1
|
Datta M, Majumder R, Banerjee A, Bandyopadhyay D, Chattopadhyay A. Melatonin protects against diclofenac induced oxidative stress mediated myocardial toxicity in rats: A mechanistic insight. Food Chem Toxicol 2024; 190:114813. [PMID: 38876380 DOI: 10.1016/j.fct.2024.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Diclofenac, a traditional non-steroidal anti-inflammatory drug, is commonly used for treating chronic pain and inflammation. Recently, a number of articles have highlighted the toxicities associated with diclofenac. The current study explores the molecular mechanism of diclofenac induced cardiac toxicity following oxidative stress. Diclofenac inhibits catalase, disrupts the redox balance in cardiac tissue, accelerates the monoamine oxidase induced hydroperoxide generation and eventually inhibits crucial mitochondrial enzyme, viz., aldehyde dehydrogenase, thereby causing myocardial injury. Melatonin, the pineal indoleamine with high antioxidative efficacy, is well known for its cardio-protective properties and its dietary consumption has profound impact on cardiac health. The present study demonstrates perhaps for the first time, that apart from ameliorating oxidative load in the cardiac tissue, melatonin also attenuates the inhibition of catalase and aldehyde dehydrogenase, and prevents stress mediated stimulation of monoamine oxidase. Moreover, favourable binding of diclofenac with melatonin may protect the myocardium from the deleterious effects of this drug. The results indicate toward a novel mechanism of protection by melatonin, having future therapeutic relevance.
Collapse
Affiliation(s)
- Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
2
|
Rostamzadeh F, Najafipour H, Aminizadeh S, Jafari E. Therapeutic effects of the combination of moderate-intensity endurance training and MitoQ supplementation in rats with isoproterenol-induced myocardial injury: The role of mitochondrial fusion, fission, and mitophagy. Biomed Pharmacother 2024; 170:116020. [PMID: 38147733 DOI: 10.1016/j.biopha.2023.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
INTRODUCTION Mitochondrial dysfunction causes myocardial disease. This study investigated the effects of MitoQ alone and in combination with moderate-intensity endurance training (EX) on cardiac function and content and mRNA expression of several proteins involved in mitochondrial quality control in isoproterenol (ISO)-induced heart injuries METHODS: Seven groups of CTL, ISO, ISO-EX, ISO-MitoQ-125, ISO-MitoQ-250, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 were assigned. Rats were trained on a treadmill, and the MitoQ groups received MitoQ in drinking water for 8 weeks, starting one week after the induction of heart injury. Arterial pressure and cardiac function indices, mRNA expression, protein content, oxidant and antioxidant markers, fibrosis, and histopathological changes were assessed by physiograph, Real-Time PCR, immunofluorescence, calorimetry, Masson's trichrome, and H&E staining, respectively. RESULTS The impacts of MitoQ-125, EX+MitoQ-125, and EX+MitoQ-250 on arterial pressure and left ventricular systolic pressure were higher than MitoQ-250 or EX alone. ± dp/dt max were higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-MitoQ-125 and ISO-MitoQ-250 groups, respectively. Histopathological scores and fibrosis decreased in ISO-EX, ISO-MitoQ-125, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 groups. The restoration of MFN2, PINK-1, and FIS-1 changes was higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-EX, ISO-MitoQ-125 and ISO-MitoQ-250 groups. The expression of MFN2 and PINK-1 was lower in ISO-MitoQ-125 and ISO-EX+MitoQ-125 than ISO and CTL groups. The expression of FIS-1 in ISO-EX and ISO-EX+MitoQ-250 increased compared to CTL and ISO groups. MDA decreased in ISO-MitoQ-125 and ISO-EX+MitoQ-125 groups. CONCLUSION Exercise and MitoQ combination have additive effects on cardiac function by modulating cardiac mitochondria quality. This study provided a possible therapy to treat heart injuries.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Aminizadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Majumder R, Datta M, Banerjee A, Bandyopadhyay D, Chattopadhyay A. Melatonin protects against ketorolac induced gastric mucosal toxic injuries through molecular mechanism associated with the modulation of Arylakylamine N-Acetyltransferase (AANAT) activity. Chem Biol Interact 2023; 382:110611. [PMID: 37348669 DOI: 10.1016/j.cbi.2023.110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Ketorolac tromethamine (KT), is a widely used non-steroidal anti-inflammatory drug (NSAID) for treating moderate to severe pain. However, the use of KT has been restricted due to its highly toxic attributes that lead to severe gastric ulceration and bleeding. The protective effects of exogenous melatonin (MT) has been reported in conditions associated with gastro-intestinal disorders. This study aims at exploring the role of gastric endogenous MT level and it's metabolizing enzyme AANAT, at the onset of ketorolac mediated toxicities in the gastric mucosa. Gastric mucosal damage was induced in experimental rats by oral administration of graded doses of KT, where 50 mg/kg b.w. of KT was observed to incur maximum gastric lesions. However, gastric damages were found to be protected in rats, pre-treated with 60 mg/kg b.w. of MT. Post-sacrifice, mean ulcer index, oxidative status, total melatonin levels and enzyme activities associated with MT biosynthesis and catabolism were estimated. The results reveal that KT decreases AANAT activity with a concomitant decline in endogenous MT level which cumulatively aggravates gastric toxicity. Moreover, exogenous MT administration has been found to be protective in ameliorating this ulcerogenic process in rats, challenged with KT. Biochemical and histo-pathological observations revealed the reduction in oxidative stress level and replenishment of depleted gastric MT levels in MT pre-treated animals, which might be the causative factors in conferring protection to the gastric tissues and residing mitochondria. The results revealed a correlation between depleted gastric MT level and ulcer formation, which unveiled a novel ulcerogenic mechanism. This may bring forth future therapeutic relevance for treating patients suffering from KT mediated acute gastric toxicities.
Collapse
Affiliation(s)
- Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
4
|
Ma X, Wang Q, Liu C, Liu J, Luo G, He L, Yuan T, He RR, Yao Z. Regulation of phospholipid peroxidation signaling by a traditional Chinese medicine formula for coronary heart disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154749. [PMID: 36931097 DOI: 10.1016/j.phymed.2023.154749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phospholipid peroxidation signaling was recently revealed as a novel pathological mechanism of coronary heart disease (CHD), and small molecules involved in this redox-metabolic pathway are suggested as the potential anti-CHD drugs. Danlou Tablet (DLT), a famous traditional Chinese medicine (TCM) formula characterized by multi-component and multi-target regulation, is widely used in the clinical treatment of CHD by regulating lipid metabolism. However, little information is available addressing the corresponding pharmacological mechanisms and associated active components of DLT. PURPOSE To study whether phospholipid peroxidation involves a novel mechanism of DLT for the therapeutic effect of CHD and to explain the essential active components. METHODS Firstly, the HPLC fingerprint was constructed to ensure the controllability of the quality of DLT. Then, a CHD animal model with the characteristics of lipid disorder and myocardial ischemia was established by a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation. The therapeutic effect of DLT was further evaluated based on the results of the rat survival rate, cardiac function, cardiac histopathology, and myocardial ischemia indicators. Correspondingly, whether DLT can regulate the key indicators (ALOX15, GPX4, MDA, GSH, and NADPH) of the phospholipid peroxidation pathway was investigated, and Alox15-/- mice have been applied to confirm the mechanism of DLT. Finally, the target-mediated characterization strategy based on ALOX15, including the integration of in vivo component characterization, network pharmacology, molecular docking analysis, and activity verification, has been further implemented to reveal the key bio-active components in DLT. RESULTS In this study, a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation was utilized to generate a CHD model, and DLT significantly improved the cardiac dysfunction and reduced the myocardial cell death susceptibility. Further results revealed that DLT reversed the protein expression of ALOX15 and GPX4, the key proteins of phospholipid peroxidation pathways, which subsequently influenced the parameters of phospholipid peroxidation (MDA, GSH, and NADPH). The ALOX15 knockout transgenic animal model confirmed that Alox15-/- mice lost their cardioprotective effects with DLT, suggesting that DLT exerted therapeutic effects on CHD by regulating ALOX15-mediated phospholipid peroxidation. Finally, the target-mediated characterization strategy identified that daidzein is an active component in DLT against CHD by modulating ALOX15. CONCLUSION Innovatively, ALOX15-mediated phospholipid peroxidation was identified as one of the critical mechanisms of DLT exerting cardioprotective effects. Our findings elucidate a novel mechanism of DLT and provide some new drug evaluation targets and therapeutic strategies for CHD.
Collapse
Affiliation(s)
- Xiaohui Ma
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China; Key Laboratory of High Incidence Diseases in Xinjiang Region, Ministry of Education (MOE), Xinjiang Medical University, Urumqi 830054, China
| | - Qi Wang
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Chunyu Liu
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Jianghanzi Liu
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Ganqing Luo
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Liangliang He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| | - Tianhui Yuan
- Department of Cardiology, International Medical Services, The Clinical Research Ward (Geriatrics), The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Sarkar S, Das A, Mitra A, Ghosh S, Chattopadhyay S, Bandyopadhyay D. An integrated strategy to explore the potential role of melatonin against copper-induced adrenaline toxicity in rat cardiomyocytes: Insights into oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 2023; 120:110301. [PMID: 37224648 DOI: 10.1016/j.intimp.2023.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
AIMS Circumstantial anxiety as well as chronic stress may stimulate the release of stress hormones including catecholamines. Adrenaline toxicity has been implicated in many cardiovascular conditions. Considering previous literature that suggests the oxidative potential of the adrenaline-copper entity, we have investigated its potential nocuous role in isolated adult rat cardiomyocytes, the underlying molecular mechanism, and its possible protection by melatonin. MAIN METHODS Given the mechanistic congruity of adrenaline-copper (AC) with the well-established H2O2-copper-ascorbate (HCA) system of free radical generation, we have used the latter as a representative model to study the cytotoxic nature of AC. We further investigated the cardioprotective efficacy of melatonin in both the stress models through scanning electron microscopy, immunofluorescence, flow cytometry, and western blot analysis. KEY FINDINGS Results show that melatonin significantly protects AC-treated cardiomyocytes from ROS-mediated membrane damage, disruption of mitochondrial membrane potential, antioxidant imbalance, and distortion of cellular morphology. Melatonin protects cardiomyocytes from inflammation by downregulating pro-inflammatory mediators viz., COX-2, NF-κB, TNF-α, and upregulating anti-inflammatory IL-10. Melatonin significantly ameliorated cardiomyocyte apoptosis in AC and HCA-treated cells as evidenced by decreased BAX/BCL-2 ratio and subsequent suppression of caspase-9 and caspase-3 levels. The isothermal calorimetric study revealed that melatonin inhibits the binding of adrenaline bitartrate with copper in solution, which fairly explains the rescue potential of melatonin against AC-mediated toxicity in cardiomyocytes. SIGNIFICANCE Findings suggest that the multipronged strategy of melatonin that includes its antioxidant, anti-inflammatory, anti-apoptotic, and overall cardioprotective ability may substantiate its potential therapeutic efficacy against adrenaline-copper-induced damage and death of adult rat cardiomyocytes.
