1
|
Zong Q, He C, Long B, Huang Q, Chen Y, Li Y, Dang Y, Cai C. Targeted Delivery of Nanoparticles to Blood Vessels for the Treatment of Atherosclerosis. Biomedicines 2024; 12:1504. [PMID: 39062077 PMCID: PMC11275173 DOI: 10.3390/biomedicines12071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis is a common form of cardiovascular disease, which is one of the most prevalent causes of death worldwide, particularly among older individuals. Surgery is the mainstay of treatment for severe stenotic lesions, though the rate of restenosis remains relatively high. Current medication therapy for atherosclerosis has limited efficacy in reversing the formation of atherosclerotic plaques. The search for new drug treatment options is imminent. Some potent medications have shown surprising therapeutic benefits in inhibiting inflammation and endothelial proliferation in plaques. Unfortunately, their use is restricted due to notable dose-dependent systemic side effects or degradation. Nevertheless, with advances in nanotechnology, an increasing number of nano-related medical applications are emerging, such as nano-drug delivery, nano-imaging, nanorobots, and so forth, which allow for restrictions on the use of novel atherosclerotic drugs to be lifted. This paper reviews new perspectives on the targeted delivery of nanoparticles to blood vessels for the treatment of atherosclerosis in both systemic and local drug delivery. In systemic drug delivery, nanoparticles inhibit drug degradation and reduce systemic toxicity through passive and active pathways. To further enhance the precise release of drugs, the localized delivery of nanoparticles can also be accomplished through blood vessel wall injection or using endovascular interventional devices coated with nanoparticles. Overall, nanotechnology holds boundless potential for the diagnosis and treatment of atherosclerotic diseases in the future.
Collapse
Affiliation(s)
- Qiushuo Zong
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Q.Z.); (Y.C.); (Y.L.)
| | - Chengyi He
- Department of Vascular Surgery, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Binbin Long
- Department of General Surgery, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan 442099, China;
| | - Qingyun Huang
- Department of Cardiothoracic Surgery, The First Hospital of Putian Affiliated to Fujian Medical University, Putian 351106, China;
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Q.Z.); (Y.C.); (Y.L.)
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Q.Z.); (Y.C.); (Y.L.)
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Q.Z.); (Y.C.); (Y.L.)
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Q.Z.); (Y.C.); (Y.L.)
| |
Collapse
|
2
|
Li D, Fan C, Li X, Zhao L. The role of macrophage polarization in vascular calcification. Biochem Biophys Res Commun 2024; 710:149863. [PMID: 38579535 DOI: 10.1016/j.bbrc.2024.149863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.
Collapse
Affiliation(s)
- Dan Li
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Chu Fan
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Xuepeng Li
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Lin Zhao
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China; Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China.
| |
Collapse
|
3
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
5
|
Palshikar MG, Palli R, Tyrell A, Maggirwar S, Schifitto G, Singh MV, Thakar J. Executable models of immune signaling pathways in HIV-associated atherosclerosis. NPJ Syst Biol Appl 2022; 8:35. [PMID: 36131068 PMCID: PMC9492768 DOI: 10.1038/s41540-022-00246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Atherosclerosis (AS)-associated cardiovascular disease is an important cause of mortality in an aging population of people living with HIV (PLWH). This elevated risk has been attributed to viral infection, anti-retroviral therapy, chronic inflammation, and lifestyle factors. However, the rates at which PLWH develop AS vary even after controlling for length of infection, treatment duration, and for lifestyle factors. To investigate the molecular signaling underlying this variation, we sequenced 9368 peripheral blood mononuclear cells (PBMCs) from eight PLWH, four of whom have atherosclerosis (AS+). Additionally, a publicly available dataset of PBMCs from persons before and after HIV infection was used to investigate the effect of acute HIV infection. To characterize dysregulation of pathways rather than just measuring enrichment, we developed the single-cell Boolean Omics Network Invariant Time Analysis (scBONITA) algorithm. scBONITA infers executable dynamic pathway models and performs a perturbation analysis to identify high impact genes. These dynamic models are used for pathway analysis and to map sequenced cells to characteristic signaling states (attractor analysis). scBONITA revealed that lipid signaling regulates cell migration into the vascular endothelium in AS+ PLWH. Pathways implicated included AGE-RAGE and PI3K-AKT signaling in CD8+ T cells, and glucagon and cAMP signaling pathways in monocytes. Attractor analysis with scBONITA facilitated the pathway-based characterization of cellular states in CD8+ T cells and monocytes. In this manner, we identify critical cell-type specific molecular mechanisms underlying HIV-associated atherosclerosis using a novel computational method.
Collapse
Affiliation(s)
- Mukta G Palshikar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Alicia Tyrell
- University of Rochester Clinical & Translational Science Institute, Rochester, USA
| | - Sanjay Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Meera V Singh
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Juilee Thakar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, USA.
| |
Collapse
|
6
|
Hu PP, Luo SX, Fan XQ, Li D, Tong XY. Macrophage-targeted nanomedicine for the diagnosis and management of atherosclerosis. Front Pharmacol 2022; 13:1000316. [PMID: 36160452 PMCID: PMC9501673 DOI: 10.3389/fphar.2022.1000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular diseases, such as myocardial infarction and stroke, which account for the highest death toll worldwide. Macrophage is the major contributor to atherosclerosis progression, and therefore, macrophage-associated pathological process is considered an extremely important target for the diagnosis and treatment of atherosclerosis. However, the existing clinical strategies still have many bottlenecks and challenges in atherosclerosis’s early detection and management. Nanomedicine, using various nanoparticles/nanocarriers for medical purposes, can effectively load therapeutic agents, significantly improve their stability and accurately deliver them to the atherosclerotic plaques. In this review, we summarized the latest progress of the macrophage-targeted nanomedicine in the diagnosis and treatment of atherosclerosis, and their potential applications and clinical benefits are also discussed.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| | - Shuang Xue Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Qing Fan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Yong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| |
Collapse
|
7
|
Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Song S, Zhang H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110660. [PMID: 35238081 DOI: 10.1002/adma.202110660] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is considered one of the primary causes of cardiovascular diseases (CVDs). Unpredictable rupture of the vulnerable atherosclerotic plaques triggers adverse cardiovascular events such as acute myocardial syndrome and even sudden cardiac death. Therefore, assessing the vulnerability of atherosclerotic plaques and early intervention are of significance in reducing CVD mortality. Nanomedicine possesses tremendous advantages in achieving the integration of the diagnosis and therapy of atherosclerotic plaques because of its magnetic, optical, thermal, and catalytic properties. Based on the pathological characteristics of vulnerable plaques, stimuli-responsive nanoplatforms and surface-functionalized nanoagents are designed and have drawn great attention for accomplishing the precise imaging and treatment of vulnerable atherosclerotic plaques due to their superior properties, such as high bioavailability, lesion-targeting specificity, on-demand cargo release, and low off-target damage. Here, the characteristics of vulnerable plaques are generalized, and some targeted strategies for boosting the accuracy of plaque vulnerability evaluation by imaging and the efficacy of plaque stabilization therapy (including antioxidant therapy, macrophage depletion therapy, regulation of lipid metabolism therapy, anti-inflammation therapy, etc.) are systematically summarized. In addition, existing challenges and prospects in this field are discussed, and it is believed to provide new thinking for the diagnosis and treatment of CVDs in the near future.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Ximin Street, Changchun, Jilin, 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Luan Y, Liu H, Luan Y, Yang Y, Yang J, Ren KD. New Insight in HDACs: Potential Therapeutic Targets for the Treatment of Atherosclerosis. Front Pharmacol 2022; 13:863677. [PMID: 35529430 PMCID: PMC9068932 DOI: 10.3389/fphar.2022.863677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS) features include progressive hardening and reduced elasticity of arteries. AS is the leading cause of morbidity and mortality. An increasing amount of evidence showed that epigenetic modifications on genes serve are a main cause of several diseases, including AS. Histone deacetylases (HDACs) promote the deacetylation at lysine residues, thereby condensing the chromatin structures and further inhibiting the transcription of downstream genes. HDACs widely affect various physiological and pathological processes through transcriptional regulation or deacetylation of other non-histone proteins. In recent years, the role of HDACs in vascular systems has been revealed, and their effects on atherosclerosis have been widely reported. In this review, we discuss the members of HDACs in vascular systems, determine the diverse roles of HDACs in AS, and reveal the effects of HDAC inhibitors on AS progression. We provide new insights into the potential of HDAC inhibitors as drugs for AS treatment.
