 isolates of E. coli O157:H7. Morphology of phages was examined under transmission electron microscope. Phage growth parameters, particularly rate of adsorption, rise period, latent period, and burst size were also determined. The stability of isolated phages was tested at acidic and alkaline pH, at high temperatures, and in cold storage. A total of 7 phages were isolated which showed lytic activity against 50 out of 55 isolates of E. coli O157:H7. Based on the morphology, phages were classified into Myoviridae or Siphoviridae family. Phages had a rise period between 19 and 40 min, a short latent period between 12 and 30 min, and a large burst size (89-631 virions per infected cell), indicating high lytic activity. Phages remained stable for 24 h at a wide pH (1-11) and temperature range (40-60°C) and for 90 d in cold storage. Characterization of bacteriophages, with a diverse host range of E. coli O157:H7, could aid in the development of effective biocontrol strategies for this pathogen in the food industry.
Collapse
Affiliation(s)
- Pushpinder Kaur Litt
- Department of Animal Science and Food and Agricultural Products Center, Oklahoma State University, 148 FAPC, Monroe St., Stillwater, OK 74078, USA
| | - Divya Jaroni
- Department of Animal Science and Food and Agricultural Products Center, Oklahoma State University, 148 FAPC, Monroe St., Stillwater, OK 74078, USA
| |
Collapse
|
41
|
Effectiveness of a Lytic Phage SRG1 against Vancomycin-Resistant Enterococcus faecalis in Compost and Soil. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9351017. [PMID: 29147662 PMCID: PMC5632989 DOI: 10.1155/2017/9351017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 12/28/2022]
Abstract
Nosocomial infections caused by vancomycin-resistant Enterococcus have become a major problem. Bacteriophage therapy is proposed as a potential alternative therapy. Bacteriophages are viruses that infect bacteria and are ubiquitous in nature. Lytic bacteriophage was isolated from sewage water that infects VREF, the causative agent of endocarditis, bacteraemia, and urinary tract infections (UTIs). The phage produced clear plaques with unique clear morphology and well-defined boundaries. TEM results of phage revealed it to be 108 ± 0.2 nm long and 90 ± 0.5 nm wide. The characterization of bacteriophage revealed that infection process of phage was calcium and magnesium dependent and phage titers were highest under optimum conditions for VREF, with an optimal temperature range of 37–50°C. The maximum growth was observed at 37°C, hence having 100% viability. The latent period for phage was small with a burst size of 512 viral particles per bacterial cell. The phage was tested against various clinical strains and results proved it to be host specific. It can be used as a potential therapeutic agent for VREF infections. The phage efficiently eradicated VREF inoculated in cattle compost, poultry compost, and a soil sample which makes it a potential agent for clearing compost and soil sample.
Collapse
|
42
|
Virus purification by CsCl density gradient using general centrifugation. Arch Virol 2017; 162:3523-3528. [DOI: 10.1007/s00705-017-3513-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022]
|
43
|
Tinoco JM, Buttaro B, Zhang H, Liss N, Sassone L, Stevens R. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol 2016; 71:80-86. [PMID: 27448990 PMCID: PMC5048528 DOI: 10.1016/j.archoralbio.2016.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 05/20/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Enterococcus faecalis is a Gram-positive, facultative anaerobic bacterium that is associated with failed endodontic cases and nosocomial infections. E. faecalis can form biofilms, penetrate dentinal tubules and survive in root canals with scarce nutritional supplies. These properties can make E. faecalis resistant to conventional endodontic disinfection therapy. Furthermore, treatment may be complicated by the fact that many E. faecalis strains are resistant to antibiotics. A potential alternative to antibiotic therapy is phage therapy. ϕEf11 is a temperate phage that infects strains of E. faecalis. It was previously sequenced and genetically engineered to modify its properties in order to render it useful as a therapeutic agent in phage therapy. In the current study, we have further genetically modified the phage to create phage ϕEf11/ϕFL1C(Δ36)PnisA. The aim of this study was to evaluate the efficacy of bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA, to disrupt biofilms of two Enterococcus faecalis strains: JH2-2 (vancomycin-sensitive) and V583 (vancomycin-resistant). METHODS 24h static biofilms of E. faecalis strains JH2-2(pMSP3535 nisR/K) and V583 (pMSP3535nisR/K), formed on cover slips, were inoculated with bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA. After 24 and 48h incubation, the bacterial biomass was imaged by confocal microscopy and viable cells were quantified by colony forming unit measurement. RESULTS The results showed a 10-100-fold decrease in viable cells (CFU/biofilm) after phage treatment, which was consistent with comparisons of treated and untreated biofilm images visualized as max projections of the Z-series. CONCLUSION The biomass of both vancomycin-sensitive and vancomycin-resistant E. faecalis biofilms is markedly reduced following infection by bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA.
