1
|
Orian JM, Maxwell DL, Lim VJT. Active Induction of a Multiple Sclerosis-Like Disease in Common Laboratory Mouse Strains. Methods Mol Biol 2024; 2746:179-200. [PMID: 38070090 DOI: 10.1007/978-1-0716-3585-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a neuroinflammatory disease with facets in common with multiple sclerosis (MS). It is induced in susceptible mammalian species, with rodents as the preferred hosts, and has been used for decades as a model to investigate the immunopathogenesis of MS as well as for preclinical evaluation of candidate MS therapeutics. Most commonly, EAE is generated by active immunization with central nervous system (CNS) antigens, such as whole CNS homogenate, myelin proteins, or peptides derived from these proteins. However, EAE actually represents a spectrum of diseases in which specific combinations of host/CNS antigen exhibit defined clinical profiles, each associated with unique immunological and pathological features. Similar to MS, EAE is a complex disease where development and progression are also modulated by environmental factors; therefore, the establishment of any given EAE variant can be challenging and requires careful optimization. Here, we describe protocols for three EAE variants, successfully generated in our laboratory, and provide additional information as to how to maintain their unique features and reproducibility.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia.
| | - Dain L Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Vernise J T Lim
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Moriguchi K, Nakamura Y, Park AM, Sato F, Kuwahara M, Khadka S, Omura S, Ahmad I, Kusunoki S, Tsunoda I. Anti-Glycolipid Antibody Examination in Five EAE Models and Theiler's Virus Model of Multiple Sclerosis: Detection of Anti-GM1, GM3, GM4, and Sulfatide Antibodies in Relapsing-Remitting EAE. Int J Mol Sci 2023; 24:12937. [PMID: 37629117 PMCID: PMC10454742 DOI: 10.3390/ijms241612937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Anti-glycolipid antibodies have been reported to play pathogenic roles in peripheral inflammatory neuropathies, such as Guillain-Barré syndrome. On the other hand, the role in multiple sclerosis (MS), inflammatory demyelinating disease in the central nervous system (CNS), is largely unknown, although the presence of anti-glycolipid antibodies was reported to differ among MS patients with relapsing-remitting (RR), primary progressive (PP), and secondary progressive (SP) disease courses. We investigated whether the induction of anti-glycolipid antibodies could differ among experimental MS models with distinct clinical courses, depending on induction methods. Using three mouse strains, SJL/J, C57BL/6, and A.SW mice, we induced five distinct experimental autoimmune encephalomyelitis (EAE) models with myelin oligodendrocyte glycoprotein (MOG)35-55, MOG92-106, or myelin proteolipid protein (PLP)139-151, with or without an additional adjuvant curdlan injection. We also induced a viral model of MS, using Theiler's murine encephalomyelitis virus (TMEV). Each MS model had an RR, SP, PP, hyperacute, or chronic clinical course. Using the sera from the MS models, we quantified antibodies against 11 glycolipids: GM1, GM2, GM3, GM4, GD3, galactocerebroside, GD1a, GD1b, GT1b, GQ1b, and sulfatide. Among the MS models, we detected significant increases in four anti-glycolipid antibodies, GM1, GM3, GM4, and sulfatide, in PLP139-151-induced EAE with an RR disease course. We also tested cellular immune responses to the glycolipids and found CD1d-independent lymphoproliferative responses only to sulfatide with decreased interleukin (IL)-10 production. Although these results implied that anti-glycolipid antibodies might play a role in remissions or relapses in RR-EAE, their functional roles need to be determined by mechanistic experiments, such as injections of monoclonal anti-glycolipid antibodies.
Collapse
Affiliation(s)
- Kota Moriguchi
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Internal Medicine, Japan Self Defense Forces Hanshin Hospital, Kawanishi City 666-0024, Hyogo, Japan
| | - Yumina Nakamura
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka City 577-8502, Osaka, Japan
| | - Ah-Mee Park
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Arts and Science, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan
| | - Fumitaka Sato
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| | - Motoi Kuwahara
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (M.K.); (S.K.)
| | - Sundar Khadka
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Immunology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Seiichi Omura
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| | - Ijaz Ahmad
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| | - Susumu Kusunoki
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (M.K.); (S.K.)
- Japan Community Health care Organization (JCHO) Headquarters, Minato City 108-8583, Tokyo, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| |
Collapse
|
3
|
Zha Z, Liu S, Liu Y, Li C, Wang L. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants (Basel) 2022; 11:antiox11081495. [PMID: 36009214 PMCID: PMC9404913 DOI: 10.3390/antiox11081495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system (CNS) characterized by immune cell infiltration, demyelination and axonal injury. Oxidative stress-induced inflammatory response, especially the destructive effect of immune cell-derived free radicals on neurons and oligodendrocytes, is crucial in the onset and progression of MS. Therefore, targeting oxidative stress-related processes may be a promising preventive and therapeutic strategy for MS. Animal models, especially rodent models, can be used to explore the in vivo molecular mechanisms of MS considering their similarity to the pathological processes and clinical signs of MS in humans and the significant oxidative damage observed within their CNS. Consequently, these models have been used widely in pre-clinical studies of oxidative stress in MS. To date, many natural products have been shown to exert antioxidant effects to attenuate the CNS damage in animal models of MS. This review summarized several common rodent models of MS and their association with oxidative stress. In addition, this review provides a comprehensive and concise overview of previously reported natural antioxidant products in inhibiting the progression of MS.
Collapse
|
4
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|
5
|
Stimmer L, Confais J, Jong A, Veth J, Fovet CM, Horellou P, Massonneau J, Perrin A, Miotello G, Avazeri E, Hart B, Deiva K, Le Grand R, Armengaud J, Bajramovic JJ, Contamin H, Serguera C. Recombinant myelin oligodendrocyte glycoprotein quality modifies evolution of experimental autoimmune encephalitis in macaques. J Transl Med 2021; 101:1513-1522. [PMID: 34376778 DOI: 10.1038/s41374-021-00646-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
Experimental autoimmune encephalitis (EAE) is a well-recognized model for the study of human acquired demyelinating diseases (ADD), a group of inflammatory disorders of the central nervous system (CNS) characterized by inflammation, myelin loss, and neurological impairment of variable severity. In rodents, EAE is typically induced by active immunization with a combination of myelin-derived antigen and a strong adjuvant as complete Freund's adjuvant (CFA), containing components of the mycobacterial wall, while myelin antigen alone or associated with other bacterial components, as lipopolysaccharides (LPS), often fails to induce EAE. In contrast to this, EAE can be efficiently induced in non-human primates by immunization with the recombinant human myelin oligodendrocyte glycoprotein (rhMOG), produced in Escherichia coli (E. coli), purified and formulated with incomplete Freund's adjuvant (IFA), which lacks bacterial elements. Here, we provide evidence indicating how trace amounts of bacterial contaminants within rhMOG may influence the course and severity of EAE in the cynomolgus macaque immunized with rhMOG/IFA. The residual amount of E. coli contaminants, as detected with mass spectrometry within rhMOG protein stocks, were found to significantly modulate the severity of clinical, radiological, and histologic hallmarks of EAE in macaques. Indeed, animals receiving the purest rhMOG showed milder disease severity, increased numbers of remissions, and reduced brain damage. Histologically, these animals presented a wider diversity of lesion types, including changes in normal-appearing white matter and prephagocytic lesions. Non-human primates EAE model with milder histologic lesions reflect more accurately ADD and permits to study of the pathogenesis of disease initiation and progression.
Collapse
Affiliation(s)
- Lev Stimmer
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France. .,INSERM, UMR 1127, Paris Brain & Spine Institute (ICM), Paris, France.
| | | | - Anke't Jong
- Alternatives Unit, Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands
| | - Claire-Maëlle Fovet
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Philippe Horellou
- Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Julie Massonneau
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Audrey Perrin
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Guylaine Miotello
- Département Médicaments et Technologie pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Emilie Avazeri
- Département Médicaments et Technologie pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Bert't Hart
- Department Anatomy and Neuroscience, Amsterdam University Medical Center (VUMC), Amsterdam, Netherlands and University of Groningen, Department Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Kumaran Deiva
- Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France.,AP-HP, Hôpitaux Universitaires Paris Saclay, Department of Pediatric Neurology, National Reference Center for Rare Inflammatory and Auto-immune Brain and Spinal Diseases, Paris, France
| | - Roger Le Grand
- Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Jean Armengaud
- Département Médicaments et Technologie pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands
| | | | - Ché Serguera
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,INSERM, UMR 1127, Paris Brain & Spine Institute (ICM), Paris, France.,Asfalia Biologics, Paris Brain & Spine Institute (ICM), Paris, France
| |
Collapse
|
6
|
Levy O, Rothhammer V, Mascanfroni I, Tong Z, Kuai R, De Biasio M, Wang Q, Majid T, Perrault C, Yeste A, Kenison JE, Safaee H, Musabeyezu J, Heinelt M, Milton Y, Kuang H, Lan H, Siders W, Multon MC, Rothblatt J, Massadeh S, Alaamery M, Alhasan AH, Quintana FJ, Karp JM. A cell-based drug delivery platform for treating central nervous system inflammation. J Mol Med (Berl) 2021; 99:663-671. [PMID: 33398468 DOI: 10.1007/s00109-020-02003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases. KEY MESSAGES: MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425. Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells. Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425. Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.