Collapse
Affiliation(s)
- Yi Luan
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ying Luan
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Dasagrandhi D, Muthuswamy A, Swaminathan JK. Atherosclerosis: nexus of vascular dynamics and cellular cross talks. Mol Cell Biochem 2022; 477:571-584. [PMID: 34845570 DOI: 10.1007/s11010-021-04307-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide. Atherosclerosis is the underlying pathology behind CVDs. Atherosclerosis is manifested predominantly by lipid deposition, plaque formation, and inflammation in vascular intima. Initiation and progression of plaque require many years. With aging, atherosclerotic plaques become vulnerable. Localization of these plaques in the coronary artery leads to myocardial infarction. A complete understanding of the pathophysiology of this multifaceted disease is necessary to achieve the clinical goal to provide early diagnosis and the best therapeutics. The triggering factors of atherosclerosis are biomechanical forces, hyperlipidemia, and chronic inflammatory response. The current review focuses on crucial determinants involved in the disease, such as location, hemodynamic factors, oxidation of low-density lipoproteins, and the role of endothelial cells, vascular smooth muscle cells, and immune cells, and better therapeutic targets.
Collapse
Affiliation(s)
- Divya Dasagrandhi
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Anusuyadevi Muthuswamy
- Molecular Neurogerontology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Jayachandran Kesavan Swaminathan
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
10
|
Cho SY, Koman VB, Gong X, Moon SJ, Gordiichuk P, Strano MS. Nanosensor Chemical Cytometry for Characterizing the Efflux Heterogeneity of Nitric Oxide from Macrophages. ACS NANO 2021; 15:13683-13691. [PMID: 34398614 DOI: 10.1021/acsnano.1c04958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Macrophages are a critical part of the human immune response, and their collective heterogeneity is implicated in disease progression and prevention. A nondestructive, label-free tool does not currently exist for profiling the dynamic, antigenic responses of single macrophages in a collection to correlate with specific molecular expression and correlated biophysical properties at the cellular level, despite the potential for diagnosis and therapeutics. Herein, we develop a nanosensor chemical cytometry (NCC) that can profile the heterogeneity of inducible nitric oxide synthase (iNOS) responses from macrophage populations. By integrating a near-infrared (nIR) fluorescent nanosensor array and collagen layer with microfluidics, the cellular lensing effect of the macrophage was utilized to characterize both nitric oxide (NO) efflux and refractive index (RI) changes at a single-cell level. Using a parallel, multichannel approach, distinct iNOS heterogeneities of macrophages can be monitored at an attomolar (10-18 mol) sensitivity in a nondestructive and real-time manner with a throughput of exceeding the 200 cells/frame. We demonstrate that estimated mean NO efflux rates of macrophage populations are elevated from 342 (σ = 199) to 464 (σ = 206) attomol/cell·hr with a 3% larger increase in the heterogeneity, and estimated RI of macrophage decrease from 1.366 (σ = 0.015) to 1.359 (σ = 0.009) with trimodal subpopulations under lipopolysaccharide (LPS) activation. These measured values are also in good agreement with Griess assay results and previously reported measurements. This work provides an efficient strategy for single-cell analysis of macrophage populations for cellular manufacturing and biopharmaceutical engineering.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Pavlo Gordiichuk
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Sharma A, Choi JSY, Stefanovic N, Al-Sharea A, Simpson DS, Mukhamedova N, Jandeleit-Dahm K, Murphy AJ, Sviridov D, Vince JE, Ritchie RH, de Haan JB. Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis. Diabetes 2021; 70:772-787. [PMID: 33323396 DOI: 10.2337/db20-0357] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022]
Abstract
Low-grade persistent inflammation is a feature of diabetes-driven vascular complications, in particular activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome to trigger the maturation and release of the inflammatory cytokine interleukin-1β (IL-1β). We investigated whether inhibiting the NLRP3 inflammasome, through the use of the specific small-molecule NLRP3 inhibitor MCC950, could reduce inflammation, improve vascular function, and protect against diabetes-associated atherosclerosis in the streptozotocin-induced diabetic apolipoprotein E-knockout mouse. Diabetes led to an approximately fourfold increase in atherosclerotic lesions throughout the aorta, which were significantly attenuated with MCC950 (P < 0.001). This reduction in lesions was associated with decreased monocyte-macrophage content, reduced necrotic core, attenuated inflammatory gene expression (IL-1β, tumor necrosis factor-α, intracellular adhesion molecule 1, and MCP-1; P < 0.05), and reduced oxidative stress, while maintaining fibrous cap thickness. Additionally, vascular function was improved in diabetic vessels of mice treated with MCC950 (P < 0.05). In a range of cell lines (murine bone marrow-derived macrophages, human monocytic THP-1 cells, phorbol 12-myristate 13-acetate-differentiated human macrophages, and aortic smooth muscle cells from humans with diabetes), MCC950 significantly reduced IL-1β and/or caspase-1 secretion and attenuated leukocyte-smooth muscle cell interactions under high glucose or lipopolysaccharide conditions. In summary, MCC950 reduces plaque development, promotes plaque stability, and improves vascular function, suggesting that targeting NLRP3-mediated inflammation is a novel therapeutic strategy to improve diabetes-associated vascular disease.
Collapse
Affiliation(s)
- Arpeeta Sharma
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Judy S Y Choi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nada Stefanovic
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel S Simpson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James E Vince
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
- Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Ali HR, Selim SA, Aili D. Effects of macrophage polarization on gold nanoparticle-assisted plasmonic photothermal therapy. RSC Adv 2021; 11:25047-25056. [PMID: 35481041 PMCID: PMC9037012 DOI: 10.1039/d1ra03671h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor associated macrophages (TAM) are key pathogenic factors in neoplastic diseases. They are known to have plasticity and can polarize into two opposing phenotypes, including the tumoricidal M1 and the protumoral M2 phenotypes with high prevalence of M2-phentoypes in patients with poor prognosis. Strategies for targeting M2-TAM may consequently increase the efficacy of therapeutic strategies for cancer treatment. Gold nanorod-assisted plasmonic photothermal therapy (PPTT) has emerged as a promising treatment for cancer but the effects of macrophage polarization parameters in the performance of this new treatment modality is still unknown. Herein, human monocytic THP-1 cells were polarized into two opposite phenotypic macrophages (M1-TAM and M2-TAM) and their response to PPTT was examined. M2-TAM exhibits a three-fold increase in AuNP uptake compared to M1-TAM. Laser irradiation results in selective killing of pro-tumoral M2-TAM after treatment with AuNPs with limited effects on anti-tumoral M1-TAM. A positive correlation between the expression of CD206 marker and the AuNP uptake may indicate the role of CD206 in facilitating AuNP uptake. Our findings also suggest that the differences in AuNP avidity and uptake between the M1-TAM and M2-TAM phenotypes may be the rationale behind the effectiveness of PPTT in the treatment of solid tumors. A preferential uptake of gold nanoparticles by macrophages with a protumoral M2 phenotype result in efficient killing upon laser irradiation while keeping M1 phenotypes relatively undamaged.![]()
Collapse
Affiliation(s)
- Hala R. Ali
- Department of Bacteriology and Immunology
- Animal Health Research Institute (AHRI)
- Agriculture Research Center (ARC)
- Egypt
| | - Salah A. Selim
- Department of Microbiology
- Faculty of Veterinary Medicine
- Cairo University
- Giza
- Egypt
| | - Daniel Aili
- Laboratory of Molecular Materials
- Division of Biophysics and Bioengineering
- Department of Physics, Chemistry and Biology
- Linköping University
- SE-581 83 Linköping
| |
Collapse
|
13
|
Gubitosa J, Rizzi V, Fini P, Laurenzana A, Fibbi G, Veiga-Villauriz C, Fanelli F, Fracassi F, Onzo A, Bianco G, Gaeta C, Guerrieri A, Cosma P. Biomolecules from snail mucus (Helix aspersa) conjugated gold nanoparticles, exhibiting potential wound healing and anti-inflammatory activity. SOFT MATTER 2020; 16:10876-10888. [PMID: 33225330 DOI: 10.1039/d0sm01638a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, for the first time, snail slime from garden snails "Helix Aspersa Müller", has been used to induce the formation of eco-friendly gold nanoparticles (AuNPs-SS) suitable for biomedical applications. An AuNPs-SS comprehensive investigation was performed and AuNPs with an average particle size of 14 ± 6 nm were observed, stabilized by a slime snail-based organic layer. Indeed, as recognized in high-resolution MALDI-MS analyses, and corroborated by FESEM, UV-Vis, ATR-FTIR, and XPS results, it was possible to assess the main presence of peptides and amino acids as the main components of the slime, that, combined with the AuNPs confers on them interesting properties. More specifically, we tested, in vitro, the AuNPs-SS safety in human keratinocytes and their potential effect on wound healing as well as their anti-inflammatory properties in murine macrophages. Moreover, the AuNPs-SS treatment resulted in a significant increase of the urokinase-type plasminogen activator receptor (uPAR), essential for keratinocyte adhesion, spreading, and migration, together with the reduction of LPS-induced IL1-β and IL-6 cytokine levels, and completely abrogated the synthesis of inducible nitric oxide synthase (iNOS).