Collapse
Affiliation(s)
- Swaimanti Sarkar
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
6
|
Ghosh P, Dey T, Majumder R, Datta M, Chattopadhyay A, Bandyopadhyay D. Insights into the antioxidative mechanisms of melatonin in ameliorating chromium-induced oxidative stress-mediated hepatic and renal tissue injuries in male Wistar rats. Food Chem Toxicol 2023; 173:113630. [PMID: 36708861 DOI: 10.1016/j.fct.2023.113630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Chromium (Cr), a hazardous heavy metal, is toxic to human health and the environment. Severe detrimental effects of Cr on different physiological systems involve oxidative stress. In the current study, sodium dichromate di-hydrate was subcutaneously injected to male Wistar rats at a dose of 5 mg/kg b.w. and experimented up to 14 days to induce alterations in hepatic and renal tissues. Another group of rats was pre-treated with melatonin at three different doses (5, 10, and 20 mg/kg b.w.; orally) and 20 mg/kg b.w. dose was evidenced to provide maximal protection against Cr-induced alterations. The study demonstrated that melatonin efficiently preserved body weight, organ weight, intracellular antioxidant enzymes, and tissue morphology. Furthermore, melatonin was also found to protect organ damage markers, oxidative stress-biomarkers, activities of pro-oxidant enzymes, levels of reactive oxygen species (ROS), nitric oxide (NO), and collagen content through its antioxidative mechanisms. Moreover, melatonin effectively decreased tissue Cr content through its metal-chelating activity. Hence, the present study has established melatonin as a promising antioxidant for conserving the liver and kidney tissues from Cr-induced oxidative damage thereby strengthening the notion that this small indoleamine can act as a future therapeutic against Cr-induced oxidative stress-mediated tissue damage.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
7
|
Ma Y, Wang P, Wu Z, Li M, Gu Y, Wu H, Liu H. Curdione Relieved Isoproterenol-Induced Myocardial Damage through Inhibiting Oxidative Stress and Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:73-89. [PMID: 36472847 DOI: 10.1142/s0192415x23500052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isoproterenol (ISO) is widely used to treat bronchial asthma, cardiogenic or septic shock, complete atrioventricular block, and cardiac arrest. However, it can also cause myocardial damage owing to infarct-like necrosis. Curdione, an extract of the Chinese herb Rhizoma Curcumae, has a variety of pharmacological activities, including cardioprotective effects. In this study, we investigated the protective effects of curdione and its underlying mechanisms in an ISO-induced myocardial injury model. Our results showed that curdione attenuated ISO-induced H9c2 cell proliferation inhibition and lactic dehydrogenase (LDH) release. Curdione ameliorated morphological damage and reduced the ISO-induced elevation of serum creatine kinase-MB isoenzyme (CK-MB) and LDH. Furthermore, curdione inhibited ISO-induced cell apoptosis, modulated the expression of Bcl-2 and Bax proteins, repealed the accumulation of ISO-induced reactive oxygen species (ROS), prevented mitochondrial dysfunction, and activated the Nrf2/SOD1/HO-1 signaling pathway. The above results show that curdione exerts a protective effect against ISO-induced myocardial damage by inhibiting apoptosis and oxidative stress, suggesting that curdione is a potential therapeutic strategy to prevent ISO-induced myocardial damage.
Collapse
Affiliation(s)
- Yulei Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Penghe Wang
- Department of Cardiovasology, Shanghai Changhai Hospital, Shanghai 200433, P. R. China.,Department of Cardiology, Baicheng People's Hospital, Akesu City, Xinjiang 842300, P. R. China
| | - Zimei Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.,Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Mengru Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yuting Gu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Hong Wu
- Department of Cardiovasology, Shanghai Changhai Hospital, Shanghai 200433, P. R. China
| | - Hongrui Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
8
|
Bhatti GK, Gupta A, Pahwa P, Khullar N, Singh S, Navik U, Kumar S, Mastana SS, Reddy AP, Reddy PH, Bhatti JS. Targeting mitochondrial bioenergetics as a promising therapeutic strategy in metabolic and neurodegenerative diseases. Biomed J 2022; 45:733-748. [PMID: 35568318 PMCID: PMC9661512 DOI: 10.1016/j.bj.2022.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the organelles that generate energy for the cells and act as biosynthetic and bioenergetic factories, vital for normal cell functioning and human health. Mitochondrial bioenergetics is considered an important measure to assess the pathogenesis of various diseases. Dysfunctional mitochondria affect or cause several conditions involving the most energy-intensive organs, including the brain, muscles, heart, and liver. This dysfunction may be attributed to an alteration in mitochondrial enzymes, increased oxidative stress, impairment of electron transport chain and oxidative phosphorylation, or mutations in mitochondrial DNA that leads to the pathophysiology of various pathological conditions, including neurological and metabolic disorders. The drugs or compounds targeting mitochondria are considered more effective and safer for treating these diseases. In this review, we make an effort to concise the available literature on mitochondrial bioenergetics in various conditions and the therapeutic potential of various drugs/compounds targeting mitochondrial bioenergetics in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali Punjab, India
| | - Anshika Gupta
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Paras Pahwa
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
9
|
Protective roles of MITOL against myocardial senescence and ischemic injury partly via Drp1 regulation. iScience 2022; 25:104582. [PMID: 35789860 PMCID: PMC9249672 DOI: 10.1016/j.isci.2022.104582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI. MITOL is essential for maintaining cardiac function partly via Drp1 clearance MITOL deficiency causes cardiac aging partly via Drp1 accumulation Ischemic stress induces a rapid downregulation of MITOL MITOL expression attenuates cardiac dysfunction in acute myocardial infarction
Collapse
|
10
|
Medhet M, El-Bakly WM, Badr AM, Awad A, El-Demerdash E. Thymoquinone attenuates isoproterenol-induced myocardial infarction by inhibiting cytochrome C and matrix metalloproteinase-9 expression. Clin Exp Pharmacol Physiol 2022; 49:391-405. [PMID: 34767666 DOI: 10.1111/1440-1681.13614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Thymoquinone (TQ) is the main active constituent of Nigella sativa. The present study aimed to investigate the effect of TQ on apoptotic parameters and MMP-9 expression in isoproterenol (ISP)-induced myocardial infarction (MI). TQ was given once daily for 7 days at doses of 10 and 20 mg/kg orally with ISP (86 mg/kg; s.c.) administered on the sixth and seventh days. TQ pre-treatment protected against ISP-induced MI as approved by normalisation of electrocardiogram (ECG) and b (CK)-MB, minimal histopathological changes, and reduction of the infarction size. Effects of TQ could be supported by its antioxidant activity, evidenced by the increase of cardiac reduced glutathione and total serum antioxidant capacity, and the inhibition of ISO-induced lipid peroxidation. TQ anti-inflammatory activity was associated with reduced expression of NF-κB and TNF-α. TQ ameliorated cardiomyocytes, apoptotic pathways by inhibiting both the intrinsic pathway, via reducing cytoplasmic cytochrome C, and the extrinsic pathway, by inhibiting TNF-α and caspases, and the effect of TQ was dose-dependent. Moreover, TQ reduced the expression of metalloproteinase (MMP)-9, which is considered as a prognostic marker of ventricular remodelling, recommending that TQ can be used as a possible supplement to minimise post-MI changes. So, we conclude that TQ antiapoptotic activity and the inhibitory modulation of MMP-9 expression contribute to TQ protective effects in MI. To our knowledge, this is the first study reporting the effect of TQ on cytochrome c activity and MMP-9 expression in MI.
