1
|
Soliman NK, Abbas AM, El Tayeb WN, Alshahrani MY, Aboshanab KM. Whole genome sequence and LC-Mass for identifying antimicrobial metabolites of Bacillus licheniformis endophyte. AMB Express 2024; 14:139. [PMID: 39704988 DOI: 10.1186/s13568-024-01789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Antimicrobial resistance (AMR) represents a critical public health issue that requiring immediate action. Wild halophytic plants can be the solution for the AMR crisis because they harbor unique endophytes capable of producing potent antimicrobial metabolites. This study aimed at identifying promising and antimicrobial metabolites produced by endophytic/epiphytic bacteria recovered from the wild Bassia scoparia plant. Standard methods were employed for the isolation of endophytes/epiphytes. Whole genome sequence (WGS) using Oxford Nanopore technology followed by antiSMASH analysis coupled with advanced LC-MS spectroscopic analysis were used for identification of the active antimicrobial metabolites. This study identified Bacillus licheniformis strain CCASU-B18 as a promising endophytic bacterium from the Bassia scoparia plant. In addition, the strain showed broad-spectrum antibacterial activity against three standard and five MDR clinical Gram-positive and Gram-negative isolates, and antifungal activity against the standard C. albicans strain. Six main antimicrobial metabolites-thermoactinoamide A, bacillibactins, lichenysins, lichenicidins, fengycin, and bacillomycin-were verified to exist by whole genome sequencing for identifying the respective conserved biosynthetic gene clusters in conjunction with LC/MS-MS analysis. The complete genomic DNA (4125835) and associated plasmid (205548 bp) of the promising endophytic isolate were sequenced, assembled, annotated, and submitted into the NCBI GenBank database under the accession codes, CP157373. In conclusion, Bacillus licheniformis strain CCASU-B18, a promising endophytic bacterium exhibiting broad-spectrum antimicrobial activities, was isolated. Future research is highly recommended to optimize the culture conditions that will be employed to enhance the production of respective antimicrobial metabolites, as well as testing these compounds against a broader range of MDR-resistant pathogens.
Collapse
Affiliation(s)
- Nourhan K Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmad M Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr, South Sinai, Egypt
| | - Wafaa N El Tayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Bogadi S, Rao P, KU V, Kuppusamy G, Madhunapantula SV, Subramaniyan V, Satyanarayana Reddy Karri VV, Aswathanarayan JB. Management of biofilm-associated infections in diabetic wounds – from bench to bedside. PURE APPL CHEM 2024; 96:1351-1374. [DOI: 10.1515/pac-2023-1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Abstract
Biofilms are complex bacterial colonies embedded in an extracellular matrix. These pose a major obstacle to wound healing and are noticeable in chronic wounds. It protects the bacteria from the host’s immune system and conventional antibiotic treatments. The biofilm’s protective matrix prevents essential nutrients and oxygen from diffusing into the surrounding healthy tissue. In addition, microbes living in biofilms naturally have increased resistance to antibiotics, which reduces the effectiveness of traditional therapies. As such, biofilms serve as persistent reservoirs of infection, which further disrupts the normal course of wound healing. In this review, the current formulation strategies such as hydrogels, polymeric nanoparticles, and nanofibers that are used in wound healing to counteract biofilms have been comprehensively discussed. The formulations have been meticulously designed and developed to disturb the biofilm matrix, prevent the growth of microorganisms, and increase the potency of antimicrobials and antibiotics. The mechanism of action, advantages and limitations associated with the existing formulation strategies have been reviewed. The formulation strategies that have been translated into clinical applications and patented are also discussed in this paper.
