1
|
Yang C, Lai H, Yang X, Huang Y, Shi Y, Ke L, Chen L, Chen M, Chen H, Wang Q. Unveiling an indole derivative YM818 as a novel tyrosinase inhibitor with anti-melanogenic and anti-melanin transfer effects. Int J Biol Macromol 2025; 306:141557. [PMID: 40020832 DOI: 10.1016/j.ijbiomac.2025.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Indole and its derivatives, heterocyclic compounds with broad therapeutic potential, have seen limited study in melanogenesis. Here, our virtual screening identified 15 indole derivatives that potentially interacted with tyrosinase (TYR), a key enzyme in melanogenesis. Nine of the 15 indole derivatives tested significantly decreased tyrosinase activity, and 3-hydroxy-5-bromo-(3-indolyl)-2‑carbonyl indole (designated as YM818) exhibited highest inhibitory rate at 74.28 % with IC50 of 0.372 mmol/L. Surface plasmon resonance and fluorescence quenching assays demonstrated the direct interaction between YM818 and TYR with KD value 94.84 ± 45.27 μmol/L. YM818 treatment reduced cellular melanin content to 35.8 %. Furthermore, YM818 treatment enhanced AKT protein phosphorylation, leading to the downregulation of melanogenesis-related proteins, including MITF, TYR and TRP1. In vivo zebrafish studies confirmed the inhibitory effects of YM818 on melanogenesis. Additionally, YM818 disrupted melanin transfer by suppressing the expression of protease-activated receptor-2 (PAR-2) gene, a G protein-coupled receptor that plays a crucial role in mediating cellular responses to serine proteases, including keratinocyte phagocytosis and melanin transfer. YM818 also exhibited robust antioxidant activity, with 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging IC50 values comparable to vitamin C and significantly reducing intracellular ROS levels in a dose-dependent manner. Taken together, these findings highlight YM818 as a promising anti-melanogenic agent, offering valuable insights into the development of novel anti-melanin drugs and tyrosinase inhibitors.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huixian Lai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyu Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lina Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lizhu Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China; Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China.
| | - Hongbin Chen
- Raybow (Hangzhou) Pharmaceutical co., Ltd, Hangzhou, Zhejiang, China.
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Jane WC, Chen SJ, Hseu JH, Chen XZ, Pandey S, Chang HW, Yang HL, Hseu YC, Yu YL. The in vitro and in vivo skin-whitening activity of Ectoine through enhanced autophagy in melanocytes and keratinocytes and zebrafish model. Biofactors 2025; 51:e70004. [PMID: 39907116 DOI: 10.1002/biof.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Ectoine, a natural bacterial osmolyte, suppressed UVA irradiated-α-melanocyte stimulating hormone (MSH) stimulated melanogenesis through antioxidant Nrf2 pathways in human keratinocytes; however, the underlying skin whitening mechanisms were not elucidated. The depigmenting efficiency of Ectoine (0-400 μM) through antimelanogenesis and melanin degradation by autophagy promotion was investigated in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo zebrafish model. MTT assay, Western blotting, GFP-LC3 puncta, AVO formation, melanin assay, immunofluorescence staining, TEM techniques, siLC3 transfection, and zebrafish model were utilized. Ectoine-induced autophagy in B16F10 and HaCaT cells was shown by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta, autolysosome AVOs formation, ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. The immunoprecipitation data revealed that Ectoine increased the association between LC3-II and p62 proteins in B16F10 and HaCaT cells. Importantly, antioxidant NAC pretreatment antagonized the Ectoine-induced ATG4B diminution in B16F10 and HaCaT cells. Ectoine inhibited melanogenesis by suppressing melanosome gp100, tyrosinase, TRP-1/-2, and/or melanin formation via autophagy in α-MSH-stimulated B16F10 and melanin-feeding HaCaT cells. TEM findings displayed that Ectoine increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 and melanin-feeding HaCaT cells. Ectoine-inhibited melanogenesis in α-MSH-stimulated B16F10 cells and melanin-feeding HaCaT cells was reversed by pretreatment with the autophagy inhibitor 3-MA or LC3 silencing. In vivo study demonstrated that Ectoine (5 mM) suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. The in vitro and in vivo study demonstrated that Ectoine inhibits melanogenesis and enhances melanin degradation by triggering autophagy. Ectoine could be utilized as a whitening ingredient in cosmetic formulations.
Collapse
Affiliation(s)
- Wei-Chen Jane
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, Taiwan
| | - Jhih-Hsuan Hseu
- Department of Dermatology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Yung-Luen Yu
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Hseu YC, Yeh JT, Vadivalagan C, Chen SJ, Gowrisankar YV, Pandey S, Hsu YT, Yen HR, Huang HC, Hseu JH, Yang HL. The in vitro and in vivo depigmentation activity of coenzyme Q 0, a major quinone derivative from Antrodia camphorata, through autophagy induction in human melanocytes and keratinocytes. Cell Commun Signal 2024; 22:151. [PMID: 38408981 PMCID: PMC10895752 DOI: 10.1186/s12964-024-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 406040, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 406040, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan
| | - Jou-Tsen Yeh
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | | | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
| | - Yuan-Tai Hsu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung, 406040, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 404333, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Jhih-Hsuan Hseu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
4
|
Mastrangelo R, Okada T, Ogura T, Ogura T, Baglioni P. Direct observation of the effects of chemical fixation in MNT-1 cells: A SE-ADM and Raman study. Proc Natl Acad Sci U S A 2023; 120:e2308088120. [PMID: 38091295 PMCID: PMC10743460 DOI: 10.1073/pnas.2308088120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
Aldehydes fixation was accidentally discovered in the early 20th century and soon became a widely adopted practice in the histological field, due to an excellent staining enhancement in tissues imaging. However, the fixation process itself entails cell proteins denaturation and crosslinking. The possible presence of artifacts, that depends on the specific system under observation, must therefore be considered to avoid data misinterpretation. This contribution takes advantage of scanning electron assisted-dielectric microscopy (SE-ADM) and Raman 2D imaging to reveal the possible presence and the nature of artifacts in unstained, and paraformldehyde, PFA, fixed MNT-1 cells. The high resolution of the innovative SE-ADM technique allowed the identification of globular protein clusters in the cell cytoplasm, formed after protein denaturation and crosslinking. Concurrently, SE-ADM images showed a preferential melanosome adsorption on the cluster's outer surface. The micron-sized aggregates were discernible in Raman 2D images, as the melanosomes signal, extracted through 2D principal component analysis, unequivocally mapped their location and distribution within the cells, appearing randomly distributed in the cytoplasm. Protein clusters were not observed in living MNT-1 cells. In this case, mature melanosomes accumulate preferentially at the cell periphery and are more closely packed than in fixed cells. Our results show that, although PFA does not affect the melanin structure, it disrupts melanosome distribution within the cells. Proteins secondary structure, conversely, is partially lost, as shown by the Raman signals related to α-helix, β-sheets, and specific amino acids that significantly decrease after the PFA treatment.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Taku Ogura
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Piero Baglioni
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| |
Collapse
|
5
|
Cohen L, Brodsky MA, Zubair R, Kohli I, Hamzavi IH, Sadeghpour M. Cutaneous interaction with visible light: What do we know? J Am Acad Dermatol 2023; 89:560-568. [PMID: 32289393 DOI: 10.1016/j.jaad.2020.03.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
Visible light has been used therapeutically in dermatology for years for a variety of cosmetic and medical indications, including skin rejuvenation and the treatment of inflammatory and neoplastic conditions, among others. Until recently, visible light was thought to be relatively inert compared to its spectral neighbors, ultraviolet and infrared radiation. However, recent literature has described the ability of visible light to cause erythema in light skin and pigmentary changes in individuals with darker skin types. Concern surrounding its potentially damaging cutaneous effects has been raised in both the medical community and social media outlets. In this article, we provide an evidenced-based review describing what is currently known about visible light, focusing on its role in dermatologic diseases including disorders of hyperpigmentation such as melasma and postinflammatory hyperpigmentation.
