1
|
de Almeida Sousa Cruz MA, de Barros Elias M, Calina D, Sharifi-Rad J, Teodoro AJ. Insights into grape-derived health benefits: a comprehensive overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:91. [DOI: 10.1186/s43014-024-00267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractGrapes, renowned for their diverse phytochemical composition, have long been recognized for their health-promoting properties. This narrative review aims to synthesize the current research on grapes, with a particular emphasis on their role in disease prevention and health enhancement through bioactive compounds.A comprehensive review of peer-reviewed studies, including in vitro, in vivo, and clinical investigations, was conducted to elucidate the relationship between grape consumption and health outcomes. The review highlights the positive association of grape intake with a decreased risk of chronic diseases such as cardiovascular disease, type 2 diabetes, and certain cancers. Notable bioactive components like resveratrol are emphasized for their neuroprotective and antioxidative capabilities. Additionally, the review explores emerging research on the impact of grapes on gut microbiota and its implications for metabolic health and immune function.This updated review underscores the importance of future research to fully leverage and understand the therapeutic potential of grape-derived compounds, aiming to refine dietary guidelines and functional food formulations. Further translational studies are expected to clarify the specific bioactive interactions and their impacts on health.
Graphical Abstract
Collapse
|
2
|
Zhao C, Wang Z, Liao Z, Liu X, Li Y, Zhou C, Sun C, Wang Y, Cao J, Sun C. Integrated Metabolomic-Transcriptomic Analyses of Flavonoid Accumulation in Citrus Fruit under Exogenous Melatonin Treatment. Int J Mol Sci 2024; 25:6632. [PMID: 38928338 PMCID: PMC11204001 DOI: 10.3390/ijms25126632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The flavonoids in citrus fruits are crucial physiological regulators and natural bioactive products of high pharmaceutical value. Melatonin is a pleiotropic hormone that can regulate plant morphogenesis and stress resistance and alter the accumulation of flavonoids in these processes. However, the direct effect of melatonin on citrus flavonoids remains unclear. In this study, nontargeted metabolomics and transcriptomics were utilized to reveal how exogenous melatonin affects flavonoid biosynthesis in "Bingtangcheng" citrus fruits. The melatonin treatment at 0.1 mmol L-1 significantly increased the contents of seven polymethoxylated flavones (PMFs) and up-regulated a series of flavonoid pathway genes, including 4CL (4-coumaroyl CoA ligase), FNS (flavone synthase), and FHs (flavonoid hydroxylases). Meanwhile, CHS (chalcone synthase) was down-regulated, causing a decrease in the content of most flavonoid glycosides. Pearson correlation analysis obtained 21 transcription factors co-expressed with differentially accumulated flavonoids, among which the AP2/EREBP members were the most numerous. Additionally, circadian rhythm and photosynthesis pathways were enriched in the DEG (differentially expressed gene) analysis, suggesting that melatonin might also mediate changes in the flavonoid biosynthesis pathway by affecting the fruit's circadian rhythm. These results provide valuable information for further exploration of the molecular mechanisms through which melatonin regulates citrus fruit metabolism.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhendong Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhenkun Liao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Xiaojuan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yujia Li
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Chenwen Zhou
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Cui Sun
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Yue Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
3
|
Kołodziejczyk I, Kaźmierczak A. Melatonin - This is important to know. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170871. [PMID: 38340815 DOI: 10.1016/j.scitotenv.2024.170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
MEL (N-acetyl-5-methoxytryptamine) is a well-known natural compound that controls cellular processes in both plants and animals and is primarily found in plants as a neurohormone. Its roles have been described very broadly, from its antioxidant function related to the photoperiod and determination of seasonal rhythms to its role as a signalling molecule, imitating the action of plant hormones (or even being classified as a prohormone). MEL positively affects the yield and survival of plants by increasing their tolerance to unfavourable biotic and abiotic conditions, which makes MEL widely applicable in ecological farming as a stimulant of growth and development. Thus, it is called a phytobiostimulator. In this review, we discuss the genesis of MEL functions, the presence of MEL at the cellular level and its effects on gene expression and plant development, which can ensure the survival of plants under the conditions they encounter. Moreover, we consider the future application possibilities of MEL in agriculture.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Institute of Ecology and Environmental Protection, University of Lodz, Lodz 90-236, Banacha 12/16, 90-237, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
4
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
5
|
Eremia SAV, Albu C, Radu GL, Ion M. Different Extraction Approaches for the Analysis of Melatonin from Cabernet Sauvignon and Feteasca Neagra Wines Using a Validated HPLC-FL Method. Molecules 2023; 28:molecules28062768. [PMID: 36985741 PMCID: PMC10051364 DOI: 10.3390/molecules28062768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, the wine industry has shown a considerable degree of interest in the occurrence of melatonin in wines. Sample pretreatment may be the most important step in trace analysis. Since wine is a complex matrix and melatonin is present in low amounts (ppb), an adequate extraction technique is required. In this study, the effect of several extraction methods, such as solid phase extraction (SPE), Quick, Easy, Cheap, Effective, Rugged, and Safe extraction (QuEChERS), and dispersive liquid-liquid micro-extraction (DLLME) was studied and the variable parameters that can arise throughout the extraction process were optimized to obtain the best results. A high-performance liquid chromatography with fluorescence detector (HPLC-FL) method was adapted and validated, including measurement uncertainty, for the analysis of melatonin in wines and to assess the efficiency of the extraction yield. After comparing the acquired results, the DLLME method was optimized. Extraction recoveries values ranging from 95 to 104% demonstrated that the approach may be successfully applied for the extraction and concentration (enrichment factor of almost eight) of melatonin in wine samples prior to HPLC-FL analysis. The first report of melatonin levels in Feteasca Neagra wines has been made. The data obtained for Cabernet Sauvignon revealed that the final levels of melatonin in the wines are dependent on the winemaking process.