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4 - 70126 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ballester M, Quintanilla R, Ortega FJ, Serrano JCE, Cassanyé A, Rodríguez-Palmero M, Moreno-Muñoz JA, Portero-Otin M, Tibau J. Dietary intake of bioactive ingredients impacts liver and adipose tissue transcriptomes in a porcine model of prepubertal early obesity. Sci Rep 2020; 10:5375. [PMID: 32214182 PMCID: PMC7096439 DOI: 10.1038/s41598-020-62320-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Global prevalence of obesity has increased to epidemic proportions over the past 40 years, with childhood obesity reaching alarming rates. In this study, we determined changes in liver and adipose tissue transcriptomes of a porcine model for prepubertal early obesity induced by a high-calorie diet and supplemented with bioactive ingredients. A total of 43 nine-weeks-old animals distributed in four pens were fed with four different dietary treatments for 10 weeks: a conventional diet; a western-type diet; and a western-type diet with Bifidobacterium breve and rice hydrolysate, either adding or not omega-3 fatty acids. Animals fed a western-type diet increased body weight and total fat content and exhibited elevated serum concentrations of cholesterol, whereas animals supplemented with bioactive ingredients showed lower body weight gain and tended to accumulate less fat. An RNA-seq experiment was performed with a total of 20 animals (five per group). Differential expression analyses revealed an increase in lipogenesis, cholesterogenesis and inflammatory processes in animals on the western-type diet while the supplementation with bioactive ingredients induced fatty acid oxidation and cholesterol catabolism, and decreased adipogenesis and inflammation. These results reveal molecular mechanisms underlying the beneficial effects of bioactive ingredient supplementation in an obese pig model.
Collapse
Affiliation(s)
- Maria Ballester
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain.
| | - Raquel Quintanilla
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José C E Serrano
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, 25196, Lleida, Spain
| | - Anna Cassanyé
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, 25196, Lleida, Spain
| | | | | | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, 25196, Lleida, Spain
| | - Joan Tibau
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Finca Camps i Armet, 17121, Monells, Spain
| |
Collapse
|
15
|
Zhang Y, Cartland SP, Henriquez R, Patel S, Gammelgaard B, Flouda K, Hawkins CL, Rayner BS. Selenomethionine supplementation reduces lesion burden, improves vessel function and modulates the inflammatory response within the setting of atherosclerosis. Redox Biol 2019; 29:101409. [PMID: 31926617 PMCID: PMC6928357 DOI: 10.1016/j.redox.2019.101409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature characterised by the infiltration of activated neutrophils and macrophages at sites of damage within the vessel wall, which contributes to lesion formation and plaque progression. Selenomethionine (SeMet) is an organic form of selenium (Se), an essential trace element that functions in the regulation of the immune response by both bolstering the endogenous thioredoxin and glutathione antioxidant defence systems and by directly scavenging damaging oxidant species. This study evaluated the effect of dietary SeMet supplementation within a high fat diet fed apolipoprotein E deficient (ApoE−/-) mouse model of atherosclerosis. Dietary supplementation with SeMet (2 mg/kg) increased the tissue concentration of Se, and the expression and activity of glutathione peroxidase, compared to non-supplemented controls. Supplementation with SeMet significantly reduced atherosclerotic plaque formation in mouse aortae, resulted in a more stable lesion phenotype and improved vessel function. Concurrent with these results, SeMet supplementation decreased lesion accumulation of M1 inflammatory type macrophages, and decreased the extent of extracellular trap release from phorbol myristate acetate (PMA)-stimulated mouse bone marrow-derived cells. Importantly, these latter results were replicated within ex-vivo experiments on cultured neutrophils isolated from acute coronary syndrome patients, indicating the ability of SeMet to alter the acute inflammatory response within a clinically-relevant setting. Together, these data highlight the potential beneficial effect of SeMet supplementation as a therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Yunjia Zhang
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Siân P Cartland
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Rodney Henriquez
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Benjamin S Rayner
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
van Kuijk K, Kuppe C, Betsholtz C, Vanlandewijck M, Kramann R, Sluimer JC. Heterogeneity and plasticity in healthy and atherosclerotic vasculature explored by single-cell sequencing. Cardiovasc Res 2019; 115:1705-1715. [PMID: 31350876 PMCID: PMC6873093 DOI: 10.1093/cvr/cvz185] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular characteristics and their adjustment to a state of disease have become more evident due to recent advances in imaging, fluorescent reporter mice, and whole genome RNA sequencing. The uncovered cellular heterogeneity and/or plasticity potentially complicates experimental studies and clinical applications, as markers derived from whole tissue 'bulk' sequencing is unable to yield a subtype transcriptome and specific markers. Here, we propose definitions on heterogeneity and plasticity, discuss current knowledge thereof in the vasculature and how this may be improved by single-cell sequencing (SCS). SCS is emerging as an emerging technique, enabling researchers to investigate different cell populations in more depth than ever before. Cell selection methods, e.g. flow assisted cell sorting, and the quantity of cells can influence the choice of SCS method. Smart-Seq2 offers sequencing of the complete mRNA molecule on a low quantity of cells, while Drop-seq is possible on large numbers of cells on a more superficial level. SCS has given more insight in heterogeneity in healthy vasculature, where it revealed that zonation is crucial in gene expression profiles among the anatomical axis. In diseased vasculature, this heterogeneity seems even more prominent with discovery of new immune subsets in atherosclerosis as proof. Vascular smooth muscle cells and mesenchymal cells also share these plastic characteristics with the ability to up-regulate markers linked to stem cells, such as Sca-1 or CD34. Current SCS studies show some limitations to the number of replicates, quantity of cells used, or the loss of spatial information. Bioinformatical tools could give some more insight in current datasets, making use of pseudo-time analysis or RNA velocity to investigate cell differentiation or polarization. In this review, we discuss the use of SCS in unravelling heterogeneity in the vasculature, its current limitations and promising future applications.
Collapse
Affiliation(s)
- Kim van Kuijk
- Pathology Department, CARIM School for Cardiovascular Diseases, MUMC Maastricht, P. Debyelaan 25, Maastricht, the Netherlands
| | | | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Karolinska Institute Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Integrated Cardio Metabolic Centre, Karolinska Institute Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Judith C Sluimer
- Pathology Department, CARIM School for Cardiovascular Diseases, MUMC Maastricht, P. Debyelaan 25, Maastricht, the Netherlands
- British Heart Foundation Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Biological profile of monocyte-derived macrophages in coronary heart disease patients: implications for plaque morphology. Sci Rep 2019; 9:8680. [PMID: 31213640 PMCID: PMC6581961 DOI: 10.1038/s41598-019-44847-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of a macrophage phenotype in atherosclerotic plaque may drive its progression and/or instability. Macrophages from coronary plaques are not available, and monocyte-derived macrophages (MDMs) are usually considered as a surrogate. We compared the MDM profile obtained from coronary artery disease (CAD) patients and healthy subjects, and we evaluated the association between CAD MDM profile and in vivo coronary plaque characteristics assessed by optical coherence tomography (OCT). At morphological analysis, MDMs of CAD patients had a higher prevalence of round than spindle cells, whereas in healthy subjects the prevalence of the two morphotypes was similar. Compared to healthy subjects, MDMs of CAD patients had reduced efferocytosis, lower transglutaminase-2, CD206 and CD163 receptor levels, and higher tissue factor (TF) levels. At OCT, patients with a higher prevalence of round MDMs showed more frequently a lipid-rich plaque, a thin-cap fibroatheroma, a greater intra-plaque macrophage accumulation, and a ruptured plaque. The MDM efferocytosis correlated with minimal lumen area, and TF levels in MDMs correlated with the presence of ruptured plaque. MDMs obtained from CAD patients are characterized by a morpho-phenotypic heterogeneity with a prevalence of round cells, showing pro-inflammatory and pro-thrombotic properties. The MDM profile allows identifying CAD patients at high risk.
