1
|
Guo P, Cheng X, Wang Y, Chen G, Chen X, Yang Y, Zhang X, Hu Z. SlUPA-like, a bHLH Transcription Factor in Tomato ( Solanum lycopersicum), Serves as the Crosstalk of GA, JA and BR. Int J Mol Sci 2024; 25:13419. [PMID: 39769191 PMCID: PMC11677128 DOI: 10.3390/ijms252413419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of SlUPA-like in Solanum lycopersicum L. Ailsa Craig (AC++) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content. However, the detailed regulation mechanism was not fully explored. In the present research, we found that the overexpression of SlUPA-like influenced the accumulation of GA, JA and BR (Brassinolide). RNA-Seq data illustrated that the expression levels of genes related to these plant hormones were significantly affected. Additionally, the interaction of SlUPA-like with SlMYB21, SlMYC2 and SlDELLA was characterized by employing Y2H (Yeast Two-Hybrid) and BiFC (Bimolecular Fluorescence Complementation) assay. Furthermore, Dual-LUC (Dual-Luciferase) assay and EMSA (Electrophoretic Mobility Shift Assay) identified that SlUPA-like directly targeted the E-box motif in the promoter of SlGID2 and activated the transcription of SlGID2. These results shed light on the potential role of SlUPA-like in mediating crosstalk among multiple plant hormones and established a robust theoretical framework for further unraveling the functions of SlUPA-like transcription factors in the context of plant growth and hormone signal transduction.
Collapse
Affiliation(s)
- Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Xin Cheng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yingwu Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Xiuhai Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| |
Collapse
|
2
|
Marciniak K, Przedniczek K, Kęsy J, Święcicki W, Kopcewicz J. The development of yellow lupin anthers depends on the relationship between jasmonic acid and indole-3-acetic acid. PHYSIOLOGIA PLANTARUM 2024; 176:e14385. [PMID: 38956782 DOI: 10.1111/ppl.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Przedniczek
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kęsy
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | | | - Jan Kopcewicz
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
3
|
Balouri C, Poulios S, Tsompani D, Spyropoulou Z, Ketikoglou MC, Kaldis A, Doonan JH, Vlachonasios KE. Gibberellin Signaling through RGA Suppresses GCN5 Effects on Arabidopsis Developmental Stages. Int J Mol Sci 2024; 25:6757. [PMID: 38928464 PMCID: PMC11203840 DOI: 10.3390/ijms25126757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Histone acetyltransferases (HATs) modify the amino-terminal tails of the core histone proteins via acetylation, regulating chromatin structure and transcription. GENERAL CONTROL NON-DEREPRESSIBLE 5 (GCN5) is a HAT that specifically acetylates H3K14 residues. GCN5 has been associated with cell division and differentiation, meristem function, root, stem, foliar, and floral development, and plant environmental response. The flowers of gcn5 plants display a reduced stamen length and exhibit male sterility relative to the wild-type plants. We show that these effects may arise from gibberellin (GA)-signaling defects. The signaling pathway of bioactive GAs depends on the proteolysis of their repressors, DELLA proteins. The repressor GA (RGA) DELLA protein represses plant growth, inflorescence, and flower and seed development. Our molecular data indicate that GCN5 is required for the activation and H3K14 acetylation of genes involved in the late stages of GA biosynthesis and catabolism. We studied the genetic interaction of the RGA and GCN5; the RGA can partially suppress GCN5 action during the whole plant life cycle. The reduced elongation of the stamen filament of gcn5-6 mutants is reversed in the rga-t2;gcn5-6 double mutants. RGAs suppress the GCN5 effect on the gene expression and histone acetylation of GA catabolism and GA signaling. Interestingly, the RGA and RGL2 do not suppress ADA2b function, suggesting that ADA2b acts downstream of GA signaling and is distinct from GCN5 activity. In conclusion, we propose that the action of GCN5 on stamen elongation is partially mediated by RGA and GA signaling.
Collapse
Affiliation(s)
- Christina Balouri
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Dimitra Tsompani
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Zoe Spyropoulou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Maria-Christina Ketikoglou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Athanasios Kaldis
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - John H. Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth SY23 3EE, UK;
| | - Konstantinos E. Vlachonasios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
An JP, Xu RR, Wang XN, Zhang XW, You CX, Han Y. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:265-284. [PMID: 38284786 DOI: 10.1111/jipb.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
Collapse
Affiliation(s)
- Jian-Ping An
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, China
| | - Xiao-Na Wang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiao-Wei Zhang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
5
|
Waegneer E, Rombauts S, Baert J, Dauchot N, De Keyser A, Eeckhaut T, Haegeman A, Liu C, Maudoux O, Notté C, Staelens A, Van der Veken J, Van Laere K, Ruttink T. Industrial chicory genome gives insights into the molecular timetable of anther development and male sterility. FRONTIERS IN PLANT SCIENCE 2023; 14:1181529. [PMID: 37384353 PMCID: PMC10298185 DOI: 10.3389/fpls.2023.1181529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023]
Abstract
Industrial chicory (Cichorium intybus var. sativum) is a biannual crop mostly cultivated for extraction of inulin, a fructose polymer used as a dietary fiber. F1 hybrid breeding is a promising breeding strategy in chicory but relies on stable male sterile lines to prevent self-pollination. Here, we report the assembly and annotation of a new industrial chicory reference genome. Additionally, we performed RNA-Seq on subsequent stages of flower bud development of a fertile line and two cytoplasmic male sterile (CMS) clones. Comparison of fertile and CMS flower bud transcriptomes combined with morphological microscopic analysis of anthers, provided a molecular understanding of anther development and identified key genes in a range of underlying processes, including tapetum development, sink establishment, pollen wall development and anther dehiscence. We also described the role of phytohormones in the regulation of these processes under normal fertile flower bud development. In parallel, we evaluated which processes are disturbed in CMS clones and could contribute to the male sterile phenotype. Taken together, this study provides a state-of-the-art industrial chicory reference genome, an annotated and curated candidate gene set related to anther development and male sterility as well as a detailed molecular timetable of flower bud development in fertile and CMS lines.