Collapse
Affiliation(s)
- Oren Levy
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Veit Rothhammer
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Mascanfroni
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhixiang Tong
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Rui Kuai
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael De Biasio
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Qingping Wang
- Department of Drug Metabolism and Pharmacokinetics, Sanofi R&D, Waltham, MA, USA
| | - Tahir Majid
- Global Research Program and Portfolio Management, Sanofi-Genzyme, Cambridge, MA, USA
| | - Christelle Perrault
- Sanofi R&D, In Vitro Pharmacology, Integrated Drug Discovery, Centre de Recherche Vitry-Alfortville, Vitry-Sur-Seine, France
| | - Ada Yeste
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Helia Safaee
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Juliet Musabeyezu
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Martina Heinelt
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Yuka Milton
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Heidi Kuang
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Haoyue Lan
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - William Siders
- Genzyme R&D, Neuroimmunology Research, Framingham, MA, USA
| | - Marie-Christine Multon
- Sanofi R&D, Translational Sciences, Centre de Recherche Vitry-Alfortville, Vitry-Sur-Seine, France
| | | | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ali H Alhasan
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA.
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Martinez B, Peplow PV. Protective effects of pharmacological therapies in animal models of multiple sclerosis: a review of studies 2014-2019. Neural Regen Res 2020; 15:1220-1234. [PMID: 31960801 PMCID: PMC7047782 DOI: 10.4103/1673-5374.272572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The disability caused by inflammatory demyelination clinically dominates the early stages of relapsing-remitting MS and is reversible. Once there is considerable loss of axons, MS patients enter a secondary progressive stage. Disease-modifying drugs currently in use for MS suppress the immune system and reduce relapse rates but are not effective in the progressive stage. Various animal models of MS (mostly mouse and rat) have been established and proved useful in studying the disease process and response to therapy. The experimental autoimmune encephalomyelitis animal studies reviewed here showed that a chronic progressive disease can be induced by immunization with appropriate amounts of myelin oligodendrocyte glycoprotein together with mycobacterium tuberculosis and pertussis toxin in Freund's adjuvant. The clinical manifestations of autoimmune encephalomyelitis disease were prevented or reduced by treatment with certain pharmacological agents given prior to, at, or after peak disease, and the agents had protective effects as shown by inhibiting demyelination and damage to neurons, axons and oligodendrocytes. In the cuprizone-induced toxicity animal studies, the pharmacological agents tested were able to promote remyelination and increase the number of oligodendrocytes when administered therapeutically or prophylactically. A monoclonal IgM antibody protected axons in the spinal cord and preserved motor function in animals inoculated with Theiler's murine encephalomyelitis virus. In all these studies the pharmacological agents were administered singly. A combination therapy may be more effective, especially using agents that target neuroinflammation and neurodegeneration, as they may exert synergistic actions.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Medicine, St. Georges University School of Medicine, True Blue, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Omura S, Sato F, Martinez NE, Park AM, Fujita M, Kennett NJ, Cvek U, Minagar A, Alexander JS, Tsunoda I. Bioinformatics Analyses Determined the Distinct CNS and Peripheral Surrogate Biomarker Candidates Between Two Mouse Models for Progressive Multiple Sclerosis. Front Immunol 2019; 10:516. [PMID: 30941144 PMCID: PMC6434997 DOI: 10.3389/fimmu.2019.00516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Previously, we have established two distinct progressive multiple sclerosis (MS) models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia with antibody deposition, but no T cell infiltration, in the central nervous system (CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study, we determined biomarkers contributing to the homogeneity and heterogeneity of two models. Using the CNS and spleen microarray transcriptome and cytokine data, we conducted computational analyses. We identified up-regulation of immune-related genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease progression in SJL/J mice, while the expression of both cytokines was detected only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS transcriptome data demonstrated that down-regulation of prolactin may reflect disease progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified 333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene (SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively, in human MS peripheral blood, using data mining.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Nikki J. Kennett
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Urška Cvek
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - J. Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
9
|
Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, Majid A. Animal models of multiple sclerosis: From rodents to zebrafish. Mult Scler 2018; 25:306-324. [PMID: 30319015 DOI: 10.1177/1352458518805246] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease of the central nervous system. Animal models of MS have been critical for elucidating MS pathological mechanisms and how they may be targeted for therapeutic intervention. Here we review the most commonly used animal models of MS. Although these animal models cannot fully replicate the MS disease course, a number of models have been developed to recapitulate certain stages. Experimental autoimmune encephalomyelitis (EAE) has been used to explore neuroinflammatory mechanisms and toxin-induced demyelinating models to further our understanding of oligodendrocyte biology, demyelination and remyelination. Zebrafish models of MS are emerging as a useful research tool to validate potential therapeutic candidates due to their rapid development and amenability to genetic manipulation.
Collapse
Affiliation(s)
- David John Burrows
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexander McGown
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Saurabh A Jain
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Milena De Felice
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Tennore M Ramesh
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Academic Department of Neuroscience, The Sheffield NIHR Translational Neuroscience Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK/Academic Department of Neuroscience, The Sheffield NIHR Translational Neuroscience Biomedical Research Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Xie L, Gong W, Chen J, Xie HW, Wang M, Yin XP, Wu W. The flavonoid kurarinone inhibits clinical progression of EAE through inhibiting Th1 and Th17 cell differentiation and proliferation. Int Immunopharmacol 2018; 62:227-236. [PMID: 30031314 DOI: 10.1016/j.intimp.2018.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/20/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The flavonoid kurarinone suppresses CD4+ T-cell-mediated chronic inflammatory dermatitis. However, kurarinone's effects upon autoimmune central nervous system (CNS) disease remain unknown. We investigated the potential therapeutic effects and molecular mechanism(s) of kurarinone in an experimental autoimmune encephalomyelitis (EAE) murine model of multiple sclerosis (MS). MATERIALS AND METHODS Myelin oligodendrocyte glycoprotein (MOG35-55) peptide-induced EAE was constructed in wild-type mice. Effects of kurarinone (100 mg/kg/day) upon clinical scores were assessed based on physical traits and signs. Spinal cord sections were extracted to assess inflammation, demyelination, and mRNA expression of key pro-inflammatory cytokines and chemokines. CNS-infiltrating mononuclear cells (MNCs) and splenocytes were harvested; flow cytometry was then applied to determine CD4+ and CD8+ T-cell percentages as well as Th1/Th2/Th17 subset percentages. Purified naïve CD4+ T-cells underwent in vitro T-cell polarization and proliferation to assess kurarinone's effects. RESULTS Prophylactic and treatment regimens of kurarinone significantly improved clinical scores in the MOG35-55 peptide-induced EAE model (P < 0.05). Kurarinone significantly lowered CNS inflammation and demyelination (61% and 83% decreases, respectively; P < 0.05), significantly decreased MNC infiltration into CNS tissue (42% decrease; P < 0.05), and significantly inhibited levels of several pro-inflammatory cytokines and chemokines (P < 0.05). Kurarinone significantly lowered CD4+ and CD8+ CNS T-cell counts (51% and 80% decreases, respectively; P < 0.05) and significantly reduced CNS Th1 and Th17 cell percentages (24% and 44% decreases, respectively; P < 0.05). Kurarinone significantly inhibited in vitro Th1, Th2, and Th17 cell differentiation and proliferation (P < 0.05). CONCLUSIONS Kurarinone significantly inhibits the clinical progression of EAE through the inhibition of Th1 and Th17 cell differentiation and proliferation. Kurarinone may show promise as an immunomodulatory therapeutic agent in treating MS.