Collapse
|
18
|
Synergistic protective effects of a statin and an angiotensin receptor blocker for initiation and progression of atherosclerosis. PLoS One 2019; 14:e0215604. [PMID: 31050669 PMCID: PMC6499436 DOI: 10.1371/journal.pone.0215604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Aim Although the atheroprotective effects of statins and angiotensin II receptor blockers (ARBs) are well-established, little is known about their additive effects, especially during the early period of atherosclerosis. The aim of this study was to investigate whether combination of a statin and an ARB exerts synergistic anti-atherosclerotic effects, and to elucidate the mechanisms of combined effects. Methods Atherosclerotic plaques were developed in arteries of 23 rabbits using a high-cholesterol diet (HCD) and intra-arterial balloon inflation. Rabbits received one of five different treatment strategies for 4 weeks: positive control [n = 5, HCD]; negative control [n = 3, regular chow diet]; statin [n = 5, HCD and rosuvastatin 10 mg]; ARB [n = 5, HCD and olmesartan 20 mg]; and combination [n = 5, HCD and statin+ARB]. Results Histological analysis demonstrated that development of atherosclerotic plaques was inhibited more in combination group than in statin group (P = 0.001). Although macrophage infiltration identified by RAM11 staining was not significantly different between combination and individual treatment groups (31.76±4.84% [combination] vs. 38.11±6.53% [statin; P = 0.35] or 35.14±2.87% [ARB; P = 0.62]), the relative proportion of pro-inflammatory M1-macrophages was significantly lower in combination group than in ARB group (3.20±0.47% vs. 5.20±0.78%, P = 0.02). Furthermore, M2-macrophage polarization was higher in combination group than in statin group (17.70±3.04% vs. 7.86±0.68%, P = 0.001). Conclusion Combination treatment with a statin and an ARB produced synergistic protective effects for atherosclerosis initiation and progression, which may be attributed to modulation of macrophage characteristics in the early period of atherosclerosis.
Collapse
|
19
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Lin JD, Nishi H, Poles J, Niu X, Mccauley C, Rahman K, Brown EJ, Yeung ST, Vozhilla N, Weinstock A, Ramsey SA, Fisher EA, Loke P. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 2019; 4:124574. [PMID: 30830865 PMCID: PMC6478411 DOI: 10.1172/jci.insight.124574] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell-like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.
Collapse
Affiliation(s)
| | - Hitoo Nishi
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | - Xiang Niu
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Karishma Rahman
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Emily J. Brown
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | - Ada Weinstock
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Stephen A. Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Edward A. Fisher
- Department of Microbiology and
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
21
|
Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin 2018; 39:1249-1258. [PMID: 29323337 DOI: 10.1038/aps.2017.140] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is an autoimmune disease caused by self- and non-self-antigens contributing to excessive activation of T and B cell immune responses. These responses further aggravate vascular infiammation and promote progression of atherosclerosis and vulnerability to plaques via releasing pro-infiammatory cytokines. Regulatory T cells (Tregs) as the major immunoregulatory cells, in particular, induce and maintain immune homeostasis and tolerance by suppressing the immune responses of various cells such as T and B cells, natural killer (NK) cells, monocytes, and dendritic cells (DCs), as well as by secreting inhibitory cytokines interleukin (IL)-10, IL-35 and transcription growth factor β (TGF-β) in both physiological and pathological states. Numerous evidence demonstrates that reduced numbers and dysfunction of Treg may be involveved in atherosclerosis pathogenesis. Increasing or restoring the numbers and improving the immunosuppressive capacity of Tregs may serve as a fundamental immunotherapy to treat atherosclerotic cardiovascular diseases. In this article, we briefiy present current knowledge of Treg subsets, summarize the relationship between Tregs and atherosclerosis development, and discuss the possibilities of regulating Tregs for prevention of atherosclerosis pathogenesis and enhancement of plaque stability. Although the exact molecular mechanisms of Treg-mediated protection against atherosclerosis remain to be elucidated, the strategies for targeting the regulation of Tregs may provide specific and significant approaches for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
|
22
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018. [PMID: 29507865 DOI: 10.1155/2018/8917804]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in "distant" pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
23
|
Boles U, Johansson A, Wiklund U, Sharif Z, David S, McGrory S, Henein MY. Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis. Int J Mol Sci 2018; 19:E260. [PMID: 29337902 PMCID: PMC5796206 DOI: 10.3390/ijms19010260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Coronary artery ectasia (CAE) is a rare disorder commonly associated with additional features of atherosclerosis. In the present study, we aimed to examine the systemic immune-inflammatory response that might associate CAE. METHODS Plasma samples were obtained from 16 patients with coronary artery ectasia (mean age 64.9 ± 7.3 years, 6 female), 69 patients with coronary artery disease (CAD) and angiographic evidence for atherosclerosis (age 64.5 ± 8.7 years, 41 female), and 140 controls (mean age 58.6 ± 4.1 years, 40 female) with normal coronary arteries. Samples were analyzed at Umeå University Biochemistry Laboratory, Sweden, using the V-PLEX Pro-Inflammatory Panel 1 (human) Kit. Statistically significant differences (p < 0.05) between patient groups and controls were determined using Mann-Whitney U-tests. RESULTS The CAE patients had significantly higher plasma levels of INF-γ, TNF-α, IL-1β, and IL-8 (p = 0.007, 0.01, 0.001, and 0.002, respectively), and lower levels of IL-2 and IL-4 (p < 0.001 for both) compared to CAD patients and controls. The plasma levels of IL-10, IL-12p, and IL-13 were not different between the three groups. None of these markers could differentiate between patients with pure (n = 6) and mixed with minimal atherosclerosis (n = 10) CAE. CONCLUSIONS These results indicate an enhanced systemic pro-inflammatory response in CAE. The profile of this response indicates activation of macrophages through a pathway and trigger different from those of atherosclerosis immune inflammatory response.
Collapse
Affiliation(s)
- Usama Boles
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden.
- Cardiology Department, Letterkenny University Hospital, Letterkenny, F92 AE81, Co. Donegal, Ireland.
| | - Anders Johansson
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden.
- Molecular Periodontology and Odontology, Umeå University, 901 87 Umeå, Sweden.
| | - Urban Wiklund
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden.
| | - Zain Sharif
- Cardiology Department, Letterkenny University Hospital, Letterkenny, F92 AE81, Co. Donegal, Ireland.
| | - Santhosh David
- Cardiology Department, Letterkenny University Hospital, Letterkenny, F92 AE81, Co. Donegal, Ireland.
| | - Siobhan McGrory
- Cardiology Department, Letterkenny University Hospital, Letterkenny, F92 AE81, Co. Donegal, Ireland.
| | - Michael Y Henein
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden.
- Molecular & Clinical Sciences Research Institute, St. George University, London SW17 0RE, UK.
| |
Collapse
|
24
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018; 2018:8917804. [PMID: 29507865 PMCID: PMC5821995 DOI: 10.1155/2018/8917804] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
25
|
CD80 Is Upregulated in a Mouse Model with Shear Stress-Induced Atherosclerosis and Allows for Evaluating CD80-Targeting PET Tracers. Mol Imaging Biol 2017; 19:90-99. [PMID: 27430577 DOI: 10.1007/s11307-016-0987-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE A shear stress-induced atherosclerosis mouse model was characterized for its expression of inflammation markers with focus on CD80. With this model, we evaluated two positron emission tomography (PET) radiotracers targeting CD80 as well as 2-deoxy-2-[18F]fluoro-D-mannose ([18F]FDM) in comparison with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). PROCEDURE A flow constrictive cuff implanted around the common carotid artery in apolipoprotein E knockout mice resulted in plaque formation. CD80 expression levels and plaque histopathology were evaluated. Serial PET/X-ray computed tomography scans were performed to follow inflammation. RESULTS Plaque formation with increased levels of CD80 was observed. Histologically, plaques presented macrophage-rich and large necrotic areas covered by a thin fibrous cap. Of the CD80-specific tracers, one displayed an increased uptake in plaques by PET. Both [18F]FDG and [18F]FDM accumulated in atherosclerotic plaques. CONCLUSION This mouse model presented, similar to humans, an increased expression of CD80 which renders it suitable for non-invasively targeting CD80-positive immune cells and evaluating CD80-specific radiotracers.
