1
|
Wang J, Niu X, Jin C, Hu Y. 1H, 13C and 15N resonance assignments of the third intracellular loop of the muscarinic acetylcholine receptor M1. BIOMOLECULAR NMR ASSIGNMENTS 2025:10.1007/s12104-025-10230-9. [PMID: 40178795 DOI: 10.1007/s12104-025-10230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
G protein-coupled receptors (GPCRs) are highly dynamic seven-transmembrane (7TM) proteins that respond to various extracellular stimuli and elicit diverse intracellular signaling cascades. The third intracellular loops (ICL3s) of the GPCRs are intrinsically disordered and play important roles in signaling. The muscarinic acetylcholine receptors (mAChRs) harbor extremely long ICL3s, which comprise over a hundred amino acid residues and contain multiple phosphorylation sites. Due to their intrinsic flexibility, ICL3s are commonly absent or unobservable in cryo-EM or X-ray structures, and there has been a lack of structural and dynamics study of these regions. Herein, we report the 1H, 13C and 15N chemical shift assignments of the M1 muscarinic receptor ICL3, which provides a basis for further NMR studies of its conformational dynamics, post-translational modifications and interactions.
Collapse
Affiliation(s)
- Jiannan Wang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
3
|
Patel C, Patel R, Kesharwani A, Rao L, Jain NS. Central cholinergic transmission modulates endocannabinoid-induced marble-burying behavior in mice. Behav Brain Res 2025; 476:115252. [PMID: 39278464 DOI: 10.1016/j.bbr.2024.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Central cholinergic system and endocannabinoid, anandamide exhibits anti-compulsive-like behavior in mice. However, the role of the central cholinergic system in the anandamide-induced anti-compulsive-like behavior is still unexplored. Therefore, the present study assessed the role of central cholinergic transmission in the anandamide-induced anti-compulsive activity using a marble-burying behavior (MBB) model in mice. The modulation in the anandamide-induced effect on MBB was evaluated using mice with altered central cholinergic transmission achieved by pretreatment (i.c.v.) with various cholinergic agents like acetylcholine (ACh), acetylcholinesterase inhibitor (AChEI), neostigmine, nicotine, mAChR antagonist, atropine, and nAChR antagonist, mecamylamine. The influence of anandamide treatment on the brain AChE activity was also evaluated. The results revealed that i.c.v. injection of anandamide (10, 20 µg/mouse, i.c.v.) dose-dependently reduced MBB in mice. Moreover, anandamide in all the tested doses inhibited the brain AChE activity indicating the role of an enhanced central cholinergic transmission in its anti-compulsive-like effect . Furthermore, the anti-compulsive-like effect of anandamide (20 µg/mouse, i.c.v.) was found to be enhanced in mice centrally pre-treated with, ACh (0.1 µg/mouse, i.c.v.) or AChEI, neostigmine (0.3 µg/mouse, i.c.v.). In addition, the anandamide-induced anti-compulsive-like effect was significantly increased in mice pre-treated with a low dose of nicotine (0.1 µg/mouse, i.c.v.) while, it was attenuated by the higher dose of nicotine (2 µg/mouse, i.c.v.). On the other hand, the anandamide (20 µg/mouse, i.c.v.) induced anti-compulsive-like effect was found to be diminished in mice pre-treated with mAChR antagonist, atropine (0.1, 0.5 µg/mouse, i.c.v.) and pre-injection of nAChR antagonist, mecamylamine (0.1, 0.5 µg/mouse, i.c.v.) potentiated the anandamide induced anti-compulsive-like response in mice. Thus, the present investigation delineates the modulatory role of an enhanced central cholinergic transmission in the anandamide-induced anti-compulsive-like behavior in mice by inhibition of brain AChE or via muscarinic and nicotinic receptors mediated mechanism.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Anuradha Kesharwani
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Laxmi Rao
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
4
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
5
|
Dean B. IUPHAR Review on muscarinic M1 and M4 receptors as drug treatment targets relevant to the molecular pathology of schizophrenia. Pharmacol Res 2024; 210:107510. [PMID: 39566671 DOI: 10.1016/j.phrs.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cobenfy, a co-formulation of xanomeline and trospium, is the first drug not acting on the dopaminergic system of the CNS approved for the treatment of schizophrenia by the FDA. Xanomeline is a muscarinic M1 and M4 receptor (CHRM1 and CHRM4) agonist whilst trospium is a peripherally active CHRM antagonist that reduces the unwanted peripheral side-effects of xanomeline. Relevant to this exciting development, this review details the human CNS cholinergic systems and how those systems are affected by the molecular pathology of schizophrenia in a way suggesting activating the CHRM1 and 4 would be beneficial in treating the disorder. The CNS distribution of CHRMs is presented along with findings using CHRM knockout mice and mice treated with drugs that activate the CHRM1 and / or M4, these data explain why these CHRMs could be involved in the genesis of the symptoms of schizophrenia. Next, the process leading to the formulation of Cobenfy and the preclinical data on xanomeline are reviewed showing why Cobenfy was expected to be useful in treating schizophrenia. The pipeline of drugs targeting CHRM1 and /or M4 receptors to treat schizophrenia are discussed. Finally, the molecular pathology of two sub-groups within schizophrenia, separated based on the presence or absence of a deficit of cortical CHRM1, are reviewed to show how such approaches could identify new drug targets. In conclusion, the history of the development of Cobenfy highlights how a growing understanding the pathophysiology of schizophrenia will suggest new treatment targets for the disorder and that pharmacologists can synthesise drugs to target these sites.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Snelleksz M, Scarr E, Dean B. Lower levels of kainate receptors, but not AMPA or NMDA receptors, in Brodmann's area (BA) 9, but not BA 10, from a subgroup of people with schizophrenia who have a marked deficit in cortical muscarinic M1 receptors. Schizophr Res 2024; 274:129-136. [PMID: 39293250 DOI: 10.1016/j.schres.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
In a previous study on ionotropic glutamate receptors, we have shown that [3H]kainate, but not [3H]AMPA or [3H]NMDA, receptor binding was lower in Brodmann's area (BA) 9 from people with schizophrenia. Subsequently, we defined a subgroup within the syndrome of schizophrenia who are termed the Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS) as they have markedly lower levels of [3H]pirenzepine binding to the muscarinic M1 receptor. The previous glutamate receptor study did not contain enough people with MRDS and other forms of schizophrenia (non-MRDS) to study any subgroup-specific differences. Hence, in this study we first measured [3H]pirenzepine binding to the muscarinic M1 receptor to confirm the MRDS subgroup, then measured [3H]kainate, [3H]AMPA and [3H]NMDA receptor binding using autoradiography in BA 9 from people with MRDS, non-MRDS and controls. We also measured binding in BA 10 as our gene expression study indicated that BA 10 is disproportionally affected by the molecular pathology of schizophrenia. As expected, due to case-selection criteria, [3H]pirenzepine binding to the M1 receptor was lower in BA 9 and BA 10 from people with MRDS, although more profound in BA 10. [3H]kainate receptor binding was lower only in BA 9 from people with MRDS, while [3H]AMPA and [3H]NMDA receptor binding was not altered in either region. Muscarinic M1 receptors and kainate receptors are both located on glutamatergic pyramidal neurons so a perturbation in both receptors could indicate altered excitatory neurotransmission in BA 9 from people with MRDS.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Balakrishnan AS, Johansen LBE, Lindsley CW, Conn PJ, Thomsen M. Co-stimulation of muscarinic M1 and M4 acetylcholine receptors prevents later cocaine reinforcement in male and female mice, but not place-conditioning. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111079. [PMID: 38950842 DOI: 10.1016/j.pnpbp.2024.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Acute stimulation of M1 or M4 muscarinic cholinergic receptors reduces cocaine abuse-related effects in mice and rats. The combined activation of these receptor subtypes produces synergistic effects on some behavioural endpoints in mice. M1 and M1 + M4 receptor stimulation in a cocaine vs. food choice assay in rats and microdialysis in rats showed delayed and lasting "anticocaine effects". Here, we tested whether these putative lasting neuroplastic changes are sufficient to occlude the reinforcing effects of cocaine at the behavioural level in mice. Mice were pre-treated with the M1 receptor partial agonist VU0364572, M4 receptor positive allosteric modulator VU0152100, or VU0364572 + VU0152100 two weeks prior to acquisition of cocaine intravenous self-administration (IVSA). Male C57BL/6JRj mice received vehicle, VU0364572, VU0152100, or VU0364572 + VU0152100. Female mice were tested with two VU0364572 + VU0152100 dose combinations or vehicle. To attribute potential effects to either reduced rewarding effects or increased aversion to cocaine, we tested VU0364572 alone and VU0364572 + VU0152100 in acquisition of cocaine-conditioned place preference (CPP) in male mice using an unbiased design. The acquisition of cocaine IVSA was drastically reduced and/or slowed in male and female mice receiving VU0364572 + VU0152100, but not either drug alone. Food-maintained operant behaviour was unaffected, indicating that the treatment effects were cocaine-specific. No treatment altered the acquisition of cocaine-CPP, neither in the post-test, nor in a challenge 14 days later. The cocaine IVSA findings confirm unusual long-lasting "anticocaine" effects of muscarinic M1 + M4 receptor stimulation. Thus, in mice, simultaneous stimulation of both receptor subtypes seems to produce potential neuroplastic changes that yield lasting effects.