Collapse
Affiliation(s)
- Liang Xie
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Gong
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Chen
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong-Wu Xie
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Man Wang
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Ping Yin
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Wu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
11
|
Pitarokoili K, Ambrosius B, Gold R. Lewis Rat Model of Experimental Autoimmune Encephalomyelitis. ACTA ACUST UNITED AC 2017; 81:9.61.1-9.61.20. [PMID: 29058769 DOI: 10.1002/cpns.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this unit, we describe in detail the most common methods used to break immunological tolerance for central myelin antigens and induce experimental autoimmune encephalomyelitis (EAE) in Lewis rats as an animal model of multiple sclerosis. The resulting disease course ranges from an acute monophasic disease to a chronic relapsing or chronic progressive course, which strongly resembles the human disease. These models enable the study of cellular and humoral autoimmunity against major antigenic epitopes of the myelin basic protein, myelin oligodendrocyte glycoprotein, or proteolipid protein. We provide an overview of common immunization protocols for induction of active and passive EAE, assessment and analysis of clinical score, preparation and purification of myelin basic protein, and derivation of neuroantigen-specific rat T cell lines. Finally, we describe the major clinical characteristics of these models. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kalliopi Pitarokoili
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bjoern Ambrosius
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Wan X, Pei W, Zhang Y, Zhang L, Shahzad KA, Xu T, Shen C. Inconsistence between number and function of autoreactive T cells in the course of experimental autoimmune encephalomyelitis. Immunol Invest 2017; 47:1-17. [DOI: 10.1080/08820139.2017.1367008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xin Wan
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Weiya Pei
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Yiming Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Tao Xu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Abstract
Experimental autoimmune encephalitis (EAE), the animal model of multiple sclerosis (MS), has provided significant insight into the mechanisms that initiate and drive autoimmunity. Several central nervous system proteins and peptides have been used to induce disease, in a number of different mouse strains, to model the diverse clinical presentations of MS. In this chapter, we detail the materials and methods used to induce active and adoptive EAE. We focus on disease induction in the SJL/J, C57BL/6, and BALB/c mouse strains, using peptides derived from proteolipid protein, myelin basic protein, and myelin oligodendrocyte glycoprotein. We also include a protocol for the isolation of leukocytes from the spinal cord and brain for flow cytometric analysis.
Collapse
Affiliation(s)
- Rachael L Terry
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | | | | |
Collapse
|
14
|
Sato F, Omura S, Jaffe S, Tsunoda I. Role of CD4+ T Cells in the Pathophysiology of Multiple Sclerosis. MULTIPLE SCLEROSIS 2016. [PMCID: PMC7150304 DOI: 10.1016/b978-0-12-800763-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Although the precise etiology of MS remains unclear, CD4+ T cells have been proposed to play not only effector but also regulatory roles in MS. CD4+ T cells can be divided into four subsets: pro-inflammatory helper T (Th) 1 and Th17 cells, anti-inflammatory Th2 cells and regulatory T cells (Tregs). The roles of CD4+ T cells in MS have been clarified by either “loss-of-function” or “gain-of-function” methods, which have been carried out mainly in autoimmune and viral models of MS: experimental autoimmune encephalomyelitis and Theiler's murine encephalomyelitis virus infection, respectively. Observations in MS patients were consistent with the mechanisms found in the MS models, that is, increased pro-inflammatory Th1 and Th17 activity is associated with disease exacerbation, while anti-inflammatory Th2 cells and Tregs appear to play a protective role.
Collapse
|
15
|
Dang PT, Bui Q, D'Souza CS, Orian JM. Modelling MS: Chronic-Relapsing EAE in the NOD/Lt Mouse Strain. Curr Top Behav Neurosci 2015; 26:143-177. [PMID: 26126592 DOI: 10.1007/7854_2015_378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Modelling complex disorders presents considerable challenges, and multiple sclerosis (MS) is no exception to this rule. The aetiology of MS is unknown, and its pathophysiology is poorly understood. Moreover, the last two decades have witnessed a dramatic revision of the long-held view of MS as an inflammatory demyelinating white matter disease. Instead, it is now regarded as a global central nervous system (CNS) disorder with a neurodegenerative component. Currently, there is no animal model recapitulating MS immunopathogenesis. Available models are based on autoimmune-mediated demyelination, denoted experimental autoimmune encephalomyelitis (EAE) or virally or chemically induced demyelination. Of these, the EAE model has been the most commonly used. It has been extensively improved since its first description and now exists as a number of variants, including genetically modified and humanized versions. Nonetheless, EAE is a distinct disease, and each variant models only certain facets of MS. Whilst the search for more refined MS models must continue, it is important to further explore where mechanisms underlying EAE provide proof-of-principle for those driving MS pathogenesis. EAE variants generated with the myelin component myelin oligodendrocyte glycoprotein (MOG) have emerged as the preferred ones, because in this particular variant disease is associated with both T- and B-cell effector mechanisms, together with demyelination. MOG-induced EAE in the non-obese diabetic (NOD) mouse strain exhibits a chronic-relapsing EAE clinical profile and high disease incidence. We describe the generation of this variant, its contribution to the understanding of MS immune and pathogenetic mechanisms and potential for evaluation of candidate therapies.
Collapse
Affiliation(s)
- Phuc T Dang
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Quyen Bui
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Claretta S D'Souza
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jacqueline M Orian
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
16
|
Martinez NE, Sato F, Kawai E, Omura S, Takahashi S, Yoh K, Tsunoda I. Th17-biased RORγt transgenic mice become susceptible to a viral model for multiple sclerosis. Brain Behav Immun 2015; 43:86-97. [PMID: 25046854 PMCID: PMC4258441 DOI: 10.1016/j.bbi.2014.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023] Open
Abstract
In a viral model for multiple sclerosis (MS), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), both immune-mediated tissue damage (immunopathology) and virus persistence have been shown to cause pathology. T helper (Th) 17 cells are a Th cell subset, whose differentiation requires the transcription factor retinoic acid-related orphan receptor (ROR) γt, secrete pro-inflammatory cytokines, including IL-17, and can antagonize Th1 cells. Although Th17 cells have been shown to play a pathogenic role in immune-mediated diseases or a protective role in bacterial and fungal infections, their role in viral infections is unclear. Using newly established Th17-biased RORγt Tg mice, we tested whether Th17 cells could play a pathogenic or protective role in TMEV-IDD by contributing to immunopathology and/or by modulating anti-viral Th1 immune responses. While TMEV-infected wild-type littermate C57BL/6 mice are resistant to TMEV-IDD, RORγt Tg mice developed inflammatory demyelinating lesions with virus persistence in the spinal cord. TMEV-infected RORγt Tg mice had higher levels of IL-17, lower levels of interferon-γ, and fewer CD8(+) T cells, without alteration in overall levels of anti-viral lymphoproliferative and antibody responses, compared with TMEV-infected wild-type mice. This suggests that a Th17-biased "gain-of-function" mutation could increase susceptibility to virus-mediated demyelinating diseases.
Collapse
Affiliation(s)
- Nicholas E Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Fumitaka Sato
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Eiichiro Kawai
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Seiichi Omura
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, International Institute for Integrative Sleep Medicine (WPI-IIIS), Life Science Center of Tsukuba Advanced Research Alliance (TARA), Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305, Japan
| | - Keigyou Yoh
- Department of Anatomy and Embryology, Faculty of Medicine, International Institute for Integrative Sleep Medicine (WPI-IIIS), Life Science Center of Tsukuba Advanced Research Alliance (TARA), Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305, Japan
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
17
|
Coates JR, Jeffery ND. Perspectives on Meningoencephalomyelitis of Unknown Origin. Vet Clin North Am Small Anim Pract 2014; 44:1157-85. [DOI: 10.1016/j.cvsm.2014.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Simmons SB, Liggitt D, Goverman JM. Cytokine-regulated neutrophil recruitment is required for brain but not spinal cord inflammation during experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:555-63. [PMID: 24913979 PMCID: PMC4123857 DOI: 10.4049/jimmunol.1400807] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease in which inflammatory lesions lead to tissue injury in the brain and/or spinal cord. The specific sites of tissue injury are strong determinants of clinical outcome in MS, but the pathways that determine whether damage occurs in the brain or spinal cord are not understood. Previous studies in mouse models of MS demonstrated that IFN-γ and IL-17 regulate lesion localization within the brain; however, the mechanisms by which these cytokines mediate their effects have not been identified. In the present study, we show that IL-17 promoted, but IFN-γ inhibited, ELR(+) chemokine-mediated neutrophil recruitment to the brain, and that neutrophil infiltration was required for parenchymal tissue damage in the brain. In contrast, IFN-γ promoted ELR(+) chemokine expression and neutrophil recruitment to the spinal cord. Surprisingly, tissue injury in the spinal cord did not exhibit the same dependence on neutrophil recruitment that was observed for the brain. Our results demonstrate that the brain and spinal cord exhibit distinct sensitivities to cellular mediators of tissue damage, and that IL-17 and IFN-γ differentially regulate recruitment of these mediators to each microenvironment. These findings suggest an approach toward tailoring therapies for patients with distinct patterns of neuroinflammation.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Flow Cytometry
- Humans
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelitis/genetics
- Myelitis/immunology
- Myelitis/metabolism
- Neutrophil Infiltration/immunology
- Peptide Fragments/immunology
- Rats
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Receptors, Interleukin-17/deficiency
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/immunology
- Receptors, Interleukin-8B/immunology
- Receptors, Interleukin-8B/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Sarah B Simmons
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - Joan M Goverman
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| |
Collapse
|
19
|
Khan N, Smith MT. Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 2014; 22:1-22. [PMID: 24234347 PMCID: PMC3933737 DOI: 10.1007/s10787-013-0195-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 01/05/2023]
Abstract
In patients with multiple sclerosis (MS), pain is a frequent and disabling symptom. The prevalence is in the range 29-86 % depending upon the assessment protocols utilised and the definition of pain applied. Neuropathic pain that develops secondary to demyelination, neuroinflammation and axonal damage in the central nervous system is the most distressing and difficult type of pain to treat. Although dysaesthetic extremity pain, L'hermitte's sign and trigeminal neuralgia are the most common neuropathic pain conditions reported by patients with MS, research directed at gaining insight into the complex mechanisms underpinning the pathobiology of MS-associated neuropathic pain is in its relative infancy. By contrast, there is a wealth of knowledge on the neurobiology of neuropathic pain induced by peripheral nerve injury. To date, the majority of research in the MS field has used rodent models of experimental autoimmune encephalomyelitis (EAE) as these models have many clinical and neuropathological features in common with those observed in patients with MS. However, it is only relatively recently that EAE-rodents have been utilised to investigate the mechanisms contributing to the development and maintenance of MS-associated central neuropathic pain. Importantly, EAE-rodent models exhibit pro-nociceptive behaviours predominantly in the lower extremities (tail and hindlimbs) as seen clinically in patients with MS-neuropathic pain. Herein, we review research to date on the pathophysiological mechanisms underpinning MS-associated neuropathic pain as well as the pharmacological management of this condition. We also identify knowledge gaps to guide future research in this important field.