Collapse
Affiliation(s)
- Evelien Waegneer
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joost Baert
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Nicolas Dauchot
- Unit of Cellular and Molecular Plant Biology, UNamur, Namur, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Olivier Maudoux
- Chicoline, A division of Cosucra Groupe Warcoing S.A., Warcoing, Belgium
| | - Christine Notté
- Chicoline, A division of Cosucra Groupe Warcoing S.A., Warcoing, Belgium
| | - Ariane Staelens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Jeroen Van der Veken
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Li S, Hu Y, Yang H, Tian S, Wei D, Tang Q, Yang Y, Wang Z. The Regulatory Roles of MYC TFs in Plant Stamen Development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111734. [PMID: 37207819 DOI: 10.1016/j.plantsci.2023.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
The stamen, as the male reproductive organ of flowering plants, plays a critical role in completing the life cycle of plants. MYC transcription factors are members of the bHLH IIIE subgroup and participate in a number of plant biological processes. In recent decades, a number of studies have confirmed that MYC transcription factors actively participate in the regulation of stamen development and have a critical impact on plant fertility. In this review, we summarized how MYC transcription factors play a role in regulating secondary thickening of the anther endothecium, the development and degradation of the tapetum, stomatal differentiation, and the dehydration of the anther epidermis. With regard to anther physiological metabolism, MYC transcription factors control dehydrin synthesis, ion and water transport, and carbohydrate metabolism to influence pollen viability. Additionally, MYCs participate in the JA signal transduction pathway, where they directly or indirectly control the development of stamens through the ET-JA, GA-JA, and ABA-JA pathways. By identifying the functions of MYCs during plant stamen development, it will help us to obtain a more comprehensive understanding not only on the molecular functions of this TF family but also the mechanisms underlying stamen development.
Collapse
Affiliation(s)
- Sirui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Yao Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Huiqing Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China.
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China.
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| |
Collapse
|
7
|
Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. The Integrated mRNA and miRNA Approach Reveals Potential Regulators of Flowering Time in Arundina graminifolia. Int J Mol Sci 2023; 24:ijms24021699. [PMID: 36675213 PMCID: PMC9865619 DOI: 10.3390/ijms24021699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Orchids are among the most precious flowers in the world. Regulation of flowering time is one of the most important targets to enhance their ornamental value. The beauty of Arundina graminifolia is its year-round flowering, although the molecular mechanism of this flowering ability remains masked. Therefore, we performed a comprehensive assessment to integrate transcriptome and miRNA sequencing to disentangle the genetic regulation of flowering in this valuable species. Clustering analyses provided a set of molecular regulators of floral transition and floral morphogenesis. We mined candidate floral homeotic genes, including FCA, FPA, GI, FT, FLC, AP2, SOC1, SVP, GI, TCP, and CO, which were targeted by a variety of miRNAs. MiR11091 targeted the highest number of genes, including candidate regulators of phase transition and hormonal control. The conserved miR156-miR172 pathway of floral time regulation was evident in our data, and we found important targets of these miRNAs in the transcriptome. Moreover, endogenous hormone levels were determined to decipher the hormonal control of floral buds in A. graminifolia. The qRT-PCR analysis of floral and hormonal integrators validated the transcriptome expression. Therefore, miRNA-mediated mining of candidate genes with hormonal regulation forms the basis for comprehending the complex regulatory network of perpetual flowering in precious orchids. The findings of this study can do a great deal to broaden the breeding programs for flowering time manipulation of orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-8516-1014
| |
Collapse
|
8
|
Guo S, Zhou G, Wang J, Lu X, Zhao H, Zhang M, Guo X, Zhang Y. High-Throughput Phenotyping Accelerates the Dissection of the Phenotypic Variation and Genetic Architecture of Shank Vascular Bundles in Maize (Zea mays L.). PLANTS 2022; 11:plants11101339. [PMID: 35631765 PMCID: PMC9145235 DOI: 10.3390/plants11101339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
The vascular bundle of the shank is an important ‘flow’ organ for transforming maize biological yield to grain yield, and its microscopic phenotypic characteristics and genetic analysis are of great significance for promoting the breeding of new varieties with high yield and good quality. In this study, shank CT images were obtained using the standard process for stem micro-CT data acquisition at resolutions up to 13.5 μm. Moreover, five categories and 36 phenotypic traits of the shank including related to the cross-section, epidermis zone, periphery zone, inner zone and vascular bundle were analyzed through an automatic CT image process pipeline based on the functional zones. Next, we analyzed the phenotypic variations in vascular bundles at the base of the shank among a group of 202 inbred lines based on comprehensive phenotypic information for two environments. It was found that the number of vascular bundles in the inner zone (IZ_VB_N) and the area of the inner zone (IZ_A) varied the most among the different subgroups. Combined with genome-wide association studies (GWAS), 806 significant single nucleotide polymorphisms (SNPs) were identified, and 1245 unique candidate genes for 30 key traits were detected, including the total area of vascular bundles (VB_A), the total number of vascular bundles (VB_N), the density of the vascular bundles (VB_D), etc. These candidate genes encode proteins involved in lignin, cellulose synthesis, transcription factors, material transportation and plant development. The results presented here will improve the understanding of the phenotypic traits of maize shank and provide an important phenotypic basis for high-throughput identification of vascular bundle functional genes of maize shank and promoting the breeding of new varieties with high yield and good quality.
Collapse
Affiliation(s)
- Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
| | - Guoliang Zhou
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Huan Zhao
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| |
Collapse
|
9
|
Huang TH, Hsu WH, Mao WT, Yang CH. The Oncidium Ethylene Synthesis Gene Oncidium 1-Aminocyclopropane-1 Carboxylic Acid Synthase 12 and Ethylene Receptor Gene Oncidium ETR1 Affect GA-DELLA and Jasmonic Acid Signaling in Regulating Flowering Time, Anther Dehiscence, and Flower Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:785441. [PMID: 35432433 PMCID: PMC9011138 DOI: 10.3389/fpls.2022.785441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
In plants, the key enzyme in ethylene biosynthesis is 1-aminocyclopropane-1 carboxylic acid (ACC) synthase (ACS), which catalyzes S-adenosyl-L-methionine (SAM) to ACC, the precursor of ethylene. Ethylene binds to its receptors, such as ethylene response 1 (ETR1), to switch on ethylene signal transduction. To understand the function of ACS and ETR1 in orchids, Oncidium ACC synthase 12 (OnACS12) and Oncidium ETR1 (OnETR1) from Oncidium Gower Ramsey were functionally analyzed in Arabidopsis. 35S::OnACS12 caused late flowering and anther indehiscence phenotypes due to its effect on GA-DELLA signaling pathways. 35S::OnACS12 repressed GA biosynthesis genes (CPS, KS, and GA3ox1), which caused the upregulation of DELLA [GA-INSENSITIVE (GAI), RGA-LIKE1 (RGL1), and RGL2] expression. The increase in DELLAs not only suppressed LEAFY (LFY) expression and caused late flowering but also repressed the jasmonic acid (JA) biosynthesis gene DAD1 and caused anther indehiscence by downregulating the endothecium-thickening-related genes MYB26, NST1, and NST2. The ectopic expression of an OnETR1 dominant-negative mutation (OnETR1-C65Y) caused both ethylene and JA insensitivity in Arabidopsis. 35S::OnETR1-C65Y delayed flower/leaf senescence by suppressing downstream genes in ethylene signaling, including EDF1-4 and ERF1, and in JA signaling, including MYC2 and WRKY33. JA signaling repression also resulted in indehiscent anthers via the downregulation of MYB26, NST1, NST2, and MYB85. These results not only provide new insight into the functions of ACS and ETR1 orthologs but also uncover their functional interactions with other hormone signaling pathways, such as GA-DELLA and JA, in plants.