Collapse
Affiliation(s)
- Marwa Medhet
- Department of Crime Investigation Research, The National Centre for Social & Criminological Research, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira M Badr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azza Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Wei XH, Guo X, Pan CS, Li H, Cui YC, Yan L, Fan JY, Deng JN, Hu BH, Chang X, He SY, Yan LL, Sun K, Wang CS, Han JY. Quantitative Proteomics Reveal That Metabolic Improvement Contributes to the Cardioprotective Effect of T 89 on Isoproterenol-Induced Cardiac Injury. Front Physiol 2021; 12:653349. [PMID: 34262469 PMCID: PMC8273540 DOI: 10.3389/fphys.2021.653349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Background T89, a traditional Chinese medicine, has passed phase II, and is undergoing phase III clinical trials for treatment of ischemic cardiovascular disease by the US FDA. However, the role of T89 on isoproterenol (ISO)-induced cardiac injury is unknown. The present study aimed to explore the effect and underlying mechanism of T89 on ISO-induced cardiac injury. Methods Male Sprague-Dawley rats received subcutaneous injection of ISO saline solution at 24 h intervals for the first 3 days and then at 48 h intervals for the next 12 days. T89 at dose of 111.6 and 167.4 mg/kg was administrated by gavage for 15 consecutive days. Rat survival rate, cardiac function evaluation, morphological observation, quantitative proteomics, and Western blotting analysis were performed. Results T89 obviously improved ISO-induced low survival rate, attenuated ISO-evoked cardiac injury, as evidenced by myocardial blood flow, heart function, and morphology. Quantitative proteomics revealed that the cardioprotective effect of T89 relied on the regulation of metabolic pathways, including glycolipid metabolism and energy metabolism. T89 inhibited the enhancement of glycolysis, promoted fatty acid oxidation, and restored mitochondrial oxidative phosphorylation by regulating Eno1, Mcee, Bdh1, Ces1c, Apoc2, Decr1, Acaa2, Cbr4, ND2, Cox 6a, Cox17, ATP5g, and ATP5j, thus alleviated oxidative stress and energy metabolism disorder and ameliorated cardiac injury after ISO. The present study also verified that T89 significantly restrained ISO-induced increase of HSP70/HSP40 and suppressed the phosphorylation of ERK, further restored the expression of CX43, confirming the protective role of T89 in cardiac hypertrophy. Proteomics data are available via ProteomeXchange with identifier PXD024641. Conclusion T89 reduced mortality and improves outcome in the model of ISO-induced cardiac injury and the cardioprotective role of T89 is correlated with the regulation of glycolipid metabolism, recovery of mitochondrial function, and improvement of myocardial energy.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao Guo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Huan Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Yuan-Chen Cui
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Na Deng
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Shu-Ya He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Lu-Lu Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Baburina Y, Lomovsky A, Krestinina O. Melatonin as a Potential Multitherapeutic Agent. J Pers Med 2021; 11:jpm11040274. [PMID: 33917344 PMCID: PMC8067360 DOI: 10.3390/jpm11040274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL) is a hormone produced by the pineal gland that was discovered many years ago. The physiological roles of this hormone in the body are varied. The beneficial effects of MEL administration may be related to its influence on mitochondrial physiology. Mitochondrial dysfunction is considered an important factor in various physiological and pathological processes, such as the development of neurodegenerative and cardiovascular diseases, diabetes, various forms of liver disease, skeletal muscle disorders, and aging. Mitochondrial dysfunction induces an increase in the permeability of the inner membrane, which leads to the formation of a permeability transition pore (mPTP) in the mitochondria. The long-term administration of MEL has been shown to improve the functional state of mitochondria and inhibit the opening of the mPTP during aging. It is known that MEL is able to suppress the initiation, progression, angiogenesis, and metastasis of cancer as well as the sensitization of malignant cells to conventional chemotherapy and radiation therapy. This review summarizes the studies carried out by our group on the combined effect of MEL with chemotherapeutic agents (retinoic acid, cytarabine, and navitoclax) on the HL-60 cells used as a model of acute promyelocytic leukemia. Data on the effects of MEL on oxidative stress, aging, and heart failure are also reported.
Collapse
|
13
|
Mishra S, Chattopadhyay A, Naaz S, Banerjee A, Ghosh AK, Pal PK, Bhattacharya T, Das A, Chattopadhyay S, Bandyopadhyay D. Oleic acid as a restorative agent in alleviating adrenaline induced altered morphofunctional milieu of gastric tissue and mitochondria. Heliyon 2021; 7:e06476. [PMID: 33768175 PMCID: PMC7980076 DOI: 10.1016/j.heliyon.2021.e06476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 11/02/2022] Open
Abstract
The role of oleic acid as a protective antioxidant has recently been recognized. The present study is aimed to explore whether oleic acid can afford protection to rat gastric tissue when challenged with adrenaline. Sixty adult healthy male albino rats were divided into 10 groups comprising of 6 animals each. First group constituted the control. Rats of the second group were injected sub-cutaneously with adrenaline bitartrate at the dose of 0.3mg/kg body weight, every day for a period of 17 days. Rats of the third, to the sixth groups were orally fed with different doses of oleic acid (2.5, 5, 10, 20 mg/kg body weight/day) respectively. The rats of seventh to tenth groups were orally fed with doses of oleic acid as mentioned above and subsequently injected with adrenaline bitartrate at 0.3mg/kg body weight sub-cutaneously. After the treatment period, the animals were euthanized through cervical dislocation following light ether anaesthesia and gastric tissues were collected for morphological and biochemical studies. Subcutaneously administered pharmacological dose of adrenaline bitartrate caused oxidative stress inducing gastric lesion in male albino rats as evident from the altered levels of biomarkers of oxidative stress, activities of antioxidant and mitochondrial enzymes related to energy metabolism with changes in tissue morphology. Pre-treatment of rats with oleic acid dose-dependently protected against these gastric injuries induced by adrenaline indicating the potentiality of oleic acid in protecting against adrenaline induced gastric injury in male albino rats where antioxidant mechanisms appear to play a pivotal role in mediating such protection.
Collapse
Affiliation(s)
- Sanatan Mishra
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.,Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Shamreen Naaz
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.,Department of Physiology, Vidyasagar College for Women, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.,Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Arnab Kumar Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Tuhin Bhattacharya
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, Rajabazar Science College Campus, 92, APC Road, Kolkata 700 009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Rajabazar Science College Campus, 92, APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| |
Collapse
|
14
|
Yang Y, Li Y, Wang J, Hong L, Qiao S, Wang C, An J. Cholinergic receptors play a role in the cardioprotective effects of anesthetic preconditioning: Roles of nitric oxide and the CaMKKβ/AMPK pathway. Exp Ther Med 2021; 21:137. [PMID: 33456504 PMCID: PMC7791965 DOI: 10.3892/etm.2020.9569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Vagus nerve activation may have important therapeutic significance for myocardial ischemia-reperfusion (IR) injury. Nitric oxide (NO) plays a vital role in the cardioprotective effects of anesthetic preconditioning (APC). Moreover, acetylcholine (ACh) prevents cardiomyocyte damage by activating AMP-activated protein kinase (AMPK) and increasing the phosphorylation of Ca2+/calmodulin-dependent protein kinase β (CaMKKβ). The aim of the present study was to determine whether APC could protect heart function by antagonizing IR damage via the cholinergic system. It was hypothesized that the NO synthase (NOS)/CaMKKβ/AMPK pathway might be involved in the cardioprotective effects induced by cholinergic receptor activation. Isolated rat hearts were subjected to ischemia for 30 min followed by 120 min of reperfusion. Volatile anesthetic sevoflurane (3.5%) was administered for 15 min before ischemia, then rinsed for 15 min. The muscarinic acetylcholine receptor (mAChR) antagonist atropine (ATR; 100 nM) and the nicotinic acetylcholine receptor (nAChR) antagonist hexamethonium (HEM; 50 µM) were administered 10 min before APC. Both mAChR and nAChR were involved in APC-induced cardioprotection. ATR and HEM treatment both abolished the protective effects of APC on IR damage in isolated hearts, demonstrating the importance of cholinergic receptors in the protection mechanism of APC. The present study thus suggests that APC plays a cardioprotective role, in part, by regulating neurohumoral pathways. In addition, there may be functional coupling between the two cholinergic receptors, and the NOS and CaMKKβ/AMPK pathways may play roles in shared pathways that mediate the cardioprotective effects of APC. These findings may provide insight into potential new mechanisms of APC-induced cardioprotection against IR injury.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Ying Li
- Department of Cardiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jie Wang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
15
|
Bjørklund G, Dadar M, Aaseth J, Chirumbolo S. Thymosin β4: A Multi-Faceted Tissue Repair Stimulating Protein in Heart Injury. Curr Med Chem 2021; 27:6294-6305. [PMID: 31333080 DOI: 10.2174/0929867326666190716125456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022]
Abstract
Thymosin Beta-4 (Tβ4) is known as a major pleiotropic actin-sequestering protein that is involved in tumorigenesis. Tβ4 is a water-soluble protein that has different promising clinical applications in the remodeling and ulcerated tissues repair following myocardial infarction, stroke, plasticity and neurovascular remodeling of the Peripheral Nervous System (PNS) and the Central Nervous System (CNS). On the other hand, similar effects have been observed for Tβ4 in other kinds of tissues, including cardiac muscle tissue. In recent reports, as it activates resident epicardial progenitor cells and modulates inflammatory-caused injuries, Tβ4 has been suggested as a promoter of the survival of cardiomyocytes. Furthermore, Tβ4 may act in skeletal muscle and different organs in association/synergism with numerous other tissue repair stimulating factors, including melatonin and C-fiber-derived peptides. For these reasons, the present review highlights the promising role of Tβ4 in cardiac healing.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences,
University of Verona, Verona, Italy
| |
Collapse
|
16
|
Naaz S, Mishra S, Pal PK, Chattopadhyay A, Das AR, Bandyopadhyay D. Activation of SIRT1/PGC 1α/SIRT3 pathway by melatonin provides protection against mitochondrial dysfunction in isoproterenol induced myocardial injury. Heliyon 2020; 6:e05159. [PMID: 33088945 PMCID: PMC7567935 DOI: 10.1016/j.heliyon.2020.e05159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/16/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Preventing mitochondrial dysfunction and enhancing mitochondrial health and biogenesis is a crucial therapeutic approach to ameliorate injury following acute myocardial infarction. Although the antioxidant role of melatonin against ischemia/reperfusion injury has been reported, the exact mechanism of protection, in vivo, remains poorly understood. This study aims to identify and elaborate upon mechanism of melatonin protection of rat cardiac mitochondria against acute myocardial infarction. MAIN METHODS Rats were pre-treated with melatonin (10 mg/kg body weight (b.w.); intraperitoneally, i.p.) before isoproterenol bitartrate (ISO) administration (25 mg/kg body weight (b.w.) subcutaneously,s.c.) and their effect on rat heart mitochondrial structure and function was studied. Biochemical changes in activity of biomarkers of oxidative stress, antioxidant enzymes as well as Krebs' cycle enzymes were analyzed. Gene expression studies and Isothermal titration calorimetric studies with pure catalase and ISO were also carried out. KEY FINDINGS Melatonin was shown to reduce ISO induced oxidative stress, by stimulating superoxide dismutase activity and removing the inhibition of Krebs' cycle enzymes. Herein we report for the first time in rat model that melatonin activates the SIRT1-PGC-1α-SIRT3 signaling pathways after ISO administration, which ultimately induces mitochondrial biogenesis. Melatonin exhibited significant protection of mitochondrial architecture and topology along with increased calcium ion permeability and reactive oxygen species (ROS) generation induced by ISO. Isothermal calorimetric studies revealed that melatonin binds to ISO molecules and sequesters them from the reaction thereby limiting their interaction with catalase along with occupying the binding sites of catalase themselves. SIGNIFICANCE Activation of SIRT1-PGC-1α-SIRT3 pathway by melatonin along with its biophysical properties prevents ISO induced mitochondrial injury in rat heart.