Collapse
Affiliation(s)
- Nemat Khan
- Centre for Integrated Preclinical Drug Development and School of Pharmacy, The University of Queensland, Level 3, Steele Building, St. Lucia Campus, Brisbane, QLD 4072 Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development and School of Pharmacy, The University of Queensland, Level 3, Steele Building, St. Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
20
|
Fernando V, Omura S, Sato F, Kawai E, Martinez NE, Elliott SF, Yoh K, Takahashi S, Tsunoda I. Regulation of an autoimmune model for multiple sclerosis in Th2-biased GATA3 transgenic mice. Int J Mol Sci 2014; 15:1700-1718. [PMID: 24463292 PMCID: PMC3958817 DOI: 10.3390/ijms15021700] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 02/05/2023] Open
Abstract
T helper (Th)2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS). This is mainly based on "loss-of-function" studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE), using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses ("gain-of-function" approach) could alter EAE, the approach of novel GATA binding protein 3 (GATA3)-transgenic (tg) mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL)-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.
Collapse
Affiliation(s)
- Viromi Fernando
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Seiichi Omura
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Fumitaka Sato
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Eiichiro Kawai
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Sadie Faith Elliott
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Keigyou Yoh
- Department of Nephrology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, International Institute for Integrative Sleep Medicine (WPI-IIIS), Life Science Center, Tsukuba Research Alliance (TARA), Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
21
|
Takeuchi C, Yamagata K, Takemiya T. Variation in experimental autoimmune encephalomyelitis scores in a mouse model of multiple sclerosis. World J Neurol 2013; 3:56-61. [DOI: 10.5316/wjn.v3.i3.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/31/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a common demyelinating central nervous system disease associated with progressive physical impairment. To study the mechanism underlying disease pathogenesis and develop potential treatments, experimental autoimmune encephalomyelitis (EAE) is often used as an animal model. EAE can be induced in various species by introducing specific antigens, which ultimately result in motor dysfunction. Although the severity of the paralysis is indicated using the EAE score, there is no standard scoring system for EAE signs, and there is variability between research groups with regard to the exact EAE scoring system utilized. Here, we describe the criteria used for EAE scoring systems in various laboratories and suggest combining EAE score with another quantitative index to evaluate paralysis, such as the traveled distance, with the goal of facilitating the study of the mechanisms and treatment of MS.
Collapse
|
22
|
Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R, Dianzani U, Comi C. Immunity and inflammation in neurodegenerative diseases. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:89-107. [PMID: 23844334 PMCID: PMC3703122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
Immune reactions inside the central nervous system are finely regulated, thanks to the presence of several checkpoints that have the fundamental purpose to preserve this fragile tissue form harmful events. The current knowledge on the role of neuroinflammation and neuro-immune interactions in the fields of multiple sclerosis, Alzheimer's disease and Parkinson's disease is reviewed. Moreover, a focus on the potential role of both active and passive immunotherapy is provided. Finally, we propose a common perspective, which implies that, under pathological conditions, inflammation may exert both detrimental and protective functions, depending on local factors and the timing of immune activation and shutting-off systems.
Collapse
Affiliation(s)
- Giuseppe Cappellano
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Miryam Carecchio
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Thomas Fleetwood
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Luca Magistrelli
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Cristoforo Comi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| |
Collapse
|
23
|
Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology--a systematic review. BMC Vet Res 2013; 9:123. [PMID: 23800279 PMCID: PMC3693904 DOI: 10.1186/1746-6148-9-123] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/19/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Histopathology has initially been and is still used to diagnose infectious, degenerative or neoplastic diseases in humans or animals. In addition to qualitative diagnoses semiquantitative scoring of a lesion`s magnitude on an ordinal scale is a commonly demanded task for histopathologists. Multiparametric, semiquantitative scoring systems for mouse models histopathology are a common approach to handle these questions and to include histopathologic information in biomedical research. RESULTS Inclusion criteria for scoring systems were a first description of a multiparametric, semiquantiative scoring systems which comprehensibly describe an approach to evaluate morphologic lesion. A comprehensive literature search using these criteria identified 153 originally designed semiquantitative scoring systems for the analysis of morphologic changes in mouse models covering almost all organs systems and a wide variety of disease models. Of these, colitis, experimental autoimmune encephalitis, lupus nephritis and collagen induced osteoarthritis colitis were the disease models with the largest number of different scoring systems. Closer analysis of the identified scoring systems revealed a lack of a rationale for the selection of the scoring parameters or a correlation between scoring parameter value and the magnitude of the clinical symptoms in most studies. CONCLUSION Although a decision for a particular scoring system is clearly dependent on the respective scientific question this review gives an overview on currently available systems and may therefore allow for a better choice for the respective project.
Collapse
Affiliation(s)
- Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Martinez NE, Sato F, Omura S, Minagar A, Alexander JS, Tsunoda I. Immunopathological patterns from EAE and Theiler's virus infection: Is multiple sclerosis a homogenous 1-stage or heterogenous 2-stage disease? PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2013; 20:71-84. [PMID: 22633747 PMCID: PMC3430756 DOI: 10.1016/j.pathophys.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a disease which can presents in different clinical courses. The most common form of MS is the relapsing-remitting (RR) course, which in many cases evolves into secondary progressive (SP) disease. Autoimmune models such as experimental autoimmune encephalomyelitis (EAE) have been developed to represent the various clinical forms of MS. These models along with clinico-pathological evidence obtained from MS patients have allowed us to propose '1-stage' and '2-stage' disease theories to explain the transition in the clinical course of MS from RR to SP. Relapses in MS are associated with pro-inflammatory T helper (Th) 1/Th17 immune responses, while remissions are associated with anti-inflammatory Th2/regulatory T (Treg) immune responses. Based on the '1-stage disease' theory, the transition from RR to SP disease occurs when the inflammatory immune response overwhelms the anti-inflammatory immune response. The '2-stage disease' theory proposes that the transition from RR to SP-MS occurs when the Th2 response or some other responses overwhelm the inflammatory response resulting in the sustained production of anti-myelin antibodies, which cause continuing demyelination, neurodegeneration, and axonal loss. The Theiler's virus model is also a 2-stage disease, where axonal degeneration precedes demyelination during the first stage, followed by inflammatory demyelination during the second stage.