Collapse
Affiliation(s)
- Sandra A V Eremia
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences-Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Camelia Albu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences-Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Gabriel L Radu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences-Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Marian Ion
- Institute for Research and Development for Viticulture and Wine Making, 2 Valea Mantei, Valea Calugareasca, 107620, Romania
| |
Collapse
|
6
|
Ahmad I, Song X, Hussein Ibrahim ME, Jamal Y, Younas MU, Zhu G, Zhou G, Adam Ali AY. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1108507. [PMID: 36866369 PMCID: PMC9971941 DOI: 10.3389/fpls.2023.1108507] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
Melatonin is a pleiotropic signaling molecule that reduces the adverse effects of abiotic stresses, and enhances the growth and physiological function of many plant species. Several recent studies have demonstrated the pivotal role of melatonin in plant functions, specifically its regulation of crop growth and yield. However, a comprehensive understanding of melatonin, which regulates crop growth and yield under abiotic stress conditions, is not yet available. This review focuses on the progress of research on the biosynthesis, distribution, and metabolism of melatonin, and its multiple complex functions in plants and its role in the mechanisms of metabolism regulation in plants grown under abiotic stresses. In this review, we focused on the pivotal role of melatonin in the enhancement of plant growth and regulation of crop yield, and elucidated its interactions with nitric oxide (NO) and auxin (IAA, indole-3-acetic acid) when plants are grown under various abiotic stresses. The present review revealed that the endogenousapplication of melatonin to plants, and its interactions with NO and IAA, enhanced plant growth and yield under various abiotic stresses. The interaction of melatonin with NO regulated plant morphophysiological and biochemical activities, mediated by the G protein-coupled receptor and synthesis genes. The interaction of melatonin with IAA enhanced plant growth and physiological function by increasing the levels of IAA, synthesis, and polar transport. Our aim was to provide a comprehensive review of the performance of melatonin under various abiotic stresses, and, therefore, further explicate the mechanisms that plant hormones use to regulate plant growth and yield under abiotic stresses.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xudong Song
- Department of Agronomy, Institute of Agricultural, Sudan University of Science and Technology, Khartoum, Sudan
| | - Muhi Eldeen Hussein Ibrahim
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Yanjiang Area, Institute of Agricultural Sciences, Nantong, China
| | - Yousaf Jamal
- Department of Agronomy, Faculty of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Adam Yousif Adam Ali
- Department of Agronomy, Faculty of Agricultural and Environmental Science, University of Gadarif, Al Gadarif, Sudan
| |
Collapse
|
7
|
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MDC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants (Basel) 2023; 12:264. [PMID: 36829823 PMCID: PMC9951922 DOI: 10.3390/antiox12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenida Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
8
|
Zhang XY, Zhang Y, Zhou Y, Liu ZF, Wei BB, Feng XS. Melatonin in different food samples: Recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 2023; 163:112272. [PMID: 36596183 DOI: 10.1016/j.foodres.2022.112272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Melatonin (MLT) plays a significant role on maintaining the basic physiological functions and regulating various metabolic processes in plentiful organisms. Recent years have witnessed an increase in MLT's share in global market with its affluent functions. However, the worrisome quality issues and inappropriate or excessive application of MLT take place inevitably. In addition, its photosensitive properties, oxidation, complex substrate concentration and trace levels leave exact detection of MLT doubly difficult. Therefore, it is essential to exploit precise, sensitive and stable extraction and detection methods to resolve above questions. In this study, we reviewed the distribution and bioactivities of MLT and conducted a comprehensive overview of the developments of pretreatment and analysis methods for MLT in food samples since 2010. Commonly used pretreatment methods for MLT include not only traditional techniques, but also novel ones, such as solid-phase extraction, QuEChERS, microextraction by packed sorbent, solid phase microextraction, liquid phase microextraction, and so on. Analysis methods include liquid chromatography coupled with different detectors, GC methods, capillary electrophoresis, sensors, and so on. The advantages and disadvantages of different techniques have been compared and the development tendency was prospected.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Clinical Pharmacy & Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bin-Bin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
9
|
Liu G, Hu Q, Zhang X, Jiang J, Zhang Y, Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5818-5827. [PMID: 35522986 DOI: 10.1093/jxb/erac196] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Melatonin, the most widely distributed hormone in nature, plays important roles in plants. Many physiological processes in plants are linked to melatonin, including seed germination, anisotropic cell growth, and senescence. Compared with animals, different plants possess diverse melatonin biosynthetic pathways and regulatory networks. Whereas melatonin biosynthesis in animals is known to be regulated by ambient signals, little is known about how melatonin biosynthesis in plants responds to environmental signals. Plants are affected by numerous environmental factors, such as light, temperature, moisture, carbon dioxide, soil conditions, and nutrient availability at all stages of development and in different tissues. Melatonin content exhibits dynamic changes that affect plant growth and development. Melatonin plays various species-specific roles in plant responses to different environmental conditions. However, much remains to be learned, as not all environmental factors have been studied, and little is known about the mechanisms by which these factors influence melatonin biosynthesis. In this review, we provide a detailed, systematic description of melatonin biosynthesis and signaling and of the roles of melatonin in plant responses to different environmental factors, providing a reference for in-depth research on this important issue.
Collapse
Affiliation(s)
- Gaofeng Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Huang X, Tanveer M, Min Y, Shabala S. Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5886-5902. [PMID: 35640481 DOI: 10.1093/jxb/erac224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Melatonin is a highly conserved and ubiquitous molecule that operates upstream of a broad array of receptors in animal systems. Since melatonin was discovered in plants in 1995, hundreds of papers have been published revealing its role in plant growth, development, and adaptive responses to the environment. This paper summarizes the current state of knowledge of melatonin's involvement in regulating plant ion homeostasis and abiotic stress tolerance. The major topics covered here are: (i) melatonin's control of H+-ATPase activity and its implication for plant adaptive responses to various abiotic stresses; (ii) regulation of the reactive oxygen species (ROS)-Ca2+ hub by melatonin and its role in stress signaling; and (iii) melatonin's regulation of ionic homeostasis via hormonal cross-talk. We also show that the properties of the melatonin molecule allow its direct scavenging of ROS, thus preventing negative effects of ROS-induced activation of ion channels. The above 'desensitization' may play a critical role in preventing stress-induced K+ loss from the cytosol as well as maintaining basic levels of cytosolic Ca2+ required for optimal cell operation. Future studies should focus on revealing the molecular identity of transporters that could be directly regulated by melatonin and providing a bioinformatic analysis of evolutionary aspects of melatonin sensing and signaling.
Collapse
Affiliation(s)
- Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
| | - Yu Min
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Wang K, Xing Q, Ahammed GJ, Zhou J. Functions and prospects of melatonin in plant growth, yield, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5928-5946. [PMID: 35640564 DOI: 10.1093/jxb/erac233] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qufan Xing
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
12
|
Mou Z, Wang H, Chen S, Reiter RJ, Zhao D. Molecular mechanisms and evolutionary history of phytomelatonin in flowering. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5840-5850. [PMID: 35443058 DOI: 10.1093/jxb/erac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Flowering is a critical stage in plant life history, which is coordinated by environmental signals and endogenous cues. Phytomelatonin is a widely distributed indoleamine present in all living organisms and plays pleiotropic roles in plant growth and development. Recent evidence has established that phytomelatonin could modulate flowering in many species, probably in a concentration-dependent manner. Phytomelatonin seems to associate with floral meristem identification and floral organ formation, and the fluctuation of phytomelatonin might be important for flowering. Regarding the underlying mechanisms, phytomelatonin interacts with the central components of floral gene regulatory networks directly or indirectly, including the MADS-box gene family, phytohormones, and reactive oxygen species (ROS). From an evolutionary point of view, the actions of phytomelatonin in flowering probably evolved during the period of the diversification of flowering plants and could be regarded as a functional extension of its primary activities. The presumed evolutionary history of phytomelatonin-modulated flowering is proposed, presented in the chronological order of the appearance of phytomelatonin and core flowering regulators, namely DELLA proteins, ROS, and phytohormones. Further efforts are needed to address some intriguing aspects, such as the exploration of the association between phytomelatonin and photoperiodic flowering, phytomelatonin-related floral MADS-box genes, the crosstalk between phytomelatonin and phytohormones, as well as its potential applications in agriculture.