Collapse
Affiliation(s)
- Shamreen Naaz
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
- Department of Physiology, Vidyasagar College for Women, Kolkata 700 006, India
| | - Sanatan Mishra
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
- Department of Physiology, Vidyasagar College, Kolkata 700 006, India
| | - Palash K. Pal
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| | | | - Asish R. Das
- Department of Chemistry, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| | - Debasish Bandyopadhyay
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| |
Collapse
|
17
|
Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev 2020; 41:275-313. [PMID: 32959403 DOI: 10.1002/med.21732] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria provide energy to the cell during aerobic respiration by supplying ~95% of the adenosine triphosphate (ATP) molecules via oxidative phosphorylation. These organelles have various other functions, all carried out by numerous proteins, with the majority of them being encoded by nuclear DNA (nDNA). Mitochondria occupy ~1/3 of the volume of myocardial cells in adults, and function at levels of high-efficiency to promptly meet the energy requirements of the myocardial contractile units. Mitochondria have their own DNA (mtDNA), which contains 37 genes and is maternally inherited. Over the last several years, a variety of functions of these organelles have been discovered and this has led to a growing interest in their involvement in various diseases, including cardiovascular (CV) diseases. Mitochondrial dysfunction relates to the status where mitochondria cannot meet the demands of a cell for ATP and there is an enhanced formation of reactive-oxygen species. This dysfunction may occur as a result of mtDNA and/or nDNA mutations, but also as a response to aging and various disease and environmental stresses, leading to the development of cardiomyopathies and other CV diseases. Designing mitochondria-targeted therapeutic strategies aiming to maintain or restore mitochondrial function has been a great challenge as a result of variable responses according to the etiology of the disorder. There have been several preclinical data on such therapies, but clinical studies are scarce. A major challenge relates to the techniques needed to eclectically deliver the therapeutic agents to cardiac tissues and to damaged mitochondria for successful clinical outcomes. All these issues and progress made over the last several years are herein reviewed.
Collapse
Affiliation(s)
- Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
18
|
Clinical Application of Melatonin in the Treatment of Cardiovascular Diseases: Current Evidence and New Insights into the Cardioprotective and Cardiotherapeutic Properties. Cardiovasc Drugs Ther 2020; 36:131-155. [PMID: 32926271 DOI: 10.1007/s10557-020-07052-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of mortality and disability, tending to happen in younger individuals in developed countries. Despite improvements in medical treatments, the therapy and long-term prognosis of CVDs such as myocardial ischemia-reperfusion, atherosclerosis, heart failure, cardiac hypertrophy and remodeling, cardiomyopathy, coronary artery disease, myocardial infarction, and other CVDs threatening human life are not satisfactory enough. Therefore, many researchers are attempting to identify novel potential therapeutic methods for the treatment of CVDs. Melatonin is an anti-inflammatory and antioxidant agent with a wide range of therapeutic properties. Recently, several investigations have been carried out to evaluate its effectiveness and efficiency in CVDs therapy, focusing on mechanistic pathways. Herein, this review aims to summarize current findings of melatonin treatment for CVDs.
Collapse
|
19
|
Melatonin as a protective agent in cardiac ischemia-reperfusion injury: Vision/Illusion? Eur J Pharmacol 2020; 885:173506. [PMID: 32858050 DOI: 10.1016/j.ejphar.2020.173506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Melatonin, an emphatic endogenous molecule exerts protective effects either via activation of G-protein coupled receptors (Melatonin receptors, MTR 1-3), tumor necrosis factor receptor (TNFR), toll like receptors (TLRS), nuclear receptors (NRS) or by directly scavenging the free radicals. MTRs are extensively expressed in the heart as well as in the coronary vasculature. Accumulating evidences have indicated the existence of a strong correlation between reduction in the circulating level of melatonin and precipitation of heart attack. Apparently, melatonin exhibits cardioprotective effects via modulating inextricably interlinked pathways including modulation of mitochondrial metabolism, mitochondrial permeability transition pore formation, nitric oxide release, autophagy, generation of inflammatory cytokines, regulation of calcium transporters, reactive oxygen species, glycosaminoglycans, collagen accumulation, and regulation of apoptosis. Convincingly, this review shall describe the various signaling pathways involved in salvaging the heart against ischemia-reperfusion injury.
Collapse
|
20
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|
21
|
Dey T, Ghosh A, Mishra S, Pal PK, Chattopadhyay A, Pattari SK, Bandyopadhyay D. Attenuation of arsenic induced high fat diet exacerbated oxidative stress mediated hepatic and cardiac injuries in male Wistar rats by piperine involved antioxidative mechanisms. Food Chem Toxicol 2020; 142:111477. [PMID: 32525072 DOI: 10.1016/j.fct.2020.111477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022]
Abstract
The current study explored the efficacy of piperine in attenuating arsenic induced high fat diet aggravated oxidative stress mediated injury in hepatic and cardiac tissues of male Wistar rats. Oral administration of piperine significantly (p < 0.05) reduced the levels of organ specific and oxidative stress biomarkers in arsenic and high fat diet treated rat hepatic and cardiac tissues in a dose dependant manner with the dose of 60 mg/kg b.w. exhibiting maximum protection. Arsenic induced high fat diet aggravated oxidative stress mediated damages in liver and heart tissues led to decreased activities of antioxidant enzymes, ROS generation, diminished activities of Krebs' cycle and respiratory chain enzymes, collapsed mitochondrial membrane potential, mitochondrial DNA damage along with altered lipid metabolism and inflammatory cytokine levels. Histochemical and histopathological studies supported the above findings. Piperine efficiently counteracted the arsenic induced high fat diet aggravated oxidative stress mediated damages by modulating antioxidant defense mechanism along with free radical quenching ability. These findings indicate that piperine protected the arsenic induced high fat diet aggravated hepatic and cardiac injuries which underline the importance of piperine in providing a possible therapeutic regime for the amelioration of arsenic-induced high fat diet aggravated oxidative stress mediated organ damages.
Collapse
Affiliation(s)
- Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Auroma Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanatan Mishra
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India; Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Sanjib K Pattari
- R. N. Tagore International Institute of Cardiac Sciences, Mukundapur, Kolkata, 700099, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
22
|
Raut GK, Manchineela S, Chakrabarti M, Bhukya CK, Naini R, Venkateshwari A, Reddy VD, Mendonza JJ, Suresh Y, Nallari P, Bhadra MP. Imine stilbene analog ameliorate isoproterenol-induced cardiac hypertrophy and hydrogen peroxide-induced apoptosis. Free Radic Biol Med 2020; 153:80-88. [PMID: 32311492 DOI: 10.1016/j.freeradbiomed.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Cardiac hypertrophy is an adaptive response to stress, in order to maintain proper cardiac function. However, sustained stress leads to pathological hypertrophy accompanied by maladaptive responses and ultimately heart failure. At the cellular level, cardiomyocyte hypertrophy is characterized by an increase in myocyte size, reactivation of the fetal gene markers, disassembly of the sarcomere and transcriptional remodelling which are regulated by heart-specific transcription factors like MEF2, GATA4 and immediate early genes like c-jun and c-fos.2. It has been explored and established that the hypertrophic process is associated by oxidative stress and mediated by pathways involving several terminal stress kinases like P38, JNK and ERK1/2. Stilbenoids are bioactive polyphenols and earlier studies have shown that imine stilbene exert cardioprotective and anti aging effects by acting as modulators of Sirt1. The present study was aimed at designing and synthesizing a series of imine stilbene analogs and investigate its anti hypertrophic effects and regulatory mechanism in cardiac hypertrophy and apoptosis. Interestingly one of the analog, compound 3e (10 μM) alleviated isoproterenol (ISO, 25 μM) induced hypertrophy in rat cardiomyocyte (H9c2) cells by showing a marked decrease in the myocyte size. Further, compound 3e also restored the cardiac function by activating the metabolic stress sensor, AMPK. Moreover, molecular docking studies showed stable binding between compound 3e and GSK3β suggesting that compound 3e may directly regulate GSK3β activity and ameliorate ISO-induced cardiac hypertrophy. In agreement with this, compound 3e also modulated the crosstalk of all the hypertrophy inducing terminal Kinases by bringing down the expression to near control conditions. The compound also relieved H2O2 (100 μM) mediated ROS and normalized abnormal mitochondrial oxygen demand in hypertrophic conditions indicating the possibility of the compound to show promise in playing a role in cardiac hypertrophy.