Collapse
Affiliation(s)
- Nicholas E Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, LSU Health, School of Medicine, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
25
|
Mattner F, Staykova M, Berghofer P, Wong HJ, Fordham S, Callaghan P, Jackson T, Pham T, Gregoire MC, Zahra D, Rahardjo G, Linares D, Katsifis A. Central nervous system expression and PET imaging of the translocator protein in relapsing-remitting experimental autoimmune encephalomyelitis. J Nucl Med 2013; 54:291-8. [PMID: 23321458 DOI: 10.2967/jnumed.112.108894] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Glial neuroinflammation is associated with the development and progression of multiple sclerosis. PET imaging offers a unique opportunity to evaluate neuroinflammatory processes longitudinally in a noninvasive and clinically translational manner. (18)F-PBR111 is a newly developed PET radiopharmaceutical with high affinity and selectivity for the translocator protein (TSPO), expressed on activated glia. This study aimed to investigate neuroinflammation at different phases of relapsing-remitting (RR) experimental autoimmune encephalomyelitis (EAE) in the brains of SJL/J mice by postmortem histologic analysis and in vivo by PET imaging with (18)F-PBR111. METHODS RR EAE was induced by immunization with PLP(139-151) peptide in complete Freund's adjuvant. Naive female SJL/J mice and mice immunized with saline-complete Freund's adjuvant were used as controls. The biodistribution of (18)F-PBR111 was measured in 13 areas of the central nervous system and compared with PET imaging results during different phases of RR EAE. The extents of TSPO expression and glial activation were assessed with immunohistochemistry, immunofluorescence, and a real-time polymerase chain reaction. RESULTS There was significant TSPO expression in all of the central nervous system areas studied at the peak of the first clinical episode and, importantly, at the preclinical stage. In contrast, only a few TSPO-positive cells were observed at the second episode. At the third episode, there was again an increase in TSPO expression. TSPO expression was associated with microglial cells or macrophages without obvious astrocyte labeling. The dynamics of (18)F-PBR111 uptake in the brain, as measured by in vivo PET imaging and biodistribution, followed the pattern of TSPO expression during RR EAE. CONCLUSION PET imaging with the TSPO ligand (18)F-PBR111 clearly reflected the dynamics of microglial activation in the SJL/J mouse model of RR EAE. The results are the first to highlight the discrepancy between the clinical symptoms of EAE and TSPO expression in the brain, as measured by PET imaging at the peaks of various EAE episodes. The results suggest a significant role for PET imaging investigations of neuroinflammation in multiple sclerosis and allow for in vivo follow-up of antiinflammatory treatment strategies.
Collapse
Affiliation(s)
- Filomena Mattner
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Libbey JE, Tsunoda I, Fujinami RS. Possible role of interleukin-17 in a prime/challenge model of multiple sclerosis. J Neurovirol 2012; 18:471-478. [PMID: 22991336 PMCID: PMC3508306 DOI: 10.1007/s13365-012-0125-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/02/2012] [Accepted: 08/08/2012] [Indexed: 02/05/2023]
Abstract
No one single pathogen has been identified as the causative agent of multiple sclerosis (MS). Alternately, the likelihood of an autoimmune event may be nonspecifically enhanced by different infectious agents. In a novel animal model of MS, SJL/J mice primed through infection with a recombinant vaccinia virus (VV) encoding myelin proteolipid protein (PLP) (VV(PLP)) were susceptible to a central nervous system (CNS) inflammatory disease following administration of a nonspecific immunostimulant [complete Freund's adjuvant (CFA) plus Bordetella pertussis (BP)]. Mononuclear cells isolated from the brains, but not the spleens, of VV(PLP)-primed CFA/BP challenged mice produced interleukin (IL)-17 and interferon-γ and transferred a CNS inflammatory disease to naïve SJL/J mice. Administration of curdlan, a T helper 17 cell inducer, unexpectedly resulted in less severe clinical and histological signs of disease, compared to CFA/BP challenged mice, despite the induction of IL-17 in the periphery. Further examination of the VV(PLP)-prime CFA/BP challenge model may suggest new mechanisms for how different pathogens associated with MS can protect or enhance disease.
Collapse
Affiliation(s)
- Jane E. Libbey
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center 1501 Kings Highway Shreveport, LA 71130
- Center for Molecular & Tumor Virology Louisiana State University Health Sciences Center 1501 Kings Highway Shreveport, LA 71130
| | - Robert S. Fujinami
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| |
Collapse
|
27
|
An experimental electro-acupuncture study in treatment of the rat demyelinated spinal cord injury induced by ethidium bromide. Neurosci Res 2011; 70:294-304. [PMID: 21470565 DOI: 10.1016/j.neures.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/26/2011] [Accepted: 03/28/2011] [Indexed: 01/19/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are one of the potential treating tools for multiple sclerosis (MS). Therefore, the cell number and differentiation of OPCs in a demyelinated spinal cord are crucial for improvement of reparative process. In the present study, we investigated whether "Governor Vessel (GV)" electro-acupuncture (EA) could efficiently promote increase in cell number and differentiation of OPCs into oligodendrocytes, remyelination and functional recovery in the demyelinated spinal cord. The spinal cord of adult Sprague-Dawley rats was microinjected with ethidium bromide (EB) at T10, to establish a demyelinated model. Six groups of animals were performed for the experiment. After 15 days EA treatment, neurotrophin-3 (NT-3) level and number of NG2-positive OPCs were significantly increased. Compared with the sham group, more NG2-positive OPCs were distributed between neurofilament (NF)-positive nerve fibres or closely associated with them in the lesion site and nearby tissue. In rats given longer EA treatment for 30 days, the number of adenomatous polyposis coli (APC)-positive oligodendrocytes was increased. Concomitantly, the number of newly formed myelins was increased. This was coupled by increase in endogenous oligodendrocyte involved in myelin formation. Furthermore, behavioural test and spinal cord evoked potential detection demonstrated a significant functional recovery in the EA+EB day 30 group. Our results suggest EA treatment can promote NT-3 expression, increase the cell number and differentiation of endogenous OPCs, and remyelination in the demyelinated spinal cord as well as the functional improvement of demyelinated spinal cord.
Collapse
|
28
|
The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: from rat to human. Clin Chim Acta 2011; 412:812-22. [PMID: 21333641 DOI: 10.1016/j.cca.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MScl) is defined by central nervous system (CNS) inflammation, demyelination and axonal damage. Some of the disease mechanisms are known but the cause of this complex disorder stays an enigma. Experimental autoimmune encephalomyelitis (EAE) is an animal model mimicking many aspects of MScl. This review aims to provide an overview over proteomic biomarker studies in the EAE model emphasizing the translational aspects with respect to MScl in humans.
Collapse
|
29
|
Sato F, Tanaka H, Hasanovic F, Tsunoda I. Theiler's virus infection: Pathophysiology of demyelination and neurodegeneration. PATHOPHYSIOLOGY 2011; 18:31-41. [PMID: 20537875 PMCID: PMC2937201 DOI: 10.1016/j.pathophys.2010.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/28/2010] [Accepted: 04/08/2010] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) has been suggested to be an autoimmune demyelinating disease of the central nervous system (CNS), whose primary target is either myelin itself, or myelin-forming cells, the oligodendrocytes. Although axonal damage occurs in MS, it is regarded as a secondary event to the myelin damage. Here, the lesion develops from the myelin (outside) to the axons (inside) "Outside-In model". The Outside-In model has been supported by an autoimmune model for MS, experimental autoimmune (allergic) encephalomyelitis (EAE). However, recently, (1) EAE-like disease has also been shown to be induced by immune responses against axons, and (2) immune responses against axons and neurons as well as neurodegeneration independent of inflammatory demyelination have been reported in MS, which can not be explained by the Outside-In model. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a viral model for MS. In TMEV infection, axonal injury precedes demyelination, where the lesion develops from the axons (inside) to the myelin (outside) "Inside-Out model". The initial axonal damage could result in the release of neuroantigens, inducing autoimmune responses against myelin antigens, which potentially attack the myelin from outside the nerve fiber. Thus, the Inside-Out and Outside-In models can make a "vicious" immunological cycle or initiate an immune cascade.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center School of Medicine in Shreveport Shreveport, LA 71103, USA
| | - Hiroki Tanaka
- Feist-Weiller Cancer Center Louisiana State University Health Sciences Center School of Medicine in Shreveport Shreveport, LA 71103, USA
| | - Faris Hasanovic
- ARUP Laboratories Molecular Sequencing-ID Salt Lake City, UT 84108, USA
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center School of Medicine in Shreveport Shreveport, LA 71103, USA
| |
Collapse
|
30
|
Libbey JE, Fujinami RS. Experimental autoimmune encephalomyelitis as a testing paradigm for adjuvants and vaccines. Vaccine 2010; 29:3356-62. [PMID: 20850537 DOI: 10.1016/j.vaccine.2010.08.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/13/2010] [Accepted: 08/31/2010] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an experimental model for multiple sclerosis. EAE can be induced by inoculation with central nervous system (CNS) proteins or peptides emulsified in complete Freund's adjuvant. Protection from EAE, enhancement of EAE or subclinical priming for EAE can occur as a result of either live viral infection or DNA immunization with molecular mimics of CNS proteins or peptides. Here we review the published data describing modulation of EAE through administration of various CNS proteins/peptides introduced via live virus or plasmid DNA and modulation of EAE through choice of adjuvant (immunostimulating agents).