Collapse
Affiliation(s)
- Tzu-Hsiang Huang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Ting Mao
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
11
|
Transcriptome and Metabolome Analyses Provide Insights into the Stomium Degeneration Mechanism in Lily. Int J Mol Sci 2021; 22:ijms222212124. [PMID: 34830002 PMCID: PMC8619306 DOI: 10.3390/ijms222212124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Lily (Lilium spp.) is a widely cultivated horticultural crop that has high ornamental and commercial value but also the serious problem of pollen pollution. However, mechanisms of anther dehiscence in lily remain largely unknown. In this study, the morphological characteristics of the stomium zone (SZ) from different developmental stages of ‘Siberia’ lily anthers were investigated. In addition, transcriptomic and metabolomic data were analyzed to identify the differentially expressed genes (DEGs) and secondary metabolites involved in stomium degeneration. According to morphological observations, SZ lysis occurred when flower buds were 6–8 cm in length and was completed in 9 cm. Transcriptomic analysis identified the genes involved in SZ degeneration, including those associated with hormone signal transduction, cell structure, reactive oxygen species (ROS), and transcription factors. A weighted co-expression network showed strong correlations between transcription factors. In addition, TUNEL (TdT-mediated dUTP nick-end labeling) assays showed that programmed cell death was important during anther SZ degeneration. Jasmonates might also have key roles in anther dehiscence by affecting the expression of the genes involved in pectin lysis, water transport, and cysteine protease. Collectively, the results of this study improve our understanding of anther dehiscence in lily and provide a data platform from which the molecular mechanisms of SZ degeneration can be revealed.
Collapse
|
12
|
Fasani E, DalCorso G, Furini A. MYB59 transcription factor behaves differently in metallicolous and non-metallicolous populations of Arabidopsis halleri. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:916-923. [PMID: 33972014 DOI: 10.1071/fp20356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
In Arabidopsis thaliana (L.) Heynh., MYB59 transcription factor participates in regulating Ca homeostasis and signal transduction and is induced by Cd excess. To investigate its role in the facultative metallophyte Arabidopsis halleri ssp. halleri (L.) O'Kane and Al-Shehbaz, MYB59 expression was investigated under Cd treatment or Ca depletion in three populations belonging to distinct phylogeographic units (metallicolous PL22 and I16 and non-metallicolous I29), and compared with the expression in A. thaliana. In control conditions, MYB59 transcription in A. thaliana and the non-metallicolous population I29 follow a comparable trend with higher expression in roots than shoots, whereas in metallicolous populations I16 and PL22 its expression is similar in roots and shoots, suggesting a convergent evolution associated with adaptation to metalliferous environments. After 6 h of Ca depletion, MYB59 transcript levels were very high in I16 and PL22 populations, indicating that the adaptation to metalliferous environments requires tightly regulated Ca homeostasis and signalling. Cd treatment caused variability in MYB59 expression. In I29, MYB59 expression, as in A. thaliana, is likely associated to stress response, whereas its modulation in the two metallicolous populations reflects the different strategies for Cd tolerance and accumulation. In conclusion, MYB59 regulation in A. halleri is part of the network linking mineral nutrition and Cd tolerance/accumulation.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; and Corresponding author.
| |
Collapse
|
13
|
Herath V, Verchot J. Transcriptional Regulatory Networks Associate with Early Stages of Potato Virus X Infection of Solanum tuberosum. Int J Mol Sci 2021; 22:2837. [PMID: 33799566 PMCID: PMC8001266 DOI: 10.3390/ijms22062837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
| |
Collapse
|
14
|
Liu Z, Wang H, Xu Z, Zhang H, Li G, Wang X, Qian W. Transcriptome profiling of differentially expressed genes of male and female inflorescences in spinach ( Spinacia oleracea L.). Genome 2021; 64:777-788. [PMID: 33539259 DOI: 10.1139/gen-2020-0122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinach (Spinacia oleracea L.) is commonly considered a dioecious plant with heterogametic (XY) and homogametic (XX) sex chromosomes. The characteristic is also utilized for the production of spinach hybrid seeds. However, the molecular mechanisms of sex determination in spinach are still unclear because of a lack of genomic and transcriptomic information. In this study, RNA sequencing (RNA-seq) was performed in male and female inflorescences to provide insight into the molecular basis of sex determination in spinach. Comparative transcriptome analyses showed that 2278 differentially expressed genes (DEGs) were identified between male and female inflorescences. A high correlation between the RNA-Seq and qRT-PCR validation for DEGs was observed. Among these, 182 DEGs were annotated to transcription factors including the MYB family protein, bHLH family, and MADS family, suggesting these factors might play a vital role in sex determination. Moreover, 26 DEGs related to flower development, including nine ABCE class genes, were detected. Expression analyses of hormone pathways showed that brassinosteroids may be key hormones related to sex determination in spinach. Overall, this study provides a large amount of DEGs related to sexual expression and lays a foundation for unraveling the regulatory mechanism of sex determination in spinach.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Haoying Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China.,Horticulture & landscape college, Hunan Agricultural University, Furong District, Changsha City, Hunan Province 410128, People's Republic of China
| | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| |
Collapse
|
15
|
Herath V, Gayral M, Adhikari N, Miller R, Verchot J. Genome-wide identification and characterization of Solanum tuberosum BiP genes reveal the role of the promoter architecture in BiP gene diversity. Sci Rep 2020; 10:11327. [PMID: 32647371 PMCID: PMC7347581 DOI: 10.1038/s41598-020-68407-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.
Collapse
Affiliation(s)
- Venura Herath
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA.,Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.,Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
| | - Nirakar Adhikari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Rita Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA. .,Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
16
|
Herath V, Gayral M, Adhikari N, Miller R, Verchot J. Genome-wide identification and characterization of Solanum tuberosum BiP genes reveal the role of the promoter architecture in BiP gene diversity. Sci Rep 2020; 10:11327. [PMID: 32647371 DOI: 10.1101/2020.05.16.098244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/18/2020] [Indexed: 05/24/2023] Open
Abstract
The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.
Collapse
Affiliation(s)
- Venura Herath
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
| | - Nirakar Adhikari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Rita Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA.