Collapse
Affiliation(s)
- Leah Cohen
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Raheel Zubair
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | - Indermeet Kohli
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | | |
Collapse
|
6
|
Kimura S, Hatakeyama T, Koutaka T, Kubo K, Morita S, Eguchi K, Saitoh K, Yamauchi K, Imai S, Kashimura A, Inenaga T, Matsumoto H. PMEL p.Leu18del dilutes coat color of Kumamoto sub-breed of Japanese Brown cattle. BMC Genomics 2022; 23:694. [PMID: 36207673 PMCID: PMC9541072 DOI: 10.1186/s12864-022-08916-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Coat color is important for registration and maintenance of livestock. Standard coat color of Kumamoto sub-breed of Japanese Brown cattle is solid brown, but individuals with diluted coat color have been observed recently. In this study, we attempted to identify polymorphism(s) responsible for coat color dilution by whole genome analysis. Results One of the diluted cattle possessed 7302 exonic polymorphisms which could affect genes’ function. Among them, 14 polymorphisms in 10 coat color-related genes were assumed to be specific for the diluted cattle. Subsequent genotyping with three diluted cattle and 74 standard cattle elucidated that PMEL p.Leu18del was the causative polymorphism for coat color dilution in this sub-breed. Individuals with del/del type of this polymorphism showed diluted coat color, but coat color of heterozygotes were intermediate with various dilution rates. Conclusions Coat color dilution of Kumamoto sub-breed was caused by PMEL p.Leu18del. The causative del allele has been detected in several genetically distant cattle breeds, suggesting that PMEL p.Leu18del can be used as a DNA marker to control cattle coat color. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08916-8.
Collapse
Affiliation(s)
- Satoshi Kimura
- Course of Agricultural Science, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Touko Hatakeyama
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Takashi Koutaka
- Kumamoto Office, Phoenix College, Tokai University, Kumamoto, Japan
| | - Kazuhiro Kubo
- Kumamoto Office, Phoenix College, Tokai University, Kumamoto, Japan
| | - Satoru Morita
- Kumamoto Prefectural Agricultural University, Kumamoto, Japan
| | - Keiko Eguchi
- Kumamoto Prefectural Agricultural Research Center, Kumamoto, Japan
| | - Kohji Saitoh
- Kumamoto Prefectural Agricultural Research Center, Kumamoto, Japan
| | - Kenji Yamauchi
- Kumamoto Station, National Livestock Breeding Center, Kumamoto, Japan
| | - Saki Imai
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Atsushi Kashimura
- Course of Agricultural Science, Graduate School of Agriculture, Tokai University, Kumamoto, Japan.,Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Toshiaki Inenaga
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Hirokazu Matsumoto
- Course of Agricultural Science, Graduate School of Agriculture, Tokai University, Kumamoto, Japan. .,Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan.
| |
Collapse
|
7
|
Applications of Stem Cell Therapy and Adipose-Derived Stem Cells for Skin Repair. CURRENT DERMATOLOGY REPORTS 2022. [DOI: 10.1007/s13671-022-00357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liu LP, Zheng DX, Xu ZF, Zhou HC, Wang YC, Zhou H, Ge JY, Sako D, Li M, Akimoto K, Li YM, Zheng YW. Transcriptomic and Functional Evidence Show Similarities between Human Amniotic Epithelial Stem Cells and Keratinocytes. Cells 2021; 11:70. [PMID: 35011631 PMCID: PMC8750621 DOI: 10.3390/cells11010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Amniotic epithelial stem cells (AESCs) are considered as potential alternatives to keratinocytes (KCs) in tissue-engineered skin substitutes used for treating skin damage. However, their clinical application is limited since similarities and distinctions between AESCs and KCs remain unclear. Herein, a transcriptomics analysis and functional evaluation were used to understand the commonalities and differences between AESCs and KCs. RNA-sequencing revealed that AESCs are involved in multiple epidermis-associated biological processes shared by KCs and show more similarity to early stage immature KCs than to adult KCs. However, AESCs were observed to be heterogeneous, and some possessed hybrid mesenchymal and epithelial features distinct from KCs. A functional evaluation revealed that AESCs can phagocytose melanosomes transported by melanocytes in both 2D and 3D co-culture systems similar to KCs, which may help reconstitute pigmented skin. The overexpression of TP63 and activation of NOTCH signaling could promote AESC stemness and improve their differentiation features, respectively, bridging the gap between AESCs and KCs. These changes induced the convergence of AESC cell fate with KCs. In future, modified reprogramming strategies, such as the use of small molecules, may facilitate the further modulation human AESCs for use in skin regeneration.
Collapse
Affiliation(s)
- Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
| | - Dong-Xu Zheng
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Zheng-Fang Xu
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hu-Cheng Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Cong Wang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jian-Yun Ge
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Daisuke Sako
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Mi Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| |
Collapse
|
9
|
Shariff R, Du Y, Dutta M, Kumar SV, Thimmaiah S, Doraiswamy C, Kumari A, Kale V, Nair N, Zhang S, Joshi MM, Santhanam U, Qiu Q, Damodaran A. Superior even skin tone and anti-ageing benefit of a combination of 4-hexylresorcinol and niacinamide. Int J Cosmet Sci 2021; 44:103-117. [PMID: 34958693 PMCID: PMC9305876 DOI: 10.1111/ics.12759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Objectives To demonstrate the synergistic effect of 4‐hexylresorcinol (4‐HR) with niacinamide in boosting anti‐melanogenic efficacy in vitro and establish the in vivo efficacy and safety of the combination in a human trial. Methods Primary human epidermal melanocytes and 3D pigmented skin equivalents were treated with 4‐HR, niacinamide, and their combinations for their effect on pigmentation. This was followed by a randomized, double‐blind, split‐face clinical study in Chinese subjects, and effects on skin tone, hyperpigmentation, fine lines and wrinkles, hydration, and skin firmness were measured for a 12‐week study period. Results In vitro tyrosinase enzyme activity studies showed that 4‐HR is one of the most potent tyrosinase inhibitors. The combination of 4‐HR and niacinamide showed a synergistic reduction in melanin production in cultured melanocytes and lightened the 3D skin equivalent model. In vitro as well as in the human trial, the combination of 4‐HR and niacinamide showed significantly improved efficacy over niacinamide alone on hyperpigmentation spots as measured by L*, the visual appearance of fine lines and wrinkles in crow's feet and perioral area and skin firmness, with no product‐related adverse events. Conclusions A formulation containing a combination of 4‐HR and niacinamide delivered superior skin tone and anti‐ageing benefits significantly better than niacinamide alone with no adverse events. This study demonstrates that a product designed to affect multiple pathways of melanogenesis, inflammation, and ageing may provide an additional treatment option, beyond hydroquinone and retinoids, for hyperpigmentation and ageing.
Collapse
|
10
|
Tiede S, Hundt JE, Paus R. UDP-GlcNAc-1-Phosphotransferase Is a Clinically Important Regulator of Human and Mouse Hair Pigmentation. J Invest Dermatol 2021; 141:2957-2965.e5. [PMID: 34116066 DOI: 10.1016/j.jid.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
UDP-GlcNAc-1-phosphotransferase, a product of two separate genes (GNPTAB, GNPTG), is essential for the sorting and transportation of lysosomal enzymes to lysosomes. GNPTAB gene defects cause extracellular missorting of lysosomal enzymes resulting in lysosomal storage diseases, namely mucolipidosis type II and mucolipidosis type III alpha/beta, which is associated with hair discoloration. Yet, the physiological functions of GNPTAB in the control of hair follicle (HF) pigmentation remain unknown. To elucidate these, we have silenced GNPTAB in organ-cultured human HFs as a human ex vivo model for mucolipidosis type II. GNPTAB silencing profoundly inhibited intrafollicular melanin production, the correct sorting of melanosomes, tyrosinase activity, and HMB45 expression in the HF pigmentary unit and altered HF melanocyte morphology in situ. In isolated primary human HF melanocytes, GNPTAB knockdown significantly reduced melanogenesis, tyrosinase activity, and correct tyrosinase protein sorting as well as POMC expression and caused the expected lysosomal enzyme missorting in vitro. Moreover, transgenic mice overexpressing an inserted missense mutation corresponding to that seen in human mucolipidosis type II and mucolipidosis type III alpha/beta showed significantly reduced HF pigmentation, thus corroborating the in vivo relevance of our ex vivo and in vitro findings in the human system. This identifies GNPTAB as a clinically important enzymatic control of human HF pigmentation, likely by directly controlling tyrosinase sorting and POMC transcription in HF melanocytes.