Collapse
Affiliation(s)
- Subhasri Bogadi
- Department of Pharmaceutics , JSS College of Pharmacy, JSS Academy of Higher Education & Research , Ooty , Tamil Nadu – 643001 , India
| | - Pooja Rao
- Department of Microbiology , JSS Academy of Higher Education & Research , Mysuru , Karnataka – 570015 , India
| | - Vasudha KU
- Department of Microbiology , JSS Academy of Higher Education & Research , Mysuru , Karnataka – 570015 , India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics , JSS College of Pharmacy, JSS Academy of Higher Education & Research , Ooty , Tamil Nadu – 643001 , India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry , JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER) , Mysore – 570015 , Karnataka , India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University , Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan , Malaysia
| | | | - Jamuna Bai Aswathanarayan
- Department of Microbiology , JSS Academy of Higher Education & Research , Mysuru , Karnataka – 570015 , India
| |
Collapse
|
3
|
Itelson L, Merav M, Haymi S, Carmeli S, Ilan M. Diversity and Activity of Bacteria Cultured from a Cup-The Sponge Calyx nicaeensis. Mar Drugs 2024; 22:440. [PMID: 39452848 PMCID: PMC11509412 DOI: 10.3390/md22100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Marine sponges are well-known for hosting rich microbial communities. Sponges are the most prolific source of marine bioactive compounds, which are frequently synthesized by their associated microbiota. Calyx nicaeensis is an endemic Mediterranean sponge with scarce information regarding its (bioactive) secondary metabolites. East Mediterranean specimens of mesophotic C. nicaeensis have never been studied. Moreover, no research has inspected its associated bacteria. Thus, we studied the sponge's bacterial diversity and examined bacterial interspecific interactions in search of a promising antibacterial candidate. Such novel antimicrobial agents are needed since extensive antibiotic use leads to bacterial drug resistance. Bacteria cultivation yielded 90 operational taxonomic units (OTUs). A competition assay enabled the testing of interspecific interactions between the cultured OTUs. The highest-ranked antagonistic bacterium, identified as Paenisporosarcina indica (previously never found in marine or cold habitats), was mass cultured, extracted, and separated using size exclusion and reversed-phase chromatographic methods, guided by antibacterial activity. A pure compound was isolated and identified as 3-oxy-anteiso-C15-fatty acid-lichenysin. Five additional active compounds await final cleaning; however, they are lichenysins and surfactins. These are the first antibacterial compounds identified from either the C. nicaeensis sponge or P. indica bacterium. It also revealed that the genus Bacillus is not an exclusive producer of lichenysin and surfactin.
Collapse
Affiliation(s)
- Lynne Itelson
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Mayan Merav
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.M.); (S.C.)
| | - Shai Haymi
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Shmuel Carmeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.M.); (S.C.)
| | - Micha Ilan
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
4
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
C FC, T K. Advances in stabilization of metallic nanoparticle with biosurfactants- a review on current trends. Heliyon 2024; 10:e29773. [PMID: 38699002 PMCID: PMC11064090 DOI: 10.1016/j.heliyon.2024.e29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Recently, research based on new biomaterials for stabilizing metallic nanoparticles has increased due to their greater environmental friendliness and lower health risk. Their stability is often a critical factor influencing their performance and shelf life. Nowadays, the use of biosurfactants is gaining interest due to their sustainable advantages. Biosurfactants are used for various commercial and industrial applications such as food processing, therapeutic applications, agriculture, etc. Biosurfactants create stable coatings surrounding nanoparticles to stop agglomeration and provide long-term stability. The present review study describes a collection of important scientific works on stabilization and capping of metallic nanoparticles as biosurfactants. This review also provides a comprehensive overview of the intrinsic properties and environmental aspects of metal nanoparticles coated with biosurfactants. In addition, future methods and potential solutions for biosurfactant-mediated stabilization in nanoparticle synthesis are also highlighted. The objective of this study is to ensure that the stabilized nanoparticles exhibit biocompatible properties, making them suitable for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Kamalesh T
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| |
Collapse
|
6
|
Eltokhy MA, Saad BT, Eltayeb WN, Alshahrani MY, Radwan SMR, Aboshanab KM, Ashour MSE. Metagenomic nanopore sequencing for exploring the nature of antimicrobial metabolites of Bacillus haynesii. AMB Express 2024; 14:52. [PMID: 38704474 PMCID: PMC11069495 DOI: 10.1186/s13568-024-01701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.