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
17
|
Cheng Z, Hou D, Ge W, Li X, Xie L, Zheng H, Cai M, Liu J, Gao J. Integrated mRNA, MicroRNA Transcriptome and Degradome Analyses Provide Insights into Stamen Development in Moso Bamboo. PLANT & CELL PHYSIOLOGY 2020; 61:76-87. [PMID: 31550004 DOI: 10.1093/pcp/pcz179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/06/2019] [Indexed: 05/11/2023]
Abstract
A flower is an essential organ for sexual reproduction in flowering plants, which has been extensively studied in model plants. In this study, we used transcriptomic, small RNA and degradome analyses to characterize key microRNAs (miRNAs) and their targets in floral organs of moso bamboo. In total, we identified 13,051 differentially expressed genes and 109 known miRNAs from 26 miRNA families. We aligned the miRNAs to known miRNA databases and revealed some conserved as well as novel miRNAs. Sixteen conserved miRNAs were specifically and highly expressed in stamens, including miRNA159 and miRNA166. In situ hybridization shows that miRNA159 plays a key role in the regulation of stamen development, and the expression levels of its targets PheMYB98 and PheMYB42 were low. Furthermore, Phe-MIRNA159 partially recovers phenotypes of mir159ab double mutant. Overexpression of Phe-MIR159 could cause failure in anther dehisce, and the mature pollens could not be dispersed and further reduce fertility in Arabidopsis. Semi-thin section result shows that anther endothelial layer of Phe-MIRNA159 overexpressing lines is lack of secondary thickening, resulting in limited force for anther opening. Phe-miR159 may regulate the expression of genes related to secondary thickening through negative regulation of AtMYB33, affecting the anther dehiscence. Taken together, this study provides insights regarding molecular networks underlying floral organs development of moso bamboo.
Collapse
Affiliation(s)
- Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Dan Hou
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
| | - Xiangyu Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Lihua Xie
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Huifang Zheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Miaomiao Cai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| |
Collapse
|
18
|
Marciniak K, Przedniczek K. Comprehensive Insight into Gibberellin- and Jasmonate-Mediated Stamen Development. Genes (Basel) 2019; 10:genes10100811. [PMID: 31618967 PMCID: PMC6827089 DOI: 10.3390/genes10100811] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
In flowering plants, proper development of male generative organs is required for successful sexual reproduction. Stamen primordia arise in the third whorl of floral organs and subsequently differentiate into filaments and anthers. The early phase of stamen development, in which meiosis occurs, is followed by a late developmental phase, which consists of filament elongation coordinated with pollen maturation, anther dehiscence and finally viable pollen grain release. Stamen development and function are modulated by phytohormones, with a key role of gibberellins (GAs) and jasmonates (JAs). Long-term, extensive investigations, mainly involving GA/JA-deficient and GA/JA-response mutants, have led to a better understanding of the hormone-dependent molecular mechanisms of stamen development. In several species, the principal functions of GAs are to stimulate filament elongation through increased cell elongation and to promote anther locule opening. In the GA-dependent regulation of early stamen development, both the tapetum and developing pollen were identified as major targets. JAs mainly control the late stages of stamen development, such as filament elongation, viable pollen formation and anther dehiscence. A hierarchical relationship between GAs and JAs was recognized mainly in the control of late stamen development. By repressing DELLA proteins, GAs modulate the transcriptional activity of JA biosynthesis genes to promote JA production. A high level of JAs induces a complex of transcription factors crucial for normal stamen development.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| | - Krzysztof Przedniczek
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| |
Collapse
|
19
|
Song Y, Gan Y, Liu L, Corlett RT. The floral transcriptome of Machilus yunnanensis, a tree in the magnoliid family Lauraceae. Comput Biol Chem 2018; 77:456-465. [DOI: 10.1016/j.compbiolchem.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023]
|
20
|
Liu F, Wang Y, Ding Z, Zhao L, Xiao J, Wang L, Ding S. Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)). Gene 2017; 631:39-51. [PMID: 28844668 DOI: 10.1016/j.gene.2017.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/08/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants.
Collapse
Affiliation(s)
- Feng Liu
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lei Zhao
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Xiao
- School of Biological Science and Winery Engineering, Taishan University, Taian 271021, China
| | - Linjun Wang
- Fruit Tree and Tea Workstation of Weihai City, 264200, China
| | - Shibo Ding
- Rizhao Tea Research Institute of Shandong, Rizhao, Shandong 276800, China
| |
Collapse
|
21
|
Wei Y, Dong C, Zhang H, Zheng X, Shu B, Shi S, Li W. Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole. PLoS One 2017; 12:e0176053. [PMID: 28419137 PMCID: PMC5395186 DOI: 10.1371/journal.pone.0176053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/04/2017] [Indexed: 11/19/2022] Open
Abstract
In Arabidopsis, treating shoots with uniconazole can result in enhanced primary root elongation and bolting delay. Uniconazole spraying has become an important cultivation technique in controlling the flowering and improving the fruit-setting of litchi. However, the mechanism by which uniconazole regulates the complicated developmental processes in litchi remains unclear. This study aimed to determine which signal pathways and genes drive the responses of litchi inflorescences to uniconazole treatment. We monitored the transcriptional activity in inflorescences after uniconazole treatment by Illumina sequencing technology. The global expression profiles of uniconazole-treated litchi inflorescences were compared with those of the control, and 4051 differentially expressed genes were isolated. KEGG pathway enrichment analysis indicated that the plant hormone signal transduction pathway served key functions in the flower developmental stage under uniconazole treatment. Basing on the transcriptional analysis of genes involved in flower development, we hypothesized that uniconazole treatment increases the ratio of female flowers by activating the transcription of pistil-related genes. This phenomenon increases opportunities for pollination and fertilization, thereby enhancing the fruit-bearing rate. In addition, uniconazole treatment regulates the expression of unigenes involved in numerous transcription factor families, especially the bHLH and WRKY families. These findings suggest that the uniconazole-induced morphological changes in litchi inflorescences are related to the control of hormone signaling, the regulation of flowering genes, and the expression levels of various transcription factors. This study provides comprehensive inflorescence transcriptome data to elucidate the molecular mechanisms underlying the response of litchi flowers to uniconazole treatment and enumerates possible candidate genes that can be used to guide future research in controlling litchi flowering.