Collapse
Affiliation(s)
- Stephan Tiede
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University Children's Research at Kinder-UKE, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; The NIHR Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany.
| |
Collapse
|
11
|
Hseu YC, Vudhya Gowrisankar Y, Wang LW, Zhang YZ, Chen XZ, Huang PJ, Yen HR, Yang HL. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol 2021; 44:102007. [PMID: 34049220 PMCID: PMC8167190 DOI: 10.1016/j.redox.2021.102007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Pterostilbene (Pt) is a natural polyphenol found in blueberries and several grape varieties. Pt's pharmacological importance was well documented. Nevertheless, the depigmenting effects are not demonstrated. We evaluated the Pt's depigmenting effects through autophagy induction in B16F10 cells and inhibition of UVA (3 J/cm2)-irradiated α-MSH in keratinocyte HaCaT cells via Nrf2-mediated antioxidant pathways. Pt (2.5–5μM) attenuated ROS production and downregulated the POMC/α-MSH pathway in HaCaT cells. The conditioned medium-derived from UVA-irradiated HaCaT pretreated with Pt suppressed melanogenesis in B16F10 through MITF-CREB-tyrosinase pathway downregulation. Interestingly, Pt-induced HaCaT autophagy was revealed by enhanced LC3-II accumulation, p62/SQSTM1 activation, and AVO formation. Pt significantly decreased melanosome gp100 but increased LC3-II levels in HaCaT cells exposed to B16F10-derived melanin. Pt activated and facilitated the Nrf2 antioxidant pathway in HaCaT cells leading to increased HO-1, γ-GCLC, and NQO-1 antioxidant protein expression. ERK, AMPK, and ROS pathways mediate the Nrf2 activation. However, Nrf2 knockdown suppressed Pt's antioxidant ability leading to uncontrolled ROS and α-MSH levels after UVA-irradiation suggested the essentiality of the Nrf2 pathway. Moreover, in α-MSH-stimulated B16F10 cells, Pt (10–30 μM) downregulated the MC1R, MITF, tyrosinase, TRP-1/-2, and melanin expression. Further, Pt showed potent anti-melanogenic effects through autophagy induction mechanism in B16F10 cells, verified by increased LC3-II/p62 levels, AVO formation, and Beclin-1/Bcl-2 ratio, decreased ATG4B levels and PI3K/AKT/mTOR pathway. Transmission electron microscopy provided direct evidence by showing autophagosomes engulfing melanosomes following Pt treatment in α-MSH-stimulated B16F10 cells. Moreover, Pt-induced anti-melanogenic activity through the downregulation of CREB-MITF pathway-mediated TRP-1/-2, tyrosinase expressions, melanosome formation, and melanin synthesis was substantially reversed due to 3-MA (autophagy inhibitor) pretreatment or LC3 silencing in B16F10 cells. In vivo results also confirmed that Pt-inhibited tyrosinase expression/activity and endogenous pigmentation in the zebrafish model. Therefore, pterostilbene is a potent skin-whitening and antioxidant agent and could be used in skin-whitening formulations as a topical applicant. Pt inhibits ROS-mediated POMC/α-MSH pathway in UVA-irradiated HaCaT cells. Pt activates Nrf2-mediated HO-1, γ-GCLC, and NQO-1 expression in HaCaT cells. Pt-induces autophagy in B16F10 cells leading to melanogenesis inhibition. Pt-mediates anti-melanogenic mechanisms in α-MSH-stimulated B16F10 cells. Pt-inhibits tyrosinase expression and endogenous pigmentation in zebrafish model.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| | | | - Li-Wei Wang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Yan-Zhen Zhang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
12
|
Tobin DJ. How to design robust assays for human skin pigmentation: A "Tortoise and Hare challenge". Exp Dermatol 2021; 30:624-627. [PMID: 33899266 DOI: 10.1111/exd.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Khan AQ, Akhtar S, Prabhu KS, Zarif L, Khan R, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. Int J Mol Sci 2020; 21:9264. [PMID: 33291683 PMCID: PMC7730213 DOI: 10.3390/ijms21239264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest human organ and is continuously exposed to various exogenous and endogenous trigger factors affecting body homeostasis. A number of mechanisms, including genetic, inflammatory and autoimmune ones, have been implicated in the pathogenesis of cutaneous diseases. Recently, there has been considerable interest in the role that extracellular vesicles, particularly exosomes, play in human diseases, through their modulation of multiple signaling pathways. Exosomes are nano-sized vesicles secreted by all cell types. They function as cargo carriers shuttling proteins, nucleic acids, lipids etc., thus impacting the cell-cell communications and transfer of vital information/moieties critical for skin homeostasis and disease pathogenesis. This review summarizes the available knowledge on how exosomes affect pathogenesis of cutaneous diseases, and highlights their potential as future targets for the therapy of various skin diseases.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Sabah Akhtar
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Lubna Zarif
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India;
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- College of Medicine, Qatar University, Doha 2713, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
14
|
Koike S, Yamasaki K, Yamauchi T, Shimada-Omori R, Tsuchiyama K, Ando H, Aiba S. TLR3 stimulation induces melanosome endo/phagocytosis through RHOA and CDC42 in human epidermal keratinocyte. J Dermatol Sci 2019; 96:168-177. [PMID: 31776046 DOI: 10.1016/j.jdermsci.2019.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Keratinocytes and melanocytes in human epidermis express Toll-like receptors (TLR) and induce immune responses. We previously reported that TLR3 stimulation increases melanosome transport from perinuclear to cell membrane in melanocytes and enhanced release of melanosome from melanocytes, which were followed by increase in melanosome uptake into keratinocytes. OBJECTIVE In this study, we investigated whether TLR3 stimuli directly affect keratinocytes to enhance melanosome uptake. METHODS To observe keratinocyte's melanosome uptake ability precisely without melanocytes influences, we isolated melanosomes from human melanocytes and applied isolated melanosomes to keratinocytes stimulated by Poly(I:C). RESULTS Poly(I:C)-stimulated keratinocytes enhanced uptake of isolated melanosome-rich globules five-times as much as control. Poly(I:C) increases the RNA and protein expressions of RHOA and CDC42, which are small GTP-binding proteins inducing the endocytosis. Pull-down assay showed that Poly(I:C) increased the GTP-binding RHOA and CDC42, suggesting TLR3 stimulation activated RHOA and CDC42. The knockdown of TLR3 suppressed RHOA and CDC42 induction by Poly(I:C). Consistently, the knockdown of RHOA and CDC42 significantly suppressed the melanosome-rich globules uptake by Poly(I:C)-stimulated keratinocytes. CONCLUSION Because RHOA and CDC42 activation induces endocytosis by modification of actin stress fiber and filopodia formation, respectively, these results suggested that TLR3 stimulation enhances melanosome uptake into keratinocytes through endocytosis mechanisms. Combining with the data of our previous publications, TLR3, which signal is activated by sensing viral molecules, enhance pigmentation by controlling both melanin transport system by RAB GTPases induction in melanocytes and uptake system by RHOA and CDC42 in keratinocytes.
Collapse
Affiliation(s)
- Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Shimada-Omori
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichiro Tsuchiyama
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideya Ando
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
D'Alba L, Shawkey MD. Melanosomes: Biogenesis, Properties, and Evolution of an Ancient Organelle. Physiol Rev 2019; 99:1-19. [PMID: 30255724 DOI: 10.1152/physrev.00059.2017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Melanosomes are organelles that produce and store melanin, a widespread biological pigment with a unique suite of properties including high refractive index, semiconducting capabilities, material stiffness, and high fossilization potential. They are involved in numerous critical biological functions in organisms across the tree of life. Individual components such as melanin chemistry and melanosome development have recently been addressed, but a broad synthesis is needed. Here, we review the hierarchical structure, development, functions, and evolution of melanosomes. We highlight variation in melanin chemistry and melanosome morphology and how these may relate to function. For example, we review what is known of the chemical differences between different melanin types (eumelanin, pheomelanin, allomelanin) and whether/how melanosome morphology relates to chemistry and color. We integrate the distribution of melanin across living organisms with what is known from the fossil record and produce hypotheses on its evolution. We suggest that melanin was present in life forms early in evolutionary history and that melanosomes evolved at the origin of organelles. Throughout, we discuss the (sometimes gaping) holes in our knowledge and suggest areas that need particular attention as we move forward in our understanding of these still-mysterious organelles and the materials that they contain.