Collapse
Affiliation(s)
- Mohamed A Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Wafaa N Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Sahar M R Radwan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Organization of African Unity St., Cairo, 11651, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Organization of African Unity St., Cairo, 11566, Egypt.
| | - Mohamed S E Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, 11651, Egypt
| |
Collapse
|
7
|
Puyol McKenna P, Naughton PJ, Dooley JSG, Ternan NG, Lemoine P, Banat IM. Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits. Pharmaceuticals (Basel) 2024; 17:138. [PMID: 38276011 PMCID: PMC10818721 DOI: 10.3390/ph17010138] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The rapid emergence of multidrug-resistant pathogens worldwide has raised concerns regarding the effectiveness of conventional antibiotics. This can be observed in ESKAPE pathogens, among others, whose multiple resistance mechanisms have led to a reduction in effective treatment options. Innovative strategies aimed at mitigating the incidence of antibiotic-resistant pathogens encompass the potential use of biosurfactants. These surface-active agents comprise a group of unique amphiphilic molecules of microbial origin that are capable of interacting with the lipidic components of microorganisms. Biosurfactant interactions with different surfaces can affect their hydrophobic properties and as a result, their ability to alter microorganisms' adhesion abilities and consequent biofilm formation. Unlike synthetic surfactants, biosurfactants present low toxicity and high biodegradability and remain stable under temperature and pH extremes, making them potentially suitable for targeted use in medical and pharmaceutical applications. This review discusses the development of biosurfactants in biomedical and therapeutic uses as antimicrobial and antibiofilm agents, in addition to considering the potential synergistic effect of biosurfactants in combination with antibiotics. Furthermore, the anti-cancer and anti-viral potential of biosurfactants in relation to COVID-19 is also discussed.
Collapse
Affiliation(s)
- Patricia Puyol McKenna
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick J. Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - James S. G. Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Nigel G. Ternan
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick Lemoine
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast BT15 1ED, UK;
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
8
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
9
|
Sharma N, Lavania M, Lal B. Biosurfactant: an emerging tool for the petroleum industries. Front Microbiol 2023; 14:1254557. [PMID: 37771700 PMCID: PMC10522915 DOI: 10.3389/fmicb.2023.1254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The petroleum sector is essential to supplying the world's energy demand, but it also involves numerous environmental problems, such as soil pollution and oil spills. The review explores biosurfactants' potential as a new tool for the petroleum sector. Comparing biosurfactants to their chemical equivalents reveals several advantages. They are ecologically sustainable solutions since they are renewable, nontoxic, and biodegradable. Biosurfactants are used in a variety of ways in the petroleum sector. They can improve the mobilization and extraction of trapped hydrocarbons during oil recovery procedures. By encouraging the dispersion and solubilization of hydrocarbons, biosurfactants also assist in the cleanup of oil spills and polluted locations by accelerating their breakdown by local microorganisms. The review gives insights into alternative methods for the petroleum industry that are more viable and cost-effective.
Collapse
Affiliation(s)
| | - Meeta Lavania
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | | |
Collapse
|
10
|
Luo C, Chen M, Luo K, Yin X, Onchari MM, Wang X, Zhang J, Zhong H, Tian B. Genome Sequencing and Genetic Engineering Reveal the Contribution of Bacitracin Produced by Bacillus paralicheniformis CPL618 to Anti-Staphylococcus aureus Activity. Curr Microbiol 2023; 80:135. [PMID: 36913050 DOI: 10.1007/s00284-023-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023]
Abstract
Staphylococcus aureus is one of the important pathogens causing human diseases, especially its treatment has great challenges due to its resistance to methicillin and vancomycin. The Bacillus strains are known to be major sources of second metabolites that can function as drugs. Therefore, it is of great value to excavate metabolites with good inhibitory activity against S. aureus from Bacillus strains. In this study, a strain Bacillus paralicheniformis CPL618 with good antagonistic activity against S. aureus was isolated and genome analysis showed that the size was 4,447,938 bp and contained four gene clusters fen, bac, dhb, and lch which are potentially responsible for four cyclic peptides fengycin, bacitracin, bacillibactin, and lichenysin biosynthesis, respectively. These gene clusters were knockout by homologous recombination. The bacteriostatic experiment results showed that the antibacterial activity of ∆bac decreased 72.3% while Δfen, Δdhb, and ΔlchA did not significantly changed as that of wild type. Interestingly, the maximum bacitracin yield was up to 92 U/mL in the LB medium, which was extremely unusual in wild type strains. To further improve the production of bacitracin, transcription regulators abrB and lrp were knocked out, the bacitracin produced by ΔabrB, Δlrp, and ΔabrB + lrp was 124 U/mL, 112 U/mL, and 160 U/ml, respectively. Although no new anti-S. aureus compounds was found by using genome mining in this study, the molecular mechanisms of high yield of bacitracin and anti-S. aureus in B. paralicheniformis CPL618 were clarified. Moreover, B. paralicheniformis CPL618 was further genetically engineered for industrial production of bacitracin.