Collapse
Affiliation(s)
- Abhishek Shankar Balakrishnan
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bornø Engelhardt Johansen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Belov V, Guehl NJ, Duvvuri S, Iredale P, Moon SH, Dhaynaut M, Chakilam S, MacDonagh AC, Rice PA, Yokell DL, Renger JJ, El Fakhri G, Normandin MD. PET imaging of M4 muscarinic acetylcholine receptors in rhesus macaques using [ 11C]MK-6884: Quantification with kinetic modeling and receptor occupancy by CVL-231 (emraclidine), a novel positive allosteric modulator. J Cereb Blood Flow Metab 2024; 44:1329-1342. [PMID: 38477292 PMCID: PMC11342722 DOI: 10.1177/0271678x241238820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Stimulation of the M4 muscarinic acetylcholine receptor reduces striatal hyperdopaminergia, suggesting its potential as a therapeutic target for schizophrenia. Emraclidine (CVL-231) is a novel, highly selective, positive allosteric modulator (PAM) of M4 muscarinic acetylcholine receptors i.e. acts as a modulator that increases the response of these receptors. First, we aimed to further characterize the positron emission tomography (PET) imaging and quantification performance of a recently developed M4 PAM radiotracer, [11C]MK-6884, in non-human primates (NHPs). Second, we applied these results to determine the receptor occupancy of CVL-231 as a function of dose. Using paired baseline-blocking PET scans, we quantified total volume of distribution, binding potential, and receptor occupancy. Both blood-based and reference region-based methods quantified M4 receptor levels across brain regions. The 2-tissue 4-parameter kinetic model best fitted regional [11C]MK-6884-time activity curves. Only the caudate nucleus and putamen displayed statistically significant [11C]MK-6884 uptake and dose-dependent blocking by CVL-231. For binding potential and receptor occupancy quantification, the simplified reference tissue model using the grey cerebellum as a reference region was employed. CVL-231 demonstrated dose-dependent M4 receptor occupancy in the striatum of the NHP brain and shows promise for further development in clinical trials.
Collapse
Affiliation(s)
- Vasily Belov
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alexander C MacDonagh
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Rice
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel L Yokell
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Uyar R, Turgut Y, Çelik HT, Ünal MA, Kuzukıran Ö, Özyüncü Ö, Ceylan A, Çinar ÖÖ, Boztepe ÜG, Özdağ H, Filazi A, Yurdakök-Di Kmen B. Effects of DDT and DDE on placental cholinergic receptors. Reprod Toxicol 2024; 126:108588. [PMID: 38615785 DOI: 10.1016/j.reprotox.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The placental cholinergic system; known as an important factor in intracellular metabolic activities, regulation of placental vascular tone, placental development, and neurotransmission; can be affected by persistent organic pesticides, particularly organochlorine pesticides(OCPs), which can influence various epigenetic regulations and molecular pathways. Although OCPs are legally prohibited, trace amounts of the persistent dichlorodiphenyltrichloroethane(DDT) are still found in the environment, making prenatal exposure inevitable. In this study, the effects of 2,4'-DDT and 4,4'-DDT; and its breakdown product 4,4'-DDE in the environment on placental cholinergic system were evaluated with regards to cholinergic genes. 40 human placentas were screened, where 42,50% (17 samples) were found to be positive for the tested compounds. Average concentrations were 10.44 μg/kg; 15.07 μg/kg and 189,42 μg/kg for 4,4'-DDE; 2,4'-DDT and 4,4'-DDT respectively. RNA-Seq results revealed 2396 differentially expressed genes in positive samples; while an increase in CHRM1,CHRNA1,CHRNG and CHRNA2 genes at 1.28, 1.49, 1.59 and 0.4 fold change were found(p<0028). The increase for CHRM1 was also confirmed in tissue samples with immunohistochemistry. In vitro assays using HTR8/SVneo cells; revealed an increase in mRNA expression of CHRM1, CHRM3 and CHRN1 in DDT and DDE treated groups; which was also confirmed through western blot assays. An increase in the expression of CHRM1,CHRNA1, CHRNG(p<0001) and CHRNA2(p<0,05) were found from the OCPs exposed and non exposed groups.The present study reveals that intrauterine exposure to DDT affects the placental cholinergic system mainly through increased expression of muscarinic receptors. This increase in receptor expression is expected to enhance the sensitivity of the placental cholinergic system to acetylcholine.
Collapse
Affiliation(s)
- Recep Uyar
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye.
| | - Yağmur Turgut
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - H Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, Altindag, Ankara 06230, Turkey
| | - M Altay Ünal
- Ankara University, Institute of Stem Cell, Ankara 06520, Turkey
| | - Özgür Kuzukıran
- Çankırı Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Çankırı, Turkey
| | - Özgür Özyüncü
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Altindag, Ankara 06230, Turkey
| | - Ahmet Ceylan
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Özge Özgenç Çinar
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Ümmü Gülsüm Boztepe
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - Hilal Özdağ
- Ankara University Biotechnology Institute, Ankara 06135, Turkey
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| | - Begüm Yurdakök-Di Kmen
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| |
Collapse
|
10
|
Patel C, Patel R, Maturkar V, Jain NS. Central cholinergic transmission affects the compulsive-like behavior of mice in marble-burying test. Brain Res 2024; 1825:148713. [PMID: 38097126 DOI: 10.1016/j.brainres.2023.148713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The presence of the cholinergic system in the brain areas implicated in the precipitation of obsessive-compulsive behavior (OCB) has been reported but the exact role of the central cholinergic system therein is still unexplored. Therefore, the current study assessed the effect of cholinergic analogs on central administration on the marble-burying behavior (MBB) of mice, a behavior correlated with OCB. The result reveals that the enhancement of central cholinergic transmission in mice achieved by intracerebroventricular (i.c.v.) injection of acetylcholine (0.01 µg) (Subeffective: 0.1 and 0.5 µg), cholinesterase inhibitor, neostigmine (0.1, 0.3, 0.5 µg/mouse) and neuronal nicotinic acetylcholine receptor agonist, nicotine (0.1, 2 µg/mouse) significantly attenuated the number of marbles buried by mice in MBB test without affecting basal locomotor activity. Similarly, central injection of mAChR antagonist, atropine (0.1, 0.5, 5 µg/mouse), nAChR antagonist, mecamylamine (0.1, 0.5, 3 µg/mouse) per se also reduced the MBB in mice, indicative of anti-OCB like effect of all the tested cholinergic mAChR or nAChR agonist and antagonist. Surprisingly, i.c.v. injection of acetylcholine (0.01 µg), and neostigmine (0.1 µg) failed to elicit an anti-OCB-like effect in mice pre-treated (i.c.v.) with atropine (0.1 µg), or mecamylamine (0.1 µg). Thus, the findings of the present investigationdelineate the role of central cholinergic transmission in the compulsive-like behavior of mice probably via mAChR or nAChR stimulation.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Vaibhav Maturkar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
11
|
Aggarwal N, Oler JA, Tromp DPM, Roseboom PH, Riedel MK, Elam VR, Brotman MA, Kalin NH. A preliminary study of the effects of an antimuscarinic agent on anxious behaviors and white matter microarchitecture in nonhuman primates. Neuropsychopharmacology 2024; 49:405-413. [PMID: 37516801 PMCID: PMC10724160 DOI: 10.1038/s41386-023-01686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Myelination subserves efficient neuronal communication, and alterations in white matter (WM) microstructure have been implicated in numerous psychiatric disorders, including pathological anxiety. Recent work in rodents suggests that muscarinic antagonists may enhance myelination with behavioral benefits; however, the neural and behavioral effects of muscarinic antagonists have yet to be explored in non-human primates (NHP). Here, as a potentially translatable therapeutic strategy for human pathological anxiety, we present data from a first-in-primate study exploring the effects of the muscarinic receptor antagonist solifenacin on anxious behaviors and WM microstructure. 12 preadolescent rhesus macaques (6 vehicle control, 6 experimental; 8F, 4M) were included in a pre-test/post-test between-group study design. The experimental group received solifenacin succinate for ~60 days. Subjects underwent pre- and post-assessments of: 1) anxious temperament (AT)-related behaviors in the potentially threatening no-eye-contact (NEC) paradigm (30-min); and 2) WM and regional brain metabolism imaging metrics, including diffusion tensor imaging (DTI), quantitative relaxometry (QR), and FDG-PET. In relation to anxiety-related behaviors expressed during the NEC, significant Group (vehicle control vs. solifenacin) by Session (pre vs. post) interactions were found for freezing, cooing, and locomotion. Compared to vehicle controls, solifenacin-treated subjects exhibited effects consistent with reduced anxiety, specifically decreased freezing duration, increased locomotion duration, and increased cooing frequency. Furthermore, the Group-by-Session-by-Sex interaction indicated that these effects occurred predominantly in the males. Exploratory whole-brain voxelwise analyses of post-minus-pre differences in DTI, QR, and FDG-PET metrics revealed some solifenacin-related changes in WM microstructure and brain metabolism. These findings in NHPs support the further investigation of the utility of antimuscarinic agents in targeting WM microstructure as a means to treat pathological anxiety.
Collapse
Affiliation(s)
- Nakul Aggarwal
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Marissa K Riedel
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Victoria R Elam
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Melissa A Brotman
- Neuroscience and Novel Therapeutics Unit, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| |
Collapse
|
12
|
Mike JK, White Y, Hutchings RS, Vento C, Ha J, Iranmahboub A, Manzoor H, Gunewardena A, Cheah C, Wang A, Goudy BD, Lakshminrusimha S, Long-Boyle J, Fineman JR, Ferriero DM, Maltepe E. Effect of Clemastine on Neurophysiological Outcomes in an Ovine Model of Neonatal Hypoxic-Ischemic Encephalopathy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1728. [PMID: 38002819 PMCID: PMC10670092 DOI: 10.3390/children10111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Originally approved by the U.S. Food and Drug Administration (FDA) for its antihistamine properties, clemastine can also promote white matter integrity and has shown promise in the treatment of demyelinating diseases such as multiple sclerosis. Here, we conducted an in-depth analysis of the feasibility, safety, and neuroprotective efficacy of clemastine administration in near-term lambs (n = 25, 141-143 days) following a global ischemic insult induced via an umbilical cord occlusion (UCO) model. Lambs were randomly assigned to receive clemastine or placebo postnatally, and outcomes were assessed over a six-day period. Clemastine administration was well tolerated. While treated lambs demonstrated improvements in inflammatory scores, their neurodevelopmental outcomes were unchanged.