Collapse
Affiliation(s)
- Yongzan Wei
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chen Dong
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hongna Zhang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Xuewen Zheng
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Bo Shu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Weicai Li
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- * E-mail:
| |
Collapse
|
22
|
Li X, Jin F, Jin L, Jackson A, Ma X, Shu X, Wu D, Jin G. Characterization and comparative profiling of the small RNA transcriptomes in two phases of flowering in Cymbidium ensifolium. BMC Genomics 2015; 16:622. [PMID: 26289943 PMCID: PMC4546042 DOI: 10.1186/s12864-015-1764-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/10/2015] [Indexed: 01/05/2023] Open
Abstract
Background Cymbidium ensifolium is one of the most important ornamental flowers in China, with an elegant shape, beautiful appearance, and a fragrant aroma. Its unique flower shape has long attracted scientists. MicroRNAs (miRNAs) are critical regulators in plant development and physiology, including floral development. However, to date, few studies have examined miRNAs in C. ensifolium. Results In this study, we employed Solexa technology to sequence four small RNA libraries from two flowering phases to identify miRNAs related to floral development. We identified 48 mature conserved miRNA and 71 precursors. These conserved miRNA belonged to 20 families. We also identified 45 novel miRNA which includes 21 putative novel miRNAs*, and 28 hairpin forming precursors. Two trans-acting small interfering RNAs (ta-siRNAs) were identified, one of which was homologous to TAS3a1. TAS3a1 belongs to the TAS3 family, which has been previously reported to target auxin response factors (ARF) and be involved in plant growth and floral development. Moreover, we built a C. ensifolium transctriptome database to identify genes targeted by miRNA, which resulted in 790 transcriptomic target unigenes. The target unigenes were annotated with information from the non-redundant (Nr), gene ontology database (GO), eukaryotic orthologous groups (KOGs) and Kyoto encyclopedia of genes and genomes (KEGG) database. The unigenes included MADS-box transcription factors targeted by miR156, miR172 and miR5179, and various hormone responding factors targeted by miR159. The MADS-box transcription factors are well known to determine the identity of flower organs and hormone responding factors involved in floral development. In expression analysis, three novel and four conserved miRNA were differentially expressed between two phases of flowering. The results were confirmed by RNA-seq and qRT-PCR. The differential expression of two miRNA, miR160 and miR396, targeted ARFs and growth regulating factor (GRF), respectively. However, most of these small RNA were clustered in the uncharacterized group, which suggests there may be many novel small non-coding RNAs yet to be discovered. Conclusion Our study provides a diverse set of miRNAs related to cymbidium floral development and serves as a useful resource for investigating miRNA-mediated regulatory mechanisms of floral development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1764-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou, 310021, People's Republic of China. .,International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou, 310029, Peoples Republic of China.
| | - Feng Jin
- Hubei University, College of Life Sciences, Wuhan, 430062, People's Republic of China.
| | - Liang Jin
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou, 310021, People's Republic of China.
| | - Aaron Jackson
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, 72160, USA.
| | - Xiang Ma
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Xiaoli Shu
- International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou, 310029, Peoples Republic of China.
| | - Dianxing Wu
- International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou, 310029, Peoples Republic of China.
| | - Guoqiang Jin
- Agricultural Bureau of Yuhang District, Yuhang, Hangzhou, Peoples Republic of China.
| |
Collapse
|
23
|
Huang S, Liu Z, Yao R, Li D, Feng H. Comparative transcriptome analysis of the petal degeneration mutant pdm in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq. Mol Genet Genomics 2015; 290:1833-47. [PMID: 25860116 DOI: 10.1007/s00438-015-1041-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
Flowering, which plays a crucial role in the growth and development of flowering plants, is a crucial point from vegetative growth to reproductive growth. The goal of this study was to examine the differences between the transcriptomes of the Chinese cabbage mutant pdm and the corresponding wild-type line 'FT'. We performed transcriptome analysis on mRNA isolated from flower buds of pdm and 'FT' using Illumina RNA sequencing (RNA-Seq) data. A total of 117 differentially expressed genes (DEGs) were detected. Among the DEGs, we identified a number of genes involved in floral development and flowering, including an F-box protein gene, EARLY FLOWERING 4 (ELF4), and transcription factors BIGPETAL (BPE) and MYB21 (v-myb avian myeloblastosis viral oncogene homolog); differential expression of these genes could potentially explain the difference in the flowers between pdm and 'FT'. In addition, the expression patterns of 20 DEGs, including 12 floral development and flowering-related genes and eight randomly selected genes, were validated by qRT-PCR, and the results were highly concordant with the RNA-Seq results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to better understand the functions of these DEGs. We also identified a large number of single nucleotide polymorphism and insertion/deletion markers, which will be a rich resource for future marker development and breeding research in Chinese cabbage. Also, our analysis revealed numerous novel transcripts and alternative splicing events. The transcriptome analysis provides valuable information for furthering our understanding of the molecular mechanisms that regulate the flowering process, and establishes a solid foundation for future genetic and functional genomic studies in Chinese cabbage.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Runpeng Yao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Danyang Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
24
|
Cheng C, Jiao C, Singer SD, Gao M, Xu X, Zhou Y, Li Z, Fei Z, Wang Y, Wang X. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 2015; 16:128. [PMID: 25888129 PMCID: PMC4348105 DOI: 10.1186/s12864-015-1324-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gibberellins are well known for their growth control function in flower, fruit and seed development, and as such, exogenous gibberellic acid (GA) application plays an important role in viticulture. Unfortunately, the mechanism by which GA3 acts in the regulation of these complicated developmental processes in grape remains unclear. RESULTS In the present study, we demonstrated that application of GA3 to 'Kyoho' grapevine inflorescences at pre-bloom promoted flower opening, and induced fruit coloring as well as seed abortion. In an attempt to obtain a deeper understanding of the molecular mechanisms driving these responses to GA3 treatment, we performed large-scale transcriptome sequencing of grape flowers following GA3 treatment using Illumina sequencing technology. Global expression profiles of GA3-treated and untreated grape flowers were compared and a large number of GA3-responsive genes were identified. Gene ontology (GO) term classification and biochemical pathway analyses indicated that GA3 treatment caused changes in the levels of transcripts involved in cellular processes, reproduction, hormone and secondary metabolism, as well as the scavenging and detoxification of reactive oxygen species (ROS). These findings suggest that GA3-induced morphological alterations may be related to the control of hormone biosynthesis and signaling, regulation of transcription factors, alteration of secondary metabolites, and the stability of redox homeostasis. CONCLUSIONS Taken together, this comprehensive inflorescence transcriptome data set provides novel insight into the response of grape flowers to GA3 treatment, and also provides possible candidate genes or markers that could be used to guide future efforts in this field.
Collapse
Affiliation(s)
- Chenxia Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaozhao Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, 100193, China.
| | - Yiming Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA. .,USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, Kamiya Y, Seo M, Uozumi N, Ueda M, Ohta H. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun 2015; 6:6095. [PMID: 25648767 PMCID: PMC4347201 DOI: 10.1038/ncomms7095] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/14/2014] [Indexed: 12/20/2022] Open
Abstract
Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply. GTR1 is known to transport glucosinolates in Arabidopsis. Here, Saito et al. show that GTR1 also transports the plant hormones jasmonate and gibberellin when heterologously expressed in Xenopus oocytes, and that gtr1 mutant plants show a gibberellin-related fertility phenotype.