Collapse
Affiliation(s)
- Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent , Ghent , Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent , Ghent , Belgium
| |
Collapse
|
16
|
Ripoll L, Heiligenstein X, Hurbain I, Domingues L, Figon F, Petersen KJ, Dennis MK, Houdusse A, Marks MS, Raposo G, Delevoye C. Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers. J Cell Biol 2018; 217:2709-2726. [PMID: 29875258 PMCID: PMC6080934 DOI: 10.1083/jcb.201709055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
Vesicular and tubular transport intermediates regulate organellar cargo dynamics. Transport carrier release involves local and profound membrane remodeling before fission. Pinching the neck of a budding tubule or vesicle requires mechanical forces, likely exerted by the action of molecular motors on the cytoskeleton. Here, we show that myosin VI, together with branched actin filaments, constricts the membrane of tubular carriers that are then released from melanosomes, the pigment containing lysosome-related organelles of melanocytes. By combining superresolution fluorescence microscopy, correlative light and electron microscopy, and biochemical analyses, we find that myosin VI motor activity mediates severing by constricting the neck of the tubule at specific melanosomal subdomains. Pinching of the tubules involves the cooperation of the myosin adaptor optineurin and the activity of actin nucleation machineries, including the WASH and Arp2/3 complexes. The fission and release of these tubules allows for the export of components from melanosomes, such as the SNARE VAMP7, and promotes melanosome maturation and transfer to keratinocytes. Our data reveal a new myosin VI- and actin-dependent membrane fission mechanism required for organelle function.
Collapse
Affiliation(s)
- Léa Ripoll
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Xavier Heiligenstein
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Ilse Hurbain
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Lia Domingues
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Florent Figon
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Master BioSciences, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Karl J Petersen
- Structural Motility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Megan K Dennis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania, Philadelphia, PA
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania, Philadelphia, PA
| | - Graça Raposo
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Cédric Delevoye
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France .,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| |
Collapse
|
17
|
Koike S, Yamasaki K, Yamauchi T, Inoue M, Shimada-Ohmori R, Tsuchiyama K, Aiba S. Toll-like receptors 2 and 3 enhance melanogenesis and melanosome transport in human melanocytes. Pigment Cell Melanoma Res 2018; 31:570-584. [PMID: 29603875 DOI: 10.1111/pcmr.12703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/18/2018] [Indexed: 01/18/2023]
Abstract
Because little is known about how the innate immune response influences skin pigmentation, we examined whether Toll-like receptor (TLR) agonists participate in melanogenesis and melanosome transportation. We observed that TLR2/2 agonist HKLM and TLR3 agonist Poly(I:C) increased the amount of extracellular melanin from primary human epidermal melanocytes. HKLM, but not Poly(I:C), increased the melanogenic genes such as tyrosinase and dopachrome tautomerase. Poly(I:C) increased the expression of Rab27A, a molecule that facilitates melanosome transport to perimembranous actin filament. UVB irradiation induced Rab27A and melanosome transportation in a similar manner of Poly(I:C). SiRNA for TLR3 or Rab27A suppressed the perimembranous accumulation of Gp100-positive vesicles in melanocytes and decreased melanin transfer to neighboring keratinocytes induced by both Poly(I:C) and UVB. These results suggest that the microenvironment in the epidermis and innate immune stimuli, such as microbiome and ultraviolet represented here by TLR2 and TLR3 agonists, could affect the melanogenesis in human melanocytes.
Collapse
Affiliation(s)
- Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Inoue
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Shimada-Ohmori
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichiro Tsuchiyama
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Joly-Tonetti N, Wibawa JID, Bell M, Tobin D. Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically. Exp Dermatol 2018; 25:501-4. [PMID: 26998907 DOI: 10.1111/exd.13016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/27/2022]
Abstract
Melanin is the predominant pigment responsible for skin colour and is synthesized by the melanocyte in the basal layer of the epidermis and then transferred to surrounding keratinocytes. Despite its optical properties, melanin is barely detectable in unstained sections of human epidermis. However, identification and localization of melanin is of importance for the study of skin pigmentation in health and disease. Current methods for the histologic quantification of melanin are suboptimal and are associated with significant risk of misinterpretation. The aim of this study was to reassess the existing literature and to develop a more effective histological method of melanin quantification in human skin. Moreover, we confirm that Warthin-Starry (WS) stain provides a much more sensitive and more specific melanin detection method than the commonplace Fontana-Masson (FM) stain. For example, WS staining sensitivity allowed the visualization of melanin even in very pale Caucasian skin that was missed by FM or Von Kossa (VK) stains. From our reassessment of the histology-related literature, we conclude that so-called melanin dust is most likely an artifact of discoloration due to non-specific silver deposition in the stratum corneum. Unlike FM and VK, WS was not associated with this non-specific stratum corneum darkening, misinterpreted previously as 'degraded' melanin. Finally, WS melanin particle counts were largely similar to previously reported manual counts by transmission electron microscopy, in contrast to both FM and VK. Together these findings allow us to propose a new histology/Image J-informed method for the accurate and precise quantification of epidermal melanin in skin.
Collapse
Affiliation(s)
- Nicolas Joly-Tonetti
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Mike Bell
- Walgreens Boots Alliance, Nottingham, UK
| | - Desmond Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
19
|
Singh SK, Baker R, Sikkink SK, Nizard C, Schnebert S, Kurfurst R, Tobin DJ. E-cadherin mediates ultraviolet radiation- and calcium-induced melanin transfer in human skin cells. Exp Dermatol 2017. [PMID: 28636748 DOI: 10.1111/exd.13395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin pigmentation is directed by epidermal melanin units, characterized by long-lived and dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to contribute melanin to the epidermis. Previously, we reported that MC:KC contact is required for melanosome transfer that can be enhanced by filopodi, and by UVR/UVA irradiation, which can upregulate melanosome transfer via Myosin X-mediated control of MC filopodia. Both MC and KC express Ca2+ -dependent E-cadherins. These homophilic adhesion contacts induce transient increases in intra-KC Ca2+ , while ultraviolet radiation (UVR) raises intra-MC Ca2+ via calcium-selective ORAI1 ion channels; both are associated with regulating melanogenesis. However, how Ca2+ triggers melanin transfer remains unclear. Here we evaluated the role of E-cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in human epidermis variably express filopodia-associated E-cadherin, Cdc42, VASP and β-catenin, all of which were upregulated by UVR in human MC in vitro. Knockdown of E-cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and melanin transfer. Moreover, Ca2+ induced a dose-dependent increase in filopodia formation and melanin transfer, as well as increased β-catenin, Cdc42, Myosin X and E-cadherin expression in these skin cells. Together, these data suggest that filopodial proteins and E-cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca2+ availability, are required for filopodia formation and melanin transfer. This may open new avenues to explore how Ca2+ signalling influences human pigmentation.
Collapse
Affiliation(s)
- Suman K Singh
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Richard Baker
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Stephen K Sikkink
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | | | | | - Desmond J Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
20
|
Melanosome transfer to keratinocyte in the chicken embryonic skin is mediated by vesicle release associated with Rho-regulated membrane blebbing. Sci Rep 2016; 6:38277. [PMID: 27910904 PMCID: PMC5133614 DOI: 10.1038/srep38277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023] Open
Abstract
During skin pigmentation in amniotes, melanin synthesized in the melanocyte is transferred to keratinocytes by a particle called the melanosome. Previous studies, mostly using dissociated cultured cells, have proposed several different models that explain how the melanosome transfer is achieved. Here, using a technique that labels the plasma membrane of melanocytes within a three-dimensional system that mimics natural tissues, we have visualized the plasma membrane of melanocytes with EGFP in chicken embryonic skin. Confocal time-lapse microscopy reveals that the melanosome transfer is mediated, at least in part, by vesicles produced by plasma membrane. Unexpectedly, the vesicle release is accompanied by the membrane blebbing of melanocytes. Blebs that have encapsulated a melanosome are pinched off to become vesicles, and these melanosome-containing vesicles are finally engulfed by neighboring keratinocytes. For both the membrane blebbing and vesicle release, Rho small GTPase is essential. We further show that the membrane vesicle-mediated melanosome transfer plays a significant role in the skin pigmentation. Given that the skin pigmentation in inter-feather spaces in chickens is similar to that in inter-hair spaces of humans, our findings should have important consequences in cosmetic medicine.
Collapse
|
21
|
Wäster P, Eriksson I, Vainikka L, Rosdahl I, Öllinger K. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation. Sci Rep 2016; 6:27890. [PMID: 27293048 PMCID: PMC4904274 DOI: 10.1038/srep27890] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Ultraviolet (UV) irradiation induces skin pigmentation, which relies on the intercellular crosstalk of melanin between melanocytes to keratinocytes. However, studying the separate effects of UVA and UVB irradiation reveals differences in cellular response. Herein, we show an immediate shedding of extracellular vesicles (EVs) from the plasma membrane when exposing human melanocytes to UVA, but not UVB. The EV-shedding is preceded by UVA-induced plasma membrane damage, which is rapidly repaired by Ca(2+)-dependent lysosomal exocytosis. Using co-cultures of melanocytes and keratinocytes, we show that EVs are preferably endocytosed by keratinocytes. Importantly, EV-formation is prevented by the inhibition of exocytosis and increased lysosomal pH but is not affected by actin and microtubule inhibitors. Melanosome transfer from melanocytes to keratinocytes is equally stimulated by UVA and UVB and depends on a functional cytoskeleton. In conclusion, we show a novel cell response after UVA irradiation, resulting in transfer of lysosome-derived EVs from melanocytes to keratinocytes.