Collapse
|
26
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
27
|
Barbonetti A, Bisogno T, Battista N, Piscitelli F, Micillo A, Francavilla S, Maccarrone M, Francavilla F. 2-arachidonoylglycerol levels are increased in leukocytospermia and correlate with seminal macrophages. Andrology 2016; 5:87-94. [DOI: 10.1111/andr.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- A. Barbonetti
- San Raffaele Sulmona Institute; Sulmona Italy
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| | - T. Bisogno
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; National Research Council; Pozzuoli Italy
- Department of Medicine; Campus Bio-Medico University of Rome; Rome Italy
| | - N. Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Teramo Italy
| | - F. Piscitelli
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; National Research Council; Pozzuoli Italy
| | - A. Micillo
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| | - S. Francavilla
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| | - M. Maccarrone
- Department of Medicine; Campus Bio-Medico University of Rome; Rome Italy
| | - F. Francavilla
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| |
Collapse
|
28
|
Percutaneous Transluminal Angioplasty in Patients with Peripheral Arterial Disease Does Not Affect Circulating Monocyte Subpopulations. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2708957. [PMID: 27818999 PMCID: PMC5081453 DOI: 10.1155/2016/2708957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/30/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Monocytes are mononuclear cells characterized by distinct morphology and expression of CD14 and CD16 surface receptors. Classical, quiescent monocytes are positive for CD14 (lipopolysaccharide receptor) but do not express Fc gamma receptor III (CD16). Intermediate monocytes coexpress CD16 and CD14. Nonclassical monocytes with low expression of CD14 represent mature macrophage-like monocytes. Monocyte behavior in peripheral arterial disease (PAD) and during vessel wall directed treatment is not well defined. This observation study aimed at monitoring of acute changes in monocyte subpopulations during percutaneous transluminal angioplasty (PTA) in PAD patients. Patients with Rutherford 3 and 4 PAD with no signs of inflammatory process underwent PTA of iliac, femoral, or popliteal segments. Flow cytometry for CD14, CD16, HLA-DR, CD11b, CD11c, and CD45RA antigens allowed characterization of monocyte subpopulations in blood sampled before and after PTA (direct angioplasty catheter sampling). Patients were clinically followed up for 12 months. All 61 enrolled patients completed 12-month follow-up. Target vessel failure occurred in 12 patients. While absolute counts of monocyte were significantly lower after PTA, only subtle monocyte activation after PTA (CD45RA and β-integrins) occurred. None of the monocyte parameters correlated with long-term adverse clinical outcome. Changes in absolute monocyte counts and subtle changes towards an activation phenotype after PTA may reflect local cell adhesion phenomenon in patients with Rutherford 3 or 4 peripheral arterial disease.
Collapse
|
29
|
Eligini S, Fiorelli S, Tremoli E, Colli S. Inhibition of transglutaminase 2 reduces efferocytosis in human macrophages: Role of CD14 and SR-AI receptors. Nutr Metab Cardiovasc Dis 2016; 26:922-930. [PMID: 27378395 DOI: 10.1016/j.numecd.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/25/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Transglutaminase 2 (TGM2), a member of the transglutaminase family of enzymes, is a multifunctional protein involved in numerous events spanning from cell differentiation, to signal transduction, apoptosis, and wound healing. It is expressed in a variety of cells, macrophages included. Macrophage TGM2 promotes the clearance of apoptotic cells (efferocytosis) and emerging evidence suggests that defective efferocytosis contributes to the consequences of inflammation-associated diseases, including atherosclerotic lesion progression and its sequelae. Of interest, active TGM2 identified in human atherosclerotic lesions plays critical roles in plaque stability through effects on matrix cross-linking and TGFβ activity. This study explores the mechanisms by which TGM2 controls efferocytosis in human macrophages. METHODS AND RESULTS Herein we show that TGM2 increases progressively during monocyte differentiation towards macrophages and controls their efferocytic potential as well as morphology and viability. Two experimental approaches that took advantage of the inhibition of TGM2 activity and protein silencing give proof that TGM2 reduction significantly impairs macrophage efferocytosis. Among the mechanisms involved we highlighted a role of the receptors CD14 and SR-AI whose levels were markedly reduced by TGM2 inhibition. Conversely, CD36 receptor and αvβ3 integrin levels were not influenced. Of note, lipid accumulation and IL-10 secretion were reduced in macrophages displaying defective efferocytosis. CONCLUSION Overall, our data define a crucial role of TGM2 activity during macrophage differentiation via mechanisms involving CD14 and SR-AI receptors and show that TGM2 inhibition triggers a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- S Eligini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy.
| | - S Fiorelli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - E Tremoli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - S Colli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
30
|
Qie Y, Yuan H, von Roemeling CA, Chen Y, Liu X, Shih KD, Knight JA, Tun HW, Wharen RE, Jiang W, Kim BY. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 2016; 6:26269. [PMID: 27197045 PMCID: PMC4872535 DOI: 10.1038/srep26269] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022] Open
Abstract
Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.
Collapse
Affiliation(s)
- Yaqing Qie
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Hengfeng Yuan
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
- Department of Orthopedics, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui, Shanghai, China
| | - Christina A. von Roemeling
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
- Mayo Graduate School, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN, 55902, USA
| | - Yuanxin Chen
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Xiujie Liu
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Kevin D. Shih
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Joshua A. Knight
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Han W. Tun
- Department of Hematology/Oncology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
- Department of Cancer Biology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Robert E. Wharen
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Wen Jiang
- Department of Hematology/Oncology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Betty Y.S. Kim
- Department of Neurosurgery, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
- Department of Cancer Biology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
- Department of Neuroscience, Mayo Clinic College of Medicine, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| |
Collapse
|
31
|
Abstract
Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis is provided, including peptides designed for cellular targets such as endothelial cells, monocytes, and macrophages as well as for plaque components such as collagen and fibrin. An emphasis is placed on recent advances in multimodal strategies and a discussion on current challenges and barriers for clinical applicability is presented.
Collapse
Affiliation(s)
- Eun Ji Chung
- University of Southern California, Los Angeles 90089-1111, CA, USA
| |
Collapse
|
32
|
Ding Y, Chen J, Cui G, Wei Y, Lu C, Wang L, Diao H. Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. Biochem Biophys Res Commun 2016; 471:5-9. [PMID: 26828266 DOI: 10.1016/j.bbrc.2016.01.142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Yulong Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Yingfeng Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Chong Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China.
| |
Collapse
|
33
|
Gregersen I, Holm S, Dahl TB, Halvorsen B, Aukrust P. A focus on inflammation as a major risk factor for atherosclerotic cardiovascular diseases. Expert Rev Cardiovasc Ther 2015; 14:391-403. [PMID: 26641944 DOI: 10.1586/14779072.2016.1128828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a dynamic, pathogenic process in the artery wall, with potential adverse outcome for the host. Acute events such as myocardial infarction and ischemic stroke often result from rupture of unstable atherosclerotic lesions. Understanding the underlying pathology of such lesions and why and when they rupture, is therefore of great interest for the development of new diagnostics and treatment. Inflammation is one of the key drivers of atherosclerotic plaque development and the interplay between inflammation and lipids constitutes the hallmark of atherosclerotic disease. This review summarizes the role of inflammation in atherosclerosis and presents some of the latest discoveries as well as unmet needs regarding the role of inflammation as major risk factor in atherosclerotic disease.
Collapse
Affiliation(s)
- Ida Gregersen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Sverre Holm
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,c Hospital for Rheumatic Diseases , Lillehammer , Norway
| | - Tuva B Dahl
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Bente Halvorsen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway
| | - Pål Aukrust
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway.,e Section of Clinical Immunology and Infectious Diseases , Oslo University Hospital Rikshospitalet , Oslo , Norway
| |
Collapse
|
34
|
Chung EJ, Tirrell M. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis. Adv Healthc Mater 2015; 4:2408-22. [PMID: 26085109 PMCID: PMC4760622 DOI: 10.1002/adhm.201500126] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Indexed: 01/03/2023]
Abstract
Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows the easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this Progress Report, the pathogenesis of atherosclerosis and the damage caused to vascular tissue are described, as well as the current diagnostic and treatment options. An overview of targeted strategies using self-assembling nanoparticles is provided, including liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, an overview is given of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles.