Collapse
Affiliation(s)
- Chuping Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| | - Meilin Chen
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Kecheng Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiulian Yin
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Mary M Onchari
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiaohua Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Jinfeng Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Haijing Zhong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Baoxia Tian
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
11
|
Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023; 28:molecules28062432. [PMID: 36985403 PMCID: PMC10058477 DOI: 10.3390/molecules28062432] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Biofilms are microbial aggregation membranes that are formed when microorganisms attach to the surfaces of living or nonliving things. Importantly, biofilm properties provide microorganisms with protection against environmental pressures and enhance their resistance to antimicrobial agents, contributing to microbial persistence and toxicity. Thus, bacterial biofilm formation is part of the bacterial survival mechanism. However, if foodborne pathogens form biofilms, the risk of foodborne disease infections can be greatly exacerbated, which can cause major public health risks and lead to adverse economic consequences. Therefore, research on biofilms and their removal strategies are very important in the food industry. Food waste due to spoilage within the food industry remains a global challenge to environmental sustainability and the security of food supplies. This review describes bacterial biofilm formation, elaborates on the problem associated with biofilms in the food industry, enumerates several kinds of common foodborne pathogens in biofilms, summarizes the current strategies used to eliminate or control harmful bacterial biofilm formation, introduces the current and emerging control strategies, and emphasizes future development prospects with respect to bacterial biofilms.
Collapse
|
12
|
Production and Characterization of New Biosurfactants/Bioemulsifiers from Pantoea alhagi and Their Antioxidant, Antimicrobial and Anti-Biofilm Potentiality Evaluations. Molecules 2023; 28:molecules28041912. [PMID: 36838900 PMCID: PMC9963710 DOI: 10.3390/molecules28041912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The present work aimed to develop rapid approach monitoring using a simple selective method based on a positive hemolysis test, oil spreading activity and emulsification index determinations. It is the first to describe production of biosurfactants (BS) by the endophytic Pantoea alhagi species. Results indicated that the new BS evidenced an E24 emulsification index of 82%. Fourier-transform infrared (FTIR) results mentioned that the described BS belong to the glycolipid family. Fatty acid profiles showed the predominance of methyl 2-hyroxydodecanoate in the cell membrane (67.00%) and methyl 14-methylhexadecanoate (12.05%). The major fatty acid in the BS was oleic acid (76.26%), followed by methyl 12-methyltetradecanoate (10.93%). Markedly, the BS produced by the Pantoea alhagi species exhibited antimicrobial and anti-biofilm activities against tested human pathogens. With superior antibacterial activity against Escherchia coli and Staphylococcus aureus, a high antifungal effect was given against Fusarium sp. with a diameter of zone of inhibition of 29.5 mm, 36 mm and 31 mm, obtained by BS dissolved in methanol extract. The DPPH assay indicated that the BS (2 mg/mL) showed a higher antioxidant activity (78.07 inhibition percentage). The new BS exhibited specific characteristics, encouraging their use in various industrial applications.