Collapse
Affiliation(s)
- Petra Wäster
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ida Eriksson
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Linda Vainikka
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Inger Rosdahl
- Dermatology and Venereology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Kim B, Hwang JS, Kim HS. N-Nicotinoyl dopamine inhibits skin pigmentation by suppressing of melanosome transfer. Eur J Pharmacol 2015; 769:250-6. [PMID: 26597116 DOI: 10.1016/j.ejphar.2015.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
We investigated the inhibitory effects of a niacinamide derivative, N-Nicotinoyl dopamine (NND) on melanogenesis. NND inhibits melanosome transfer in a normal human melanocyte-keratinocyte co-culture system and through phagocytic ability without affecting viability of cells while it did not show inhibitory effects of tyrosinase and melanin synthesis in B16F10 mouse melanoma cells. In addition, safety of NND was verified through performing neural stem cell morphology assay. Our findings indicate that NND may potentially be used for cosmetic industry for improvement of skin whitening and therapies related with several skin disorders, and the effect of NND may be acquired via reduction of melanosome transfer.
Collapse
Affiliation(s)
- Bora Kim
- Skin & Bio Research, Ellead Co., Ltd., Gyeonggi 463-824, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering, Graduate School of Biotechnology and Skin Biotechnology Center, Kyung Hee University, Gyeonggi 443-766, Republic of Korea
| | - Hyun-Soo Kim
- Department of Food Science and Technology, Jungwon University, Chungbuk 367-805, Republic of Korea.
| |
Collapse
|
23
|
4-(Phenylsulfanyl)butan-2-One Suppresses Melanin Synthesis and Melanosome Maturation In Vitro and In Vivo. Int J Mol Sci 2015; 16:20240-57. [PMID: 26343635 PMCID: PMC4613201 DOI: 10.3390/ijms160920240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022] Open
Abstract
In this study, we screened compounds with skin whitening properties and favorable safety profiles from a series of marine related natural products, which were isolated from Formosan soft coral Cladiella australis. Our results indicated that 4-(phenylsulfanyl)butan-2-one could successfully inhibit pigment generation processes in mushroom tyrosinase platform assay, probably through the suppression of tyrosinase activity to be a non-competitive inhibitor of tyrosinase. In cell-based viability examinations, it demonstrated low cytotoxicity on melanoma cells and other normal human cells. It exhibited stronger inhibitions of melanin production and tyrosinase activity than arbutin or 1-phenyl-2-thiourea (PTU). Also, we discovered that 4-(phenylsulfanyl)butan-2-one reduces the protein expressions of melanin synthesis-related proteins, including the microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (Trp-1), dopachrome tautomerase (DCT, Trp-2), and glycoprotein 100 (GP100). In an in vivo zebrafish model, it presented a remarkable suppression in melanogenesis after 48 h. In summary, our in vitro and in vivo biological assays showed that 4-(phenylsulfanyl)butan-2-one possesses anti-melanogenic properties that are significant in medical cosmetology.
Collapse
|
24
|
Gledhill K, Guo Z, Umegaki-Arao N, Higgins CA, Itoh M, Christiano AM. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells. PLoS One 2015; 10:e0136713. [PMID: 26308443 PMCID: PMC4550351 DOI: 10.1371/journal.pone.0136713] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 08/07/2015] [Indexed: 01/06/2023] Open
Abstract
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.
Collapse
Affiliation(s)
- Karl Gledhill
- Department of Dermatology, Columbia University, New York, NY, United States of America
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY, United States of America
| | - Noriko Umegaki-Arao
- Department of Dermatology, Columbia University, New York, NY, United States of America
| | - Claire A. Higgins
- Department of Dermatology, Columbia University, New York, NY, United States of America
| | - Munenari Itoh
- Department of Dermatology, Columbia University, New York, NY, United States of America
| | - Angela M. Christiano
- Department of Dermatology, Columbia University, New York, NY, United States of America
- Department of Genetics and Development, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
25
|
Hardman JA, Tobin DJ, Haslam IS, Farjo N, Farjo B, Al-Nuaimi Y, Grimaldi B, Paus R. The peripheral clock regulates human pigmentation. J Invest Dermatol 2015; 135:1053-1064. [PMID: 25310406 DOI: 10.1038/jid.2014.442] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan A Hardman
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Doctoral Training Centre in Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, UK
| | - Iain S Haslam
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | | | | - Yusur Al-Nuaimi
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Benedetto Grimaldi
- Department of Drug Discovery and Development, Instituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Ralf Paus
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Muenster, Muenster, Germany.
| |
Collapse
|
26
|
Ando H, Niki Y, Yoshida M, Ito M, Akiyama K, Kim JH, Yoon TJ, Matsui MS, Yarosh DB, Ichihashi M. Involvement of pigment globules containing multiple melanosomes in the transfer of melanosomes from melanocytes to keratinocytes. CELLULAR LOGISTICS 2014; 1:12-20. [PMID: 21686100 DOI: 10.4161/cl.1.1.13638] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 01/15/2023]
Abstract
The mechanism of melanosome transfer from melanocytes to keratinocytes has not been fully clarified. We now show a route of melanosome transfer using co-cultures of normal human melanocytes and keratinocytes. Substantial levels of melanosome transfer were elicited in co-cultures of melanocytes and keratinocytes separated by a microporous membrane filter. The melanocyte dendrites penetrated into the keratinocyte layer through the filter and many pigment globules were observed in keratinocytes. Electron microscopic observations revealed that melanosomes incorporated in keratinocytes were packed in clusters enclosed by a double membrane. Numerous pigment globules budded off from melanocyte dendrites and were released into the culture medium. Those pigment globules were filled with multiple melanosomes and a few mitochondria but no nuclei. When those globules were added to the culture medium of keratinocytes, they were incorporated and showed double membrane-enclosed melano-phagolysosomes consistent with the structures obtained from the co-culture system. In contrast, when individual naked melanosomes isolated from melanocytes were added to keratinocytes, they were also phagocytosed by keratinocytes but were enclosed by a single membrane in a manner distinct from the co-culture system. These results suggest a novel mechanism of melanosome transfer, wherein melanosomes are packed in membrane globules that bud off from melanocyte dendrites, where they are released into the extracellular space and then phagocytosed by keratinocytes.
Collapse
Affiliation(s)
- Hideya Ando
- Skin Aging and Photo-aging Research Center; Doshisha University; Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Makino-Okamura C, Niki Y, Takeuchi S, Nishigori C, Declercq L, Yaroch DB, Saito N. Heparin inhibits melanosome uptake and inflammatory response coupled with phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways in human epidermal keratinocytes. Pigment Cell Melanoma Res 2014; 27:1063-74. [DOI: 10.1111/pcmr.12287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Chieko Makino-Okamura
- Kobe Skin Research Department; Biosignal Research Center; Kobe University; Kobe Japan
| | - Yoko Niki
- Kobe Skin Research Department; Biosignal Research Center; Kobe University; Kobe Japan
| | - Seiji Takeuchi
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Chikako Nishigori
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Lieve Declercq
- Biological Research Department Europe & Asia; Estée Lauder Companies; Oevel Belgium
| | | | - Naoaki Saito
- Kobe Skin Research Department; Biosignal Research Center; Kobe University; Kobe Japan
| |
Collapse
|
28
|
Tarafder AK, Bolasco G, Correia MS, Pereira FJC, Iannone L, Hume AN, Kirkpatrick N, Picardo M, Torrisi MR, Rodrigues IP, Ramalho JS, Futter CE, Barral DC, Seabra MC. Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis. J Invest Dermatol 2014; 134:1056-1066. [PMID: 24141907 DOI: 10.1038/jid.2013.432] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 12/30/2022]
Abstract
The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.