Collapse
Affiliation(s)
- Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, 5747 S.
Ellis Ave., Chicago, IL, 60637, USA
| | - Matthew Tirrell
- Institute for Molecular Engineering, University of Chicago, 5747 S.
Ellis Ave., Chicago, IL, 60637, USA
| |
Collapse
|
35
|
Lee JS, Bukhari SNA, Fauzi NM. Effects of chalcone derivatives on players of the immune system. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4761-78. [PMID: 26316713 PMCID: PMC4548720 DOI: 10.2147/dddt.s86242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immune system is the defense mechanism in living organisms that protects against the invasion of foreign materials, microorganisms, and pathogens. It involves multiple organs and tissues in human body, such as lymph nodes, spleen, and mucosa-associated lymphoid tissues. However, the execution of immune activities depends on a number of specific cell types, such as B cells, T cells, macrophages, and granulocytes, which provide various immune responses against pathogens. In addition to normal physiological functions, abnormal proliferation, migration, and differentiation of these cells (in response to various chemical stimuli produced by invading pathogens) have been associated with several pathological disorders. The unwanted conditions related to these cells have made them prominent targets in the development of new therapeutic interventions against various pathological implications, such as atherosclerosis and autoimmune diseases. Chalcone derivatives exhibit a broad spectrum of pharmacological activities, such as immunomodulation, as well as anti-inflammatory, anticancer, antiviral, and antimicrobial properties. Many studies have been conducted to determine their inhibitory or stimulatory activities in immune cells, and the findings are of significance to provide a new direction for subsequent research. This review highlights the effects of chalcone derivatives in different types of immune cells.
Collapse
Affiliation(s)
- Jian Sian Lee
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Tivesten Å, Pinthus JH, Clarke N, Duivenvoorden W, Nilsson J. Cardiovascular risk with androgen deprivation therapy for prostate cancer: potential mechanisms. Urol Oncol 2015; 33:464-75. [PMID: 26141678 DOI: 10.1016/j.urolonc.2015.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
Androgen deprivation therapy (ADT) is frequently used for the treatment of advanced prostate cancer. ADT is associated with numerous side effects related to its mode of action, namely the suppression of testosterone to castrate levels. Recently, several large retrospective studies have also reported an increased risk of diabetes and cardiovascular disease in men receiving ADT, although these risks have not been confirmed by prospective randomized trials. We review the literature to consider the risk of cardiovascular disease with different forms of ADT and examine in detail potential mechanisms by which any such risk could be mediated. Mechanisms discussed include the metabolic syndrome resulting from low testosterone level and the potential roles of testosterone flare, gonadotropin-releasing hormone receptors outside the pituitary gland, and altered levels of follicle-stimulating hormone. Finally, the clinical implications for men prescribed ADT for the treatment of advanced prostate cancer are considered.
Collapse
Affiliation(s)
- Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital, Göteborg, Sweden.
| | - Jehonathan H Pinthus
- Department of Surgery, Division of Urology, McMaster University, Hamilton, Ontario, Canada
| | - Noel Clarke
- Department of Urology, The Christie and Salford Royal Hospitals, Manchester, UK
| | | | - Jan Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
37
|
Habib A, Polavarapu R, Karmali V, Guo L, Van Dam R, Cheng Q, Akahori H, Saeed O, Nakano M, Pachura K, Hong CC, Shin E, Kolodgie F, Virmani R, Finn AV. Hepcidin-ferroportin axis controls toll-like receptor 4 dependent macrophage inflammatory responses in human atherosclerotic plaques. Atherosclerosis 2015; 241:692-700. [PMID: 26125411 DOI: 10.1016/j.atherosclerosis.2015.06.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Toll-like Receptor 4 (TLR4) is implicated in modulating inflammatory cytokines though its role in atherosclerosis remains uncertain. We have recently described a non-foam cell macrophage phenotype driven by ingestion of hemoglobin:haptoglobin complexes (HH), via the scavenger receptor CD163, characterized by reduced inflammatory cytokine production. In this study, we examined the role of iron metabolism in modulating TLR4 signaling in these cells. METHODS AND RESULTS Areas in human atherosclerotic plaque with non-foam cell, CD163 positive macrophages demonstrated reduced expression of tumor necrosis factor alpha (TNF-α) and interferon-beta (INF-β) compared to foam cells. Human macrophages differentiated in hemoglobin:haptoglobin (HH) complexes expressed the CD163 positive non-foam cell phenotype and demonstrated significantly less TNF-α and INF-β compared to control macrophages when exposed to oxidized LDL (oxLDL) or lipopolysaccharide (LPS). LPS stimulated expression of TNF-α and INF-β could be restored in HH macrophages by pretreatment with hepcidin, an endogenous suppressor of ferroportin1 (FPN), or by genetic suppression of FPN in macrophages derived from myeloid specific FPN knockout mice. LPS stimulated control macrophages demonstrated increase in TLR4 trafficking to lipid rafts; this response was suppressed in HH macrophages but was restored upon pretreatment with hepcidin. Using a pharmacologic hepcidin suppressor, we observed a decrease in cytokine expression and TLR4-lipid raft trafficking in LPS-stimulated in a murine macrophage model. CONCLUSION TLR4 dependent macrophage signaling is controlled via hepcidin-ferroportin1 axis by influencing TLR4-lipid raft interactions. Pharmacologic manipulation of iron metabolism may represent a promising approach to limiting TLR4-mediated inflammatory responses.
Collapse
Affiliation(s)
- Anwer Habib
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Rohini Polavarapu
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Vinit Karmali
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD, USA
| | - Richard Van Dam
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD, USA
| | - Hirokuni Akahori
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Omar Saeed
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | | | - Kimberly Pachura
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | - Charles C Hong
- Vanderbilt University, Dept. of Internal Medicine, Division of Cardiology, and Research Medicine, Veterans Affairs TVHS, Nashville, TN, USA
| | - Eric Shin
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA
| | | | | | - Aloke V Finn
- Emory University, Dept. of Internal Medicine, Division of Cardiology, Atlanta, GA, USA.
| |
Collapse
|
38
|
Eligini S, Brioschi M, Fiorelli S, Tremoli E, Banfi C, Colli S. Human monocyte-derived macrophages are heterogenous: Proteomic profile of different phenotypes. J Proteomics 2015; 124:112-23. [DOI: 10.1016/j.jprot.2015.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/13/2015] [Accepted: 03/29/2015] [Indexed: 12/25/2022]
|
39
|
Non-viral nanoparticle delivers small interfering RNA to macrophages in vitro and in vivo. PLoS One 2015; 10:e0118472. [PMID: 25799489 PMCID: PMC4370462 DOI: 10.1371/journal.pone.0118472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/18/2015] [Indexed: 12/17/2022] Open
Abstract
Macrophages are increasingly being viewed as therapeutic target for various cancers and many inflammatory diseases. Sequence specific gene reduction by siRNA represents an attractive approach to modulate macrophage function. However, delivery of the therapeutic siRNA into macrophages by non-viral nanoparticles has been a major technical challenge. In this study, we developed a glucan-based siRNA carrier system (BG34-10-Re-I) and demonstrated that the BG34-10-Re-I can effectively assemble siRNA into uniformly distributed nanoparticles of the novel core-shell structure. The BG34-10-Re-I/siRNA nanoparticles effectively reduced gene expression of macrophage migration inhibitory factor (MIF) in primary macrophages at both protein and mRNA level. The nanoparticles also mediated a sustained reduction of MIF within primary macrophages. Moreover, systemic injection of the nanoparticles into the Balb/c mice bearing 4T1 mammary tumors resulted in the MIF reduction in tumor-associated macrophages. Mechanistic studies demonstrated that the glucan-shell and the siRNA-core structure contribute to the effective delivery of MIF siRNA to macrophages both in vitro and in vivo. This study represents the first development of the primary macrophage MIF gene targeted non-viral nanoparticle system for both in vitro and in vivo applications.