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, United States
| | | |
Collapse
|
31
|
Tsunoda I, Fujinami RS. Neuropathogenesis of Theiler's murine encephalomyelitis virus infection, an animal model for multiple sclerosis. J Neuroimmune Pharmacol 2010; 5:355-369. [PMID: 19894121 PMCID: PMC2888670 DOI: 10.1007/s11481-009-9179-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/04/2009] [Indexed: 02/05/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection of mice is an experimental model for multiple sclerosis (MS). TMEV induces a biphasic disease in susceptible mouse strains. During the acute phase, 1 week after infection, TMEV causes polioencephalomyelitis characterized by infection and apoptosis of neurons in the gray matter of the brain. During the chronic phase, about 1 month after infection, virus infects glial cells and macrophages, and induces inflammatory demyelination with oligodendrocyte apoptosis and axonal degeneration in the white matter of the spinal cord. Although antibody, CD4(+), and CD8(+) T cell responses against TMEV capsid proteins play important roles in neuropathogenesis, infectious virus with persistence is necessary to induce demyelination; in general, adoptive transfer of antibody or T cells alone did not induce central nervous system (CNS) disease. The TMEV model can be useful for testing new therapeutic strategies specifically as a viral model for MS. Therapies targeting adhesion molecules, axonal degeneration, and immunosuppression can be beneficial for pure autoimmune CNS demyelinating diseases, such as experimental autoimmune encephalomyelitis, but could be detrimental in virus-induced demyelinating diseases, such as progressive multifocal leukoencephalopathy.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, USA
| | - Robert S. Fujinami
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, USA
| |
Collapse
|
32
|
Schreiner B, Heppner FL, Becher B. Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 2009; 31:479-95. [PMID: 19802608 DOI: 10.1007/s00281-009-0181-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/13/2009] [Indexed: 12/18/2022]
Abstract
Inflammatory demyelinating disease of the central nervous system is one of the most frequent causes of neurological disability in young adults. While in situ analysis and in vitro models do shed some light onto the processes of tissue damage and cellular interactions, the development of neuroinflammation and demyelination is a far too complex process to be adequately modeled by simple test tube systems. Thus, animal models using primarily genetically modified mice have been proven to be of paramount importance. In this chapter, we discuss recent advances in modeling brain diseases focusing on murine models and report on new tools to study the pathogenesis of complex diseases such as multiple sclerosis.
Collapse
|
33
|
Emerson MR, Gallagher RJ, Marquis JG, LeVine SM. Enhancing the ability of experimental autoimmune encephalomyelitis to serve as a more rigorous model of multiple sclerosis through refinement of the experimental design. Comp Med 2009; 59:112-128. [PMID: 19389303 PMCID: PMC2703151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/07/2008] [Accepted: 09/16/2008] [Indexed: 05/27/2023]
Abstract
Advancing the understanding of the mechanisms involved in the pathogenesis of multiple sclerosis (MS) likely will lead to new and better therapeutics. Although important information about the disease process has been obtained from research on pathologic specimens, peripheral blood lymphocytes and MRI studies, the elucidation of detailed mechanisms has progressed largely through investigations using animal models of MS. In addition, animal models serve as an important tool for the testing of putative interventions. The most commonly studied model of MS is experimental autoimmune encephalomyelitis (EAE). This model can be induced in a variety of species and by various means, but there has been concern that the model may not accurately reflect the disease process, and more importantly, it may give rise to erroneous findings when it is used to test possible therapeutics. Several reasons have been given to explain the shortcomings of this model as a useful testing platform, but one idea provides a framework for improving the value of this model, and thus, it deserves careful consideration. In particular, the idea asserts that EAE studies are inadequately designed to enable appropriate evaluation of putative therapeutics. Here we discuss problem areas within EAE study designs and provide suggestions for their improvement. This paper is principally directed at investigators new to the field of EAE, although experienced investigators may find useful suggestions herein.
Collapse
Key Words
- eae, experimental autoimmune encephalomyelitis
- mbp, myelin basic protein
- mog, myelin oligodendrocyte glycoprotein
- mrs, magnetic resonance spectroscopy
- ms, multiple sclerosis
- plp, proteolipid protein
- pml, progressive multifocal leukoencephalopathy
- tgf, transforming growth factor
- th, helper t (cells)
- tmev, theiler murine encephalomyelitis virus
- treg, regulatory t (cells)
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Multiple Sclerosis/therapy
- Pharmaceutical Preparations/administration & dosage
- Random Allocation
- Reproducibility of Results
- Research Design
- Severity of Illness Index
Collapse
Affiliation(s)
- Mitchell R Emerson
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, Arizona
| | - Ryan J Gallagher
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janet G Marquis
- Research Design and Analysis Unit, Life Span Institute, University of Kansas, Lawrence, Kansas
| | - Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
34
|
Abstract
The etiology of multiple sclerosis (MS) is unknown but it manifests as a chronic inflammatory demyelinating disease in the central nervous system (CNS). During chronic CNS inflammation, nicotinamide adenine dinucleotide (NAD) concentrations are altered by (T helper) Th1-derived cytokines through the coordinated induction of both indoleamine 2,3-dioxygenase (IDO) and the ADP cyclase CD38 in pathogenic microglia and lymphocytes. While IDO activation may keep auto-reactive T cells in check, hyper-activation of IDO can leave neuronal CNS cells starving for extracellular sources of NAD. Existing data indicate that glia may serve critical functions as an essential supplier of NAD to neurons during times of stress. Administration of pharmacological doses of non-tryptophan NAD precursors ameliorates pathogenesis in animal models of MS. Animal models of MS involve artificially stimulated autoimmune attack of myelin by experimental autoimmune encephalomyelitis (EAE) or by viral-mediated demyelination using Thieler's murine encephalomyelitis virus (TMEV). The Wld(S) mouse dramatically resists razor axotomy mediated axonal degeneration. This resistance is due to increased efficiency of NAD biosynthesis that delays stress-induced depletion of axonal NAD and ATP. Although the Wld(S) genotype protects against EAE pathogenesis, TMEV-mediated pathogenesis is exacerbated. In this review, we contrast the role of NAD in EAE versus TMEV demyelinating pathogenesis to increase our understanding of the pharmacotherapeutic potential of NAD signal transduction pathways. We speculate on the importance of increased SIRT1 activity in both PARP-1 inhibition and the potentially integral role of neuronal CD200 interactions through glial CD200R with induction of IDO in MS pathogenesis. A comprehensive review of immunomodulatory control of NAD biosynthesis and degradation in MS pathogenesis is presented. Distinctive pharmacological approaches designed for NAD-complementation or targeting NAD-centric proteins (SIRT1, SIRT2, PARP-1, GPR109a, and CD38) are outlined towards determining which approach may work best in the context of clinical application.
Collapse
Affiliation(s)
- W Todd Penberthy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | |
Collapse
|
35
|
Tsunoda I, Tanaka T, Taniguchi M, Fujinami RS. Contrasting roles for Valpha14+ natural killer T cells in a viral model for multiple sclerosis. J Neurovirol 2009; 15:90-98. [PMID: 19115130 PMCID: PMC2671644 DOI: 10.1080/13550280802400684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most natural killer (NK) T cells express an invariant Valpha14 T-cell receptor. To explore the contribution of NKT cells in an animal model for multiple sclerosis, Theiler's murine encephalomyelitis virus (TMEV) infection, TMEV-infected mice were treated with Valpha14 antibody. Treatment during the early stage of infection delayed the onset of demyelinating disease with higher interleukin-4 production, whereas administration during the late stage or weekly resulted in more severe demyelination with enhanced virus persistence. The effect of in vivo depletion of NKT cells differed depending on the stage of infection, suggesting contrasting roles for NKT cells over the disease course.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA.
| | | | | | | |
Collapse
|
36
|
Peterson LK, Masaki T, Wheelwright SR, Tsunoda I, Fujinami RS. Cross-reactive myelin antibody induces renal pathology. Autoimmunity 2008; 41:526-536. [PMID: 18608179 PMCID: PMC3039869 DOI: 10.1080/08916930802128680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune model for multiple sclerosis (MS). Previously, we reported renal immunoglobulin (Ig) deposition in mice with myelin oligodendrocyte glycoprotein (MOG(92-106))-induced progressive EAE and naive mice injected with MOG(92-106) hybridoma cells producing antibody that cross-reacts with various autoantigens including double-stranded DNA. To assess whether MOG(92-106) antibodies actually induce kidney changes, the extent of renal Ig deposition and changes in glomerular histology and filtration were investigated. Mice with progressive EAE exhibited Ig deposition, glomerular hypercellularity and proteinuria indicating kidney dysfunction. MOG(92-106) hybridoma cell injected mice also had Ig deposition and proteinuria. Therefore, sensitization with MOG(92-106) and transfer of MOG(92-106) antibodies can induce both central nervous system and renal pathology. The renal involvement reported in MS is believed to occur as a side effect of nephrotoxic drugs or neurogenic bladder. Our results demonstrate that an autoimmune response against myelin could induce pathologic changes in the kidney and may help explain renal changes reported in patients with progressive MS.