Collapse
Affiliation(s)
- Abul K Tarafder
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal; Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Giulia Bolasco
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria S Correia
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Francisco J C Pereira
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Lucio Iannone
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alistair N Hume
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Niall Kirkpatrick
- Craniofacial and Orbito-Palpebral Surgery Unit at Chelsea and Westminster Hospital, London, UK
| | - Mauro Picardo
- Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano, IFO, Rome, Italy
| | - Maria R Torrisi
- Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano, IFO, Rome, Italy; Dipartimento di Medicina Clinica e Molecolare, Azienda Ospedaliera Sant'Andrea, Università di Roma 'La Sapienza', Rome, Italy
| | - Inês P Rodrigues
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José S Ramalho
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Clare E Futter
- Institute of Ophthalmology, University College London, London, UK
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal; Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
29
|
Wu X, Hammer JA. Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol 2014; 29:1-7. [PMID: 24662021 DOI: 10.1016/j.ceb.2014.02.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/20/2023]
Abstract
The pigmentation of skin and hair in mammals is driven by the creation within melanocytes of melanosomes, a specialized pigment-producing organelle, and the subsequent intercellular transfer of this organelle to keratinocytes. This latter process is absolutely required for visible pigmentation and effective photo-protection because it serves to disperse the pigment in skin and hair. Therefore, the transfer of melanosomes from the melanocyte to the keratinocyte is as important for the biological endpoint of mammalian pigmentation as the biogenesis of this fascinating organelle. Here we review new findings that shed light on, and raise additional questions about, the mechanism of this enigmatic process.
Collapse
Affiliation(s)
- Xufeng Wu
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
30
|
Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/498276] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review presents a general view of all types of melanin in all types of organisms. Melanin is frequently considered just an animal cutaneous pigment and is treated separately from similar fungal or bacterial pigments. Similarities concerning the phenol precursors and common patterns in the formation routes are discussed. All melanins are formed in a first enzymatically-controlled phase, generally a phenolase, and a second phase characterized by an uncontrolled polymerization of the oxidized intermediates. In that second phase, quinones derived from phenol oxidation play a crucial role. Concerning functions, all melanins show a common feature, a protective role, but they are not merely photoprotective pigments against UV sunlight. In pathogenic microorganisms, melanization becomes a virulence factor since melanin protects microbial cells from defense mechanisms in the infected host. In turn, some melanins are formed in tissues where sunlight radiation is not a potential threat. Then, their redox, metal chelating, or free radical scavenging properties are more important than light absorption capacity. These pigments sometimes behave as a double-edged sword, and inhibition of melanogenesis is desirable in different cells. Melanin biochemistry is an active field of research from dermatological, biomedical, cosmetical, and microbiological points of view, as well as fruit technology.
Collapse
|
31
|
Singh SK, Baker R, Wibawa JID, Bell M, Tobin DJ. The effects of Sophora angustifolia and other natural plant extracts on melanogenesis and melanin transfer in human skin cells. Exp Dermatol 2013; 22:67-9. [PMID: 23278898 DOI: 10.1111/exd.12061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/23/2022]
Abstract
Skin pigmentation is a multistep process of melanin synthesis by melanocytes, its transfer to recipient keratinocytes and its degradation. As dyspigmentation is a prominent marker of skin ageing, novel effective agents that modulate pigmentation safely are being sought for both clinical and cosmetic use. Here, a number of plant extracts were examined for their effect on melanogenesis (by melanin assay and Western blotting) and melanin transfer (by confocal immunomicroscopy of gp100-positive melanin granules in cocultures and by SEM analysis of filopodia), in human melanocytes and in cocultures with phototype-matched normal adult epidermal keratinocytes. Mulberry, Kiwi and Sophora extracts were assessed against isobutylmethylxanthine, hydroquinone, vitamin C and niacinamide. Compared with unstimulated control, all extracts significantly reduced melanogenesis in human melanoma cells and normal adult epidermal melanocytes. These extracts also reduced melanin transfer and reduced filopodia expression on melanocytes, similar to hydroquinone and niacinamide, indicating their effectiveness as multimode pigmentation actives.
Collapse
|
32
|
Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes. J Invest Dermatol 2013; 133:2416-2424. [PMID: 23558403 DOI: 10.1038/jid.2013.165] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/02/2013] [Accepted: 03/18/2013] [Indexed: 01/07/2023]
Abstract
Melanin in the epidermis determines the wide variation in skin color associated with ethnic skin diversity. Ethnic differences exist regarding melanosome loss in keratinocytes, but the mechanisms underlying these differences, and their contribution to the regulation of skin color, remain unclear. Here, we explored the involvement of autophagy in determining skin color by regulating melanosome degradation in keratinocytes. Keratinocytes derived from Caucasian skin exhibit higher autophagic activity than those derived from African American (AA) skin. Furthermore, along with the higher autophagy activity in Caucasian skin-derived keratinocytes compared with AA skin-derived keratinocytes, Caucasian skin-derived keratinocytes were more sensitive to melanosome treatment as shown by their enhanced autophagic activity, which may reflect the substantial mechanisms in the human epidermis owing to the limitations of the models. Melanosome accumulation in keratinocytes was accelerated by treatment with lysosomal inhibitors or with small interfering RNAs specific for autophagy-related proteins, which are essential for autophagy. Furthermore, consistent with the alterations in skin appearance, the melanin levels in human skin cultured ex vivo and in human skin substitutes in vitro were substantially diminished by activators of autophagy and enhanced by the inhibitors. Taken together, our data reveal that autophagy has a pivotal role in skin color determination by regulating melanosome degradation in keratinocytes, and thereby contributes to the ethnic diversity of skin color.
Collapse
|
33
|
Topobiology of human pigmentation: P-cadherin selectively stimulates hair follicle melanogenesis. J Invest Dermatol 2013; 133:1591-600. [PMID: 23334344 DOI: 10.1038/jid.2013.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
P-cadherin serves as a major topobiological cue in mammalian epithelium. In human hair follicles (HFs), it is prominently expressed in the inner hair matrix that harbors the HF pigmentary unit. However, the role of P-cadherin in normal human pigmentation remains unknown. As patients with mutations in the gene that encodes P-cadherin show hypotrichosis and fair hair, we explored the hypothesis that P-cadherin may control HF pigmentation. When P-cadherin was silenced in melanogenically active organ-cultured human scalp HFs, this significantly reduced HF melanogenesis and tyrosinase activity as well as gene and/or protein expression of gp100, stem cell factor, c-Kit, and microphthalmia-associated transcription factor (MITF), both in situ and in isolated human HF melanocytes. Instead, epidermal pigmentation was unaffected by P-cadherin knockdown in organ-cultured human skin. In hair matrix keratinocytes, P-cadherin silencing reduced plasma membrane β-catenin, whereas glycogen synthase kinase 3 beta (GSK3β) and phospho-β-catenin expression were significantly upregulated. This suggests that P-cadherin-GSK3β/Wnt signaling is required for maintaining the expression of MITF to sustain intrafollicular melanogenesis. Thus, P-cadherin-mediated signaling is a melanocyte subtype-specific topobiological regulator of normal human pigmentation, possibly via GSK3β-mediated canonical Wnt signaling.
Collapse
|
34
|
Sandu C, Dumas M, Malan A, Sambakhe D, Marteau C, Nizard C, Schnebert S, Perrier E, Challet E, Pévet P, Felder-Schmittbuhl MP. Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cell Mol Life Sci 2012; 69:3329-39. [PMID: 22627494 PMCID: PMC11114759 DOI: 10.1007/s00018-012-1026-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 12/22/2022]
Abstract
Skin acts as a barrier between the environment and internal organs and performs functions that are critical for the preservation of body homeostasis. In mammals, a complex network of circadian clocks and oscillators adapts physiology and behavior to environmental changes by generating circadian rhythms. These rhythms are induced in the central pacemaker and peripheral tissues by similar transcriptional-translational feedback loops involving clock genes. In this work, we investigated the presence of functional oscillators in the human skin by studying kinetics of clock gene expression in epidermal and dermal cells originating from the same donor and compared their characteristics. Primary cultures of fibroblasts, keratinocytes, and melanocytes were established from an abdominal biopsy and expression of clock genes following dexamethasone synchronization was assessed by qPCR. An original mathematical method was developed to analyze simultaneously up to nine clock genes. By fitting the oscillations to a common period, the phase relationships of the genes could be determined accurately. We thereby show the presence of functional circadian machinery in each cell type. These clockworks display specific periods and phase relationships between clock genes, suggesting regulatory mechanisms that are particular to each cell type. Taken together, our data demonstrate that skin has a complex circadian organization. Oscillators are present not only in fibroblasts but also in epidermal keratinocytes and melanocytes and are likely to act in coordination to drive rhythmic functions within the skin.