Collapse
Affiliation(s)
- Jana Krystofova Mike
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Yasmine White
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Rachel S. Hutchings
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Christian Vento
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Janica Ha
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Ariana Iranmahboub
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Hadiya Manzoor
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Anya Gunewardena
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Cheryl Cheah
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Aijun Wang
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95817, USA;
| | - Brian D. Goudy
- Department of Pediatrics, University of California Davis, Davis, CA 95817, USA (S.L.)
| | | | - Janel Long-Boyle
- School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
- Department of Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Shivakumar AB, Kumari S, Mehak SF, Gangadharan G. Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:773-784. [PMID: 37881551 PMCID: PMC10593884 DOI: 10.1016/j.bpsgos.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods We have addressed this issue in an amyloid-β 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sparsha Kumari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
15
|
Nakajima Y, Tsujimura T, Tsutsui Y, Chotirungsan T, Kawada S, Dewa N, Magara J, Inoue M. Atropine facilitates water-evoked swallows via central muscarinic receptors in anesthetized rats. Am J Physiol Gastrointest Liver Physiol 2023; 325:G109-G121. [PMID: 37219016 DOI: 10.1152/ajpgi.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Anticholinergic medication causes impaired swallowing with hyposalivation. However, the underlying mechanisms by which these drugs modulate the swallowing reflex remain unclear. This study investigated the effects of the muscarinic acetylcholine receptor (mAChR) nonspecific antagonist atropine on the initiation of swallowing. Experiments were performed on 124 urethane-anesthetized rats. A swallow was evoked by either topical laryngeal application of a small amount of distilled water (DW), saline, citric acid, or capsaicin; upper airway distention with a continuous airflow; electrical stimulation of the superior laryngeal nerve (SLN); or focal microinjection of N-methyl-d-aspartate (NMDA) into the lateral region of the nucleus of the solitary tract (L-nTS). Swallows were identified by electromyographic bursts of the digastric and thyrohyoid muscles. Either atropine, the peripheral mAChR antagonist methylatropine, or antagonists of mAChR subtypes M1-M5 were intravenously delivered. Atropine at a dose of 1 mg/kg increased the number of DW-evoked swallows compared with baseline and did not affect the number of swallows evoked by saline, citric acid, capsaicin, or upper airway distention. Methylatropine and M1-M5 antagonists did not significantly change the number of DW-evoked swallows. Bilateral SLN transection completely abolished DW-evoked swallows, and atropine decreased the swallowing threshold of SLN electrical stimulation. Finally, microinjection of NMDA receptor antagonist AP-5 into the L-nTS inhibited DW-evoked swallows, and atropine facilitated the initiation of swallowing evoked by NMDA microinjection into this region. These results suggest that atropine facilitates DW-evoked swallows via central mAChR actions.NEW & NOTEWORTHY Atropine facilitated the distilled water (DW)-evoked swallows in anesthetized rats. Atropine decreased the swallowing threshold evoked by electrical stimulation of the superior laryngeal nerve, which is a primary sensory nerve for the initiation of DW-evoked swallows. Atropine facilitated the swallows evoked by N-methyl-d-aspartate microinjection into the lateral region of the nucleus of the solitary tract, which is involved in the DW-evoked swallows. We speculate that atropine facilitates the DW-evoked swallows via central muscarinic receptor actions.
Collapse
Affiliation(s)
- Yuta Nakajima
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuhei Tsutsui
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Titi Chotirungsan
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Muang, Phitsanulok, Thailand
| | - Satomi Kawada
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nozomi Dewa
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Dean B. Muscarinic M1 and M4 receptor agonists for schizophrenia: promising candidates for the therapeutic arsenal. Expert Opin Investig Drugs 2023; 32:1113-1121. [PMID: 37994870 DOI: 10.1080/13543784.2023.2288074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION Successful phase 3 trials of KarXT in people with schizophrenia herald a new era of treating the disorder with drugs that do not target the dopamine D2 receptor. The active component of KarXT is xanomeline, a muscarinic (CHRM) M1 and M4 agonist, making muscarinic receptors a viable target for treating schizophrenia. AREAS COVERED This review covers the process of taking drugs that activate the muscarinic M1 and M4 receptors from conceptualization to the clinic and details the mechanisms by which activating the CHRM1 and 4 can affect the broad spectrum of symptoms experienced by people with schizophrenia. EXPERT OPINION Schizophrenia is a syndrome which means drugs that activate muscarinic M1 and M4 receptors, as was the case for antipsychotic drugs acting on the dopamine D2 receptor, will not give optimal outcomes in everyone within the syndrome. Thus, it would be ideal to identify people who are responsive to drugs activating the CHRM1 and 4. Given knowledge of the actions of these receptors, it is possible treatment non-response could be restricted to sub-groups within the syndrome who have deficits in cortical CHRM1 or those with one of the cognitive endophenotypes that may be identifiable by changes in the blood transcriptome.
Collapse
Affiliation(s)
- Brian Dean
- The Synaptic Biology and Cognition Laboratory, The Florey, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
17
|
van Minderhout HM, Joosse MV, Klaassen ES, Schalij-Delfos NE. EEG changes as an indication of central nervous system involvement following cyclopentolate 1% eye drops; a randomized placebo-controlled pilot study in a pediatric population. Strabismus 2023; 31:82-96. [PMID: 37282618 DOI: 10.1080/09273972.2023.2218455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To compare EEG-patterns after instillation of cyclopentolate versus placebo eye drops. Prospective, randomized, placebo-controlled, and observational pilot study is presented. Ophthalmology outpatient clinic Dutch metropolitan hospital. Healthy 6- to 15-year-old volunteers with normal or low BMI requiring a cycloplegic refraction/retinoscopy. Randomized; 1 visit 2 drops cyclopentolate-1% and 1 visit 2 drops placebo (saline-0.9%). Single-blind: conducting researcher. Double blind: subjects, parents, clinical-neurophysiology staff, neurologist, and statistician. A 10-min baseline EEG-recording, drop-application, and follow-up to at least 45 min. Primary outcome: Detection of CNS changes, i.e. EEG-pattern changes, following two drops of cyclopentolate-1%. Secondary outcome: Determination of the extent of these pattern changes. Thirty-six cyclopentolate-1% saline-0.9% EEG registrations were made in 33 subjects; 18 males and 15 females. Three subjects were tested twice (interval 7 months). Nine out of fourteen (64%) of the 11- to 15-year-old children reported impaired memory, attention, alertness, as well as mind wandering following cyclopentolate. Drowsiness and sleep were seen in EEG-recordings of 11 subjects (33%) following cyclopentolate. We observed no drowsiness nor sleep during placebo recordings. The mean time to drowsiness was 23 min. Nine subjects arrived in stage-3 sleep but none arrived in REM-sleep. In subjects without sleep (N=24), significant changes compared to placebo-EEG were present for many leads and parameters. The main findings during awake eye-open recording were as follows: 1) a significant increase of temporal Beta-1,2 and 3-power, and 2) a significant decrease in: a) the parietal and occipital Alpha-2-power, b) the frontal Delta-1-power, c) the frontal total power, and d) the occipital and parietal activation synchrony index. The former finding reflects cyclopentolate uptake in the CNS, and the latter findings provide evidence for CNS suppression. Cyclopentolate-1% eye drops can affect the CNS and may cause altered consciousness, drowsiness, and sleep with concomitant EEG results in both young children and children in puberty. There is evidence that cyclopentolate has the potency to act as a short acting CNS depressant. Nevertheless, however, cyclopentolate-1% can safely be used in children and young adolescents.
Collapse
Affiliation(s)
- Helena Maria van Minderhout
- Department of Ophthalmology, Haaglanden Medical Centre, The Hague
- Department of Ophthalmology, Paediatric Ophthalmology, Leiden University Medical Centre, Leiden
| | | | | | | |
Collapse
|
18
|
Naseri A, Sadigh-Eteghad S, Seyedi-Sahebari S, Hosseini MS, Hajebrahimi S, Salehi-Pourmehr H. Cognitive effects of individual anticholinergic drugs: a systematic review and meta-analysis. Dement Neuropsychol 2023; 17:e20220053. [PMID: 37261256 PMCID: PMC10229087 DOI: 10.1590/1980-5764-dn-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 06/02/2023] Open
Abstract
UNLABELLED Anticholinergics (ACs) are among the most prescribed drugs. Investigating the impaired cognitive domains due to individual ACs usage is associated with controversial findings. OBJECTIVE The objective of this study was to investigate the effects of individual ACs on different aspects of cognitive function based on clinical trial studies. METHODS This systematic review was conducted following the PRISMA statement. A systematic search was performed in Embase, PubMed, Cochrane Library, Scopus, and Web of Science databases. Risk of bias (RoB) was assessed by the Joanna Briggs Institute checklists and the meta-analysis was performed using the CMA software. RESULTS Out of 3,026 results of searching, 138 studies were included. A total of 38 studies that assess the cognitive impacts of scopolamine were included in the meta-analysis. Included studies reported cognitive effects of scopolamine, mecamylamine, atropine, biperiden, oxybutynin, trihexyphenidyl, benzhexol, and dicyclomine; however, glycopyrrolate, trospium, tolterodine, darifenacin, fesoterodine, tiotropium, and ipratropium were not associated with cognitive decline. Based on the meta-analyses, scopolamine was associated with reduced recognition (SDM -1.84; 95%CI -2.48 to -1.21; p<0.01), immediate recall (SDM -1.82; 95%CI -2.35 to -1.30; p<0.01), matching to sample (SDM -1.76; 95%CI -2.57 to -0.96; p<0.01), delayed recall (SDM -1.54; 95%CI -1.97 to -1.10; p<0.01), complex memory tasks (SDM -1.31; 95%CI -1.78 to -0.84; p<0.01), free recall (SDM -1.18; 95%CI -1.63 to -0.73; p<0.01), cognitive function (SDM -0.95; 95%CI -1.46 to -0.44; p<0.01), attention (SDM -0.85; 95%CI -1.38 to -0.33; p<0.01), and digit span (SDM -0.65; 95%CI -1.21 to -0.10; p=0.02). There was a high RoB in our included study, especially in terms of dealing with possible cofounders. CONCLUSION The limitations of this study suggest a need for more well-designed studies with a longer duration of follow-up on this topic to reach more reliable evidence.