Collapse
Affiliation(s)
- Ganesh Kumar Raut
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Sairam Manchineela
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Moumita Chakrabarti
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Chaitanya Kumar Bhukya
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Raju Naini
- Center for Plant Molecular Biology, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - A Venkateshwari
- Institute of Genetics & Hospital for Genetics Disease, Osmania University, Ameerpet, Hyderabad, 500007, Telangana State, India
| | - V D Reddy
- Center for Plant Molecular Biology, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Jolly Janette Mendonza
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Y Suresh
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India
| | - Pratibha Nallari
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Manika Pal Bhadra
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India.
| |
Collapse
|
23
|
Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6841581. [PMID: 32566095 PMCID: PMC7260648 DOI: 10.1155/2020/6841581] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Persistent senescence seems to exert detrimental effects fostering ageing and age-related disorders, such as cancer. Chemotherapy is one of the most valuable treatments for cancer, but its clinical application is limited due to adverse side effects. Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy. In this review, we first summarize the mitochondrial protective role of melatonin in the context of chemotherapeutic drug-induced toxicity. Thereafter, we tabulate the protective actions of melatonin against ageing and the harmful roles induced by chemotherapy and chemotherapeutic agents, including anthracyclines, alkylating agents, platinum, antimetabolites, mitotic inhibitors, and molecular-targeted agents. Finally, we discuss several novel directions for future research in this area. The information compiled in this review will provide a comprehensive reference for the protective activities of melatonin in the context of chemotherapy drug-induced toxicity and will contribute to the design of future studies and increase the potential of melatonin as a therapeutic agent.
Collapse
|
24
|
Li HR, Wang C, Sun P, Liu DD, Du GQ, Tian JW. Melatonin attenuates doxorubicin-induced cardiotoxicity through preservation of YAP expression. J Cell Mol Med 2020; 24:3634-3646. [PMID: 32068341 PMCID: PMC7131936 DOI: 10.1111/jcmm.15057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
There are increasing concerns related to the cardiotoxicity of doxorubicin in the clinical setting. Recently, melatonin has been shown to exert a cardioprotective effect in various cardiovascular diseases, including cardiotoxic conditions. In this study, we examined the possible protective effects of melatonin on doxorubicin‐induced cardiotoxicity and explored the underlying mechanisms related to this process. We found that in vitro doxorubicin treatment significantly decreased H9c2 cell viability and induced apoptosis as manifested by increased TUNEL‐positive cells, down‐regulation of anti‐apoptotic protein Bcl‐2, as well as up‐regulation of pro‐apoptotic protein Bax. This was associated with increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potentials (MMP). In vivo, five weeks of doxorubicin treatment significantly decreased cardiac function, as evaluated by echocardiography. TUNEL staining results confirmed the increased apoptosis caused by doxorubicin. On the other hand, combinational treatment of doxorubicin with melatonin decreased cardiomyocyte ROS and apoptosis levels, along with increasing MMP. Such doxorubicin‐melatonin co‐treatment alleviated in vivo doxorubicin‐induced cardiac injury. Western Blots, along with in vitro immunofluorescence and in vivo immunohistochemical staining confirmed that doxorubicin treatment significantly down‐regulated Yes‐associated protein (YAP) expression, while YAP levels were maintained under co‐treatment of doxorubicin and melatonin. YAP inhibition by siRNA abolished the protective effects of melatonin on doxorubicin‐treated cardiomyocytes, with reversed ROS level and apoptosis. Our findings suggested that melatonin treatment attenuated doxorubicin‐induced cardiotoxicity through preserving YAP levels, which in turn decreases oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hai-Ru Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dan-Dan Liu
- Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guo-Qing Du
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jia-Wei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
25
|
Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:521-536. [DOI: 10.1007/s00210-020-01822-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
|
26
|
Bhattacharjee B, Pal PK, Chattopadhyay A, Bandyopadhyay D. Oleic acid protects against cadmium induced cardiac and hepatic tissue injury in male Wistar rats: A mechanistic study. Life Sci 2020; 244:117324. [PMID: 31958420 DOI: 10.1016/j.lfs.2020.117324] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aim of the present study was to evaluate the possible antioxidant role of oleic acid (OA) against Cd-induced injuries in the heart and liver tissues of male Wistar rats. MAIN METHODS Rats were treated with either vehicle (control), or OA (10 mg/kg b.w., fed orally), or Cd (0.44 mg/kg b.w., s.c.), or both (OA + Cd) for 15 days. Following completion of the treatment period, biomarkers of organ damage and oxidative stress including ROS, activities of antioxidant enzymes and their level, activities of Krebs cycle enzymes and respiratory chain enzymes were measured. Levels of interleukins (IL-1β, IL-6, IL-10), tumor necrosis factor (TNF-α) and nuclear factor kappa B (NFκB) were estimated to evaluate the state of inflammation. In addition, changes in mitochondrial membrane potential and status of cytochrome c (Cyt c) were also studied. KEY FINDINGS Pre-treatment of rats with OA significantly protected against Cd-induced detrimental changes possibly by decreasing endogenous ROS through regulation of antioxidant defense system, inflammatory responses and activities of metabolic enzymes. Moreover, OA was also found to restore mitochondrial membrane potential possibly by regulating Cyt c leakage thereby increasing mitochondrial viability. SIGNIFICANCE Our results for the first time demonstrated systematically that OA provided protection against Cd-induced oxidative stress mediated injuries in rat heart and liver tissues through its antioxidant mechanism. The results raise the possibility of using OA singly or in combination with other antioxidants or diet in the treatment of situations arising due to oxidative stress and may have future therapeutic relevance.
Collapse
Affiliation(s)
- Bharati Bhattacharjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
27
|
Bjørklund G, Rajib SA, Saffoon N, Pen JJ, Chirumbolo S. Insights on Melatonin as an Active Pharmacological Molecule in Cancer Prevention: What's New? Curr Med Chem 2019; 26:6304-6320. [PMID: 29714136 DOI: 10.2174/0929867325666180501094850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Along with playing an important role in circadian rhythm, melatonin is thought to play a significant role in preventing cells from damage, as well as in the inhibition of growth and in triggering apoptosis in malignant cells. Its relationship with circadian rhythms, energetic homeostasis, diet, and metabolism, is fundamental to achieve a better comprehension of how melatonin has been considered a chemopreventive molecule, though very few papers dealing with this issue. In this article, we tried to review the most recent evidence regarding the protective as well as the antitumoral mechanisms of melatonin, as related to diet and metabolic balance. From different studies, it was evident that an intracellular antioxidant defense mechanism is activated by upregulating an antioxidant gene battery in the presence of high-dose melatonin in malignant cells. Like other broad-spectrum antioxidant molecules, melatonin plays a vital role in killing tumor cells, preventing metastasis, and simultaneously keeping normal cells protected from oxidative stress and other types of tissue damage.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | - Nadia Saffoon
- Department of Pharmacy and Forensic Science, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
28
|
Gul-Kahraman K, Yilmaz-Bozoglan M, Sahna E. Physiological and pharmacological effects of melatonin on remote ischemic perconditioning after myocardial ischemia-reperfusion injury in rats: Role of Cybb, Fas, NfκB, Irisin signaling pathway. J Pineal Res 2019; 67:e12589. [PMID: 31155748 DOI: 10.1111/jpi.12589] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Abstract
It has been found that remote organ/limb temporary ischemia, known as remote ischemic conditioning, can provide protection against the formation of lethal ischemic outcome. Current evidence suggests that aging and age-releated comorbidities impair the cardioprotective effects of conditionings. In conjuction with aging, decrease in melatonin synthesis from pineal gland can have role in the pathogenesis of aging and age-related cardiovascular diseases. In this study, we investigated the effects of remote ischemic perconditioning (RIPerC) and physiological and pharmacological concentrations of melatonin on the infarct size, Fas gene, cytochrome b-245 beta chain (Cybb) gene, nuclear factor-kappa B (NfκB), and irisin using an in vivo model of myocardial ischemia/reperfusion (I/R) injury. Sprague-Dawley rats that were divided into two groups first as non-pinealectomized (Non-Px) and pinealectomized (Px), and then (a) Control; (b) I/R (30-minute ischemia, 120-minute reperfusion caused by left coronary artery ligation); (c) I/R + RIPerC (when myocardial ischemia initiated, three cycles of 5-minute occlusion followed by 5-minute reperfusion); (d) I/R + Mel; (e) Px; (f) Px + I/R; (g) Px + I/R + RIPerC; (h) Px + I/R + RIPerC + Mel groups. The infarct size was determined by TTC staining and analyzed by the ImageJ program. Molecular parameters were evaluated by qRT-PCR and Western blot. Results showed that increased infarct size in Non-Px groups decreased with RIPerC and melatonin. However, increased infarct size in Px groups was decreased minimally with RIPerC and significantly decreased with RIPerC + Melatonin. Fold change in Fas gene was associated with the infarct size. RIPerC and melatonin reduced expressions of Cybb, NfκB, and irisin genes. The physiological release and pharmacological concentration of melatonin may improve protective effect of RIPerC against I/R-induced infarct size by modulating Cybb, Fas, NfκB, Irisin signaling pathways.
Collapse
Affiliation(s)
- Kubra Gul-Kahraman
- Department of Pharmacology, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | - Engin Sahna
- Department of Pharmacology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
29
|
Feng J, Chen X, Liu R, Cao C, Zhang W, Zhao Y, Nie S. Melatonin protects against myocardial ischemia-reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity. Free Radic Res 2019; 52:840-849. [PMID: 30208798 DOI: 10.1080/10715762.2018.1461215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is a crucial cause for mortality throughout the world. Recent studies indicated that melatonin might exert profound cardio-protective effect in MI/R injury. However, the underlying mechanisms are not completely understood. In the current study, we aimed to explore the potential effect of melatonin in the pathological process of MI/R. Both in vivo MI/R model and in vitro H9c2 cell line simulated I/R (SIR) model were applied with or without melatonin supplementation. We found that Sirtuin3 (Sirt3) expression and activity were markedly decreased under MI/R and SIR conditions. Melatonin treatment significantly increased myocardial Sirt3 expression, and alleviated MI/R-induced cardiac morphology changes and cardiac dysfunction, as well as myocardial apoptosis level. In addition, DHE and JC-1 staining results demonstrated that melatonin reduced mitochondrial reactive oxygen species (ROS) generation and restored ATP production after SIR injury via elevating Sirt3 expression. By using siRNA targeting Sirt3, we confirmed that the beneficial effects of melatonin were dependent on Sirt3, which in turn deacetylated and activated manganese superoxide dismutase (MnSOD). Collectively, the current study demonstrated the protective effect of melatonin against MI/R injury via alleviating myocardial oxidative stress. Moreover, these beneficial effects were associated with the deacetylation modification of Sirt3 on MnSOD.