Collapse
Affiliation(s)
- Cristina Sandu
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Marc Dumas
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - André Malan
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Diariétou Sambakhe
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
- Unit of Mathematics and Computer Science, University of Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France
| | - Clarisse Marteau
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Carine Nizard
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Sylvianne Schnebert
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Eric Perrier
- LVMH Recherche, 185 avenue de Verdun, 45804 Saint Jean de Braye Cedex, France
| | - Etienne Challet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Paul Pévet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
35
|
Abstract
Erythema dyschromicum perstans (EDP) is asymptomatic slate-gray to blue-brown macules. Idiopathic eruptive macular pigmentation is asymptomatic brown nonconfluent macules. We describe electron microscopic studies of a 9-year-old Japanese girl with EDP. The ultrastructural figures indicated that the production of immature, small, irregular-shaped melanosomes in melanocytes and peripheral localization of melanosomes in keratinocytes caused the clinical appearance of EDP. The ultrastructural evidence distinguishes EDP from idiopathic eruptive macular pigmentation and suggests a distinct pathogenesis of the disease.
Collapse
Affiliation(s)
- Naoki Oiso
- Department of Dermatology, Faculty of Medicine Kinki University, Osaka-Sayama, Japan.
| | | | | | | | | |
Collapse
|
36
|
Melanosomal dynamics assessed with a live-cell fluorescent melanosomal marker. PLoS One 2012; 7:e43465. [PMID: 22927970 PMCID: PMC3425493 DOI: 10.1371/journal.pone.0043465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/20/2012] [Indexed: 12/14/2022] Open
Abstract
Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV) stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs) and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1) localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.
Collapse
|
37
|
Singh SK, Abbas WA, Tobin DJ. Bone morphogenetic proteins differentially regulate pigmentation in human skin cells. J Cell Sci 2012; 125:4306-19. [PMID: 22641693 DOI: 10.1242/jcs.102038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are a large family of multi-functional secreted signalling molecules. Previously BMP2/4 were shown to inhibit skin pigmentation by downregulating tyrosinase expression and activity in epidermal melanocytes. However, a possible role for other BMP family members and their antagonists in melanogenesis has not yet been explored. In this study we show that BMP4 and BMP6, from two different BMP subclasses, and their antagonists noggin and sclerostin were variably expressed in melanocytes and keratinocytes in human skin. We further examined their involvement in melanogenesis and melanin transfer using fully matched primary cultures of adult human melanocytes and keratinocytes. BMP6 markedly stimulated melanogenesis by upregulating tyrosinase expression and activity, and also stimulated the formation of filopodia and Myosin-X expression in melanocytes, which was associated with increased melanosome transfer from melanocytes to keratinocytes. BMP4, by contrast, inhibited melanin synthesis and transfer to below baseline levels. These findings were confirmed using siRNA knockdown of BMP receptors BMPR1A/1B or of Myosin-X, as well as by incubating cells with the antagonists noggin and sclerostin. While BMP6 was found to use the p38MAPK pathway to regulate melanogenesis in human melanocytes independently of the Smad pathway, p38MAPK, PI3-K and Smad pathways were all involved in BMP6-mediated melanin transfer. This suggests that pigment formation may be regulated independently of pigment transfer. These data reveal a complex involvement of regulation of different members of the BMP family, their antagonists and inhibitory Smads, in melanocytes behaviour.
Collapse
Affiliation(s)
- Suman K Singh
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | | | | |
Collapse
|
38
|
Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB, Ichihashi M. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol 2011; 132:1222-9. [PMID: 22189785 DOI: 10.1038/jid.2011.413] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have described the role of shedding vesicles as physiological conveyers of intracellular components between neighboring cells. Here we report that melanosomes are one example of shedding vesicle cargo, but are processed by a previously unreported mechanism. Pigment globules were observed to be connected to the filopodia of melanocyte dendrites, which have previously been shown to be conduits for melanosomes. Pigment globules containing multiple melanosomes were released from various areas of the dendrites of normal human melanocytes derived from darkly pigmented skin. The globules were then captured by the microvilli of normal human keratinocytes, also derived from darkly pigmented skin, which incorporated them in a protease-activated receptor-2 (PAR-2)-dependent manner. After the pigment globules were ingested by the keratinocytes, the membrane that surrounded each melanosome cluster was gradually degraded, and the individual melanosomes then spread into the cytosol and were distributed primarily in the perinuclear area of each keratinocyte. These results suggest a melanosome transfer pathway wherein melanosomes are transferred from melanocytes to keratinocytes via the shedding vesicle system. This packaging system generates pigment globules containing multiple melanosomes in a unique manner.
Collapse
Affiliation(s)
- Hideya Ando
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kasraee B, Nikolic DS, Salomon D, Carraux P, Fontao L, Piguet V, Omrani GR, Sorg O, Saurat JH. Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer. Exp Dermatol 2011; 21:19-24. [DOI: 10.1111/j.1600-0625.2011.01394.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Jang JY, Kim HN, Kim YR, Choi WY, Choi YH, Shin HK, Choi BT. Partially purified components of Nardostachys chinensis suppress melanin synthesis through ERK and Akt signaling pathway with cAMP down-regulation in B16F10 cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1207-1214. [PMID: 21816215 DOI: 10.1016/j.jep.2011.07.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/30/2011] [Accepted: 07/19/2011] [Indexed: 05/31/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Nardostachys chinensis has been used in folk medicine to treat melasma and lentigines in Korea. We investigated the inhibitory activities of Nardostachys chinensis in melanogenesis and its related signaling pathway. MATERIALS AND METHODS Bioassay-guided fractionation of Nardostachys chinensis using solvent partitioning and purification with octadecylsilane open-column chromatography resulted in partial purification. The active 20% methanol chromatographic fraction from the ethyl acetate layer (PPNC) was used to investigate melanogenesis by melanin synthesis, tyrosinase activity assay, cAMP assay, Western blot and flow cytometric analyses in B16F10 mouse melanoma cells. RESULTS PPNC markedly inhibits melanin synthesis and tyrosinase activity in a concentration-dependent manner. We also found that PPNC decreases microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and dopachrome tautomerase (Dct) protein expressions and MITF and tyrosinase mRNA levels. Moreover, PPNC reduces intracellular cAMP levels and activates mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/Akt expression in B16F10 cells. The specific MEK/ERK inhibitor PD98059 and PI3K/Akt inhibitor LY294002, block the PPNC-induced hypopigmentation effect, and abrogate the PPNC-suppressed expression of melanogenic proteins such as MITF, tyrosinase, TRP-1, and Dct. Using flow cytometry, we elucidated whether PPNC directly induces ERK phosphorylation at the level of an intact single cell. PPNC shows marked expression of phosphorylated ERK in live B16F10 cells and abrogates PPNC-induced phosphorylated ERK by PD98059 treatment. CONCLUSIONS PPNC stimulates MEK/ERK phosphorylation and PI3K/Akt signaling with suppressing cAMP levels and subsequently stimulating MITF and TRPs down-regulation, resulting in melanin synthesis suppression.
Collapse
Affiliation(s)
- Ji Yeon Jang
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Gáspár E, Nguyen-Thi KT, Hardenbicker C, Tiede S, Plate C, Bodó E, Knuever J, Funk W, Bíró T, Paus R. Thyrotropin-releasing hormone selectively stimulates human hair follicle pigmentation. J Invest Dermatol 2011; 131:2368-77. [PMID: 21956127 DOI: 10.1038/jid.2011.221] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In amphibians, thyrotropin-releasing hormone (TRH) stimulates skin melanophores by inducing secretion of α-melanocyte-stimulating hormone in the pituitary gland. However, it is unknown whether this tripeptide neurohormone exerts any direct effects on pigment cells, namely, on human melanocytes, under physiological conditions. Therefore, we have investigated whether TRH stimulates pigment production in organ-cultured human hair follicles (HFs), the epithelium of which expresses both TRH and its receptor, and/or in full-thickness human skin in situ. TRH stimulated melanin synthesis, tyrosinase transcription and activity, melanosome formation, melanocyte dendricity, gp100 immunoreactivity, and microphthalmia-associated transcription factor expression in human HFs in a pituitary gland-independent manner. TRH also stimulated proliferation, gp100 expression, tyrosinase activity, and dendricity of isolated human HF melanocytes. However, intraepidermal melanogenesis was unaffected. As TRH upregulated the intrafollicular production of "pituitary" neurohormones (proopiomelanocortin transcription and ACTH immunoreactivity) and as agouti-signaling protein counteracted TRH-induced HF pigmentation, these pigmentary TRH effects may be mediated in part by locally generated melanocortins and/or by MC-1 signaling. Our study introduces TRH as a novel, potent, selective, and evolutionarily highly conserved neuroendocrine factor controlling human pigmentation in situ. This physiologically relevant and melanocyte sub-population-specific neuroendocrine control of human pigmentation deserves clinical exploration, e.g., for preventing or reversing hair graying.