Collapse
|
13
|
Optimization of Medium Components for Fed-Batch Fermentation Using Central Composite Design to Enhance Lichenysin Production by Bacillus licheniformis Ali5. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lichenysin, an amphiphilic biosurfactant with structural and physicochemical properties similar to surfactin, is produced by Bacillus licheniformis. Its low toxicity, good environmental compatibility, solubilization, foaming, emulsification and detergent activities have led to a wide range of applications in agricultural biocontrol, enhanced oil recovery, foaming agents for cosmetics and detergents for household cleaning products. However, despite the extraordinary surface-active properties and potential applications of lichenysin, the number of wild bacteria found so far is relatively low. Low titers and high costs are the main limiting factors for widespread industrial applications. In this study, a factorial design was used to optimize the composition of the medium for the production of lichenysin by Bacillus licheniformis Ali5. Firstly, the solutions of carbon, nitrogen, amino acids, inorganic salts and trace elements in the medium were evaluated in flasks using a single-factor optimization method. Meanwhile, the operating conditions were optimized in the same way. Afterwards, a partial factorial design was used to investigate the effect of six variables (five medium compositions and inoculum size) on lichenysin production. Based on the results obtained, the concentrations of sucrose and ammonium nitrate and the inoculum size were considered to be important for lichenysin production. Subsequently, a full factorial design was used to optimize these three variables. The optimized medium composition were sucrose 19.8 g/L, NH4NO3 3.9 g/L, K2HPO4·3H2O 4.0 g/L, MgSO4·7H2O 0.6 g/L, FeSO4·7H2O 0.1 g/L, CaCl2 0.01 g/L, NaCl 3.0, trace elements 1.2 mL/L. Finally, the titer of lichenysin after fed-batch fermentation reached 1425.85 mg/L, which was approximately 5.5 times higher than the titer of lichenysin from the original medium. Consequently, the method was further demonstrated to be suitable for lichenysin production.
Collapse
|
14
|
Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing. Polymers (Basel) 2022; 14:polym14173541. [PMID: 36080616 PMCID: PMC9460443 DOI: 10.3390/polym14173541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS. The wound dressing was coated by spraying the solution of 3% COS and 6% PVP on the PCL base membrane (PVP6–3) three times, which shows good interaction with biological subjects, including bacterial strains and blood components. PVP6–3 samples confirm the diameter of inhibition zones of 20.0 ± 2.5 and 17.9 ± 2.5 mm against Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The membrane induces hemostasis with a blood clotting index of 74% after 5 min of contact. In the mice model, wounds treated with PVP6–3 closed 95% of the area after 10 days. Histological study determines the progression of skin regeneration with the construction of granulation tissue, new vascular systems, and hair follicles. Furthermore, the newly-growth skin shares structural resemblances to that of native tissue. This study suggests a simple approach to a multi-purpose wound dressing for clinical treatment.
Collapse
|
15
|
Mendoza IC, Luna EO, Pozo MD, Vásquez MV, Montoya DC, Moran GC, Romero LG, Yépez X, Salazar R, Romero-Peña M, León JC. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. Lebensm Wiss Technol 2022; 165:113714. [PMID: 35783661 PMCID: PMC9239846 DOI: 10.1016/j.lwt.2022.113714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Pandemic COVID-19 warned the importance of preparing the immune system to prevent diseases. Therefore, consuming fresh fruits and vegetables is essential for a healthy and balanced diet due to their diverse compositions of vitamins, minerals, fiber, and bioactive compounds. However, these fresh products grew close to manure and irrigation water and are harvested with equipment or by hand, representing a high risk of microbial, physical, and chemical contamination. The handling of fruits and vegetables exposed them to various wet surfaces of equipment and utensils, an ideal environment for biofilm formation and a potential risk for microbial contamination and foodborne illnesses. In this sense, this review presents an overview of the main problems associated with microbial contamination and the several chemicals, physical, and biological disinfection methods concerning their ability to avoid food contamination. This work has discussed using chemical products such as chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds. Moreover, newer techniques including ozone, electrolyzed water, ultraviolet light, ultrasound, high hydrostatic pressure, cold plasma technology, and microbial surfactants have also been illustrated here. Finally, future trends in disinfection with a sustainable approach such as combined methods were also described. Therefore, the fruit and vegetable industries can be informed about their main microbial risks to establish optimal and efficient procedures to ensure food safety.