Collapse
Affiliation(s)
- Jing Feng
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Xin Chen
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Rui Liu
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Changkui Cao
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Wei Zhang
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Yang Zhao
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Shinan Nie
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| |
Collapse
|
30
|
Bhattacharjee B, Pal PK, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D. Aqueous bark extract of Terminalia arjuna protects against cadmium-induced hepatic and cardiac injuries in male Wistar rats through antioxidative mechanisms. Food Chem Toxicol 2018; 124:249-264. [PMID: 30529122 DOI: 10.1016/j.fct.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022]
Abstract
Cadmium (Cd) is one of the most ubiquitous toxic heavy metal in the environment. The present study was conducted to evaluate the protective role of aqueous bark extract of Terminalia arjuna (TA) against Cd induced oxidative damage in hepatic and cardiac tissues as the TA bark extract has folkloric medicinal use in the treatment of various hepatic and cardiac disorders. Male Wistar rats were divided into 4 groups. The control group was treated with normal saline as the vehicle; the second group orally administered with TA (20 mg/kg bw) daily for 15 days; the third group injected with Cd-acetate (0.44 mg/kg bw, s.c.) every alternate day for a period of 15 days; and the fourth group was administered with TA, 60 min prior to Cd treatment. The biomarkers of organ damage were significantly increased in the Cd treated groups. Besides, a significant alteration in the tissue levels of biomarkers of oxidative stress, the activities and the levels of antioxidant enzymes was observed following treatment with Cd. Additionally, some of the enzymes were found to be inhibited uncompetitively by Cd when tested in an in vitro system. Furthermore, evidence gathered from studies on the histological parameters and mitochondrial membrane potential in both the tissues argue in favour of the possible protective role of TA against Cd induced damage. Finally, gas chromatography-mass spectrometry revealed the presence of eight major bioactive phytochemicals in aqueous bark extract of TA having potent free radical scavenging property. The results indicate that the extract could protect hepatic and cardiac tissues against Cd-induced oxidative stress mediated damages through antioxidant mechanism(s).
Collapse
Affiliation(s)
- Bharati Bhattacharjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Arnab Kumar Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanatan Mishra
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India; Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
31
|
Reperfusing the myocardium - a damocles Sword. Indian Heart J 2018; 70:433-438. [PMID: 29961464 PMCID: PMC6034085 DOI: 10.1016/j.ihj.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
Return of blood flow after periodic ischemia is often accompanied by myocardial injury, commonly known as lethal reperfusion injury (RI). Experimental studies have shown that 50% of muscle die of ischemia and another 50% die because of reperfusion. It is characterized by myocardial, vascular, or electrophysiological dysfunction that is induced by the restoration of blood flow to previously ischemic tissue. This phenomenon reduces the efficiency of the present modalities used to combat the ischemic myocardium. Moreover, despite an improved understanding of the pathophysiology of this process and encouraging preclinical trials of multiple agents, most of the clinical trials to prevent RI have been disappointing and leaves us at ground zero to explore newer approaches.
Collapse
|
32
|
Effect of Melatonin on Rat Heart Mitochondria in Acute Heart Failure in Aged Rats. Int J Mol Sci 2018; 19:ijms19061555. [PMID: 29882895 PMCID: PMC6032417 DOI: 10.3390/ijms19061555] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Excessive generation of reactive oxygen species (ROS) in mitochondria and the opening of the nonselective mitochondrial permeability transition pore are important factors that promote cardiac pathologies and dysfunction. The hormone melatonin (MEL) is known to improve the functional state of mitochondria via an antioxidant effect. Here, the effect of MEL administration on heart mitochondria from aged rats with acute cardiac failure caused by isoprenaline hydrochloride (ISO) was studied. A histological analysis revealed that chronic intake of MEL diminished the age-dependent changes in the structure of muscle fibers of the left ventricle, muscle fiber swelling, and injury zones characteristic of acute cardiac failure caused by ISO. In acute heart failure, the respiratory control index (RCI) and the Ca2+ retention capacity in isolated rat heart mitochondria (RHM) were reduced by 30% and 40%, respectively, and mitochondrial swelling increased by 34%. MEL administration abolished the effect of ISO. MEL partially prevented ISO-induced changes at the subunit level of respiratory complexes III and V and drastically decreased the expression of complex I subunit NDUFB8 both in control RHM and in RHM treated with ISO, which led to the inhibition of ROS production. MEL prevents the mitochondrial dysfunction associated with heart failure caused by ISO. It was shown that the level of 2′,3′-cyclicnucleotide-3′-phosphodiasterase (CNPase), which is capable of protecting cells in aging, increased in acute heart failure. MEL also retained the CNPase content in RHM both in control experiments and after ISO-induced heart damage. We concluded that an increase in the CNPase level promotes cardioprotection.
Collapse
|
33
|
Kalkan F, Parlakpinar H, Disli OM, Tanriverdi LH, Ozhan O, Polat A, Cetin A, Vardi N, Otlu YO, Acet A. Protective and therapeutic effects of dexpanthenol on isoproterenol-induced cardiac damage in rats. J Cell Biochem 2018; 119:7479-7489. [PMID: 29775243 DOI: 10.1002/jcb.27058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/23/2018] [Indexed: 01/15/2023]
Abstract
The purpose of the study was to explore the protective and therapeutic effects of dexpanthenol (DEX) on isoproterenol (ISO)-induced cardiac damage. Forty rats were distributed into four groups: group I (Control); group II (ISO); ISO (150 mg/kg/day) was given to rats once a day for 2 consecutive days with an interval of 24 h; group III (DEX+ISO): DEX (250 mg/kg) was applied 30 min before the first ISO administration and continued in the next two days after second ISO administration; group IV (ISO+DEX): After the ISO treatment at 1st and 2nd days, DEX was given at 3rd and 4th days. Rats were monitored for mean arterial blood pressure (BP), heart rate, oxygen saturation (%SO2 ), and electrocardiography (ECG). Heart tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), reduced glutathione (GSH), total oxidant status (TOS); total antioxidant capacity (TAC), oxidative stress index (OSI), and caspase-3 were determined. BP and SO2 values indicated a significant decrease in the ISO group. Also, T wave negativity was observed in 6 of 10 rats, SOD, CAT, and GPX levels were significantly lower in ISO group than control group. ISO administration increased TOS and OSI levels, whereas DEX treatment significantly reduced these parameters. Also, ISO-induced morphological alterations such as disorganization of cardiomyocytes, loss of myofibrils and cytoplasmic vacuolization whereas these histological damages were significantly decreased in ISO+DEX and DEX+ISO groups when compared to the ISO group. This study implies the cardioprotective effects of DEX on ISO-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ferhat Kalkan
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Olcay M Disli
- Department of Cardiovascular Surgery, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Lokman H Tanriverdi
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Onural Ozhan
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Alaaddin Polat
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Aslı Cetin
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Yılmaz O Otlu
- Department of Cardiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ahmet Acet
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
34
|
Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 2018; 64. [PMID: 29024030 DOI: 10.1111/jpi.12449] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
Atherosclerosis (AS) is an inflammatory disease linked to endothelial dysfunction. Melatonin is reported to possess substantial anti-inflammatory properties, which has proven to be effective in AS. Emerging literature suggests that pyroptosis plays a critical role during AS progression. However, whether pyroptosis contributes to endothelial dysfunction and the underlying molecular mechanisms remained unexploited. This study was designed to investigate the antipyroptotic effects of melatonin in atherosclerotic endothelium and to elucidate the potential mechanisms. In this study, high-fat diet (HFD)-treated ApoE-/- mice were used as an atherosclerotic animal model. We found intragastric administration of melatonin for 12 weeks markedly reduced the atherosclerotic plaque in aorta. Meanwhile, melatonin also attenuated the expression of pyroptosis-related genes, including NLRP3, ASC, cleaved caspase1, NF-κB/GSDMD, GSDMD N-termini, IL-1β, and IL-18 in aortic endothelium of melatonin-treated animals. Consistent antipyroptotic effects were also observed in ox-LDL-treated human aortic endothelial cells (HAECs). We found that lncRNA MEG3 enhanced pyroptosis in HAECs. Moreover, MEG3 acted as an endogenous sponge by sequence complementarity to suppress the function of miR-223 and to increase NLRP3 expression and enhance endothelial cell pyroptosis. Furthermore, knockdown of miR-223 blocked the antipyroptotic actions of melatonin in ox-LDL-treated HAECs. Together, our results suggest that melatonin prevents endothelial cell pyroptosis via MEG3/miR-223/NLRP3 axis in atherosclerosis, and therefore, melatonin replacement might be considered a new strategy for protecting endothelium against pyroptosis, thereby for the treatment of atherosclerosis associated with pyroptosis.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Lin
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhange Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiangbo Fu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingqi Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tong Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huan Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ranchen Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiamin Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jin Ju
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Faculty of Medicine, Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
35
|
Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cell Mol Life Sci 2017; 74:3955-3964. [PMID: 28791422 PMCID: PMC11107636 DOI: 10.1007/s00018-017-2613-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Collapse
Affiliation(s)
- Ovidiu C Baltatu
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Fernanda G Amaral
- Department of Physiology, Federal University of São Paulo, 862 Botucatu St, 5th Floor, São Paulo, SP, 04023-901, Brazil
| | - Luciana A Campos
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, room 115/118, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
36
|
Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, Yang Y. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci 2017; 74:3989-3998. [PMID: 28795196 PMCID: PMC11107672 DOI: 10.1007/s00018-017-2618-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Russel J Reiter
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cellular and Structural Biology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
37
|
Mamelak M. Energy and the Alzheimer brain. Neurosci Biobehav Rev 2017; 75:297-313. [PMID: 28193453 DOI: 10.1016/j.neubiorev.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/01/2023]
Abstract
The high energy demands of the poorly myelinated long axon hippocampal and cortical neurons render these neurons selectively vulnerable to degeneration in Alzheimer's disease. However, pathology engages all of the major elements of the neurovascular unit of the mature Alzheimer brain, the neurons, glia and blood vessels. Neurons present with retrograde degeneration of the axodendritic tree, capillaries with string vessels and markedly reduced densities and glia with signs of inflammatory activation. The neurons, capillaries and astrocytes of the mature Alzheimer brain harbor structurally defective mitochondria. Clinically, reduced glucose utilization, decades before cognitive deterioration, betrays ongoing energy insufficiency. β-hydroxybutyrate and γ-hydroxybutyrate can both provide energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's disease demonstrate their ability to reverse the pathological changes in the Alzheimer brain and initial clinical trials reveal their ability to improve cognition and every day function. Supplying the brain with energy holds great promise for delaying the onset of Alzheimer's disease and slowing its progress.