Collapse
Affiliation(s)
- Hikaru Saito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Takaya Oikawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shin Hamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Miyu Kanamori-Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomoya Utsumi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Jing Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shinji Masuda
- 1] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [2] Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Hiroyuki Ohta
- 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan [2] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
26
|
Gao J, Zhang Y, Zhang C, Qi F, Li X, Mu S, Peng Z. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis. PLoS One 2014; 9:e98910. [PMID: 24915141 PMCID: PMC4051636 DOI: 10.1371/journal.pone.0098910] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 05/07/2014] [Indexed: 01/09/2023] Open
Abstract
Background As an arborescent and perennial plant, Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau, synonym Phyllostachys heterocycla Carrière) is characterized by its infrequent sexual reproduction with flowering intervals ranging from several to more than a hundred years. However, little bamboo genomic research has been conducted on this due to a variety of reasons. Here, for the first time, we investigated the transcriptome of developing flowers in Moso bamboo by using high-throughput Illumina GAII sequencing and mapping short reads to the Moso bamboo genome and reference genes. We performed RNA-seq analysis on four important stages of flower development, and obtained extensive gene and transcript abundance data for the floral transcriptome of this key bamboo species. Results We constructed a cDNA library using equal amounts of RNA from Moso bamboo leaf samples from non-flowering plants (CK) and mixed flower samples (F) of four flower development stages. We generated more than 67 million reads from each of the CK and F samples. About 70% of the reads could be uniquely mapped to the Moso bamboo genome and the reference genes. Genes detected at each stage were categorized to putative functional categories based on their expression patterns. The analysis of RNA-seq data of bamboo flowering tissues at different developmental stages reveals key gene expression properties during the flower development of bamboo. Conclusion We showed that a combination of transcriptome sequencing and RNA-seq analysis was a powerful approach to identifying candidate genes related to floral transition and flower development in bamboo species. The results give a better insight into the mechanisms of Moso bamboo flowering and ageing. This transcriptomic data also provides an important gene resource for improving breeding for Moso bamboo.
Collapse
Affiliation(s)
- Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
- * E-mail: (JG); (ZP)
| | - Ying Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Chunling Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Feiyan Qi
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Zhenhua Peng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
- * E-mail: (JG); (ZP)
| |
Collapse
|
27
|
Li X, Luo J, Yan T, Xiang L, Jin F, Qin D, Sun C, Xie M. Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome. PLoS One 2013; 8:e85480. [PMID: 24392013 PMCID: PMC3877369 DOI: 10.1371/journal.pone.0085480] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Cymbidium ensifolium is a Chinese Cymbidium with an elegant shape, beautiful appearance, and a fragrant aroma. C. ensifolium has a long history of cultivation in China and it has excellent commercial value as a potted plant and cut flower. The development of C. ensifolium genomic resources has been delayed because of its large genome size. Taking advantage of technical and cost improvement of RNA-Seq, we extracted total mRNA from flower buds and mature flowers and obtained a total of 9.52 Gb of filtered nucleotides comprising 98,819,349 filtered reads. The filtered reads were assembled into 101,423 isotigs, representing 51,696 genes. Of the 101,423 isotigs, 41,873 were putative homologs of annotated sequences in the public databases, of which 158 were associated with floral development and 119 were associated with flowering. The isotigs were categorized according to their putative functions. In total, 10,212 of the isotigs were assigned into 25 eukaryotic orthologous groups (KOGs), 41,690 into 58 gene ontology (GO) terms, and 9,830 into 126 Arabidopsis Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 9,539 isotigs into 123 rice pathways. Comparison of the isotigs with those of the two related orchid species P. equestris and C. sinense showed that 17,906 isotigs are unique to C. ensifolium. In addition, a total of 7,936 SSRs and 16,676 putative SNPs were identified. To our knowledge, this transcriptome database is the first major genomic resource for C. ensifolium and the most comprehensive transcriptomic resource for genus Cymbidium. These sequences provide valuable information for understanding the molecular mechanisms of floral development and flowering. Sequences predicted to be unique to C. ensifolium would provide more insights into C. ensifolium gene diversity. The numerous SNPs and SSRs identified in the present study will contribute to marker development for C. ensifolium.
Collapse
Affiliation(s)
- Xiaobai Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Jie Luo
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Tianlian Yan
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lin Xiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Feng Jin
- College of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Dehui Qin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Ming Xie
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
28
|
Song S, Qi T, Huang H, Xie D. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. MOLECULAR PLANT 2013; 6:1065-73. [PMID: 23543439 DOI: 10.1093/mp/sst054] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper stamen development is essential for plants to achieve their life cycles. Defects in stamen development will cause male sterility. A vast array of research efforts have been made to understand stamen developmental processes and regulatory mechanisms over the past decades. It is so far reported that phytohormones, including jasmonate, auxin, gibberellin, brassinosteroid, and cytokinin, play essential roles in regulation of stamen development. This review will briefly summarize the molecular basis for coordinated regulation of stamen development by jasmonate, auxin, and gibberellin in Arabidopsis.
Collapse
Affiliation(s)
- Susheng Song
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
29
|
Rubio-Somoza I, Weigel D. Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet 2013; 9:e1003374. [PMID: 23555288 PMCID: PMC3610633 DOI: 10.1371/journal.pgen.1003374] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 01/29/2013] [Indexed: 12/27/2022] Open
Abstract
The development of multicellular organisms relies on interconnected genetic programs that control progression through their life cycle. MicroRNAs (miRNAs) and transcription factors (TFs) play key roles in such regulatory circuits. Here, we describe how three evolutionary conserved miRNA-TF pairs interact to form multiple checkpoints during reproductive development of Arabidopsis thaliana. Genetic, cellular, and physiological experiments show that miR159- and miR319-regulated MYB and TCP transcription factors pattern the expression of miR167 family members and their ARF6/8 targets. Coordinated action of these miRNA-TF pairs is crucial for the execution of consecutive hormone-dependent transitions during flower maturation. Cross-regulation includes both cis- and trans-regulatory interactions between these miRNAs and their targets. Our observations reveal how different miRNA-TF pairs can be organized into modules that coordinate successive steps in the plant life cycle. Development of multicellular organisms relies on properly timed execution of different genetic programs. An example is provided by developmental progression of flowers, which begins with the initiation of individual organs, followed by differentiation, growth, and finally production of the gametes. This article investigates the contribution of three microRNAs (miRNAs) and the transcription factors (TFs) that are regulated by these miRNAs to this process. Two of the miRNA-TF pairs act early to control in parallel the activity of the third miRNA-TF pair, which in turn modulates hormone programs that drive organ maturation and reproduction. Importantly, the two upstream TFs directly interact to regulate expression of the downstream miRNA. The results described here demonstrate how miRNA-TF pairs can be organized into regulatory circuits, with independent miRNA-TF pairs converging on common downstream genes.