Collapse
|
40
|
Selvarajan K, Narasimhulu CA, Bapputty R, Parthasarathy S. Anti-inflammatory and antioxidant activities of the nonlipid (aqueous) components of sesame oil: potential use in atherosclerosis. J Med Food 2015; 18:393-402. [PMID: 25692333 DOI: 10.1089/jmf.2014.0139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dietary intervention to prevent inflammation and atherosclerosis has been a major focus in recent years. We previously reported that sesame oil (SO) was effective in inhibiting atherosclerosis in low-density lipoprotein-receptor negative mice. We also noted that the levels of many proinflammatory markers were lower in the SO-treated animals. In this study we tested whether the non-lipid, aqueous components associated with SO would have anti-inflammatory and antioxidant effects. Polymerase chain reaction array data indicated that sesame oil aqueous extract (SOAE) was effective in reducing lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. Expression of inflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor α (TNF-α) was also analyzed independently in cells pretreated with SOAE followed by inflammatory assault. Effect of SOAE on TNF-α-induced MCP-1 and VCAM1 expression was also tested in human umbilical vein endothelial cells. We observed that SOAE significantly reduced inflammatory markers in both macrophages and endothelial cells in a concentration-dependent manner. SOAE was also effective in inhibiting LPS-induced TNF-α and IL-6 levels in vivo at different concentrations. We also noted that in the presence of SOAE, transcription and translocation of NF-kappaB was suppressed. SOAE was also effective in inhibiting oxidation of lipoproteins in vitro. These results suggest the presence of potent anti-inflammatory and antioxidant compounds in SOAE. Furthermore, SOAE differentially regulated expression of scavenger receptors and increased ATP-binding cassette A1 (ABCA1) mRNA expression by activating liver X receptors (LXRs), suggesting additional effects on lipid metabolism. Thus, SOAE appears multipotent and may serve as a valuable nonpharmacological agent in atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Krithika Selvarajan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida
| | | | | | | |
Collapse
|
41
|
The activation status of human macrophages presenting antigen determines the efficiency of Th17 responses. Immunobiology 2015; 220:10-9. [DOI: 10.1016/j.imbio.2014.09.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
|
42
|
Ben-Mordechai T, Palevski D, Glucksam-Galnoy Y, Elron-Gross I, Margalit R, Leor J. Targeting macrophage subsets for infarct repair. J Cardiovasc Pharmacol Ther 2014; 20:36-51. [PMID: 24938456 DOI: 10.1177/1074248414534916] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are involved in every cardiovascular disease and are an attractive therapeutic target. Macrophage activation is complex and can be either beneficial or deleterious, depending upon its mode of action, its timing, and its duration. An important macrophage characteristic is its plasticity, which enables it to switch from one subset to another. Macrophages, which regulate healing and repair after myocardial infarction, have become a major target for both treatment and diagnosis (theranostic). The aim of the present review is to describe the recent discoveries related to targeting and modulating of macrophage function to improve infarct repair. We will briefly review macrophage polarization, plasticity, heterogeneity, their role in infarct repair, regeneration, and cross talk with mesenchymal cells. Particularly, we will focus on the potential of macrophage targeting in situ by liposomes. The ability to modulate macrophage function could delineate pathways to reactivate the endogenous programs of myocardial regeneration. This will eventually lead to development of small molecules or biologics to enhance the endogenous programs of regeneration and repair.
Collapse
Affiliation(s)
- Tamar Ben-Mordechai
- Sackler Faculty of Medicine, Neufeld Cardiac Research Institute, Tel Aviv University, Tel Aviv, Israel Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-hashomer, Israel Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel-Hashomer, Israel
| | - Dahlia Palevski
- Sackler Faculty of Medicine, Neufeld Cardiac Research Institute, Tel Aviv University, Tel Aviv, Israel Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-hashomer, Israel Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel-Hashomer, Israel
| | - Yifat Glucksam-Galnoy
- Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Elron-Gross
- Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rimona Margalit
- Department of Biochemistry and Molecular Biology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Leor
- Sackler Faculty of Medicine, Neufeld Cardiac Research Institute, Tel Aviv University, Tel Aviv, Israel Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-hashomer, Israel Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel-Hashomer, Israel
| |
Collapse
|
43
|
Zhang L, Dang RJ, Li H, Li P, Yang YM, Guo XM, Wang XY, Fang NZ, Mao N, Wen N, Jiang XX. SOCS1 regulates the immune modulatory properties of mesenchymal stem cells by inhibiting nitric oxide production. PLoS One 2014; 9:e97256. [PMID: 24826993 PMCID: PMC4020773 DOI: 10.1371/journal.pone.0097256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/16/2014] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to be highly immunosuppressive and have been employed to treat various immune disorders. However, the mechanisms underlying the immunosuppressive capacity of MSCs are not fully understood. We found the suppressor of cytokine signaling 1 (SOCS1) was induced in MSCs treated with inflammatory cytokines. Knockdown of SOCS1 did not bring much difference on the proliferation and differentiation properties of MSCs. However, MSCs with SOCS1 knockdown exhibited enhanced immunosuppressive capacity, showing as inhibiting T cell proliferation at extremely low ratio (MSC to T) in vitro, significantly promoting tumor growth and inhibiting delayed-type hypersensitivity response in vivo. We further demonstrated that SOCS1 inhibited the immunosuppressive capacity of MSCs by reducing inducible nitric oxide synthase (iNOS) expression. Additionally, we found the significantly lower SOCS1 expression and higher nitric oxide (NO) production in MSCs isolated from synovial fluid of rheumatoid arthritis patients. Collectively, our data revealed a novel role of SOCS1 in regulating the immune modulatory activities of MSCs.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Basic Medical Sciences, Beijing, China
- Yanbian University, Yanji City, Jilin Province, China
| | | | - Hong Li
- Institute of Basic Medical Sciences, Beijing, China
| | - Ping Li
- Chinese PLA General Hospital, Beijing, China
| | | | - Xi-Min Guo
- Institute of Basic Medical Sciences, Beijing, China
| | | | - Nan-Zhu Fang
- Yanbian University, Yanji City, Jilin Province, China
| | - Ning Mao
- Institute of Basic Medical Sciences, Beijing, China
| | - Ning Wen
- Chinese PLA General Hospital, Beijing, China
- * E-mail: (NW); (X-XJ)
| | - Xiao-Xia Jiang
- Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (NW); (X-XJ)
| |
Collapse
|
44
|
Suchy D, Łabuzek K, Machnik G, Okopień B. The influence of ezetimibe on classical and alternative activation pathways of monocytes/macrophages isolated from patients with hypercholesterolemia. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:733-42. [PMID: 24781446 PMCID: PMC4092245 DOI: 10.1007/s00210-014-0982-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
Abstract
Macrophages are crucial for the development of atherosclerotic plaques. Classically activated macrophages contribute to plaque growth and destabilization, while alternatively activated macrophages increase plaque stability. Here, we assessed the influence of ezetimibe on the activation of monocyte-derived macrophages isolated from patients with hypercholesterolemia (total cholesterol 263.4 ± 12.5 mg/dl, low-density lipoprotein cholesterol 179.7 ± 11.3 mg/dl, triglycerides 123.9 ± 11.4 mg/dl). Cells were stimulated with 1 μg/ml lipopolysaccharide (LPS) or 1 μg/ml LPS plus 22 ng/ml ezetimibe. Control cells were left unstimulated. The expression of classical activation markers (interleukin-1β (IL-1β), nitric oxide (NO), and inducible nitric oxide synthase (iNOS)) and alternative activation markers (mannose receptor (MR) and arginase-1 (Arg1)) was determined after 48 h. The employed analytical methods included enzyme-linked immunosorbent assay, Griess reaction, real-time polymerase chain reaction, and Western blotting. LPS increased the secretion of IL-1β and NO and the expression of iNOS mRNA, iNOS protein, and Arg1 protein. It did not affect the expression of MR or Arg1 mRNA. In comparison to LPS stimulation, co-stimulation with ezetimibe decreased the secretion of IL-1β and the expression of iNOS mRNA and protein, while it increased MR mRNA and protein expression. Co-stimulation with ezetimibe did not change the secretion of NO or the expression of Arg1. The results suggest that ezetimibe in inflammatory in vitro conditions contributes to the suppression of classical and promotion of the alternative macrophage activation.