Collapse
Affiliation(s)
- Amirreza Naseri
- Tabriz University of Medical Sciences, Student Research Committee, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Tabriz University of Medical Sciences, Neurosciences Research Center, Tabriz, Iran
| | | | | | - Sakineh Hajebrahimi
- Tabriz University of Medical Sciences, Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Tabriz University of Medical Sciences, Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz, Iran
| |
Collapse
|
19
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Dean B, Haroutunian V, Scarr E. Lower levels of cortical [ 3H]pirenzepine binding to postmortem tissue defines a sub-group of older people with schizophrenia with less severe cognitive deficits. Schizophr Res 2023; 255:274-282. [PMID: 37079947 DOI: 10.1016/j.schres.2023.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/15/2023] [Accepted: 03/18/2023] [Indexed: 04/22/2023]
Abstract
Multiple lines of evidence argue for lower levels of cortical muscarinic M1 receptors (CHRM1) in people with schizophrenia which is possibly due to a sub-group within the disorder who have a marked loss of CHRM1 (muscarinic receptor deficit sub-group (MRDS)). In this study we sought to determine if the lower levels of CHRM1 was apparent in older people with schizophrenia and whether the loss of CHRM1 was associated with symptom severity by measuring levels of cortical [3H]pirenzepine binding to CHRM1 from 56 people with schizophrenia and 43 controls. Compared to controls (173 ± 6.3 fmol / mg protein), there were lower levels of cortical [3H]pirenzepine binding in the people with schizophrenia (mean ± SEM: 153 ± 6.0 fmol / mg protein; p = 0.02; Cohen's d = - 0.46). [3H]pirenzepine binding in the people with schizophrenia, but not controls, was not normally distributed and best fitted a two-population solution. The nadir of binding separating the two groups of people with schizophrenia was 121 fmol / mg protein and levels of [3H]pirenzepine binding below this value had a 90.7 % specificity for the disorder. Compared to controls, the score from the Clinical Dementia Rating Scale (CDR) did not differ significantly in MRDS but were significantly higher in the sub-group with normal radioligand binding. Positive and Negative Syndrome Scale scores did not differ between the two sub-groups with schizophrenia. Our current study replicates and earlier finding showing a MRDS within schizophrenia and, for the first time, suggest this sub-group have less severe cognitive deficits others with schizophrenia.
Collapse
Affiliation(s)
- Brian Dean
- The Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia.
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Mental Illness Research, Education and Clinical Centers, JJ Peters VA Medical Center, Bronx, NY, USA
| | - Elizabeth Scarr
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Bhatt S, Upadhyay T, Patil CR, Pai KSR, Chellappan DK, Dua K. Role of Oxidative Stress in Pathophysiological Progression of
Schizophrenia. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2023; 19:11-27. [DOI: 10.2174/2666082218666220822154558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative stress (OS) is a chief contributing factor to the pathological
advancement of Schizophrenia (SCZ). In recent years, OS has emerged as an important aspect
in SCZ research and provides abundant opportunities and expectations for a better understanding
of its pathophysiology, which may lead to novel treatment strategies.
Introduction:
The increased OS and formation of reactive oxygen species (ROS) leads to damage
to cellular macromolecules. The excessive OS is associated with several physiological processes,
such as dysfunction of mitochondria and neuroglia, inflammation, underactive Nmethyl-
D-aspartate (NMDA) receptors, and the abnormalities of fast-spiking gammaaminobutyric
acid (GABA) interneurons.
Methods:
The methods adopted for the study are mainly based on the secondary search through
a systemic literature review. The role of various anti-oxidants, including vitamins, is discussed
in the reduction of SCZ.
Results:
Various preclinical and clinical studies suggest the involvement of OS and ROS in the
progression of the disease. Recent human trials have shown the treatment with antioxidants to
be effective in ameliorating symptoms and delaying the progression of SCZ pathology. The
studies have demonstrated that innate and dietary antioxidants exert beneficial effects by reducing
the severity of positive symptoms (PS) and/or negative symptoms (NS) of SCZ.
Conclusion:
The present review critically evaluates the effect of antioxidants and highlights
the role of OS in SCZ.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - CR Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research,
Karwand Naka, Shirpur 425405, Maharashtra, India
| | - K. Sreedhara R. Pai
- Manipal College of Pharmaceutical Sciences
(MCOPS), Manipal Academy of Higher Education (MAHE), Manipal -576104, Karnataka, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil
57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University
of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in
Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007
Australia
| |
Collapse
|
22
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Leitzke M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration? Bioelectron Med 2023; 9:2. [PMID: 36650574 PMCID: PMC9845100 DOI: 10.1186/s42234-023-00104-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Following a SARS-CoV-2 infection, many individuals suffer from post-COVID-19 syndrome. It makes them unable to proceed with common everyday activities due to weakness, memory lapses, pain, dyspnea and other unspecific physical complaints. Several investigators could demonstrate that the SARS-CoV-2 related spike glycoprotein (SGP) attaches not only to ACE-2 receptors but also shows DNA sections highly affine to nicotinic acetylcholine receptors (nAChRs). The nAChR is the principal structure of cholinergic neuromodulation and is responsible for coordinated neuronal network interaction. Non-intrinsic viral nAChR attachment compromises integrative interneuronal communication substantially. This explains the cognitive, neuromuscular and mood impairment, as well as the vegetative symptoms, characterizing post-COVID-19 syndrome. The agonist ligand nicotine shows an up to 30-fold higher affinity to nACHRs than acetylcholine (ACh). We therefore hypothesize that this molecule could displace the virus from nAChR attachment and pave the way for unimpaired cholinergic signal transmission. Treating several individuals suffering from post-COVID-19 syndrome with a nicotine patch application, we witnessed improvements ranging from immediate and substantial to complete remission in a matter of days.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Anesthesiology, Helios Clinics, Colditzer Straße 48, 04703, Leisnig, Germany.
| |
Collapse
|
24
|
The M1 muscarinic acetylcholine receptor regulates the surface expression of the AMPA receptor subunit GluA2 via PICK1. Psychopharmacology (Berl) 2023; 240:239-248. [PMID: 36564670 DOI: 10.1007/s00213-022-06304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been shown to play significant roles in the regulation of normal cognitive processes in the hippocampus, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are also involved in these processes. This study aims to explore the mAChR-mediated regulation of AMPARs GluA2 trafficking and to reveal the key proteins and the signaling cascade involved in this process. Primary hippocampal neurons, as cell models, were treated with agonist 77-LH-28-1 and antagonist VU0255035, Fsc231, and APV. C57BL/6J male mice were stereotactically injected with 77-LH-28-1 and Fsc231 to obtain hippocampal slices. The trafficking of GluA2 was detected by surface biotinylation and immunostaining. Activation of M1 mAChRs promoted endocytosis and decreased the postsynaptic localization of the AMPA receptor subunit GluA2 and that phosphorylation of GluA2 at Ser880 was increased by M1 mAChR activity. Fsc231 blocked the endocytosis and postsynaptic localization of GluA2 induced by 77-LH-28-1 without affecting the phosphorylation of Ser880. PICK1 was required for M1 mAChR-mediated GluA2 endocytosis and downstream of phosphorylation of GluA2-Ser880, and the PICK1-GluA2 interaction was essential for M1 mAChR-mediated postsynaptic expression of GluA2. Taken together, our results show a functional correlation of M1 mAChRs with GluA2 and the role of PICK1 in their interplay. The schematic diagram for the modulation of GluA2 trafficking by M1 mAChRs. Activation of M1 mAChRs induces PKC activation, and the interaction of PICK1-GluA2 determines the endocytosis and postsynaptic localization of GluA2.