Collapse
Affiliation(s)
- Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| |
Collapse
|
13
|
Jiao J, Xia Y, Yang M, Zheng J, Liu Y, Cao Z. Differences in grape-surface yeast populations significantly influence the melatonin level of wine in spontaneous fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal MA, Aljabri M. Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:843071. [PMID: 35371159 PMCID: PMC8967244 DOI: 10.3389/fpls.2022.843071] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 05/24/2023]
Abstract
Cold stress is one of the most limiting factors for plant growth and development. Cold stress adversely affects plant physiology, molecular and biochemical processes by determining oxidative stress, poor nutrient and water uptake, disorganization of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover impaired plant functions under cold stress, the application of bio-stimulants can be considered a suitable approach. Melatonin (MT) is a critical bio-stimulant that has often shown to enhance plant performance under cold stress. Melatonin application improved plant growth and tolerance to cold stress by maintaining membrane integrity, plant water content, stomatal opening, photosynthetic efficiency, nutrient and water uptake, redox homeostasis, accumulation of osmolytes, hormones and secondary metabolites, and the scavenging of reactive oxygen species (ROS) through improved antioxidant activities and increase in expression of stress-responsive genes. Thus, it is essential to understand the mechanisms of MT induced cold tolerance and identify the diverse research gaps necessitating to be addressed in future research programs. This review discusses MT involvement in the control of various physiological and molecular responses for inducing cold tolerance. We also shed light on engineering MT biosynthesis for improving the cold tolerance in plants. Moreover, we highlighted areas where future research is needed to make MT a vital antioxidant conferring cold tolerance to plants.
Collapse
Affiliation(s)
- Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Maria Naqve
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maryam A. Alahdal
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biology, Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
15
|
Lakhova TN, Kazantsev FV, Lashin SA, Matushkin YG. The finding and researching algorithm for potentially oscillating enzymatic systems. Vavilovskii Zhurnal Genet Selektsii 2021; 25:318-330. [PMID: 34901728 PMCID: PMC8627878 DOI: 10.18699/vj21.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Many processes in living organisms are subject to periodic oscillations at different hierarchical levels of their organization: from molecular-genetic to population and ecological. Oscillatory processes are responsible for cell cycles in both prokaryotes and eukaryotes, for circadian rhythms, for synchronous coupling of respiration with cardiac contractions, etc. Fluctuations in the numbers of organisms in natural populations can be caused by the populations' own properties, their age structure, and ecological relationships with other species. Along with experimental approaches, mathematical and computer modeling is widely used to study oscillating biological systems. This paper presents classical mathematical models that describe oscillatory behavior in biological systems. Methods for the search for oscillatory molecular-genetic systems are presented by the example of their special case - oscillatory enzymatic systems. Factors influencing the cyclic dynamics in living systems, typical not only of the molecular-genetic level, but of higher levels of organization as well, are considered. Application of different ways to describe gene networks for modeling oscillatory molecular-genetic systems is considered, where the most important factor for the emergence of cyclic behavior is the presence of feedback. Techniques for finding potentially oscillatory enzymatic systems are presented. Using the method described in the article, we present and analyze, in a step-by-step manner, first the structural models (graphs) of gene networks and then the reconstruction of the mathematical models and computational experiments with them. Structural models are ideally suited for the tasks of an automatic search for potential oscillating contours (linked subgraphs), whose structure can correspond to the mathematical model of the molecular-genetic system that demonstrates oscillatory behavior in dynamics. At the same time, it is the numerical study of mathematical models for the selected contours that makes it possible to confirm the presence of stable limit cycles in them. As an example of application of the technology, a network of 300 metabolic reactions of the bacterium Escherichia coli was analyzed using mathematical and computer modeling tools. In particular, oscillatory behavior was shown for a loop whose reactions are part of the tryptophan biosynthesis pathway.
Collapse
Affiliation(s)
- T N Lakhova
- Kurchatov Genomics Center of ICG SB RAS, Novosibirsk, Russia
| | - F V Kazantsev
- Kurchatov Genomics Center of ICG SB RAS, Novosibirsk, Russia
| | - S A Lashin
- Kurchatov Genomics Center of ICG SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - Yu G Matushkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
16
|
Mannino G, Pernici C, Serio G, Gentile C, Bertea CM. Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals-An Overview. Int J Mol Sci 2021; 22:ijms22189996. [PMID: 34576159 PMCID: PMC8469784 DOI: 10.3390/ijms22189996] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a ubiquitous indolamine, largely investigated for its key role in the regulation of several physiological processes in both animals and plants. In the last century, it was reported that this molecule may be produced in high concentrations by several species belonging to the plant kingdom and stored in specialized tissues. In this review, the main information related to the chemistry of melatonin and its metabolism has been summarized. Furthermore, the biosynthetic pathway characteristics of animal and plant cells have been compared, and the main differences between the two systems highlighted. Additionally, in order to investigate the distribution of this indolamine in the plant kingdom, distribution cluster analysis was performed using a database composed by 47 previously published articles reporting the content of melatonin in different plant families, species and tissues. Finally, the potential pharmacological and biostimulant benefits derived from the administration of exogenous melatonin on animals or plants via the intake of dietary supplements or the application of biostimulant formulation have been largely discussed.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Carlo Pernici
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| |
Collapse
|
17
|
Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, Chen JT. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. PHYSIOLOGIA PLANTARUM 2021; 172:820-846. [PMID: 33159319 DOI: 10.1111/ppl.13262] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Economics, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou, China
| | | | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Sidra Shahid
- Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
19
|
Key Genes in the Melatonin Biosynthesis Pathway with Circadian Rhythm Are Associated with Various Abiotic Stresses. PLANTS 2021; 10:plants10010129. [PMID: 33435489 PMCID: PMC7827461 DOI: 10.3390/plants10010129] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is involved in several biological processes including circadian rhythm and the regulation of abiotic stress. A systematic understanding of the circadian regulation of melatonin biosynthesis-related genes has not been achieved in rice. In this study, key genes for all of the enzymes in the melatonin biosynthetic pathway that showed a peak of expression at night were identified by microarray data analysis and confirmed by qRT–PCR analysis. We further examined the expression patterns of the four genes under drought, salt, and cold stresses. The results showed that abiotic stresses, such as drought, salt, and cold, affected the expression patterns of melatonin biosynthetic genes. In addition, the circadian expression patterns of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), and serotonin N-acetyltransferase (SNAT) genes in wild-type (WT) plants was damaged by the drought treatment under light and dark conditions. Conversely, N-acetylserotonin O-methyltransferase (ASMT) retained the circadian rhythm. The expression of ASMT was down-regulated by the rice gigantea (OsGI) mutation, suggesting the involvement of the melatonin biosynthetic pathway in the OsGI-mediated circadian regulation pathway. Taken together, our results provide clues to explain the relationship between circadian rhythms and abiotic stresses in the process of melatonin biosynthesis in rice.