Collapse
Affiliation(s)
- Lisa K. Peterson
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| | - Takahisa Masaki
- Department of Internal Medicine University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| | - Steven R. Wheelwright
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| | - Ikuo Tsunoda
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| | - Robert S. Fujinami
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| |
Collapse
|
37
|
Ortler S, Leder C, Mittelbronn M, Zozulya AL, Knolle PA, Chen L, Kroner A, Wiendl H. B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol 2008; 38:1734-44. [PMID: 18421793 DOI: 10.1002/eji.200738071] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The co-inhibitory B7-homologue 1 (B7-H1/PD-L1) influences adaptive immune responses and has been proposed to contribute to the mechanisms maintaining peripheral tolerance and limiting inflammatory damage in parenchymal organs. To understand the B7-H1/PD1 pathway in CNS inflammation, we analyzed adaptive immune responses in myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced EAE and assessed the expression of B7-H1 in human CNS tissue. B7-H1(-/-) mice exhibited an accelerated disease onset and significantly exacerbated EAE severity, although absence of B7-H1 had no influence on MOG antibody production. Peripheral MOG-specific IFN-gamma/IL-17 T cell responses occurred earlier and enhanced in B7-H1(-/-) mice, but ceased more rapidly. In the CNS, however, significantly higher numbers of activated neuroantigen-specific T cells persisted during all stages of EAE. Experiments showing a direct inhibitory role of APC-derived B7-H1 on the activation of MOG-specific effector cells support the assumption that parenchymal B7-H1 is pivotal for delineating T cell fate in the target organ. Compatible with this concept, our data investigating human brain tissue specimens show a strong up-regulation of B7-H1 in lesions of multiple sclerosis. Our findings demonstrate the critical importance of B7-H1 as an immune-inhibitory molecule capable of down-regulating T cell responses thus contributing to the confinement of immunopathological damage.
Collapse
Affiliation(s)
- Sonja Ortler
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Hybridoma cell lines producing natural autoantibodies (NAA), generated from A.SW mice with progressive experimental autoimmune encephalomyelitis (P-EAE), have been shown to cause demyelination and renal pathology when injected into naive mice. To investigate the relative contribution of these antibodies to disease pathogenesis, B-1 cells, the major producers of NAA, were depleted by hypotonic shock. Depletion of B-1 cells during the effector phase of EAE significantly decreased the severity of demyelination and overall pathology in the brain. There was also a decreased incidence of P-EAE and a decrease in clinical score. Depletion during the induction phase of the disease resulted in an increase in the incidence of P-EAE and in the clinical score. Overall, B-1 cells were found to modulate EAE pathogenesis.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
39
|
Peterson LK, Tsunoda I, Libbey JE, Fujinami RS. Role of B:T cell ratio in suppression of clinical signs: a model for silent MS. Exp Mol Pathol 2008; 85:28-39. [PMID: 18486939 PMCID: PMC2614211 DOI: 10.1016/j.yexmp.2008.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 03/04/2008] [Indexed: 02/05/2023]
Abstract
B10.S mice have been considered resistant to experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, sensitization with a myelin oligodendrocyte glycoprotein (MOG) peptide, MOG(92-106), induced clinical signs in 30% of mice and central nervous system (CNS) pathology in 93% of mice. Symptomatic mice had more demyelination, inflammation, perivascular cuffing and axonal damage in the CNS compared to asymptomatic mice, but no strong correlations between CNS pathology and clinical score were found. Interestingly, the ratio of B cells to T cells in cellular infiltrates correlated with clinical score. This suggests that the balance between B and T cells contributes to expression of clinical signs.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
40
|
Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 2008; 14:337-42. [PMID: 18278054 DOI: 10.1038/nm1715] [Citation(s) in RCA: 486] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/07/2008] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis is an inflammatory, demyelinating disease of the central nervous system (CNS) characterized by a wide range of clinical signs. The location of lesions in the CNS is variable and is a crucial determinant of clinical outcome. Multiple sclerosis is believed to be mediated by myelin-specific T cells, but the mechanisms that determine where T cells initiate inflammation are unknown. Differences in lesion distribution have been linked to the HLA complex, suggesting that T cell specificity influences sites of inflammation. We demonstrate that T cells that are specific for different myelin epitopes generate populations characterized by different T helper type 17 (T(H)17) to T helper type 1 (T(H)1) ratios depending on the functional avidity of interactions between TCR and peptide-MHC complexes. Notably, the T(H)17:T(H)1 ratio of infiltrating T cells determines where inflammation occurs in the CNS. Myelin-specific T cells infiltrate the meninges throughout the CNS, regardless of the T(H)17:T(H)1 ratio. However, T cell infiltration and inflammation in the brain parenchyma occurs only when T(H)17 cells outnumber T(H)1 cells and trigger a disproportionate increase in interleukin-17 expression in the brain. In contrast, T cells showing a wide range of T(H)17:T(H)1 ratios induce spinal cord parenchymal inflammation. These findings reveal critical differences in the regulation of inflammation in the brain and spinal cord.
Collapse
|
41
|
Abstract
Experimental allergic encephalomyelitis (EAE) is a widely used animal model of the human demyelinating disease multiple sclerosis. EAE is initiated by immunization with myelin antigens in adjuvant or by adoptive transfer of myelin-specific T cells, resulting in inflammatory infiltrates and demyelination in the central nervous system. Induction of EAE in rodents typically results in ascending flaccid paralysis with inflammation primarily targeting the spinal cord. This protocol describes passive induction of EAE by adoptive transfer of T cells isolated from mice primed with myelin antigens into naïve mice. The advantages of using this method versus active induction of EAE are discussed.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Department of Immunology, University of Washington, Box 357650, 1959 NE Pacific Street, Seattle, Washington 98195-7650, USA
| | | |
Collapse
|
42
|
Abstract
This protocol details a method to actively induce experimental allergic encephalomyelitis (EAE), a widely used animal model for studies of multiple sclerosis. EAE is induced by stimulating T-cell-mediated immunity to myelin antigens. Active induction of EAE is accomplished by immunization with myelin antigens emulsified in adjuvant. This protocol focuses on induction of EAE in mice; however, the same principles apply to EAE induction in other species. EAE in rodents is manifested typically as ascending flaccid paralysis with inflammation targeting the spinal cord. However, more diverse clinical signs can occur in certain strain/antigen combinations in rodents and in other species, reflecting increased inflammation in the brain.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Department of Immunology, University of Washington, Box 357650, 1959 NE Pacific Street, Seattle, Washington 98195-7650, USA
| | | |
Collapse
|
43
|
Tsunoda I, Libbey JE, Fujinami RS. TGF-beta1 suppresses T cell infiltration and VP2 puff B mutation enhances apoptosis in acute polioencephalitis induced by Theiler's virus. J Neuroimmunol 2007; 190:80-89. [PMID: 17804084 PMCID: PMC2128758 DOI: 10.1016/j.jneuroim.2007.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 02/08/2023]
Abstract
GDVII and DA strains of Theiler's murine encephalomyelitis virus (TMEV) differ in VP2 puff B. One week after GDVII virus infection, SJL/J mice had large numbers of TUNEL+ apoptotic cells with a relative lack of T cell infiltration in the brain. DA viruses with mutation in puff B induced higher levels of apoptosis than wild-type DA virus, but levels of inflammation in brains were similar between DA and DA virus mutants. The difference in inflammation among TMEVs could be due to TGF-beta1 expression that was seen only in GDVII virus infection and negatively correlated with CD3+ T cell infiltration.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, Utah 84132
| | - Jane E. Libbey
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, Utah 84132
| | - Robert S. Fujinami
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, Utah 84132
| |
Collapse
|
44
|
Tsunoda I, Libbey JE, Fujinami RS. Sequential polymicrobial infections lead to CNS inflammatory disease: possible involvement of bystander activation in heterologous immunity. J Neuroimmunol 2007; 188:22-33. [PMID: 17604850 PMCID: PMC1987327 DOI: 10.1016/j.jneuroim.2007.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 02/05/2023]
Abstract
VV(PLP) is a recombinant vaccinia virus (VV) encoding myelin proteolipid protein (PLP) that has been used to investigate molecular mimicry and autoimmunity. Since virus infections can cause bystander activation, mice were first infected with VV(PLP), and later challenged with wild-type VV, lymphocytic choriomeningitis virus (LCMV), or murine cytomegalovirus (MCMV). Among the VV(PLP)-primed mice, only MCMV challenge induced significant Ki-67(+), CD3(+)T cell infiltration into the central nervous system (CNS) with a mild PLP antibody response. While MCMV alone caused no CNS disease, control VV-infected mice followed with MCMV developed mild CNS inflammation. Thus, heterologous virus infections can induce CNS pathology.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Neurology, University of Utah School of Medicine, 3R330 SOM, Salt Lake City, Utah 84132-2305, United States