Collapse
Affiliation(s)
- Erzsébet Gáspár
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kasraee B, Pataky M, Nikolic DS, Carraux P, Piguet V, Salomon D, Sorg O, Saurat JH. A new spectrophotometric method for simple quantification of melanosomal transfer from melanocytes to keratinocytes. Exp Dermatol 2011; 20:938-42. [DOI: 10.1111/j.1600-0625.2011.01356.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Kim B, Kim JE, Lee SM, Lee SH, Lee JW, Kim MK, Lee KJ, Kim H, Lee JD, Choi KY. N-Nicotinoyl dopamine, a novel niacinamide derivative, retains high antioxidant activity and inhibits skin pigmentation. Exp Dermatol 2011; 20:950-2. [PMID: 21843252 DOI: 10.1111/j.1600-0625.2011.01345.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesized a novel derivative of a well-known skin-lightening compound niacinamide, N-nicotinoyl dopamine (NND). NND did not show inhibitory effects of tyrosinase and melanin synthesis in B16F10 mouse melanoma cells. However, NND retains high antioxidant activity without affecting viability of cells. In a reconstructed skin model, topical applications of 0.05% and 0.1% NND induced skin lightening and decreased melanin production without affecting the viability and morphology of melanocytes and overall tissue histology. Moreover, no evidence for skin irritation or sensitization was observed when 0.1% NND emulsion was applied onto the skin of 52 volunteers. The effect of NND on skin lightening was further revealed by pigmented spot analyses of human clinical trial. Overall, NND treatment may be a useful trial for skin lightening and treating pigmentary disorders.
Collapse
Affiliation(s)
- Bora Kim
- Enprani Co., Ltd., R&D Center of Skin Science and Cosmetics, Incheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Flori E, Mastrofrancesco A, Kovacs D, Ramot Y, Briganti S, Bellei B, Paus R, Picardo M. 2,4,6-Octatrienoic acid is a novel promoter of melanogenesis and antioxidant defence in normal human melanocytes via PPAR-γ activation. Pigment Cell Melanoma Res 2011; 24:618-30. [DOI: 10.1111/j.1755-148x.2011.00887.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Beaumont KA, Hamilton NA, Moores MT, Brown DL, Ohbayashi N, Cairncross O, Cook AL, Smith AG, Misaki R, Fukuda M, Taguchi T, Sturm RA, Stow JL. The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking. Traffic 2011; 12:627-43. [PMID: 21291502 DOI: 10.1111/j.1600-0854.2011.01172.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rab GTPases including Rab27a, Rab38 and Rab32 function in melanosome maturation or trafficking in melanocytes. A screen to identify additional Rabs involved in these processes revealed the localization of GFP-Rab17 on recycling endosomes (REs) and melanosomes in melanocytic cells. Rab17 mRNA expression is regulated by microphthalmia transcription factor (MITF), a characteristic of known pigmentation genes. Rab17 siRNA knockdown in melanoma cells quantitatively increased melanosome concentration at the cell periphery. Rab17 knockdown did not inhibit melanosome maturation nor movement, but it caused accumulation of melanin inside cells. Double knockdown of Rab17 and Rab27a indicated that Rab17 acts on melanosomes downstream of Rab27a. Filopodia are known to play a role in melanosome transfer, and in Rab17 knockdown cells filopodia formation was inhibited. Furthermore, we show that stimulation of melanoma cells with α-melanocyte-stimulating hormone induces filopodia formation, supporting a role for filopodia in melanosome release. Cell stimulation also caused redistribution of REs to the periphery, and knockdown of additional RE-associated Rabs 11a and 11b produced a similar accumulation of melanosomes and melanin to that seen after loss of Rab17. Our findings reveal new functions for RE and Rab17 in pigmentation through a distal step in the process of melanosome release via filopodia.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072 QLD, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. EXPERT REVIEW OF DERMATOLOGY 2011; 6:97-108. [PMID: 21572549 PMCID: PMC3093193 DOI: 10.1586/edm.10.70] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanogenesis is the unique process of producing pigmented biopolymers that are sequestered within melanosomes, which provides color to the skin, hair and eyes of animals and, in the case of human skin, also protects the underlying tissues from UV damage. We review the current understanding of melanogenesis, focusing on factors important to the biochemistry of pigment synthesis, the biogenesis of melanosomes, signaling pathways and factors that regulate melanogenesis, intramelanosomal pH, transport and transfer of melanosomes, and pigmentary disorders related to the dysfunction of melanosome-related proteins. Although it has been known for some time that many of the factors that affect melanogenesis are derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves, a number of new factors that are involved in that regulation have recently been reported, such as factors that regulate melanosome pH and ion transport.
Collapse
Affiliation(s)
- Taisuke Kondo
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent J Hearing
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
|
48
|
Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Exp Dermatol 2010; 20:242-8. [PMID: 21054558 DOI: 10.1111/j.1600-0625.2010.01161.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tyrosinase is known to be the first two and rate-limiting enzyme in the synthesis of melanin pigments responsible for colouring skin, hair and eyes. Tyrosinase inhibition is one major strategy used to treat hyperpigmentation. In human skin melanocytes, the cellular tyrosinase inhibition was examined by the conversion of l-tyrosine and oxidation of l-DOPA to dopaquinone. We evaluated the skin pigmentation inhibitor effects with both in vitro and in vivo systems to find skin-whitening agents without cytotoxic concerns. First, linderanolide B and subamolide A were isolated from the stems of Cinnamomum subavenium and exhibited mushroom tyrosinase inhibition. Then, these two herbal compounds were proved to have good pigmentation inhibitory abilities at low doses and demonstrated free cytotoxicities to normal human skin cells and zebrafish system. With molecular docking, in a virtual model of human tyrosinase, linderanolide B and subamolide A displayed meta(l) -coordinating interactions with Cu(2+) ions. The results obtained from biological assays showed that linderanolide B and subamolide A possessed anti-tyrosinase properties, which exhibited potential for application in medical cosmetology.
Collapse
Affiliation(s)
- Hui-Min Wang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | | | | |
Collapse
|
49
|
Singh SK, Kurfurst R, Nizard C, Schnebert S, Perrier E, Tobin DJ. Melanin transfer in human skin cells is mediated by filopodia--a model for homotypic and heterotypic lysosome-related organelle transfer. FASEB J 2010; 24:3756-69. [PMID: 20501793 DOI: 10.1096/fj.10-159046] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transfer of the melanocyte-specific and lysosome-related organelle, the melanosome, from melanocytes to keratinocytes is crucial for the protection of the skin against harmful ultraviolet radiation (UVR)--our main physiological cutaneous stressor. However, this commonplace event remains a most enigmatic process despite several early hypotheses. Recently, we and others have proposed a role for filopodia in melanin transfer, although conclusive experimental proof remained elusive. Using known filopodial markers (MyoX/Cdc42) and the filopodial disrupter, low-dose cytochalasin-B, we demonstrate here a requirement for filopodia in melanosome transfer from melanocytes to keratinocytes and also, unexpectedly, between keratinocytes. Melanin distribution throughout the skin represents the key phenotypic event in skin pigmentation. Melanocyte filopodia were also necessary for UVR-stimulated melanosome transfer, as this was also inhibited by MyoX knockdown and low-dose cytochalasin-B. Knockdown of keratinocyte MyoX protein, in its capacity as a phagocytosis effector, resulted in the inhibition of melanin uptake by keratinocytes. This indicates a central role for phagocytosis by keratinocytes of melanocyte filopodia. In summary, we propose a new model for the regulation of pigmentation in human skin cells under both constitutive and facultative (post-UVR) conditions, which we call the "filopodial-phagocytosis model." This model also provides a unique and highly accessible way to study lysosome-related organelle movement between mammalian cells.
Collapse
Affiliation(s)
- Suman K Singh
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | | | | | | | | | | |
Collapse
|
50
|
Bodó E, Wiersma F, Funk W, Kromminga A, Jelkmann W, Paus R. Does erythropoietin modulate human hair follicle melanocyte activities in situ? Exp Dermatol 2010; 19:65-7. [DOI: 10.1111/j.1600-0625.2009.00938.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|