Collapse
|
25
|
Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Int J Mol Sci 2022; 24:ijms24010507. [PMID: 36613951 PMCID: PMC9820491 DOI: 10.3390/ijms24010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors expressed in the central nervous system mediate various functions, including cognition, memory, or reward. Therefore, muscarinic receptors represent potential pharmacological targets for various diseases and conditions, such as Alzheimer's disease, schizophrenia, addiction, epilepsy, or depression. Muscarinic receptors are allosterically modulated by neurosteroids and steroid hormones at physiologically relevant concentrations. In this review, we focus on the modulation of muscarinic receptors by neurosteroids and steroid hormones in the context of diseases and disorders of the central nervous system. Further, we propose the potential use of neuroactive steroids in the development of pharmacotherapeutics for these diseases and conditions.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Nikolai Chetverikov
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| |
Collapse
|
26
|
Matloka M, Janowska S, Pankiewicz P, Kokhanovska S, Kos T, Hołuj M, Rutkowska-Wlodarczyk I, Abramski K, Janicka M, Jakubowski P, Świątkiewicz M, Welniak-Kaminska M, Hucz-Kalitowska J, Dera P, Bojarski L, Grieb P, Popik P, Wieczorek M, Pieczykolan J. A PDE10A inhibitor CPL500036 is a novel agent modulating striatal function devoid of most neuroleptic side-effects. Front Pharmacol 2022; 13:999685. [PMID: 36438799 PMCID: PMC9681820 DOI: 10.3389/fphar.2022.999685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 01/04/2024] Open
Abstract
Background: Phosphodiesterase 10A (PDE10A) is expressed almost exclusively in the striatum and its inhibition is suggested to offer potential treatment in disorders associated with basal ganglia. We evaluated the selectivity, cytotoxicity, genotoxicity, pharmacokinetics and potential adverse effects of a novel PDE10A inhibitor, CPL500036, in vivo. Methods: The potency of CPL500036 was demonstrated by microfluidic technology, and selectivity was investigated in a radioligand binding assay against 44 targets. Cardiotoxicity in vitro was evaluated in human ether-a-go-go related gene (hERG)-potassium channel-overexpressing cells by the patch-clamp method and by assessing key parameters in 3D cardiac spheroids. Cytotoxicity was determined in H1299, HepG2 and SH-SY5Y cell lines. The Ames test was used for genotoxicity analyses. During in vivo studies, CPL500036 was administered by oral gavage. CPL500036 exposure were determined by liquid chromatography-tandem mass spectrometry and plasma protein binding was assessed. The bar test was employed to assess catalepsy. Prolactin and glucose levels in rat blood were measured by ELISAs and glucometers, respectively. Cardiovascular safety in vivo was investigated in dogs using a telemetry method. Results: CPL500036 inhibited PDE10A at an IC50 of 1 nM, and interacted only with the muscarinic M2 receptor as a negative allosteric modulator with an IC50 of 9.2 µM. Despite inhibiting hERG tail current at an IC25 of 3.2 μM, cardiovascular adverse effects were not observed in human cardiac 3D spheroids or in vivo. Cytotoxicity in vitro was observed only at > 60 μM and genotoxicity was not recorded during the Ames test. CPL500036 presented good bioavailability and penetration into the brain. CPL500036 elicited catalepsy at 0.6 mg/kg, but hyperprolactinemia or hyperglycemic effects were not observed in doses up to 3 mg/kg. Conclusion: CPL500036 is a potent, selective and orally bioavailable PDE10A inhibitor with a good safety profile distinct from marketed antipsychotics. CPL500036 may be a compelling drug candidate.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Kos
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Hołuj
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | | - Maciej Świątkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | - Paweł Grieb
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | |
Collapse
|
27
|
Szczurowska E, Szánti-Pintér E, Randáková A, Jakubík J, Kudova E. Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids. Int J Mol Sci 2022; 23:13075. [PMID: 36361865 PMCID: PMC9656441 DOI: 10.3390/ijms232113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2023] Open
Abstract
Muscarinic acetylcholine receptors are membrane receptors involved in many physiological processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and steroid hormones are molecules of steroid origin that, besides having well-known genomic effects, also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic receptors and drug development, with an aim to ultimately exploit such knowledge.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| |
Collapse
|
28
|
Shim KH, Kang MJ, Sharma N, An SSA. Beauty of the beast: anticholinergic tropane alkaloids in therapeutics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:33. [PMID: 36109439 PMCID: PMC9478010 DOI: 10.1007/s13659-022-00357-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Tropane alkaloids (TAs) are among the most valued chemical compounds known since pre-historic times. Poisonous plants from Solanaceae family (Hyoscyamus niger, Datura, Atropa belladonna, Scopolia lurida, Mandragora officinarum, Duboisia) and Erythroxylaceae (Erythroxylum coca) are rich sources of tropane alkaloids. These compounds possess the anticholinergic properties as they could block the neurotransmitter acetylcholine action in the central and peripheral nervous system by binding at either muscarinic and/or nicotinic receptors. Hence, they are of great clinical importance and are used as antiemetics, anesthetics, antispasmodics, bronchodilator and mydriatics. They also serve as the lead compounds to generate more effective drugs. Due to the important pharmacological action they are listed in the WHO list of essential medicines and are available in market with FDA approval. However, being anticholinergic in action, TA medication are under the suspicion of causing dementia and cognitive decline like other medications with anticholinergic action, interestingly which is incorrect. There are published reviews on chemistry, biosynthesis, pharmacology, safety concerns, biotechnological aspects of TAs but the detailed information on anticholinergic mechanism of action, clinical pharmacology, FDA approval and anticholinergic burden is lacking. Hence the present review tries to fill this lacuna by critically summarizing and discussing the above mentioned aspects.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 461-701, South Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, South Korea
| | - Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 461-701, South Korea.
| | - Seong Soo A An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 461-701, South Korea.
| |
Collapse
|
29
|
Nabulsi L, Farrell J, McPhilemy G, Kilmartin L, Dauvermann MR, Akudjedu TN, Najt P, Ambati S, Martyn FM, McLoughlin J, Gill M, Meaney J, Morris D, Frodl T, McDonald C, Hallahan B, Cannon DM. Normalization of impaired emotion inhibition in bipolar disorder mediated by cholinergic neurotransmission in the cingulate cortex. Neuropsychopharmacology 2022; 47:1643-1651. [PMID: 35046509 PMCID: PMC9283431 DOI: 10.1038/s41386-022-01268-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
The muscarinic-cholinergic system is involved in the pathophysiology of bipolar disorder (BD), and contributes to attention and the top-down and bottom-up cognitive and affective mechanisms of emotional processing, functionally altered in BD. Emotion processing can be assessed by the ability to inhibit a response when the content of the image is emotional. Impaired regulatory capacity of cholinergic neurotransmission conferred by reduced M2-autoreceptor availability is hypothesized to play a role in elevated salience of negative emotional distractors in euthymic BD relative to individuals with no history of mood instability. Thirty-three euthymic BD type-I (DSM-V-TR) and 50 psychiatrically-healthy controls underwent functional magnetic resonance imaging (fMRI) and an emotion-inhibition paradigm before and after intravenous cholinergic challenge using the acetylcholinesterase inhibitor, physostigmine (1 mg), or placebo. Mood, accuracy, and reaction time on either recognizing or inhibiting a response associated with an image involving emotion and regional functional activation were examined for effects of cholinergic challenge physostigmine relative to placebo, prioritizing any interaction with the diagnostic group. Analyses revealed that (1) at baseline, impaired behavioral performance was associated with lower activation in the anterior cingulate cortex in BD relative to controls during emotion processing; (2) physostigmine (vs. placebo) affected behavioral performance during the inhibition of negative emotions, without altering mood, and increased activation in the posterior cingulate cortex in BD (vs. controls); (3) In BD, lower accuracy observed during emotion inhibition of negative emotions was remediated by physostigmine and was associated with cingulate cortex overactivation. Our findings implicate abnormal regulation of cholinergic neurotransmission in the cingulate cortices in BD, which may mediate exaggerated emotional salience processing, a core feature of BD.
Collapse
Affiliation(s)
- Leila Nabulsi
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland. .,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA.
| | - Jennifer Farrell
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Genevieve McPhilemy
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Liam Kilmartin
- grid.6142.10000 0004 0488 0789College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Maria R. Dauvermann
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland ,grid.13097.3c0000 0001 2322 6764Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF UK
| | - Theophilus N. Akudjedu
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland ,grid.17236.310000 0001 0728 4630Institute of Medical Imaging & Visualisation, Bournemouth University, Bournemouth Gateway Building, St Paul’s Lane, Dorset, BH12 5BB UK
| | - Pablo Najt
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Srinath Ambati
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Fiona M. Martyn
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - James McLoughlin
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Michael Gill
- grid.8217.c0000 0004 1936 9705Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - James Meaney
- grid.8217.c0000 0004 1936 9705Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek Morris
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Thomas Frodl
- grid.8217.c0000 0004 1936 9705Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland ,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | - Colm McDonald
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brian Hallahan
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Dara M. Cannon
- grid.6142.10000 0004 0488 0789Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
30
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
31
|
Design, Synthesis, and Biological Evaluation of 4,4’-Difluorobenzhydrol Carbamates as Selective M1 Antagonists. Pharmaceuticals (Basel) 2022; 15:ph15020248. [PMID: 35215360 PMCID: PMC8879200 DOI: 10.3390/ph15020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Due to their important role in mediating a broad range of physiological functions, muscarinic acetylcholine receptors (mAChRs) have been a promising target for therapeutic and diagnostic applications alike; however, the list of truly subtype-selective ligands is scarce. Within this work, we have identified a series of twelve 4,4’-difluorobenzhydrol carbamates through a rigorous docking campaign leveraging commercially available amine databases. After synthesis, these compounds have been evaluated for their physico–chemical property profiles, including characteristics such as HPLC-logD, tPSA, logBB, and logPS. For all the synthesized carbamates, these characteristics indicate the potential for BBB permeation. In competitive radioligand binding experiments using Chinese hamster ovary cell membranes expressing the individual human mAChR subtype hM1-hM5, the most promising compound 2 displayed a high binding affinitiy towards hM1R (1.2 nM) while exhibiting modest-to-excellent selectivity versus the hM2-5R (4–189-fold). All 12 compounds were shown to act in an antagonistic fashion towards hM1R using a dose-dependent calcium mobilization assay. The structural eligibility for radiolabeling and their pharmacological and physico–chemical property profiles render compounds 2, 5, and 7 promising candidates for future position emission tomography (PET) tracer development.