Collapse
|
38
|
Xue RQ, Sun L, Yu XJ, Li DL, Zang WJ. Vagal nerve stimulation improves mitochondrial dynamics via an M 3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med 2017; 21:58-71. [PMID: 27491814 PMCID: PMC5192749 DOI: 10.1111/jcmm.12938] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dynamics-fission and fusion-are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)-induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin-related peptide1 (Drp1) and mitochondrial fission protein1 (Fis-1)) and decreased the expression of fusion proteins (optic atrophy-1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis-1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP-activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) during myocardial ischaemia. Treatment with subtype-3 of muscarinic acetylcholine receptor (M3 R) antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3 R/CaMKKβ/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3 R/CaMKKβ/AMPK pathway, to attenuate ISO-induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.
Collapse
Affiliation(s)
- Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Melatonin is a neuroendocrine hormone synthesized primarily by the pineal gland. Numerous studies have suggested that melatonin plays an important role in various cardiovascular diseases. In this article, recent progress regarding melatonin's effects on cardiovascular diseases is reviewed. RECENT FINDINGS In the past year, studies have focused on the mechanism of protection of melatonin on cardiovascular diseases, including myocardial ischemia-reperfusion injury, myocardial hypoxia-reoxygenation injury, pulmonary hypertension, hypertension, atherosclerosis, valvular heart diseases, and other cardiovascular diseases. SUMMARY Studies have demonstrated that melatonin has significant effects on ischemia-reperfusion injury, myocardial chronic intermittent hypoxia injury, pulmonary hypertension, hypertension, valvular heart diseases, vascular diseases, and lipid metabolism. As an inexpensive and well tolerated drug, melatonin may be a new therapeutic option for cardiovascular disease.
Collapse
Affiliation(s)
- Hang Sun
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Aaron M. Gusdon
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Neurology, Weill Cornell Medical College, New York, USA
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Yang Y, Fan C, Deng C, Zhao L, Hu W, Di S, Ma Z, Zhang Y, Qin Z, Jin Z, Yan X, Jiang S, Sun Y, Yi W. Melatonin reverses flow shear stress-induced injury in bone marrow mesenchymal stem cells via activation of AMP-activated protein kinase signaling. J Pineal Res 2016; 60:228-41. [PMID: 26707568 DOI: 10.1111/jpi.12306] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/17/2015] [Indexed: 12/24/2022]
Abstract
Tissue-engineered heart valves (TEHVs) are a promising treatment for valvular heart disease, although their application is limited by high flow shear stress (FSS). Melatonin has a wide range of physiological functions and is currently under clinical investigation for expanded applications; moreover, extensive protective effects on the cardiovascular system have been reported. In this study, we investigated the protection conferred by melatonin supplementation against FSS-induced injury in bone marrow mesenchymal stem cells (BMSCs) and elucidated the potential mechanism in this process. Melatonin markedly reduced BMSC apoptotic death in a concentration-dependent manner while increasing the levels of transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and B-cell lymphoma 2 (Bcl2), and decreasing those of Bcl-2-associated X protein (Bax), p53 upregulated modulator of apoptosis (PUMA), and caspase 3. Notably, melatonin exerted its protective effects by upregulating the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), which promotes acetyl-CoA carboxylase (ACC) phosphorylation. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked the anti-FSS injury (anti-FSSI) effects of melatonin. Inhibition of AMPK by Compound C also counteracted the protective effects of melatonin, suggesting that melatonin reverses FSSI in BMSCs through the AMPK-dependent pathway. Overall, our findings indicate that melatonin contributes to the amelioration of FSS-induced BMSC injury by activating melatonin receptors and AMPK/ACC signaling. Our findings may provide a basis for the design of more effective strategies that promote the use of TEHCs in patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhigang Qin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Departments of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
41
|
Melatonin attenuated adipogenesis through reduction of the CCAAT/enhancer binding protein beta by regulating the glycogen synthase 3 beta in human mesenchymal stem cells. J Physiol Biochem 2016; 72:145-55. [PMID: 26797706 DOI: 10.1007/s13105-015-0463-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
Adipogenic differentiation is characterized by an increase in two major transcription factors: peroxisome proliferator-activated receptor gamma (PPARγ) and the CCAAT/enhancer binding protein alpha (C/EBPα). These two signals are influenced by C/EBPβ and C/EBPδ and cross-regulate each other's expression during the initial stages of adipogenesis. Melatonin has been known to act as not only a direct scavenger of free radicals but also an inhibitor of glycogen synthase kinase 3β (GSK-3β). Here, we report that melatonin inhibits the adipogenic differentiation of human mesenchymal stem cells (hMSCs) which is due to the regulations of C/EBPβ in the early stage of adipogenic differentiation. Melatonin reduced the lipid accumulation, adiponectin, and lipoprotein lipase (LPL) during the adipogenic differentiation of hMSCs. Since C/EBPβ has been associated with the activation of PPARγ and the consensus site of ERK/GSK-3β, PPARγ and β-catenin were detected by immunofluorescence staining after pretreatment of melatonin. Melatonin blocked the activation of PPARγ which induced the degradation of β-catenin. Melatonin also decreased the levels of cyclic adenosine-3,5-monophosphate (cAMP) and reactive oxygen species (ROS). The cAMP triggered the activity of C/EBPβ which is a critical inducer of PPARγ and C/EBPα activation in the early stage of adipogenic differentiation, and this is further affected by ROS production. The adipogenic marker proteins such as PPARγ, C/EBPα, C/EBPβ, and pERK were also decreased by melatonin. In summary, melatonin inhibited the cAMP synthesis through ROS reduction and the phosphorylation of the ERK/GSK-3β site which is known to be responsible for C/EBPβ activation for adipogenic differentiation in hMSCs.
Collapse
|
42
|
Khatua TN, Dinda AK, Putcha UK, Banerjee SK. Diallyl disulfide ameliorates isoproterenol induced cardiac hypertrophy activating mitochondrial biogenesis via eNOS-Nrf2-Tfam pathway in rats. Biochem Biophys Rep 2015; 5:77-88. [PMID: 28955809 PMCID: PMC5600345 DOI: 10.1016/j.bbrep.2015.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
The beneficial effect of garlic on cardiovascular disease is well known. However, the use of raw garlic against cardiac hypertrophy is not established. In the present study we explored whether raw garlic and its compound, diallyl disulfide (DADS) could inhibit hypertrophy through H2S and/or mitochondrial biogenesis. Cardiac hypertrophy was induced in rat by giving isoproterenol at the dose of 5 mg/kg/day subcutaneously for 14 days through alzet minipump. Aqueous garlic homogenate, DADS and NaHS (liberate H2S) were fed to third, forth and fifth group of rats for 14 days at a dose of 250 mg/kg/day, 50 mg/kg/day, 14 µM/kg/day respectively. Garlic and DADS reduced cardiac hypertrophy markers and normalized mitochondrial ETC-complex activities, mitochondrial enzyme activites and mitochondrial biogenetic and apoptotic genes expression. Garlic and DADS enhanced eNOS and p-AKT level in rat heart along with increased NRF2 protein level and Tfam gene expression. However, normalization was not observed after administration of NaHS which generates H2S in-vivo. In conclusion, garlic and DADS induces mitochondrial biogenesis and ameliorates cardiac hypertrophy via activation of eNOS-Nrf2-Tfam pathway in rats.
Collapse
Affiliation(s)
- Tarak Nath Khatua
- Division of Medicinal Chemistry and Pharmacology, Indian Institute of Chemical Technology, Hyderabad 500607, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Uday K Putcha
- Division of Pathology, National Institute of Nutrition, Hyderabad 500607, India
| | - Sanjay K Banerjee
- Division of Medicinal Chemistry and Pharmacology, Indian Institute of Chemical Technology, Hyderabad 500607, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India
| |
Collapse
|
43
|
Mukherjee D, Ghosh AK, Dutta M, Mitra E, Mallick S, Saha B, Reiter RJ, Bandyopadhyay D. Mechanisms of isoproterenol-induced cardiac mitochondrial damage: protective actions of melatonin. J Pineal Res 2015; 58:275-90. [PMID: 25652673 DOI: 10.1111/jpi.12213] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction due to oxidative damage is the key feature of several diseases. We have earlier reported mitochondrial damage resulting from the generation of oxidative stress as a major pathophysiological effect of isoproterenol (ISO)-induced myocardial ischemia in rats. That melatonin is an antioxidant that ameliorates oxidative stress in experimental animals as well as in humans is well established. We previously demonstrated that melatonin provides cardioprotection against ISO-induced myocardial injury as a result of its antioxidant properties. The mechanism of ISO-induced cardiac mitochondrial damage and protection by melatonin, however, remains to be elucidated in vitro. In this study, we provide evidence that ISO causes dysfunction of isolated goat heart mitochondria. Incubation of cardiac mitochondria with increasing concentrations of ISO decreased mitochondrial succinate dehydrogenase (SDH) activity, which plays a pivotal role in mitochondrial bioenergetics, as well as altered the activities of other key enzymes of the Kreb's cycle and the respiratory chain. Co-incubation of ISO-challenged mitochondria with melatonin prevented the alterations in enzyme activity. That these changes in mitochondrial energy metabolism were due to the perpetration of oxidative stress by ISO was evident from the increased levels of lipid peroxidation and decreased reduced glutathione/oxidized glutathione ratio. ISO-induced oxidative stress also altered mitochondrial redox potential and brought about changes in the activity of the antioxidant enzymes manganese superoxide dismutase and glutathione peroxidase, eventually leading to alterations in total ATPase activity and membrane potential. Melatonin ameliorated these changes likely through its antioxidant abilities suggesting a possible mechanism of cardioprotection by this indole against ISO-induced myocardial injury.