Collapse
Affiliation(s)
- Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | |
Collapse
|
30
|
Zhang X, Zhou Y, Ding L, Wu Z, Liu R, Meyerowitz EM. Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in Arabidopsis. THE PLANT CELL 2013; 25:83-101. [PMID: 23335616 PMCID: PMC3584552 DOI: 10.1105/tpc.112.107854] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 11/29/2012] [Accepted: 12/28/2012] [Indexed: 05/19/2023]
Abstract
Plant inflorescence meristems and floral meristems possess specific boundary domains that result in proper floral organ separation and specification. HANABA TARANU (HAN) encodes a boundary-expressed GATA3-type transcription factor that regulates shoot meristem organization and flower development in Arabidopsis thaliana, but the underlying mechanism remains unclear. Through time-course microarray analyses following transient overexpression of HAN, we found that HAN represses hundreds of genes, especially genes involved in hormone responses and floral organ specification. Transient overexpression of HAN also represses the expression of HAN and three other GATA3 family genes, HANL2 (HAN-LIKE 2), GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM-INVOLVED), and GNL (GNC-LIKE), forming a negative regulatory feedback loop. Genetic analysis indicates that HAN and the three GATA3 family genes coordinately regulate floral development, and their expression patterns are partially overlapping. HAN can homodimerize and heterodimerize with the three proteins encoded by these genes, and HAN directly binds to its own promoter and the GNC promoter in vivo. These findings, along with the fact that constitutive overexpression of HAN produces an even stronger phenotype than the loss-of-function mutation, support the hypothesis that HAN functions as a key repressor that regulates floral development via regulatory networks involving genes in the GATA3 family, along with genes involved in hormone action and floral organ specification.
Collapse
Affiliation(s)
- Xiaolan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
31
|
Ma J, Wei H, Song M, Pang C, Liu J, Wang L, Zhang J, Fan S, Yu S. Transcriptome profiling analysis reveals that flavonoid and ascorbate-glutathione cycle are important during anther development in Upland cotton. PLoS One 2012; 7:e49244. [PMID: 23155472 PMCID: PMC3498337 DOI: 10.1371/journal.pone.0049244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/04/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previous transcriptome profiling studies have investigated the molecular mechanisms of pollen and anther development, and identified many genes involved in these processes. However, only 51 anther ESTs of Upland cotton (Gossypium hirsutum) were found in NCBI and there have been no reports of transcriptome profiling analyzing anther development in Upland cotton, a major fiber crop in the word. METHODOLOGY/PRINCIPAL FINDING Ninety-eight hundred and ninety-six high quality ESTs were sequenced from their 3'-ends and assembled into 6,643 unigenes from a normalized, full-length anther cDNA library of Upland cotton. Combined with previous sequenced anther-related ESTs, 12,244 unigenes were generated as the reference genes for digital gene expression (DGE) analysis. The DGE was conducted on anthers that were isolated at tetrad pollen (TTP), uninucleate pollen (UNP), binucleate pollen (BNP) and mature pollen (MTP) periods along with four other tissues, i.e., roots (RO), stems (ST), leaves (LV) and embryos (EB). Through transcriptome profiling analysis, we identified 1,165 genes that were enriched at certain anther development periods, and many of them were involved in starch and sucrose metabolism, pentose and glucuronate interconversion, flavonoid biosynthesis, and ascorbate and aldarate metabolism. CONCLUSIONS/SIGNIFICANCE We first generated a normalized, full-length cDNA library from anthers and performed transcriptome profiling analysis of anther development in Upland cotton. From these results, 10,178 anther expressed genes were identified, among which 1,165 genes were stage-enriched in anthers. And many of these stage-enriched genes were involved in some important processes regulating anther development.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, People's Republic of China
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Ji Liu
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, People's Republic of China
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Long Wang
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
- * E-mail: (SF); (SY)
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, People's Republic of China
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
- * E-mail: (SF); (SY)
| |
Collapse
|
32
|
De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 2012; 7:e42082. [PMID: 22916120 PMCID: PMC3419236 DOI: 10.1371/journal.pone.0042082] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
Background Transcriptome sequencing can be used to determine gene sequences and transcript abundance in non-model species, and the advent of next-generation sequencing (NGS) technologies has greatly decreased the cost and time required for this process. Transcriptome data are especially desirable in bamboo species, as certain members constitute an economically and culturally important group of mostly semelparous plants with remarkable flowering features, yet little bamboo genomic research has been performed. Here we present, for the first time, extensive sequence and transcript abundance data for the floral transcriptome of a key bamboo species, Dendrocalamus latiflorus, obtained using the Illumina GAII sequencing platform. Our further goal was to identify patterns of gene expression during bamboo flower development. Results Approximately 96 million sequencing reads were generated and assembled de novo, yielding 146,395 high quality unigenes with an average length of 461 bp. Of these, 80,418 were identified as putative homologs of annotated sequences in the public protein databases, of which 290 were associated with the floral transition and 47 were related to flower development. Digital abundance analysis identified 26,529 transcripts differentially enriched between two developmental stages, young flower buds and older developing flowers. Unigenes found at each stage were categorized according to their putative functional categories. These sequence and putative function data comprise a resource for future investigation of the floral transition and flower development in bamboo species. Conclusions Our results present the first broad survey of a bamboo floral transcriptome. Although it will be necessary to validate the functions carried out by these genes, these results represent a starting point for future functional research on D. latiflorus and related species.