Collapse
|
32
|
Sanabria V, Romariz S, Braga M, Foresti ML, Naffah-Mazzacoratti MDG, Mello LE, Longo BM. Anticholinergics: A potential option for preventing posttraumatic epilepsy. Front Neurosci 2022; 16:1100256. [PMID: 36909741 PMCID: PMC9998514 DOI: 10.3389/fnins.2022.1100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/30/2022] [Indexed: 03/14/2023] Open
Abstract
Interest in the use of anticholinergics to prevent the development of epilepsy after traumatic brain injury (TBI) has grown since recent basic studies have shown their effectiveness in modifying the epileptogenic process. These studies demonstrated that treatment with anticholinergics, in the acute phase after brain injury, decreases seizure frequency, and severity, and the number of spontaneous recurrent seizures (SRS). Therefore, anticholinergics may reduce the risk of developing posttraumatic epilepsy (PTE). In this brief review, we summarize the role of the cholinergic system in epilepsy and the key findings from using anticholinergic drugs to prevent PTE in animal models and new clinical trial protocols. Furthermore, we discuss why treatment with anticholinergics is more likely to prevent PTE than treatment for other epilepsies.
Collapse
Affiliation(s)
- Viviam Sanabria
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Simone Romariz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Matheus Braga
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maira Licia Foresti
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | | | - Luiz Eugênio Mello
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | - Beatriz M Longo
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Maksimović ŽM, Škrbić R, Stojiljković MP. Dose-Dependency of Toxic Signs and Outcomes of Paraoxon Poisoning in Rats. ACTA MEDICA (HRADEC KRALOVE) 2022; 65:8-17. [PMID: 35793503 DOI: 10.14712/18059694.2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organophosphorus compounds induce irreversible inhibition of acetylcholinesterase, which then produces clinically manifested muscarinic, nicotinic and central effects. The aim of the study was to analyse the clinical signs of acute paraoxon poisoning in rats and to determine the relationship between the intensity of signs of poisoning and the dose of paraoxon and/or the outcome of poisoning in rats. Animals were treated with either saline or atropine (10 mg/kg intramuscularly). The median subcutaneous lethal dose (LD50) of paraoxon was 0.33 mg/kg and protective ratio of atropine was 2.73. The presence and intensity of signs of poisoning in rats (dyspnoea, lacrimation, exophthalmos, fasciculations, tremor, ataxia, seizures, piloerection, stereotypic movements) were observed and recorded for 4 h after the injection of paraoxon. Intensity of these toxic phenomena was evaluated as: 0 - absent, 1 - mild/moderate, 2 - severe. Fasciculations, seizures and tremor were more intense at higher doses of paraoxon and in non-survivors. In unprotected rats piloerection occurred more often and was more intense at higher doses of paraoxon as well as in non-survivors. In atropine-protected rats, piloerection did not correlate with paraoxon dose or outcome of poisoning. The intensity of fasciculations and seizures were very strong prognostic parameters of the poisoning severity.
Collapse
Affiliation(s)
- Žana M Maksimović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina.
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Miloš P Stojiljković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
34
|
Tolaymat M, Sundel MH, Alizadeh M, Xie G, Raufman JP. Potential Role for Combined Subtype-Selective Targeting of M 1 and M 3 Muscarinic Receptors in Gastrointestinal and Liver Diseases. Front Pharmacol 2021; 12:786105. [PMID: 34803723 PMCID: PMC8600121 DOI: 10.3389/fphar.2021.786105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023] Open
Abstract
Despite structural similarity, the five subtypes comprising the cholinergic muscarinic family of G protein-coupled receptors regulate remarkably diverse biological functions. This mini review focuses on the closely related and commonly co-expressed M1R and M3R muscarinic acetylcholine receptor subtypes encoded respectively by CHRM1 and CHRM3. Activated M1R and M3R signal via Gq and downstream initiate phospholipid turnover, changes in cell calcium levels, and activation of protein kinases that alter gene transcription and ultimately cell function. The unexpectedly divergent effects of M1R and M3R activation, despite similar receptor structure, distribution, and signaling, are puzzling. To explore this conundrum, we focus on the gastrointestinal (GI) tract and liver because abundant data identify opposing effects of M1R and M3R activation on the progression of gastric, pancreatic, and colon cancer, and liver injury and fibrosis. Whereas M3R activation promotes GI neoplasia, M1R activation appears protective. In contrast, in murine liver injury models, M3R activation promotes and M1R activation mitigates liver fibrosis. We analyze these findings critically, consider their therapeutic implications, and review the pharmacology and availability for research and therapeutics of M1R and M3R-selective agonists and antagonists. We conclude by considering gaps in knowledge and other factors that hinder the application of these drugs and the development of new agents to treat GI and liver diseases.
Collapse
Affiliation(s)
- Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
35
|
Dobson GP, Morris JL, Biros E, Davenport LM, Letson HL. Major surgery leads to a proinflammatory phenotype: Differential gene expression following a laparotomy. Ann Med Surg (Lond) 2021; 71:102970. [PMID: 34745602 PMCID: PMC8554464 DOI: 10.1016/j.amsu.2021.102970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The trauma of surgery is a neglected area of research. Our aim was to examine the differential expression of genes of stress, metabolism and inflammation in the major organs of a rat following a laparotomy. MATERIALS AND METHODS Anaesthetised Sprague-Dawley rats were randomised into baseline, 6-hr and 3-day groups (n = 6 each), catheterised and laparotomy performed. Animals were sacrificed at each timepoint and tissues collected for gene and protein analysis. Blood stress hormones, cytokines, endothelial injury markers and coagulation were measured. RESULTS Stress hormone corticosterone significantly increased and was accompanied by significant increases in inflammatory cytokines, endothelial markers, increased neutrophils (6-hr), higher lactate (3-days), and coagulopathy. In brain, there were significant increases in M1 muscarinic (31-fold) and α-1A-adrenergic (39-fold) receptor expression. Cortical expression of metabolic genes increased ∼3-fold, and IL-1β by 6-fold at 3-days. Cardiac β-1-adrenergic receptor expression increased up to 8.4-fold, and M2 and M1 muscarinic receptors by 2 to 4-fold (6-hr). At 3-days, cardiac mitochondrial gene expression (Tfam, Mtco3) and inflammation (IL-1α, IL-4, IL-6, MIP-1α, MCP-1) were significantly elevated. Haemodynamics remained stable. In liver, there was a dramatic suppression of adrenergic and muscarinic receptor expression (up to 90%) and increased inflammation. Gut also underwent autonomic suppression with 140-fold increase in IL-1β expression (3-days). CONCLUSIONS A single laparotomy led to a surgical-induced proinflammatory phenotype involving neuroendocrine stress, cortical excitability, immune activation, metabolic changes and coagulopathy. The pervasive nature of systemic and tissue inflammation was noteworthy. There is an urgent need for new therapies to prevent hyper-inflammation and restore homeostasis following major surgery.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Jodie L. Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Erik Biros
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Lisa M. Davenport
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Hayley L. Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| |
Collapse
|
36
|
Arany S, Kopycka-Kedzierawski DT, Caprio TV, Watson GE. Anticholinergic medication: Related dry mouth and effects on the salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:662-670. [PMID: 34593340 DOI: 10.1016/j.oooo.2021.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Salivary glands are among the most sensitive target organs of medications with anticholinergic (AC) properties, interrupting the neural stimulation of saliva secretion and reducing saliva flow. Hyposalivation results in dry mouth, leading to dental caries, intraoral infection, orofacial pain, problems with speaking and swallowing, and diminished oral health--related quality of life. Current understanding of the pharmacokinetics of AC medications and their effect on muscarinic receptors in the salivary glands were reviewed to assist clinicians in predicting salivary damage in patients with AC medication-induced dry mouth. STUDY DESIGN We summarized the literature related to the mechanisms and properties of AC medications, anticholinergic adverse effects, and their effect on salivary function and management strategies to prevent oral health damage. RESULTS Although a large number of studies reported on the frequencies of medication-induced dry mouth, we found very limited data on predicting individual susceptibility to AC medication--caused hyposalivation and no prospective clinical studies addressing this issue. CONCLUSION Dry mouth is most frequently caused by medications with AC properties, which interrupt the neural stimulation of saliva secretion. Interdisciplinary care should guide pharmacotherapeutics and dental interventions should aim in preventing AC salivary adverse effects and reducing the oral health burden from AC medication-induced dry mouth.
Collapse
Affiliation(s)
- Szilvia Arany
- Specialty Care, Department of General Dentistry, Eastman Institute of Oral Health, University of Rochester, Rochester, NY, USA.
| | - Dorota T Kopycka-Kedzierawski
- Department of Community Dentistry and Oral Disease Prevention, University of Rochester, Rochester, NY, USA; Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Thomas V Caprio
- Division of Geriatrics and Aging, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Gene E Watson
- Center for Oral Biology, University of Rochester, Rochester, NY, USA; Department of Dentistry, University of Rochester, Rochester, NY, USA; Department of Environmental Medicine and Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
37
|
Pototskiy E, Dellinger JR, Bumgarner S, Patel J, Sherrerd-Smith W, Musto AE. Brain injuries can set up an epileptogenic neuronal network. Neurosci Biobehav Rev 2021; 129:351-366. [PMID: 34384843 DOI: 10.1016/j.neubiorev.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Development of epilepsy or epileptogenesis promotes recurrent seizures. As of today, there are no effective prophylactic therapies to prevent the onset of epilepsy. Contributing to this deficiency of preventive therapy is the lack of clarity in fundamental neurobiological mechanisms underlying epileptogenesis and lack of reliable biomarkers to identify patients at risk for developing epilepsy. This limits the development of prophylactic therapies in epilepsy. Here, neural network dysfunctions reflected by oscillopathies and microepileptiform activities, including neuronal hyperexcitability and hypersynchrony, drawn from both clinical and experimental epilepsy models, have been reviewed. This review suggests that epileptogenesis reflects a progressive and dynamic dysfunction of specific neuronal networks which recruit further interconnected groups of neurons, with this resultant pathological network mediating seizure occurrence, recurrence, and progression. In the future, combining spatial and temporal resolution of neuronal non-invasive recordings from patients at risk of developing epilepsy, together with analytics and computational tools, may contribute to determining whether the brain is undergoing epileptogenesis in asymptomatic patients following brain injury.