Collapse
Affiliation(s)
- Iana Cruz Mendoza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Esther Ortiz Luna
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Dreher Pozo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mirian Villavicencio Vásquez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Diana Coello Montoya
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Galo Chuchuca Moran
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Luis Galarza Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ximena Yépez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Romero-Peña
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jonathan Coronel León
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
16
|
Cruz Mendoza I, Villavicencio-Vasquez M, Aguayo P, Coello Montoya D, Plaza L, Romero-Peña M, Marqués AM, Coronel-León J. Biosurfactant from Bacillus subtilis DS03: Properties and Application in Cleaning Out Place System in a Pilot Sausages Processing. Microorganisms 2022; 10:microorganisms10081518. [PMID: 35893576 PMCID: PMC9332754 DOI: 10.3390/microorganisms10081518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Biosurfactants (BS) are amphiphilic molecules that align at the interface reducing the surface tension. BS production is developed as an alternative to synthetic surfactants because they are biodegradable, with low toxicity and high specificity. BS are versatile, and this research proposes using a biosurfactant crude extract (BCE) as part of cleaning products. This paper reported the BCE production from Bacillus subtilis DS03 using a medium with molasses. The BCE product was characterized by different physical and chemical tests under a wide pH range, high temperatures, and emulsifying properties showing successful results. The water surface tension of 72 mN/m was reduced to 34 mN/m with BCE, achieving a critical micelle concentration at 24.66 ppm. BCE was also applied to polystyrene surface as pre-treatment to avoid microbial biofilm development, showing inhibition in more than 90% of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes above 2000 ppm BCE. The test continued using BCE as post-treatment to remove biofilms, reporting a significant reduction of 50.10% Escherichia coli, 55.77% Staphylococcus aureus, and 59.44% Listeria monocytogenes in a concentration higher than 250 ppm BCE. Finally, a comparison experiment was performed between sodium lauryl ether sulfate (SLES) and BCE (included in commercial formulation), reporting an efficient reduction with the mixtures. The results suggested that BCE is a promising ingredient for cleaning formulations with applications in industrial food applications.
Collapse
Affiliation(s)
- Iana Cruz Mendoza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Mirian Villavicencio-Vasquez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | - Paola Aguayo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Diana Coello Montoya
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Luis Plaza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - María Romero-Peña
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
| | - Ana M. Marqués
- Unitat de Microbiología, Facultat de Farmacia, Universitat de Barcelona, 08035 Barcelona, Spain;
| | - Jonathan Coronel-León
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (I.C.M.); (P.A.); (D.C.M.); (L.P.); (M.R.-P.)
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
- Correspondence:
| |
Collapse
|
17
|
Gudiña EJ, Teixeira JA. Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv 2022; 60:108013. [PMID: 35752271 DOI: 10.1016/j.biotechadv.2022.108013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
Abstract
Microbial biosurfactants have attracted the attention of researchers and companies for the last decades, as they are considered promising candidates to replace chemical surfactants in numerous applications. Although in the last years, considerable advances were performed regarding strain engineering and the use of low-cost substrates in order to reduce their production costs, one of the main bottlenecks is their production at industrial scale. Conventional aerobic biosurfactant production processes result in excessive foaming, due to the use of high agitation and aeration rates necessary to increase dissolved oxygen concentration to allow microbial growth and biosurfactant production. Different approaches have been studied to overcome this problem, although with limited success. A not widely explored alternative is the development of foam-free processes through the anaerobic growth of biosurfactant-producing microorganisms. Surfactin, produced by Bacillus subtilis, is the most widely studied lipopeptide biosurfactant, and the most powerful biosurfactant known so far. Bacillus licheniformis strains produce lichenysin, a lipopeptide biosurfactant which structure is similar to surfactin. However, despite its extraordinary surface-active properties and potential applications, lichenysin has been scarcely studied. According to previous studies, B. licheniformis is better adapted to anaerobic growth than B. subtilis, and could be a good alternative for the anaerobic production of lipopeptide biosurfactants. In this review, the potential and limitations of surfactin and lichenysin production under anaerobic conditions will be analyzed, and the possibility of implementing foam-free processes for lichenysin production, in order to expand the market and applications of biosurfactants in different fields, will be discussed.