Collapse
Affiliation(s)
- Dariusz Suchy
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia in Katowice, Medyków 18, 40752, Katowice, Poland,
| | | | | | | |
Collapse
|
45
|
Shaikh S, Welch A, Ramalingam SL, Murray A, Wilson HM, McKiddie F, Brittenden J. Comparison of fluorodeoxyglucose uptake in symptomatic carotid artery and stable femoral artery plaques. Br J Surg 2014; 101:363-70. [PMID: 24536009 DOI: 10.1002/bjs.9403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fluorine-18-labelled fluoroxdeoxyglucose (FDG) positron emission tomography (PET) has been used to evaluate atherosclerotic plaque metabolic activity, and through its uptake by macrophages is believed to have the potential to identify vulnerable plaques. The aims were to compare FDG uptake in carotid plaques from patients who had sustained a recent thromboembolic cerebrovascular event with that in femoral artery plaques from patients with leg ischaemia, and to correlate FDG uptake with the proportion of M1 and M2 macrophages present. METHODS Consecutive patients who had carotid endarterectomy for symptomatic, significant carotid stenosis and patients with severe leg ischaemia and significant stenosis of the common femoral artery underwent FDG-PET and histological plaque analysis. The voxel with the greatest activity in the region of interest was calculated using the Patlak method over 60 min. Plaques were dual-stained for CD68, and M1 and M2 macrophage subsets. RESULTS There were 29 carotid and 25 femoral artery plaques for study. The maximum dynamic uptake was similar in carotid compared with femoral plaques: median (range) 9·7 (7·1-12·2) versus 10·0 (7·4-16·6) respectively (P = 0·281). CD68 macrophage counts were significantly increased in carotid compared with femoral plaques (39·5 (33·9-50·1) versus 11·5 (7·7-21·3) respectively; P < 0·001), as was the proportion of M1 proinflammatory macrophages. The degree of carotid stenosis correlated with the maximum dynamic FDG uptake (rs = 0·48, P = 0·008). CONCLUSION FDG uptake was no greater in symptomatic carotid plaques than in the less inflammatory femoral plaques. In patients on statin therapy. FDG uptake occurred in areas of significant arterial stenosis, irrespective of the degree of inflammation.
Collapse
Affiliation(s)
- S Shaikh
- Division of Applied Medicine, University of Aberdeen, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
The extrinsic coagulation cascade and tissue factor pathway inhibitor in macrophages: a potential therapeutic opportunity for atherosclerotic thrombosis. Thromb Res 2014; 133:657-66. [PMID: 24485401 DOI: 10.1016/j.thromres.2014.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The coagulation protease cascade plays the central requisite role in initiation of arterial atherothrombosis. However, the relative participation of the extrinsic as compared to the intrinsic pathway is incompletely resolved. We have investigated in vivo the relative importance of the extrinsic and intrinsic pathways to define which is more essential to atherothrombosis and therefore the preferable prophylactic therapeutic target. We further addressed which type of plaque associated macrophage population is associated with the thrombotic propensity of atherosclerotic plaques. METHODS Both photochemical injury and ferric chloride vascular injury models demonstrated arterial thrombosis formation in ApoE deficient mice. We found that direct interference with the extrinsic pathway, but not the intrinsic pathway, markedly diminished the rate of thrombus formation and occlusion of atherosclerotic carotid arteries following experimental challenge. To explore which plaque macrophage subtype may participate in plaque thrombosis in regard to expression tissue factor pathway inhibitor (TFPI), bone marrow derived macrophages of both M and GM phenotypes expressed tissue factor (TF), but the level of TFPI was much greater in M- type macrophages, which exhibited diminished thrombogenic activity, compared to type GM-macrophages. RESULTS AND CONCLUSIONS Our works support the hypothesis that the TF-initiated and direct extrinsic pathway provides the more significant contribution to arterial plaque thrombogenesis. Activation of the TF driven extrinsic pathway can be influenced by differing colony-stimulating factor influenced macrophage TFPI-1 expression. These results advance our understanding of atherothrombosis and identify potential therapeutic targets associated with the extrinsic pathway and with macrophages populating arterial atherosclerotic plaques.
Collapse
|
47
|
Tan SZ, Ooi DSQ, Shen HM, Heng CK. The Atherogenic Effects of Serum Amyloid A are Potentially Mediated via Inflammation and Apoptosis. J Atheroscler Thromb 2014; 21:854-67. [DOI: 10.5551/jat.22665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Arnold CE, Whyte CS, Gordon P, Barker RN, Rees AJ, Wilson HM. A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo. Immunology 2014; 141:96-110. [PMID: 24088176 PMCID: PMC3893853 DOI: 10.1111/imm.12173] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 01/01/2023] Open
Abstract
Macrophages respond to their microenvironment and develop polarized functions critical for orchestrating appropriate inflammatory responses. Classical (M1) activation eliminates pathogens while alternative (M2) activation promotes regulation and repair. M1 macrophage activation is strongly associated with suppressor of cytokine signalling 3 (SOCS3) expression in vitro, but the functional consequences of this are unclear and the role of SOCS3 in M1-macrophage polarization in vivo remains controversial. To address these questions, we defined the characteristics and function of SOCS3-expressing macrophages in vivo and identified potential mechanisms of SOCS3 action. Macrophages infiltrating inflamed glomeruli in a model of acute nephritis show significant up-regulation of SOCS3 that co-localizes with the M1-activation marker, inducible nitric oxide synthase. Numbers of SOCS3(hi) -expressing, but not SOCS1(hi) -expressing, macrophages correlate strongly with the severity of renal injury, supporting their inflammatory role in vivo. Adoptive transfer of SOCS3-short interfering RNA-silenced macrophages into a peritonitis model demonstrated the importance of SOCS3 in driving production of pro-inflammatory IL-6 and nitric oxide, while curtailing expression of anti-inflammatory IL-10 and SOCS1. SOCS3-induced pro-inflammatory effects were due, at least in part, to its role in controlling activation and nuclear accumulation of nuclear factor-κB and activity of phosphatidylinositol 3-kinase. We show for the first time that SOCS3 also directs the functions of human monocyte-derived macrophages, including efficient M1-induced cytokine production (IL-1β, IL-6, IL-23, IL-12), attenuated signal transducer and activator of transcription 3 activity and ability of antigen-loaded macrophages to drive T-cell responses. Hence, M1-associated SOCS3 was a positive regulator of pro-inflammatory responses in our rodent models and up-regulated SOCS3 is essential for effective M1-macrophage activation and function in human macrophages.
Collapse
Affiliation(s)
- Christina E Arnold
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
49
|
Metto EC, Evans K, Barney P, Culbertson AH, Gunasekara DB, Caruso G, Hulvey MK, da Silva JAF, Lunte SM, Culbertson CT. An integrated microfluidic device for monitoring changes in nitric oxide production in single T-lymphocyte (Jurkat) cells. Anal Chem 2013; 85:10188-95. [PMID: 24010877 PMCID: PMC3951964 DOI: 10.1021/ac401665u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A considerable amount of attention has been focused on the analysis of single cells in an effort to better understand cell heterogeneity in cancer and neurodegenerative diseases. Although microfluidic devices have several advantages for single cell analysis, few papers have actually demonstrated the ability of these devices to monitor chemical changes in perturbed biological systems. In this paper, a new microfluidic channel manifold is described that integrates cell transport, lysis, injection, electrophoretic separation, and fluorescence detection into a single device, making it possible to analyze individual cells at a rate of 10 cells/min in an automated fashion. The system was employed to measure nitric oxide (NO) production in single T-lymphocytes (Jurkat cells) using a fluorescent marker, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). The cells were also labeled with 6-carboxyfluorescein diacetate (6-CFDA) as an internal standard. The NO production by control cells was compared to that of cells stimulated using lipopolysaccharide (LPS), which is known to cause the expression of inducible nitric oxide synthase (iNOS) in immune-type cells. Statistical analysis of the resulting electropherograms from a population of cells indicated a 2-fold increase in NO production in the induced cells. These results compare nicely to a recently published bulk cell analysis of NO.
Collapse
Affiliation(s)
- Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Karsten Evans
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Patrick Barney
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Anne H. Culbertson
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Dulan B. Gunasekara
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | - Giuseppe Caruso
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Department of Chemical Science, Section of Biochemistry and Molecular Biology, The University of Catania, Italy
| | - Matthew K. Hulvey
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
- Akermin, Inc. St. Louis, Missouri 63132, USA
| | - Jose Alberto Fracassi da Silva
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Institute of Chemistry, State University of Campinas, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica, INCTBio
| | - Susan M. Lunte
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
50
|
|