Collapse
|
20
|
Sun C, Liu L, Wang L, Li B, Jin C, Lin X. Melatonin: A master regulator of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:126-145. [PMID: 32678945 DOI: 10.1111/jipb.12993] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/16/2020] [Indexed: 05/18/2023]
Abstract
Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants. The identification of a putative melatonin receptor in plants has led to the hypothesis that melatonin is a hormone involved in regulating plant growth, aerial organ development, root morphology, and the floral transition. The universal antioxidant activity of melatonin and its role in preserving chlorophyll might explain its anti-senescence capacity in aging leaves. An impressive amount of research has focused on the role of melatonin in modulating postharvest fruit ripening by regulating the expression of ethylene-related genes. Recent evidence also indicated that melatonin functions in the plant's response to biotic stress, cooperating with other phytohormones and well-known molecules such as reactive oxygen species and nitric oxide. Finally, great progress has been made towards understanding how melatonin alleviates the effects of various abiotic stresses, including salt, drought, extreme temperature, and heavy metal stress. Given its diverse roles, we propose that melatonin is a master regulator in plants.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luxuan Wang
- Department of Agriculture and Environment, McGill University, Montreal, Quebec, H9X 3V9, Canada
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Juhnevica-Radenkova K, Moreno DA, Ikase L, Drudze I, Radenkovs V. Naturally occurring melatonin: Sources and possible ways of its biosynthesis. Compr Rev Food Sci Food Saf 2020; 19:4008-4030. [PMID: 33337029 DOI: 10.1111/1541-4337.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
According to recent reports, the global market for melatonin is worth 700 million USD in 2018 and would reach 2,790 million USD by 2025, growing at a CAGR of 18.9% during 2019 to 2025. Having regard to the prevalence of sleep and circadian rhythm disorders and a clear tendency to increase the demand for melatonin, and the current lack of alternative green and cost-efficient technologies of its synthesis, the supply of this remedy will not be enough to guarantee melatonin supply and affordability on a global scale. The emergence of naturally occurring melatonin and its isomers in fermented foods has opened an exciting new research area; there are still, however, some obscure points in the efficient microbiological biosynthesis of melatonin. This review summarizes the research progress and recent evidence related to melatonin and its isomers in various foodstuffs. Additionally, one possible way to synthesize melatonin is also discussed. The evidence pointed out that the presence of melatonin and its isomers is not exclusive for grapes and grape-derived products, because it can be also found in sweet and sour cherries. However, different species of both Saccharomyces and non-Saccharomyces yeasts could be used to obtain melatonin and melatonin isomers in the process of alcoholic fermentation biotechnologically. The availability of L-tryptophan has been a key factor in determining the concentration of indolic compounds produced, and the utilization of probiotic lactic acid bacteria could help in the formation of melatonin isomers during malolactic fermentation. These approaches are environmentally friendly alternatives with a safer profile than conventional ones and could represent the future for sustainable industrial-scale melatonin production.
Collapse
Affiliation(s)
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | | | | | | |
Collapse
|
22
|
Carneiro AF, Carneiro CN, Gomez FJ, Spisso A, Silva MF, Minho LA, dos Santos WN, Dias FDS. Doehlert matrix for the optimization of ultrasound dispersive liquid–liquid microextraction of melatonin in Argentine and Brazilian wine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Wang L, Luo Z, Yang M, Li D, Qi M, Xu Y, Abdelshafy AM, Ban Z, Wang F, Li L. Role of exogenous melatonin in table grapes: First evidence on contribution to the phenolics-oriented response. Food Chem 2020; 329:127155. [DOI: 10.1016/j.foodchem.2020.127155] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/30/2022]
|
24
|
Albu C, Radu LE, Radu GL. Assessment of Melatonin and Its Precursors Content by a HPLC-MS/MS Method from Different Romanian Wines. ACS OMEGA 2020; 5:27254-27260. [PMID: 33134687 PMCID: PMC7594137 DOI: 10.1021/acsomega.0c03463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 05/04/2023]
Abstract
Because melatonin has strong antioxidant activity and wine is an alcoholic beverage of economic relevance, in the present work, the impact of some variable parameters that may occur in the winemaking process on the concentrations of melatonin and its precursors in Romanian wines was studied. Therefore, a sensitive and selective high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous analysis of melatonin, serotonin, and l-tryptophan, and some method performance parameters including selectivity, detection limit, precision (by comparing with an alternative HPLC-FL method), accuracy, and robustness were validated. These determinations are significant and the final amounts of analytes are dependent on the microorganisms involved in the winemaking process, the grape variety, geographic regions of vineyards, and aging of wines. In the future, the method may be useful to increase the melatonin content and the antioxidant activity in wines by improved steps in the winemaking process, especially based on application of selected yeasts and improved fermentation conditions.
Collapse
Affiliation(s)
- Camelia Albu
- Centre of Bioanalysis,
National Institute of Research and Development for Biological Sciences—Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
- . Phone/Fax: +(40)212.200.900
| | - Letitia Elena Radu
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bulevard, 050474 Bucharest, Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis,
National Institute of Research and Development for Biological Sciences—Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
25
|
Wang L, Luo Z, Ban Z, Jiang N, Yang M, Li L. Role of exogenous melatonin involved in phenolic metabolism of Zizyphus jujuba fruit. Food Chem 2020; 341:128268. [PMID: 33039742 DOI: 10.1016/j.foodchem.2020.128268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023]
Abstract
To investigate the effects of exogenous melatonin (MLT) treatment on the quality of postharvest jujubes, fresh 'Lingwuchangzao', and 'Dongzao' jujubes (Zizyphus jujuba Mill) were dipped in MLT solution at the dose of 0, 50,100 and 200 μmol L-1 for 20 min. Results showed the exogenous MLT application significantly delayed the color change and firmness decline, and maintained the content of total soluble solids and titratable acidity of both jujube cultivars, (p < 0.05). It was demonstrated that the endogenous MLT content was increased by exogenous MLT treatment. Furthermore, phenolic compounds level was enhanced by MLT application, companied by the upregulated expression of main genes involved in phenolic biosynthesis, including phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, chalcone synthase, flavonoid 3β-hydroxylase, leucoanthocyanidin reductase, and anthocyanidin synthase. Given the evidence from the present study, it's proposed that the exogenous MLT approach is a promising approach for maintaining quality attributes and delaying the senescence of postharvest jujubes.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Nan Jiang
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Mingyi Yang
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Khan TA, Fariduddin Q, Nazir F, Saleem M. Melatonin in business with abiotic stresses in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1931-1944. [PMID: 33088040 PMCID: PMC7548266 DOI: 10.1007/s12298-020-00878-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 05/27/2023]
Abstract
Melatonin (MEL) is the potential biostimulator molecule, governing multiple range of growth and developmental processes in plants, particularly under different environmental constrains. Mainly, its role is considered as an antioxidant molecule that copes with oxidative stress through scavenging of reactive oxygen species and modulation of stress related genes. It also enhances the antioxidant enzyme activities and thus helps in regulating the redox hemostasis in plants. Apart from its broad range of antioxidant functions, it is involved in the regulation of various physiological processes such as germination, lateral root growth and senescence in plants. Moreover this multifunctional molecule takes much interest due to its recent identification and characterization of receptorCandidate G-protein-Coupled Receptor 2/Phytomelatonin receptor(CAND2/PMTR1) in Arabidopsis thaliana. In this compiled work, different aspects of melatonin in plants such as melatonin biosynthesis and detection in plants, signaling pathway, modulation of stress related genes and physiological role of melatonin under different environmental stresses have been dissected in detail.