Collapse
|
33
|
Ma X, Feng B, Ma H. AMS-dependent and independent regulation of anther transcriptome and comparison with those affected by other Arabidopsis anther genes. BMC PLANT BIOLOGY 2012; 12:23. [PMID: 22336428 DOI: 10.1186/1471-22c29-12-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/15/2012] [Indexed: 05/29/2023]
Abstract
BACKGROUND In flowering plants, the development of male reproductive organs is controlled precisely to achieve successful fertilization and reproduction. Despite the increasing knowledge of genes that contribute to anther development, the regulatory mechanisms controlling this process are still unclear. RESULTS In this study, we analyzed the transcriptome profiles of early anthers of sterile mutants aborted microspores (ams) and found that 1,368 genes were differentially expressed in ams compared to wild type anthers, affecting metabolism, transportation, ubiquitination and stress response. Moreover, the lack of significant enrichment of potential AMS binding sites (E-box) in the promoters of differentially expressed genes suggests both direct and indirect regulation for AMS-dependent regulation of anther transcriptome involving other transcription factors. Combining ams transcriptome profiles with those of two other sterile mutants, spl/nzz and ems1/exs, expression of 3,058 genes were altered in at least one mutant. Our investigation of expression patterns of major transcription factor families, such as bHLH, MYB and MADS, suggested that some closely related homologs of known anther developmental genes might also have similar functions. Additionally, comparison of expression levels of genes in different organs suggested that anther-preferential genes could play important roles in anther development. CONCLUSION Analysis of ams anther transcriptome and its comparison with those of spl/nzz and ems1/exs anthers uncovered overlapping and distinct sets of regulated genes, including those encoding transcription factors and other proteins. These results support an expanded regulatory network for early anther development, providing a series of hypotheses for future experimentation.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
34
|
Ma X, Feng B, Ma H. AMS-dependent and independent regulation of anther transcriptome and comparison with those affected by other Arabidopsis anther genes. BMC PLANT BIOLOGY 2012; 12:23. [PMID: 22336428 PMCID: PMC3305669 DOI: 10.1186/1471-2229-12-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/15/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND In flowering plants, the development of male reproductive organs is controlled precisely to achieve successful fertilization and reproduction. Despite the increasing knowledge of genes that contribute to anther development, the regulatory mechanisms controlling this process are still unclear. RESULTS In this study, we analyzed the transcriptome profiles of early anthers of sterile mutants aborted microspores (ams) and found that 1,368 genes were differentially expressed in ams compared to wild type anthers, affecting metabolism, transportation, ubiquitination and stress response. Moreover, the lack of significant enrichment of potential AMS binding sites (E-box) in the promoters of differentially expressed genes suggests both direct and indirect regulation for AMS-dependent regulation of anther transcriptome involving other transcription factors. Combining ams transcriptome profiles with those of two other sterile mutants, spl/nzz and ems1/exs, expression of 3,058 genes were altered in at least one mutant. Our investigation of expression patterns of major transcription factor families, such as bHLH, MYB and MADS, suggested that some closely related homologs of known anther developmental genes might also have similar functions. Additionally, comparison of expression levels of genes in different organs suggested that anther-preferential genes could play important roles in anther development. CONCLUSION Analysis of ams anther transcriptome and its comparison with those of spl/nzz and ems1/exs anthers uncovered overlapping and distinct sets of regulated genes, including those encoding transcription factors and other proteins. These results support an expanded regulatory network for early anther development, providing a series of hypotheses for future experimentation.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
- Intercollege Graduate Program of Cell and Developmental Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | - Baomin Feng
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Hoffmann M, Hentrich M, Pollmann S. Auxin-oxylipin crosstalk: relationship of antagonists. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:429-45. [PMID: 21658177 DOI: 10.1111/j.1744-7909.2011.01053.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stephan Pollmann (Corresponding author) Phytohormones regulate a wide array of developmental processes throughout the life cycle of plants. Herein, the various plant hormones may interact additively, synergistically, or antagonistically. By their cooperation they create a delicate regulatory network whose net output largely depends on the action of specific phytohormone combinations rather than on the independent activities of separate hormones. While most classical studies of plant hormonal control have focused mainly on the action of single hormones or on the synergistic interaction of hormones in regulating various developmental processes, recent work is beginning to shed light on the crosstalk of nominally antagonistic plant hormones, such as gibberellins and auxins with oxylipins or abscisic acid. In this review, we summarize our current understanding of how two of the first sight antagonistic plant hormones, i.e. auxins and oxylipins, interact in controlling plant responses and development.
Collapse
Affiliation(s)
- Maik Hoffmann
- Centro de Biotecnología y Genómica de Plantas (U.P.M. - I.N.I.A.) Parque Científico y Tecnológico de la U.P.M., Campus de Montegancedo, Crta., Pozuelo de Alarcón, Madrid, Spain
| | | | | |
Collapse
|
36
|
Zahn LM, Ma X, Altman NS, Zhang Q, Wall PK, Tian D, Gibas CJ, Gharaibeh R, Leebens-Mack JH, dePamphilis CW, Ma H. Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies. Genome Biol 2010; 11:R101. [PMID: 20950453 PMCID: PMC3218657 DOI: 10.1186/gb-2010-11-10-r101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/03/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited. RESULTS Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at preanthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves. CONCLUSIONS Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots.
Collapse
Affiliation(s)
- Laura M Zahn
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: American Association for the Advancement of Science, 1200 New York Avenue NW, Washington DC 20005, USA
| | - Xuan Ma
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Intercollege Graduate Program in Cell and Developmental Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Naomi S Altman
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qing Zhang
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: 2367 Setter Run Lane, State College, PA 16802, USA
| | - P Kerr Wall
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: BASF Plant Science, 26 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Donglan Tian
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cynthia J Gibas
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Raad Gharaibeh
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - James H Leebens-Mack
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong Ma
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Intercollege Graduate Program in Cell and Developmental Biology, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
37
|
Wang L, Wang Y, Wang Z, Marcel TC, Niks RE, Qi X. The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:857-64. [PMID: 20490444 DOI: 10.1007/s00122-010-1355-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 04/28/2010] [Indexed: 05/04/2023]
Abstract
Partial resistance is generally considered to be a durable form of resistance. In barley, Rphq2, Rphq3 and Rphq4 have been identified as consistent quantitative trait loci (QTLs) for partial resistance to the barley leaf rust pathogen Puccinia hordei. These QTLs have been incorporated separately into the susceptible L94 and the partially resistant Vada barley genetic backgrounds to obtain two sets of near isogenic lines (NILs). Previous studies have shown that these QTLs are not effective at conferring disease resistance in all stages of plant development. In the present study, the two sets of QTL-NILs and the two recurrent parents, L94 and Vada, were evaluated for resistance to P. hordei isolate 1.2.1 simultaneously under greenhouse conditions from the first leaf to the flag leaf stage. Effect of the QTLs on resistance was measured by development rate of the pathogen, expressed as latency period (LP). The data show that Rphq2 prolongs LP at the seedling stage (the first and second leaf stages) but has almost no effect on disease resistance in adult plants. Rphq4 showed no effect on LP until the third leaf stage, whereas Rphq3 is consistently effective at prolonging LP from the first leaf to the flag leaf. The changes in the effectiveness of Rphq2 and Rphq4 happen at the barley tillering stage (the third to fourth leaf stages). These results indicate that multiple disease evaluations of a single plant by repeated inoculations of the fourth leaf to the flag leaf should be conducted to precisely estimate the effect of Rphq4. The present study confirms and describes in detail the plant development-dependent effectiveness of partial resistance genes and, consequently, will enable a more precise evaluation of partial resistance regulation during barley development.
Collapse
Affiliation(s)
- Lijuan Wang
- Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Beijing, 100093, China
| | | | | | | | | | | |
Collapse
|