Collapse
Affiliation(s)
- Debasri Mukherjee
- Oxidative stress and Free Radical Biology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India; National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Govender J, Loos B, Marais E, Engelbrecht AM. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J Pineal Res 2014; 57:367-80. [PMID: 25230823 DOI: 10.1111/jpi.12176] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Anthracyclines, such as doxorubicin, are among the most valuable treatments for various cancers, but their clinical use is limited due to detrimental side effects such as cardiotoxicity. Doxorubicin-induced cardiotoxicity is emerging as a critical issue among cancer survivors and is an area of much significance to the field of cardio-oncology. Abnormalities in mitochondrial functions such as defects in the respiratory chain, decreased adenosine triphosphate production, mitochondrial DNA damage, modulation of mitochondrial sirtuin activity and free radical formation have all been suggested as the primary causative factors in the pathogenesis of doxorubicin-induced cardiotoxicity. Melatonin is a potent antioxidant, is nontoxic, and has been shown to influence mitochondrial homeostasis and function. Although a number of studies support the mitochondrial protective role of melatonin, the exact mechanisms by which melatonin confers mitochondrial protection in the context of doxorubicin-induced cardiotoxicity remain to be elucidated. This review focuses on the role of melatonin on doxorubicin-induced bioenergetic failure, free radical generation, and cell death. A further aim is to highlight other mitochondrial parameters such as mitophagy, autophagy, mitochondrial fission and fusion, and mitochondrial sirtuin activity, which lack evidence to support the role of melatonin in the context of cardiotoxicity.
Collapse
Affiliation(s)
- Jenelle Govender
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | |
Collapse
|
45
|
Yang Y, Sun Y, Yi W, Li Y, Fan C, Xin Z, Jiang S, Di S, Qu Y, Reiter RJ, Yi D. A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. J Pineal Res 2014; 57:357-66. [PMID: 25230580 DOI: 10.1111/jpi.12175] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/12/2014] [Indexed: 12/16/2022]
Abstract
Cardiac tissue loss is one of the most important factors leading to the unsatisfactory recovery even after treatment of ischemic heart disease. Melatonin, a circadian molecule with marked antioxidant properties, protects against ischemia-reperfusion (IR) injury. In particular, the myocardial protection of melatonin is substantial. We initially focus on the cardioprotective effects of melatonin in myocardial IR. These studies showed how melatonin preserves the microstructure of the cardiomyocyte and reduces myocardial IR injury. Thereafter, downstream signaling pathways of melatonin were summarized including Janus kinase 2/signal transducers and activators of transcription 3, nitric oxide-synthase, and nuclear factor erythroid 2 related factor 2. Herein, we propose the clinical applications of melatonin in several ischemic heart diseases. Collectively, the information summarized in this review (based on in vitro, animal, and human studies) should serve as a comprehensive reference for the action of melatonin in cardioprotection and hopefully will contribute to the design of future experimental research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Simko F, Bednarova KR, Krajcirovicova K, Hrenak J, Celec P, Kamodyova N, Gajdosechova L, Zorad S, Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J Pineal Res 2014; 57:177-84. [PMID: 24942291 DOI: 10.1111/jpi.12154] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 02/05/2023]
Abstract
Melatonin was previously shown to reduce blood pressure and left ventricular (LV) remodeling in several models of experimental heart damage. This study investigated whether melatonin prevents LV remodeling and improves survival in isoproterenol-induced heart failure. In the first experiment, four groups of 3-month-old male Wistar rats (12 per group) were treated for 2 wk as follows: controls, rats treated with melatonin (10 mg/kg/day) (M), rats treated with isoproterenol (5 mg/kg/day intraperitoneally the second week) (Iso), and rats treated with melatonin (2 wk) and isoproterenol (the second week) in corresponding doses (IsoM). In the second experiment, 30 rats were treated with isoproterenol and 30 rats with isoproterenol plus melatonin for a period of 28 days and their mortality was investigated. Isoproterenol-induced heart failure with hypertrophy of the left and right ventricles (LV, RV), lowered systolic blood pressure (SBP) and elevated pulmonary congestion. Fibrotic rebuilding was accompanied by alterations of tubulin level in the LV and oxidative stress development. Melatonin failed to reduce the weight of the LV or RV; however, it curtailed the weight of the lungs and attenuated the decline in SBP. Moreover, melatonin decreased the level of oxidative stress and of insoluble and total collagen and partly prevented the beta-tubulin alteration in the LV. Most importantly, melatonin reduced mortality and prolonged the average survival time. In conclusion, melatonin exerts cardioprotective effects and improves outcome in a model of isoproterenol-induced heart damage. The antiremodeling effect of melatonin may be of potential benefit in patients with heart failure.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, School of Medicine, Comenius University, Bratislava, Slovak Republic; 3rd Clinic of Medicine, School of Medicine, Comenius University, Bratislava, Slovak Republic; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic; Center of Excellence NOREG, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zheng P, Liu J, Mai S, Yuan Y, Wang Y, Dai G. Regulation of signal transducer and activator of transcription 3 and apoptotic pathways by betaine attenuates isoproterenol-induced acute myocardial injury in rats. Hum Exp Toxicol 2014; 34:538-47. [PMID: 25080425 DOI: 10.1177/0960327114543936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present study was designed to investigate the cardioprotective effects of betaine on acute myocardial ischemia induced experimentally in rats focusing on regulation of signal transducer and activator of transcription 3 (STAT3) and apoptotic pathways as the potential mechanism underlying the drug effect. Male Sprague Dawley rats were treated with betaine (100, 200, and 400 mg/kg) orally for 40 days. Acute myocardial ischemic injury was induced in rats by subcutaneous injection of isoproterenol (85 mg/kg), for two consecutive days. Serum cardiac marker enzyme, histopathological variables and expression of protein levels were analyzed. Oral administration of betaine (200 and 400 mg/kg) significantly reduced the level of cardiac marker enzyme in the serum and prevented left ventricular remodeling. Western blot analysis showed that isoproterenol-induced phosphorylation of STAT3 was maintained or further enhanced by betaine treatment in myocardium. Furthermore, betaine (200 and 400 mg/kg) treatment increased the ventricular expression of Bcl-2 and reduced the level of Bax, therefore causing a significant increase in the ratio of Bcl-2/Bax. The protective role of betaine on myocardial damage was further confirmed by histopathological examination. In summary, our results showed that betaine pretreatment attenuated isoproterenol-induced acute myocardial ischemia via the regulation of STAT3 and apoptotic pathways.
Collapse
Affiliation(s)
- P Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - J Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - S Mai
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Y Yuan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Y Wang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - G Dai
- Department of Pharmaceutical Engineering, College of Chemical and Materials Engineering, Kaili University, Kaili, Guizhou, People's Republic of China
| |
Collapse
|
48
|
N-acetyl-serotonin protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:310504. [PMID: 25013541 PMCID: PMC4074966 DOI: 10.1155/2014/310504] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity.
Collapse
|
49
|
Chen L, He X, Zhang Y, Chen X, Lai X, Shao J, Shi Y, Zhou N. Melatonin receptor type 1 signals to extracellular signal-regulated kinase 1 and 2 via Gi and Gs dually coupled pathways in HEK-293 cells. Biochemistry 2014; 53:2827-39. [PMID: 24724723 DOI: 10.1021/bi500092e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pineal gland hormone melatonin exerts its regulatory roles in a variety of physiological and pathological responses through two G protein-coupled receptors, melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), which have been recognized as promising targets in the treatment of a number of human diseases and disorders. The MT1 receptor was identified nearly 20 years ago; however, the molecular mechanisms by which MT1-mediated signaling affects physiology remain to be further elucidated. In this study, using HEK293 cells stably expressing the human MT1 receptor, melatonin induced a concentration-dependent activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). The melatonin-mediated phosphorylation of ERK1/2 at later time points (≥5 min) was strongly suppressed by pretreatment with pertussis toxin, but only a slight, if any, inhibition of ERK1/2 activation at early time points (≤2 min) was detected. Further experiments demonstrated that the Gβγ subunit, phosphoinositide 3-kinase, and calcium-insensitive protein kinase C were involved in the MT1-mediated activation of ERK1/2 at later time points (≥5 min). Moreover, results derived from cAMP assays combined with a MT1 mutant indicated that the human MT1 receptor could also couple to Gs protein, stimulating intracellular cAMP formation, and that the MT1-induced activation of ERK1/2 at early time points (≤2 min) was mediated by the Gs/cAMP/PKA cascade. Our findings may provide new insights into the pharmacological effects and physiological functions modulated by the MT1-mediated activation of ERK1/2.
Collapse
Affiliation(s)
- Linjie Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
High fat diet aggravates arsenic induced oxidative stress in rat heart and liver. Food Chem Toxicol 2014; 66:262-77. [DOI: 10.1016/j.fct.2014.01.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/15/2023]
|