Collapse
Affiliation(s)
- Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
27
|
|
28
|
Production of melatonin and other tryptophan derivatives by Oenococcus oeni under winery and laboratory scale. Food Microbiol 2020; 86:103265. [DOI: 10.1016/j.fm.2019.103265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
|
29
|
Abstract
Phytoremediation is a green technology that aims to take up pollutants from soil or water. Metals are one of the targets of these techniques due to their high toxicity in biological systems, including plants and animals. Their elimination or, at least, decrease will help keep them from being incorporated in the trophic chain and thus reaching animal and human food. The metal removal efficiency of plants is closely related to their growth rate, tolerance, and their adaptability to different environments. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in animals, plants, fungi, and bacteria. In plants, it plays an important role related to antioxidant activity, but also as an important redox network regulator. Thus, melatonin has been defined as a biostimulator of plant growth, especially under environmental stress conditions, whether abiotic (water deficit and waterlogging, extreme temperature, UV radiation, salinity, alkalinity, specific mineral deficit/excess, metals and other toxic compounds, etc.) or biotic (bacteria, fungi, and viruses). Exogenous melatonin treated plants have been seen to have a high tolerance to stressors, minimizing possible harmful effects through the control of reactive oxygen species (ROS) levels and activating antioxidative responses. Furthermore, important gene expression changes in stress specific transcription factors have been demonstrated. Melatonin is capable of mobilizing toxic metals, through phytochelatins, transporting this, while sequestration adds to the biostimulator effect of melatonin on plants, improving plant tolerance against toxic pollutants. Furthermore, melatonin improves the uptake of nitrogen (N), phosphorus (P), and sulfur (S) in stress situations, enhancing cell metabolism. In light of the above, the application of melatonin seems to be a useful option for clearing toxic pollutants from the environment by improving phytoremediation. Interestingly, a variety of stressors induce melatonin biosynthesis in plants, and the study of this endogenous response in hyperaccumulator plants may be even more interesting as a natural response of the phytoremediation of diverse plants.
Collapse
|
30
|
Yu Y, Bian L, Jiao Z, Yu K, Wan Y, Zhang G, Guo D. Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense. BMC Genomics 2019; 20:880. [PMID: 31747891 PMCID: PMC6868852 DOI: 10.1186/s12864-019-6085-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
Background Melatonin is a ubiquitous molecule and exists across kingdoms. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. A number of studies have been conducted on the melatonin content and exogenous melatonin treatment of grapevine (Vitis vinifera L.). However, key genes or enzymes of the melatonin biosynthetic pathway remain unclear. Results In this study, we cloned and identified the gene encoding serotonin N-acetyltransferase (SNAT) in grapevine (VvSNAT2). The VvSNAT2 protein was identified from a collection of 30 members of the grapevine GCN5-related N-acetyltransferase (GNAT) superfamily. Phylogenetic and protein sublocalization analyses showed that the candidate gene VvGNAT16 is VvSNAT2. Characterization of VvSNAT2 showed that its enzymatic activity is highest at a pH of 8.8 and a temperature of 45 °C. Analysis of enzyme kinetics showed the values of Km and Vmax of VvSNAT2 using serotonin were 392.5 μM and 836 pmol/min/mg protein, respectively. The expression of VvSNAT2 was induced by melatonin treatment and pathogen inoculation. Overexpression of VvSNAT2 in Arabidopsis resulted in greater accumulation of melatonin and chlorophyll and enhanced resistance to powdery mildew in the transgenic plants compared with the wild type (WT). Additionally, our data showed that the marker genes in the salicylic acid (SA) signaling pathway were expressed to higher levels in the transgenic plants compared with the WT. Conclusions The VvSNAT2 gene was cloned and identified in grapevine for the first time. Our results indicate that VvSNAT2 overexpression activates the SA and JA signaling pathways; however, the SA pathway plays a central role in VvSNAT2-mediated plant defense.
Collapse
Affiliation(s)
- Yihe Yu
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, Henan Province, 471023, People's Republic of China
| | - Lu Bian
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, Henan Province, 471023, People's Republic of China
| | - Zeling Jiao
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, Henan Province, 471023, People's Republic of China
| | - Keke Yu
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, Henan Province, 471023, People's Republic of China
| | - Yutong Wan
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, Henan Province, 471023, People's Republic of China
| | - Guohai Zhang
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, Henan Province, 471023, People's Republic of China
| | - Dalong Guo
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, Henan Province, 471023, People's Republic of China.
| |
Collapse
|
31
|
Guo SH, Xu TF, Shi TC, Jin XQ, Feng MX, Zhao XH, Zhang ZW, Meng JF. Cluster bagging promotes melatonin biosynthesis in the berry skins of Vitis vinifera cv. Cabernet Sauvignon and Carignan during development and ripening. Food Chem 2019; 305:125502. [PMID: 31606692 DOI: 10.1016/j.foodchem.2019.125502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 09/07/2019] [Indexed: 12/27/2022]
Abstract
Melatonin, a tryptophan derivative, is an important functional component in grape berries. We investigated the effect of cluster bagging on melatonin biosynthesis in the berries of two wine grape cultivars, Cabernet Sauvignon and Carignan, during fruit development and ripening. Cluster bagging delayed fruit coloring and ripening, and bag-treated berries of both grape cultivars synthesized more melatonin and most of the precursor compounds including L-tryptophan, N-acetylserotonin, tryptamine, and serotonin compared to those exposed to light (control) conditions. Interestingly, 5-methoxytryptamine was only detected in the berries of Carignan and not of Cabernet Sauvignon, both in the cluster bagging and control groups. In addition, melatonin and most of its precursors, decreased after veraison. VvSNAT1 and VvT5H expression levels were positively correlated with melatonin content. Our findings suggested that melatonin synthesis pathways differ among grape cultivars, and that VvSNAT1 and VvT5H may show key regulatory roles in the melatonin synthesis of grape berries.
Collapse
Affiliation(s)
- Shui-Huan Guo
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Teng-Fei Xu
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian-Ci Shi
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu-Qiao Jin
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Xin Feng
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xian-Hua Zhao
- College of Life Sciences and Enology, Taishan University, Taian, Shandong 271021, China
| | - Zhen-Wen Zhang
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F University, Heyang, Shaanxi 715300, China.
| | - Jiang-Fei Meng
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F University, Heyang, Shaanxi 715300, China.