Collapse
Affiliation(s)
- Esther Pototskiy
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; College of Sciences, Old Dominion University, Norfolk, Virginia
| | - Joshua Ryan Dellinger
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Stuart Bumgarner
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Jay Patel
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - William Sherrerd-Smith
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Alberto E Musto
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; Department of Neurology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA.
| |
Collapse
|
38
|
Barbero‐Castillo A, Riefolo F, Matera C, Caldas‐Martínez S, Mateos‐Aparicio P, Weinert JF, Garrido‐Charles A, Claro E, Sanchez‐Vives MV, Gorostiza P. Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005027. [PMID: 34018704 PMCID: PMC8292914 DOI: 10.1002/advs.202005027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/19/2021] [Indexed: 05/03/2023]
Abstract
The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.
Collapse
Affiliation(s)
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
- Department of Pharmaceutical SciencesUniversity of MilanMilan20133Italy
| | - Sara Caldas‐Martínez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Pedro Mateos‐Aparicio
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Julia F. Weinert
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
| | - Aida Garrido‐Charles
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Enrique Claro
- Institut de Neurociències and Departament de Bioquímica i Biologia MolecularUnitat de Bioquímica de MedicinaUniversitat Autònoma de Barcelona (UAB)Barcelona08193Spain
| | - Maria V. Sanchez‐Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona08036Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and TechnologyBarcelona08028Spain
- Network Biomedical Research Center in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Madrid28029Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| |
Collapse
|
39
|
Ruan Y, Patzak A, Pfeiffer N, Gericke A. Muscarinic Acetylcholine Receptors in the Retina-Therapeutic Implications. Int J Mol Sci 2021; 22:4989. [PMID: 34066677 PMCID: PMC8125843 DOI: 10.3390/ijms22094989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) belong to the superfamily of G-protein-coupled receptors (GPCRs). The family of mAChRs is composed of five subtypes, M1, M2, M3, M4 and M5, which have distinct expression patterns and functions. In the eye and its adnexa, mAChRs are widely expressed and exert multiple functions, such as modulation of tear secretion, regulation of pupil size, modulation of intraocular pressure, participation in cell-to-cell signaling and modula-tion of vascular diameter in the retina. Due to this variety of functions, it is reasonable to assume that abnormalities in mAChR signaling may contribute to the development of various ocular diseases. On the other hand, mAChRs may offer an attractive therapeutic target to treat ocular diseases. Thus far, non-subtype-selective mAChR ligands have been used in ophthalmology to treat dry eye disease, myopia and glaucoma. However, these drugs were shown to cause various side-effects. Thus, the use of subtype-selective ligands would be useful to circumvent this problem. In this review, we give an overview on the localization and on the functional role of mAChR subtypes in the eye and its adnexa with a special focus on the retina. Moreover, we describe the pathophysiological role of mAChRs in retinal diseases and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| |
Collapse
|
40
|
Khurana K, Kumar M, Bansal N. Lacidipine Prevents Scopolamine-Induced Memory Impairment by Reducing Brain Oxido-nitrosative Stress in Mice. Neurotox Res 2021; 39:1087-1102. [PMID: 33721210 DOI: 10.1007/s12640-021-00346-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Cholinergic deficits and oxido-nitrosative stress are consistently associated with Alzheimer's disease (AD). Previous findings indicate that acetylcholine subdues Ca2+ current in the brain. Cholinergic antagonists (e.g., scopolamine) can instigate Ca2+-induced redox imbalance, inflammation, and cell-death pathways leading to AD-type memory impairment. Earlier, several Ca2+-channel blockers (CCB, e.g., dihydropyridine type) or cholinergic enhancers showed promising results in animal models of AD. In the present research, pretreatment effects of lacidipine (L-type CCB) on learning and memory functions were investigated using the scopolamine mouse model of AD. Swiss albino mice (20-25 g) were administered lacidipine (1 and 3 mg/kg) for 14 days. Scopolamine, an anti-muscarinic drug, was given (1 mg/kg) from days 8 to 14. The mice were subjected to elevated plus maze (EPM) and passive-avoidance (PA) paradigms. Bay-K8644 (a Ca2+-channel agonist) was administered before behavioral studies on days 13 and 14. Biochemical parameters of oxidative stress and acetylcholinesterase (AChE) activity were quantified using the whole brain. Behavioral studies showed an increase in transfer latency (TL) in the EPM test and a decrease in step-through latency (STL) in the PA test in scopolamine-administered mice. Scopolamine enhanced the AChE activity and oxidative stress in the brain of mice which resulted in memory impairment. Lacidipine prevented the amnesia against scopolamine and reduced the oxidative stress and AChE activity in the brain of mice. Bay-K8644 attenuated the lacidipine-induced improvement in memory and redox balance in scopolamine-administered mice. Lacidipine can prevent the oxidative stress and improve the cholinergic function in the brain. These properties of lacidipine can mitigate the pathogenesis of AD-type dementia.
Collapse
Affiliation(s)
- Kunal Khurana
- I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144603, India.,Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India
| | - Manish Kumar
- Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, 140111, India
| | - Nitin Bansal
- Department of Pharmacology, Amar Shaheed Baba Ajeet Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India. .,Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University (CBLU), Bhiwani, Haryana, 127021, India.
| |
Collapse
|
41
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
42
|
Orjatsalo M, Partinen E, Wallukat G, Alakuijala A, Partinen M. Activating autoantibodies against G protein-coupled receptors in narcolepsy type 1. Sleep Med 2020; 77:82-87. [PMID: 33341642 DOI: 10.1016/j.sleep.2020.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/01/2022]
Abstract
STUDY OBJECTIVES Narcolepsy type 1 is a rare hypersomnia of central origin, which is caused by loss of hypothalamic neurons that produce the neuropeptides hypocretin-1 and -2. Hypocretin-containing nerve terminals are found in areas known to play a central role in autonomic control and in pain signaling. Cholinergic M2 receptors are found in brain areas involved with the occurrence of hallucinations and cataplexy. In addition to classical symptoms of narcolepsy, the patients suffer frequently from autonomic dysfunction, chronic pain, and hypnagogic/hypnopompic hallucinations. We aimed to test whether narcolepsy type 1 patients have autoantibodies against autonomic β2 adrenergic receptor, M2 muscarinic receptors, or nociception receptors. METHODS We tested the serum of ten narcolepsy type 1 patients (five female) for activating β2 adrenergic receptor autoantibodies, M2 muscarinic receptor autoantibodies, and nociception receptor autoantibodies. RESULTS Ten of ten patients were positive for muscarinic M2 receptor autoantibodies (P < 0.001), 9/10 were positive for autoantibodies against nociception receptors (P < 0.001), and 5/10 were positive for β2 adrenergic receptor autoantibodies (P < 0.001). CONCLUSIONS Narcolepsy type 1 patients harbored activating autoantibodies against M2 muscarinic receptors, nociception receptors, and β2 adrenergic receptors. M2 receptor autoantibodies may be related to the occurrence of cataplexy and, moreover, hallucinations in narcolepsy since they are found in the same brain areas that are involved with these symptoms. The occurrence of nociception receptor autoantibodies strengthens the association between narcolepsy type 1 and pain. The connection between narcolepsy type 1, autonomic complaints, and the presumed cardiovascular morbidity might be associated with the occurrence of β2 adrenergic receptor autoantibodies. On the other hand, the presence of the autoantibodies may be secondary to the destruction of the hypocretin pathways.
Collapse
Affiliation(s)
- Maija Orjatsalo
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Finland; Department of Neurological Sciences, University of Helsinki, Helsinki, Finland.
| | - Eemil Partinen
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland; Vitalmed Research Center, Helsinki Sleep Clinic, Valimotie 21, 00380, Helsinki, Finland
| | | | - Anniina Alakuijala
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Finland; Department of Neurological Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Partinen
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland; Vitalmed Research Center, Helsinki Sleep Clinic, Valimotie 21, 00380, Helsinki, Finland
| |
Collapse
|
43
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
44
|
Wang KL, Hsia SM, Wang PS, Lin PH. Disturbed Gastrointestinal Contractility in a Polycystic Ovary Syndrome Rat Model. Dig Dis Sci 2020; 65:2834-2843. [PMID: 31897897 DOI: 10.1007/s10620-019-06001-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), a common hormonal disorder in women, affects 4-18% of women of reproductive age worldwide. A higher prevalence of irritable bowel syndrome was found in women with PCOS. However, the effects and mechanism of PCOS on stomach and colon contractility remain unclear. AIMS This study aims to evaluate the correlation between PCOS and gastrointestinal disorder. METHODS Four-week-old female rats were subcutaneously implanted with pellets containing 7.5 mg of dihydrotestosterone for 13 weeks to create PCOS rat models. After vaginal smears, the estrus cycle stage was evaluated. Oral glucose tolerance test was performed after 90 days of treatment. All animals were killed at 17 weeks. The rats were fasted overnight and then anesthetized before decapitation, and the stomach fundus and colon were surgically removed and cultured in oxygenated Krebs solution. Acetylcholine and carbachol were used to evaluate the cholinergic system on contractility. RESULTS The basal and stomach fundus responded with a reduced frequency and contractility in response to acetylcholine in the PCOS group. Moreover, no difference was found in the spontaneous stomach contractility induced by carbachol in both groups. Lower maximal colon muscle contractility was also found in response to acetylcholine stimulation in PCOS rats. Furthermore, lower maximal muscle contractility was found in response to extracellular calcium levels. MLC20 phosphorylation was also reduced in the gastrointestinal tissue in PCOS rats. CONCLUSIONS PCOS induces gastroparesis and reduces gastrointestinal muscle contractility. This effect is, at least partly, through reducing the responsiveness of acetylcholine and MLC20 phosphorylation.