| | | | | |
Collapse
|
45
|
Peiris M, Monteith GR, Roberts-Thomson SJ, Cabot PJ. A model of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice for the characterisation of intervention therapies. J Neurosci Methods 2007; 163:245-54. [PMID: 17477973 DOI: 10.1016/j.jneumeth.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) and its different forms are studied in the animal model experimental autoimmune encephalomyelitis (EAE). Relapsing-remitting MS, the most common form of the disease can be induced in mice where clinical symptoms fluctuate in severity over time. However, the animal model does not experience periods of recovery where clinical signs are absent, unlike the human disease. We have developed a novel model of relapsing-remitting EAE in C57BL/6 mice immunised with myelin oligodendrocyte glycoprotein (MOG) peptide and Quil A as adjuvant. These animals have relapses that are followed by periods of recovery, during which time the animals do not exhibit illness. Furthermore, administration of the PPARgamma agonist pioglitazone prior to a predicted relapse prevents the expected development of symptoms in a dose-dependent fashion. Immune cell infiltration into white matter of the CNS and decreased production of inflammatory cytokine IFN-gamma in treated animals were also observed. Our model will be a valuable tool in assessing intervention therapies for RR-MS sufferers.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/physiopathology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Disability Evaluation
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Hypoglycemic Agents/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Associated Glycoprotein/pharmacology
- Myelin-Oligodendrocyte Glycoprotein
- PPAR gamma/antagonists & inhibitors
- PPAR gamma/immunology
- Pioglitazone
- Quillaja Saponins
- Saponins/immunology
- Saponins/pharmacology
- Secondary Prevention
- Thiazolidinediones/pharmacology
- Treatment Outcome
- Vaccination/methods
Collapse
Affiliation(s)
- Madusha Peiris
- The School of Pharmacy, Steele Building, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
46
|
Peterson LK, Tsunoda I, Masaki T, Fujinami RS. Polyreactive myelin oligodendrocyte glycoprotein antibodies: Implications for systemic autoimmunity in progressive experimental autoimmune encephalomyelitis. J Neuroimmunol 2007; 183:69-80. [PMID: 17197039 PMCID: PMC1829444 DOI: 10.1016/j.jneuroim.2006.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 02/08/2023]
Abstract
Two myelin oligodendrocyte glycoprotein (MOG92-106) monoclonal antibodies (mAbs) were produced from an A.SW mouse with progressive experimental autoimmune encephalomyelitis. Polyreactivity/specificity of the mAbs was demonstrated by ELISA. Functionality and a potential role in pathogenesis of systemic autoimmunity were demonstrated in vitro in a lymphocytotoxicity assay and in vivo upon injection into naïve mice. Injection of MOG mAb producing hybridomas into naïve mice resulted in immunoglobulin deposition in kidneys and liver. This model will be useful in determining whether transitional forms between CNS (organ)-specific and systemic autoimmune diseases exist, and whether progressive multiple sclerosis has features of a systemic autoimmune disease.
Collapse
Affiliation(s)
- Lisa K. Peterson
- Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, Utah 84132-2305
| | - Ikuo Tsunoda
- Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, Utah 84132-2305
| | - Takahisa Masaki
- Department of Internal Medicine, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, Utah 84132-2305
| | - Robert S. Fujinami
- Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, Utah 84132-2305
| |
Collapse
|
47
|
Tsunoda I, Terry EJ, Marble BJ, Lazarides E, Woods C, Fujinami RS. Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade. Brain Pathol 2007; 17:45-55. [PMID: 17493037 PMCID: PMC8095550 DOI: 10.1111/j.1750-3639.2006.00042.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Adhesion molecules play important roles in cell-cell and cell-extracellular matrix (ECM) interactions in inflammation. Blocking the interaction between inflammatory cells and vascular endothelia can prevent cell entry into tissues and harmful inflammatory responses, that is, autoimmunity, but could also limit immunosurveillance by anti-viral T cells in sites of infection or latency. Development of progressive multifocal leukoencephalopathy in patients treated with antibody against very late antigen (VLA)-4 prompted us to explore an alternative therapeutic approach. We used an antibody against the integrin alpha2, VLA-2, that interacts with ECM, not vascular endothelium. SJL/J mice were sensitized with myelin proteolipid protein (PLP)(139-151) peptide to induce experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Treatment of mice with VLA-2 antibody suppressed clinical signs and CNS inflammation of EAE, when antibody was given immediately after disease onset. In contrast, VLA-4 or VLA-2 antibody treatment of mice during the priming or remission phase of EAE had minor effects on the disease's clinical course. No differences were found in lymphoproliferative responses to PLP(139-151) among treatment groups. Data suggest that blocking cell-ECM interactions can be an alternative therapy for MS.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emily Jane Terry
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Benjamin J. Marble
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Elias Lazarides
- (Formerly of Targeted Molecules Corporation) Chromos Molecular Systems, Burnaby, British Columbia, Canada
| | - Catherine Woods
- (Formerly of Targeted Molecules Corporation) Chromos Molecular Systems, Burnaby, British Columbia, Canada
| | - Robert S. Fujinami
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
48
|
Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 2006; 184:37-44. [PMID: 17196667 PMCID: PMC1933528 DOI: 10.1016/j.jneuroim.2006.11.015] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 12/31/2022]
Abstract
Although axonal loss has been observed in demyelinated multiple sclerosis (MS) lesions, there has been a major focus on understanding mechanisms of demyelination. However, identification of markers for axonal damage and development of new imaging techniques has enabled detection of subtle changes in axonal pathology and revived interest in the neurodegenerative component of MS. Axonal loss is generally accepted as the main determinant of permanent clinical disability. However, the role of axonal loss early in disease or during relapsing-remitting disease is still under investigation, as are the interactions and interdependency between inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of MS.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132-2305, USA
| | | |
Collapse
|
49
|
Abstract
Central nervous system (CNS) immune privilege is an experimentally defined phenomenon. Tissues that are rapidly rejected by the immune system when grafted in sites, such as the skin, show prolonged survival when grafted into the CNS. Initially, CNS immune privilege was construed as CNS isolation from the immune system by the blood-brain barrier (BBB), the lack of draining lymphatics, and the apparent immunoincompetence of microglia, the resident CNS macrophage. CNS autoimmunity and neurodegeneration were presumed automatic consequences of immune cell encounter with CNS antigens. Recent data have dramatically altered this viewpoint by revealing that the CNS is neither isolated nor passive in its interactions with the immune system. Peripheral immune cells can cross the intact BBB, CNS neurons and glia actively regulate macrophage and lymphocyte responses, and microglia are immunocompetent but differ from other macrophage/dendritic cells in their ability to direct neuroprotective lymphocyte responses. This newer view of CNS immune privilege is opening the door for therapies designed to harness autoreactive lymphocyte responses and also implies (i) that CNS autoimmune diseases (i.e. multiple sclerosis) may result as much from neuronal and/or glial dysfunction as from immune system dysfunctions and (ii) that the severe neuronal and glial dysfunction associated with neurodegenerative disorders (i.e. Alzheimer's disease) likely alters CNS-specific regulation of lymphocyte responses affecting the utility of immune-based therapies (i.e. vaccines).
Collapse
Affiliation(s)
- Monica J Carson
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
50
|
Carson MJ, Thrash JC, Walter B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. ACTA ACUST UNITED AC 2006; 6:237-245. [PMID: 19169437 DOI: 10.1016/j.cnr.2006.09.004] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a complex integration of the responses of all cells present within the CNS, including the neurons, macroglia, microglia and the infiltrating leukocytes. The initiating insult, environmental factors, genetic background and age/past experiences all combine to modulate the integrated response of this complex neuroinflammatory circuit. Here, we explore how these factors interact to lead to either neuroprotective versus neurotoxic inflammatory responses. We specifically focus on microglia and astrocytic regulation of autoreactive T cell responses.
Collapse
Affiliation(s)
- Monica J Carson
- Division of Biomedical Sciences, University of California-Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|