| |
Collapse
|
32
|
Li J, Liu J, Zhu T, Zhao C, Li L, Chen M. The Role of Melatonin in Salt Stress Responses. Int J Mol Sci 2019; 20:E1735. [PMID: 30965607 PMCID: PMC6479358 DOI: 10.3390/ijms20071735] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin, an indoleamine widely found in animals and plants, is considered as a candidate phytohormone that affects responses to a variety of biotic and abiotic stresses. In plants, melatonin has a similar action to that of the auxin indole-3-acetic acid (IAA), and IAA and melatonin have the same biosynthetic precursor, tryptophan. Salt stress results in the rapid accumulation of melatonin in plants. Melatonin enhances plant resistance to salt stress in two ways: one is via direct pathways, such as the direct clearance of reactive oxygen species; the other is via an indirect pathway by enhancing antioxidant enzyme activity, photosynthetic efficiency, and metabolite content, and by regulating transcription factors associated with stress. In addition, melatonin can affect the performance of plants by affecting the expression of genes. Interestingly, other precursors and metabolite molecules associated with melatonin can also increase the tolerance of plants to salt stress. This paper explores the mechanisms by which melatonin alleviates salt stress by its actions on antioxidants, photosynthesis, ion regulation, and stress signaling.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Tingting Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Lingyu Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
33
|
Xu T, Chen Y, Kang H. Melatonin Is a Potential Target for Improving Post-Harvest Preservation of Fruits and Vegetables. FRONTIERS IN PLANT SCIENCE 2019; 10:1388. [PMID: 31737014 PMCID: PMC6831725 DOI: 10.3389/fpls.2019.01388] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
Melatonin is a ubiquitous molecule distributed in nature and not only plays an important role in animals and humans but also has extensive functions in plants, such as delaying senescence, exerting antioxidant effects, regulating growth and development, and facilitating plant adaption to stress conditions. Endogenous melatonin is widespread in fruits and vegetables and plays prominent roles in the ripening and post-harvest process of fruits and vegetables. Exogenous application of melatonin removes excess reactive oxygen species from post-harvest fruits and vegetables by increasing antioxidant enzymes, non-enzymatic antioxidants, and enzymes related to oxidized protein repair. Moreover, exogenous application of melatonin can increase endogenous melatonin to augment its effects on various physiological processes. Many previous reports have demonstrated that application of exogenous melatonin improves the post-harvest preservation of fruits and vegetables. Although overproduction of melatonin in plants via transgenic approaches could be a potential means for improving the post-harvest preservation of fruits and vegetables, efforts to increase endogenous melatonin in plants are limited. In this review, we summarize the recent progress revealing the role and action mechanisms of melatonin in post-harvest fruits and vegetables and provide future directions for the utilization of melatonin to improve the post-harvest preservation of fruits and vegetables.
Collapse
Affiliation(s)
- Tao Xu
- Key Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- *Correspondence: Tao Xu, ; Hunseung Kang,
| | - Yao Chen
- Key Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- *Correspondence: Tao Xu, ; Hunseung Kang,
| |
Collapse
|
34
|
|
35
|
Zhang Y, Huber DJ, Hu M, Jiang G, Gao Z, Xu X, Jiang Y, Zhang Z. Delay of Postharvest Browning in Litchi Fruit by Melatonin via the Enhancing of Antioxidative Processes and Oxidation Repair. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7475-7484. [PMID: 29953220 DOI: 10.1021/acs.jafc.8b01922] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Melatonin acts as a crucial signaling and antioxidant molecule with multiple physiological functions in organisms. To explore effects of exogenous melatonin on postharvest browning and its possible mechanisms in litchi fruit, 'Ziniangxi' litchi fruits were treated with an aqueous solution of melatonin at 0.4 mM and then stored at 25 °C for 8 days. The results revealed that melatonin strongly suppressed pericarp browning and delayed discoloration during storage. Melatonin treatment reduced relative membrane-leakage rate and inhibited the generation of superoxide radicals (O2-·), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Melatonin treatment markedly promoted the accumulation of endogenous melatonin; delayed loss of total phenolics, flavonoids, and anthocyanins; and enhanced the activities of antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2). By contrast, the activities of browning-related enzymes including polyphenoloxidase (PPO, EC 1.10.3.1) and peroxidase (POD, EC 1.11.1.7) were reduced. In addition, melatonin treatment up-regulated the expression of four genes encoding enzymes for repair of oxidized proteins, including LcMsrA1, LcMsrA2, LcMsrB1, and LcMsB2. These findings indicate that the delay of pericarp browning and senescence by melatonin in harvested litchi fruit could be attributed to the maintenance of redox homeostasis by the improvement of the antioxidant capacity and modulation of the repair of oxidatively damaged proteins.
Collapse
Affiliation(s)
- Yueying Zhang
- College of Food Science and Technology , Hainan University , Haikou 570228 , PR China
| | - Donald J Huber
- Horticultural Sciences Department, IFAS , University of Florida , PO Box 110690, Gainesville , Florida 32611-0690 , United States
| | - Meijiao Hu
- Environment and Plant Protection Institute , Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , PR China
| | - Guoxiang Jiang
- South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , PR China
| | - Zhaoyin Gao
- Environment and Plant Protection Institute , Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , PR China
| | - Xiangbin Xu
- College of Food Science and Technology , Hainan University , Haikou 570228 , PR China
| | - Yueming Jiang
- South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , PR China
| | - Zhengke Zhang
- College of Food Science and Technology , Hainan University , Haikou 570228 , PR China
| |
Collapse
|
36
|
Fan J, Xie Y, Zhang Z, Chen L. Melatonin: A Multifunctional Factor in Plants. Int J Mol Sci 2018; 19:E1528. [PMID: 29883400 PMCID: PMC5983796 DOI: 10.3390/ijms19051528] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/06/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is a universal molecule that is present in animals and plants. It has been detected in different kinds of plants and organs in different levels. Melatonin in plants shares the same initial biosynthesis compound with auxin, and therefore functions as indole-3-acetic acid like hormones. Moreover, melatonin is involved in regulating plant growth and development, protecting plants against biotic and abiotic stresses, such as salt, drought, cold, heat and heavy metal stresses. Melatonin improves the stress tolerance of plants via a direct pathway, which scavenges reactive oxygen species directly, and indirect pathways, such as increasing antioxidate enzymes activity, photosynthetic efficiency and metabolites content. In addition, melatonin plays a role in regulating gene expression, and hence affects performance of plants. In this review, the biosynthesis pathway, growth and development regulation, and the environment stress response of melatonin in plants are summarized and future research directions and priorities of melatonin in plants are speculated.
Collapse
Affiliation(s)
- Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China.
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
37
|
Melatonin and Expression of Tryptophan Decarboxylase Gene ( TDC) in Herbaceous Peony ( Paeonia lactiflora Pall.) Flowers. Molecules 2018; 23:molecules23051164. [PMID: 29757219 PMCID: PMC6100325 DOI: 10.3390/molecules23051164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Melatonin is a bioactive, edible ingredient that promotes human health and exists widely in plants, but little is known about its biosynthetic routes and underlying molecular mechanisms in the herbaceous peony. In this contribution, we found that herbaceous peony flowers are rich in melatonin that is found in the greatest quantities in the white series, followed by the ink series, the red series and then the pink series. On this basis, the melatonin content fluctuates during flower development and peaks during the bloom stage. Moreover, it is apparent that sun exposure and blue light induce melatonin production whereas green light restrains it during a 24-h light/dark cycle of melatonin content, as there were ‘dual peaks’ at 2 p.m. and 2 a.m. Additionally, the corresponding expression pattern of the herbaceous peony tryptophan decarboxylase gene (TDC) was positively related with melatonin production. These results suggest that color series, development stage and light play an important role in melatonin accumulation, and that TDC is a rate-limiting gene in melatonin biosynthesis.