Collapse
Affiliation(s)
- Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, No. 336, Fuxsin Rd., Zhongshan Dist., Keelung City, 20301, Taiwan, Republic of China.
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| | - Paulus S Wang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- PhD Program of Aging, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China
- Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China
| | - Po-Han Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| |
Collapse
|
45
|
Functional coupling of M 1 muscarinic acetylcholine receptor to Gα q/11 in dorsolateral prefrontal cortex from patients with psychiatric disorders: a postmortem study. Eur Arch Psychiatry Clin Neurosci 2020; 270:869-880. [PMID: 31807862 DOI: 10.1007/s00406-019-01088-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/23/2019] [Indexed: 01/14/2023]
Abstract
Accumulating studies have implicated intracellular signaling through muscarinic acetylcholine receptors (mAChRs) in psychiatric illness. In the present study, carbamylcholine chloride (carbachol)-induced Gαi/o and Gαq/11 activation was identified in postmortem human prefrontal cortical membranes. The following two sample cohorts were used: subjects [1], consisting of 40 controls without neuropsychiatric disorders, and subjects [2], consisting of 20 with bipolar disorder (BP), 20 major depressive disorder (MDD), 20 schizophrenia, and 20 controls, strictly sex- and age-matched. Carbachol-stimulated [35S]GTPγS binding to human brain membranes was assessed by the two methods, i.e., conventional method using filtration techniques (Gαi/o activation coupled to M2/M4 mAChRs) applied to subjects [1], and [35S]GTPγS binding/immuno precipitation assay (Gαq/11 activation coupled to M1 mAChR) applied to subjects [1] and [2]. The concentration eliciting the half-maximal effect (EC50), maximum percent increase (%Emax), and slope factor were obtained from concentration-response curve of carbachol-induced Gαi/o and Gαq/11 activation. The pEC50 values of both carbachol-induced Gαi/o and Gαq/11 activations in subjects [1] were significantly correlated, though its implications or underlying molecular processes are unclear. The results of M1 mAChR-mediated Gαq/11 activation in subjects [2] indicated no significant disorder-specific alterations. However, the distribution patterns of the pEC50 values showed unequal variances among the groups. There was a significant inverse correlation between the %Emax values and the pEC50 values in subjects with schizophrenia, but not in those with BP or MDD, or controls. These data support the notion that schizophrenia patients consist of biologically heterogeneous subgroups with respect to M1 mAChR-mediated signaling pathways.
Collapse
|
46
|
Xu Y, Zhang S, Sun Q, Wang XQ, Chai YN, Mishra C, Chandra SR, Ai J. Cholinergic Dysfunction Involvement in Chronic Cerebral Hypoperfusion-Induced Impairment of Medial Septum-dCA1 Neurocircuit in Rats. Front Cell Neurosci 2020; 14:586591. [PMID: 33132852 PMCID: PMC7550820 DOI: 10.3389/fncel.2020.586591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is considered a preclinical condition of mild cognitive impairment and thought to precede dementia. However, as the principal cholinergic source of hippocampus, whether the septo-hippocampal neurocircuit was impaired after CCH is still unknown. In this study, we established the CCH rat model by bilateral common carotid artery occlusion (2VO). Under anesthesia, the medial septum (MS) of rats was stimulated to evoke the field excitatory post-synaptic potential (fEPSP) in the pyramidal cell layer of dCA1. Consequently, we observed decreased amplitude of fEPSP and increased paired-pulse ratio (PPR) after 8-week CCH. After tail pinch, we also found decreased peak frequency and shortened duration of hippocampal theta rhythm in 2VO rats, indicating the dysfunction of septo-hippocampal neurocircuit. Besides, by intracerebroventricularly injecting GABAergic inhibitor (bicuculline) and cholinergic inhibitors (scopolamine and mecamylamine), we found that CCH impaired both the pre-synaptic cholinergic release and the post-synaptic nAChR function in MS-dCA1 circuits. These results gave an insight into the role of CCH in the impairment of cholinergic MS-dCA1 neurocircuits. These findings may provide a new idea about the CCH-induced neurodegenerative changes.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shuai Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Qiang Sun
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Xu-Qiao Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Ya-Ni Chai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Chandan Mishra
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shah Ram Chandra
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Hernández-Rodríguez M, Arciniega-Martínez IM, García-Marín ID, Correa-Basurto J, Rosales-Hernández MC. Chronic Administration of Scopolamine Increased GSK3βP9, Beta Secretase, Amyloid Beta, and Oxidative Stress in the Hippocampus of Wistar Rats. Mol Neurobiol 2020; 57:3979-3988. [PMID: 32638218 DOI: 10.1007/s12035-020-02009-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
The increase of amyloid beta (Aβ) release and hyperphosphorylation of Tau protein represents the main events related to Alzheimer's disease (AD). Furthermore, the sporadic type represents the most common form of AD. Therefore, the establishment of a non-transgenic animal model that resembles the characteristics of the disease is of particular importance. Scopolamine has been linked to increases in both Aβ production and oxidative stress in rat and mice brains. Thus, the purpose of the present work was to identify changes in biomarkers that are related to AD after chronic administration of scopolamine (2 mg/kg i.p., during 6 and 12 weeks) to male Wistar rats. The results showed increased Aβ deposition at rat hippocampus which could be due to an increase of β-site amyloid-β-protein precursor cleaving enzyme 1 (BACE1) expression and activity. These findings could be related to the increase of glycogen synthase kinase 3 phosphorylated (GSK3βP9) expression. Finally, the establishment of a state of oxidative stress in groups treated with scopolamine was demonstrated by an increase in free radical content and MDA levels. The present study facilitates our understanding of the changes that occur in biomolecules related to AD in Wistar rats after the chronic administration of scopolamine.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.,Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico
| | - Iohanan Daniel García-Marín
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.,Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.
| |
Collapse
|
48
|
Teixeira NB, Sant'Anna MB, Giardini AC, Araujo LP, Fonseca LA, Basso AS, Cury Y, Picolo G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG 35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav Immun 2020; 84:253-268. [PMID: 31843645 DOI: 10.1016/j.bbi.2019.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st-12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th-9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 μg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-γ-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.
Collapse
Affiliation(s)
- N B Teixeira
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - M B Sant'Anna
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - L P Araujo
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - L A Fonseca
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A S Basso
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - Y Cury
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - G Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.
| |
Collapse
|
49
|
Bertrand D, Wallace TL. A Review of the Cholinergic System and Therapeutic Approaches to Treat Brain Disorders. Curr Top Behav Neurosci 2020; 45:1-28. [PMID: 32451956 DOI: 10.1007/7854_2020_141] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since its identification over a hundred years ago, the neurotransmitter acetylcholine (ACh) has proven to play an essential role in supporting many diverse functions. Some well-characterized functions include: chemical transmission at the neuromuscular junction; autonomic function in the peripheral nervous system; and, sustained attention, sleep/wake regulation, and learning and memory within the central nervous system. Within the brain, major cholinergic projection pathways from the basal forebrain and the brainstem support these centrally mediated processes, and dysregulation of the cholinergic system is implicated in cognitive decline associated with aging and dementias including Alzheimer's disease. ACh exerts its effects by binding to two different membrane-bound receptor classes: (1) G‑protein coupled muscarinic acetylcholine receptors (mAChRs), and (2) ligand-gated nicotinic acetylcholine receptors (nAChRs). These receptor systems are described in detail within this chapter along with discussion on the successes and failures of synthetic ligands designed to selectively target receptor subtypes for treating brain disorders. New molecular approaches and advances in our understanding of the target biology combined with opportunities to re-purpose existing cholinergic drugs for new indications continue to highlight the exciting opportunities for modulating this system for therapeutic purposes.
Collapse
|
50
|
Zenko D, Thompson D, Hislop JN. Endocytic sorting and downregulation of the M2 acetylcholine receptor is regulated by ubiquitin and the ESCRT complex. Neuropharmacology 2020; 162:107828. [PMID: 31654703 DOI: 10.1016/j.neuropharm.2019.107828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023]
Abstract
Cholinergic dysfunction plays a critical role in a number of disease states, and the loss of functional muscarinic acetylcholine receptors plays a key role in disease pathogenesis. Therefore, preventing receptor downregulation would maintain functional receptor number, and be predicted to alleviate symptoms. However, the molecular mechanism(s) underlying muscarinic receptor downregulation are currently unknown. Here we demonstrate that the M2 muscarinic receptor undergoes rapid lysosomal proteolysis, and this lysosomal trafficking is facilitated by ubiquitination of the receptor. Importantly, we show that this trafficking is driven specifically by ESCRT mediated involution. Critically, we provide evidence that disruption of this process leads to a re-routing of the trafficking of the M2 receptor away from the lysosome and into recycling pathway, and eventually back to the plasma membrane. This study is the first to identify the process by which the M2 muscarinic acetylcholine receptor undergoes endocytic sorting, and critically reveals a regulatory checkpoint that represents a target to pharmacologically increase the number of functional muscarinic receptors within the central nervous system.
Collapse
Affiliation(s)
- Dmitry Zenko
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK
| | - James N Hislop
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK.
| |
Collapse
|