Collapse
Affiliation(s)
- Justine Monnerat Tinoco
- Department of Endodontology, School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro, RJ 20551-030, Brazil.
| | - Bettina Buttaro
- Department of Microbiology & Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Hongming Zhang
- Department of Endodontology, School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - Nadia Liss
- Department of Endodontology, School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - Luciana Sassone
- Department of Endodontology, School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro, RJ 20551-030, Brazil
| | - Roy Stevens
- Department of Endodontology, School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
44
|
Khalifa L, Shlezinger M, Beyth S, Houri-Haddad Y, Coppenhagen-Glazer S, Beyth N, Hazan R. Phage therapy against Enterococcus faecalis in dental root canals. J Oral Microbiol 2016; 8:32157. [PMID: 27640530 PMCID: PMC5027333 DOI: 10.3402/jom.v8.32157] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE) in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages). Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals.
Collapse
Affiliation(s)
- Leron Khalifa
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Mor Shlezinger
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shaul Beyth
- Orthopedic Surgery Complex, Hadassah University Hospital, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ronen Hazan
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel;
| |
Collapse
|
45
|
Ross A, Ward S, Hyman P. More Is Better: Selecting for Broad Host Range Bacteriophages. Front Microbiol 2016; 7:1352. [PMID: 27660623 PMCID: PMC5014875 DOI: 10.3389/fmicb.2016.01352] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria. In this perspective, we discuss several aspects of a characteristic feature of bacteriophages, their host range. Each phage has its own particular host range, the range of bacteria that it can infect. While some phages can only infect one or a few bacterial strains, other phages can infect many species or even bacteria from different genera. Different methods for determining host range may give different results, reflecting the multiple mechanisms bacteria have to resist phage infection and reflecting the different steps of infection each method depends on. This makes defining host range difficult. Another difficulty in describing host range arises from the inconsistent use of the words "narrow" and especially "broad" when describing the breadth of the host range. Nearly all bacteriophages have been isolated using a single host strain of bacteria. While this procedure is fairly standard, it may more likely produce narrow rather than broad host range phage. Our results and those of others suggest that using multiple host strains during isolation can more reliably produce broader host range phages. This challenges the common belief that most bacteriophages have a narrow host range. We highlight the implications of this for several areas that are affected by host range including horizontal gene transfer and phage therapy.
Collapse
Affiliation(s)
- Alexa Ross
- Department of Biology and Toxicology, Ashland University, Ashland OH, USA
| | - Samantha Ward
- Department of Biology and Toxicology, Ashland University, Ashland OH, USA
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, Ashland OH, USA
| |
Collapse
|
46
|
Hsieh SE, Tseng YH, Lo HH, Chen ST, Wu CN. Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen. Virus Genes 2015; 52:107-16. [PMID: 26706853 DOI: 10.1007/s11262-015-1276-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.
Collapse
Affiliation(s)
- Sue-Er Hsieh
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yi-Hsiung Tseng
- Department of Microbiology, Tzu Chi University, Hualien, 970, Taiwan
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Shui-Tu Chen
- Pediatrics Department, Nantou Hospital, Department of Health, Nantou, 540, Taiwan
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
47
|
Abstract
We previously isolated EFDG1, a lytic phage against enterococci for therapeutic use. Nevertheless, EFDG1-resistant bacterial strains (EFDG1r) have evolved. EFLK1, a new highly effective phage against EFDG1r strains, was isolated in this study. The genome of EFLK1 was fully sequenced, analyzed, and deposited in GenBank.
Collapse
|
48
|
Abstract
Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment.
Collapse
|
49
|
Wang T, Lin H, Zhang L, Huang G, Wu L, Yu L, Xiong H. Expression and purification of recombinant lyase gp17 from the LSB-1 phage in Escherichia coli. Virol Sin 2015; 30:69-72. [PMID: 25628220 PMCID: PMC8200870 DOI: 10.1007/s12250-014-3527-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Taiwu Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Hui Lin
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Lu Zhang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Guorong Huang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Lei Yu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Hongyan Xiong
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
50
|
Characterization and complete genome sequence of a novel N4-like bacteriophage, pSb-1 infecting Shigella boydii. Res Microbiol 2014; 165:671-8. [PMID: 25283727 DOI: 10.1016/j.resmic.2014.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/25/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
Abstract
Shigellosis is one of major foodborne pathogens in both developed and developing countries. Although antibiotic therapy is considered an effective treatment for shigellosis, the imprudent use of antibiotics has led to the increase of multiple-antibiotic-resistant Shigella species globally. In this study, we isolated a virulent Podoviridae bacteriophage (phage), pSb-1, that infects Shigella boydii. One-step growth analysis revealed that this phage has a short latent period (15 min) and a large burst size (152.63 PFU/cell), indicating that pSb-1 has good host infectivity and effective lytic activity. The double-stranded DNA genome of pSb-1 is composed of 71,629 bp with a G + C content of 42.74%. The genome encodes 103 putative ORFs, 9 putative promoters, 21 transcriptional terminators, and one tRNA region. Genome sequence analysis of pSb-1 and comparative analysis with the homologous phage EC1-UPM, N4-like phage revealed that there is a high degree of similarity (94%, nucleotide sequence identity) between pSb-1 and EC1-UPM in 73 of the 103 ORFs of pSb-1. The results of this investigation indicate that pSb-1 is a novel virulent N4-like phage infecting S. boydii and that this phage might have potential uses against shigellosis.
Collapse
|