Collapse
|
38
|
Sheshadri SA, Nishanth MJ, Yamine V, Simon B. Effect of Melatonin on the stability and expression of reference genes in Catharanthus roseus. Sci Rep 2018; 8:2222. [PMID: 29403001 PMCID: PMC5799177 DOI: 10.1038/s41598-018-20474-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
The role of Melatonin in influencing diverse genes in plants has gained momentum in recent years and many reports have employed qRT-PCR for their quantification. Relative quantification of gene expression relies on accurate normalization of qRT-PCR data against a stably-expressing internal reference-gene. Although researchers have been using commonly available reference-genes to assess Melatonin-induced gene expression, but to-date, there have been no attempts to validate the reference-gene stability under Melatonin-supplementation in planta. In this study, we performed stability assessment of common reference-genes under Melatonin-supplementation and abiotic stress in leaves and seedlings of Catharanthus roseus using geNorm, NormFinder, BestKeeper, ΔCt and RefFinder algorithms. Nine candidate reference-genes were tested for stability in C. roseus (FBOX, CACS, TIP, RSP9, EXP, EXPR, SAND, F17M5, ACT) and our study inferred that while EXP and EXPR were the most-stable, F17M5 was the lowest-stable gene in the leaf-fed samples. Among seedlings of C. roseus, F17M5 and TIP were the most, while ACT was the least-stable gene. The suitability of selected stable reference-gene pairs was demonstrated by assessing the transcript levels of the Melatonin-biosynthesis gene SNAT under same conditions. Our study is the first to comprehensively analyze the stability of commonly-used reference-genes under Melatonin-induced conditions in C. roseus.
Collapse
Affiliation(s)
- S A Sheshadri
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - M J Nishanth
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - V Yamine
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Bindu Simon
- Phytoengineering Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
39
|
Lee K, Choi GH, Back K. Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: Key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. J Pineal Res 2017; 63. [PMID: 28793366 DOI: 10.1111/jpi.12441] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
In plants, melatonin production is induced by stimuli such as cold and drought, and cadmium (Cd) is the best elicitor of melatonin production in rice. However, the mechanism by which Cd induces melatonin synthesis in plants remains unknown. We challenged rice seedlings with Cd under different light conditions and found that continuous light produced the highest levels of melatonin, while continuous dark failed to induce melatonin production. Transcriptional and translational induction of tryptophan decarboxylase contributed to the light induction of melatonin during Cd treatment, whereas the protein level of light-induced caffeic acid O-methyltransferase (COMT) was decreased by Cd treatment. In analogy, COMT enzyme activity was inhibited in vitro by Cd in a dose-dependent manner. Notably, the Cd-induced melatonin synthesis was significantly impaired by treatment with either an H2 O2 production inhibitor (DPI) or an NO scavenger (cPTIO). The combination of both inhibitors almost completely abolished Cd-induced melatonin synthesis, suggesting an absolute requirement for H2 O2 and NO. However, neither serotonin nor N-acetylserotonin (NAS) was induced by H2 O2 alone. In contrast, NO significantly induced serotonin production but not NAS or melatonin production. This indicated that serotonin did not enter chloroplasts, where serotonin N-acetyltransferase (SNAT) is constitutively expressed. This suggests that chloroplastidic SNAT expression prevents increased melatonin production after exposure to stress, ultimately leading to the maintenance of a steady-state melatonin level inside cells.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Geun-Hee Choi
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
40
|
Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:138-149. [PMID: 28633086 DOI: 10.1016/j.plaphy.2017.06.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 05/18/2023]
Abstract
Melatonin plays an important role in abiotic stress in plant, but its role in wheat drought tolerance is less known. To verify its role, wheat seedlings (Triticum aestivum L. 'Yan 995') at 60% and 40% of field capacity were treated with 500 μM melatonin in this study. Melatonin treatment significantly enhanced the drought tolerance of wheat seedlings, as demonstrated by decreased membrane damage, more intact grana lamella of chloroplast, higher photosynthetic rate, and maximum efficiency of photosystem II, as well as higher cell turgor and water holding capacity in melatonin-treated seedlings. Besides, melatonin markedly decreased the content of hydrogen peroxide and superoxide anion in melatonin-treated seedlings, which is attributed to the increased total antioxidant capacity, GSH and AsA contents, as well as enzyme activity including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione peroxidase (GPX), and glutathione transferase (GST). The GSH-AsA related genes including APX, MDHAR, and DHAR were commonly upregulated by melatonin and correlated to the antioxidant enzyme activity as well as the content of GSH and AsA, indicating that the increase of GSH and AsA was attributed to the expression of these genes. Our result confirmed the mitigation potential of melatonin in drought stress and certain mechanisms of melatonin-induced GSH and AsA accumulation, which could deepen our understanding of melatonin-induced drought tolerance in wheat.
Collapse
Affiliation(s)
- Guibin Cui
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Zhao
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Shudong Liu
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China.
| |
Collapse
|
41
|
Pshenichnyuk SA, Modelli A, Jones D, Lazneva EF, Komolov AS. Low-Energy Electron Interaction with Melatonin and Related Compounds. J Phys Chem B 2017; 121:3965-3974. [PMID: 28394598 DOI: 10.1021/acs.jpcb.7b01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The electron attaching properties and fragmentation of temporary negative ions of melatonin and its biosynthetic precursor tryptophan are studied in vacuo using dissociative electron attachment (DEA) spectroscopy. The experimental findings are interpreted in silico with the support of Hartree-Fock and density functional theory calculations of empty orbital energies and symmetries, and evaluation of the electron affinities of the indolic molecules under investigation. The only fragment anions formed by DEA to melatonin at incident electron energies below 2 eV are associated with the elimination of a hydrogen atom (energetically favored from the NH site of the pyrrole ring, leaving the ring intact) or a CH3· radical from the temporary molecular negative ion. Opening of the pyrrole ring of melatonin is not detected over the whole electron energy range of 0-14 eV. The DEA spectra of l- and d-tryptophan are almost identical under the present experimental conditions. The adiabatic electron affinity of melatonin is predicted to be -0.49 eV at the B3LYP/6-31+G(d) level, indicating that the DEA mechanism in melatonin is likely to be present in most life forms given the availability of low energy electrons in living systems in both plant and animal kingdoms. In particular, H atom donation usually associated with free-radical scavenging activity can be stimulated by electron attachment and N-H bond cleavage at electron energies around 1 eV.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences , Prospeκt Oktyabrya 151, 450075 Ufa, Russia.,St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician″, Università di Bologna , via Selmi 2, 40126 Bologna, Italy.,Centro Interdipartimentale di Ricerca in Scienze Ambientali , via S. Alberto 163, 48123 Ravenna, Italy
| | - Derek Jones
- ISOF, Istituto per la Sintesi Organica e la Fotoreattività , C.N.R., via Gobetti 101, 40129 Bologna, Italy
| | - Eleonora F Lazneva
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alexei S Komolov
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
42
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9:E367. [PMID: 28387721 PMCID: PMC5409706 DOI: 10.3390/nu9040367] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
43
|
Meng JF, Shi TC, Song S, Zhang ZW, Fang YL. Melatonin in grapes and grape-related foodstuffs: A review. Food Chem 2017; 231:185-191. [PMID: 28449995 DOI: 10.1016/j.foodchem.2017.03.137] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
A decade has passed since melatonin was first reported in grapes in 2006. During this time, melatonin has not only been found in the berries of most wine grape (Vitis vinifera L.) cultivars, but also in most grape-related foodstuffs, e.g. wine, grape juice and grape vinegar. In this review, we discuss the melatonin content in grapes and grape-related foodstuffs (especially wine) from previous studies, the physiological function of melatonin in grapes, and the factors contributing to the production of melatonin in grapes and wines. In addition, we identify future research needed to clarify the mechanisms of grape melatonin biosynthesis and regulation, and establish more accurate analysis methods for melatonin in grapes and wines.
Collapse
Affiliation(s)
- Jiang-Fei Meng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China
| | - Tian-Ci Shi
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo Song
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518005, China
| | - Zhen-Wen Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China.
| | - Yu-Lin Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
KORKMAZ A, YAKUPOĞLU G, KÖKLÜ Ş, CUCİ Y, KOCAÇINAR F. Determining diurnal and seasonal changes in melatonin andtryptophan contents of eggplant (Solanum melongena L.). TURKISH JOURNAL OF BOTANY 2017; 41:356-366. [PMID: 0 DOI: 10.3906/bot-1611-48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
45
|
Zieliński H, Szawara-Nowak D, Wiczkowski W. Determination of melatonin in bakery products using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0029-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. CNS Neurosci Ther 2016; 23:33-44. [PMID: 27421686 DOI: 10.1111/cns.12588] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Lipopolysaccharide (LPS) induces oxidative stress and neuroinflammation both in vivo and in vitro. Here, we provided the first detailed description of the mechanism of melatonin neuroprotection against LPS-induced oxidative stress, acute neuroinflammation, and neurodegeneration in the hippocampal dentate gyrus (DG) region of the postnatal day 7 (PND7) rat brain. METHODS The neuroprotective effects of melatonin against LPS-induced neurotoxicity were analyzed using multiple research techniques, including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays (ELISAs) in PND7 rat brain homogenates and BV2 cell lysates in vitro. We also used EX527 to inhibit silent information regulator transcript-1 (SIRT1). RESULTS A single intraperitoneal (i.p) injection of LPS to PND7 rats significantly induced glial cell activation, acute neuroinflammation, reactive oxygen species (ROS) production and apoptotic neurodegeneration in hippocampal DG region after 4 h. However, the coadministration of melatonin significantly inhibited both LPS-induced acute neuroinflammation and apoptotic neurodegeneration and improved synaptic dysfunction in the hippocampal DG region of PND7 rats. Most importantly, melatonin stimulated the SIRT1/Nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway to reduce LPS-induced ROS generation. The beneficial effects of melatonin were further confirmed in LPS-stimulated BV2 microglia cell lines in vitro using EX527 as an inhibitor of SIRT1. LPS-induced oxidative stress, Nrf2 inhibition, and neuroinflammation are SIRT1-dependent in BV2 microglia cell lines. CONCLUSION These results demonstrated that melatonin treatment rescued the hippocampal DG region of PND7 rat brains against LPS-induced oxidative stress damage, acute neuroinflammation, and apoptotic neurodegeneration via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Mehtab Khan
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeung-Hoon Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Faiz Ul Amin
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
47
|
Tudela R, Ribas-Agustí A, Buxaderas S, Riu-Aumatell M, Castellari M, López-Tamames E. Ultrahigh-Performance Liquid Chromatography (UHPLC)-Tandem Mass Spectrometry (MS/MS) Quantification of Nine Target Indoles in Sparkling Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4772-6. [PMID: 27148823 DOI: 10.1021/acs.jafc.6b01254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS) method was developed for the simultaneous determination of nine target indoles in sparkling wines. The proposed method requires minimal sample pretreatment, and its performance parameters (accuracy, repeatability, LOD, and matrix effect) indicate that it is suitable for routine analysis. Four indoles were found at detectable levels in commercial Cava samples: 5-methoxytryptophol (5MTL), tryptophan (TRP), tryptophan ethyl ester (TEE), and N-acetylserotonin (NSER). Two of them, NSER and 5MTL, are reported here for the first time in sparkling wines, with values of 0.3-2 and 0.29-29.2 μg/L, respectively. In the same samples, the contents of melatonin (MEL), serotonin (SER), 5-hydroxytryptophan (5-OHTRP), 5-hydroxyindole-3-acetic acid (5OHIA), and 5-methoxy-3-indoleacetic acid (5MIA) were all below the corresponding limits of detection.
Collapse
Affiliation(s)
- Rebeca Tudela
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | | | - Susana Buxaderas
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Montserrat Riu-Aumatell
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | | | - Elvira López-Tamames
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
48
|
Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother Res 2016; 30:1392-403. [PMID: 27196869 DOI: 10.1002/ptr.5644] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Wang C, Yin LY, Shi XY, Xiao H, Kang K, Liu XY, Zhan JC, Huang WD. Effect of Cultivar, Temperature, and Environmental Conditions on the Dynamic Change of Melatonin in Mulberry Fruit Development and Wine Fermentation. J Food Sci 2016; 81:M958-67. [PMID: 26953927 DOI: 10.1111/1750-3841.13263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/06/2016] [Indexed: 01/05/2023]
Abstract
High levels of melatonin have been reported in various foods but not in mulberry or its wine. This study investigated the dynamic changes of melatonin levels during mulberry fruit development and ethanol fermentation of 2 different colored mulberry cultivars ("Hongguo2ˮ Morus nigra, black and "Baiyuwangˮ Morus alba, white) at 2 fermentation temperatures (16 and 25 °C). Our results showed that the melatonin level increased in the beginning of mulberry development but decreased in the end. The MnTDC gene expression level correlated with melatonin production, which implied that TDC may be the rate-limiting enzyme of the melatonin biosynthetic process in mulberries. During mulberry fermentation, the melatonin concentration increased rapidly in the beginning and then decreased gradually. Low temperature delayed the melatonin production during fermentation. A relatively high level of melatonin was found in "Hongguo2ˮ compared with "Baiyuwangˮ during fruit development and fermentation. The variation of melatonin correlated with the ethanol production rate, suggesting that melatonin may participate in physiological regulation of Saccharomyces cerevisiae during the fermentation stage.
Collapse
Affiliation(s)
- Cheng Wang
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China.,Beijing Key Laboratory of Viticulture and Enology, Beijing, 100083, P.R. China
| | - Li-Yuan Yin
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China
| | - Xue-Ying Shi
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China
| | - Hua Xiao
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China
| | - Kun Kang
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China
| | - Xing-Yan Liu
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China.,Beijing Key Laboratory of Viticulture and Enology, Beijing, 100083, P.R. China
| | - Ji-Cheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China.,Beijing Key Laboratory of Viticulture and Enology, Beijing, 100083, P.R. China
| | - Wei-Dong Huang
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Qinghua East Rd. No.17, Haidian District, Beijing, 100083, P.R. China.,Beijing Key Laboratory of Viticulture and Enology, Beijing, 100083, P.R. China
| |
Collapse
|
50
|
Shi H, Wei Y, He C. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:150-155. [PMID: 26828406 DOI: 10.1016/j.plaphy.2016.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1.
Collapse
Affiliation(s)
- Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou 570228, China.
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|