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Lipopeptide Biosurfactants from Bacillus spp.: Types, Production, Biological Activities, and Applications in Food. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biosurfactants are a functionally and structurally heterogeneous group of biomolecules produced by multiple filamentous fungi, yeast, and bacteria, and characterized by their distinct surface and emulsifying ability. The genus Bacillus is well studied for biosurfactant production as it produces various types of lipopeptides, for example, lichenysins, bacillomycin, fengycins, and surfactins. Bacillus lipopeptides possess a broad spectrum of biological activities such as antimicrobial, antitumor, immunosuppressant, and antidiabetic, in addition to their use in skincare. Moreover, Bacillus lipopeptides are also involved in various food products to increase the antimicrobial, surfactant, and emulsification impact. From the previously published articles, it can be concluded that biosurfactants have strong potential to be used in food, healthcare, and agriculture. In this review article, we discuss the versatile functions of lipopeptide Bacillus species with particular emphasis on the biological activities and their applications in food.
Collapse
|
19
|
Razdan K, Garcia-Lara J, Sinha VR, Singh KK. Pharmaceutical strategies for the treatment of bacterial biofilms in chronic wounds. Drug Discov Today 2022; 27:2137-2150. [PMID: 35489675 DOI: 10.1016/j.drudis.2022.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023]
Abstract
Biofilms are sessile communities of microorganisms, mainly bacteria, that grow on biotic and abiotic surfaces. These microorganisms are embedded within an extracellular polymeric substance that provides enhanced protection from antimicrobials. Chronic wounds provide an ideal habitat for biofilm formation. Bacteria can easily attach to wound debris and can infect the wound due to an impaired host immune response. This review highlights the mechanism of biofilm formation and the role of biofilms in the pathophysiology of chronic wounds. Our major focus is on various formulation strategies and delivery systems that are employed to eradicate or disperse biofilms, thereby effectively managing acute and chronic wounds. We also discuss clinical research that has studied or is studying the treatment of biofilm-infected chronic wounds. Teaser: Innovative pharmaceutical strategies such as hydrogels, nanofibers, films and various nanoscale materials can provide promising approaches for the treatment of biofilm-mediated chronic wound infections, offering the potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Karan Razdan
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | - Jorge Garcia-Lara
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK
| | - V R Sinha
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
20
|
Mechmechani S, Khelissa S, Gharsallaoui A, Omari KE, Hamze M, Chihib NE. Hurdle technology using encapsulated enzymes and essential oils to fight bacterial biofilms. Appl Microbiol Biotechnol 2022; 106:2311-2335. [PMID: 35312826 DOI: 10.1007/s00253-022-11875-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
Abstract
Biofilm formation on abiotic surfaces has become a major public health concern because of the serious problems they can cause in various fields. Biofilm cells are extremely resistant to stressful conditions, because of their complex structure impedes antimicrobial penetration to deep-seated cells. The increased resistance of biofilm to currently applied control strategies underscores the urgent need for new alternative and/or supplemental eradication approaches. The combination of two or more methods, known as Hurdle technology, offers an excellent option for the highly effective control of biofilms. In this perspective, the use of functional enzymes combined with biosourced antimicrobial such as essential oil (EO) is a promising alternative anti-biofilm approach. However, these natural antibiofilm agents can be damaged by severe environmental conditions and lose their activity. The microencapsulation of enzymes and EOs is a promising new technology for enhancing their stability and improving their biological activity. This review article highlights the problems related to biofilm in various fields, and the use of encapsulated enzymes with essential oils as antibiofilm agents. KEY POINTS: • Problems associated with biofilms in the food and medical sectors and their subsequent risks on health and food quality. • Hurdle technology using enzymes and essential oils is a promising strategy for an efficient biofilms control. • The microencapsulation of enzymes and essential oils ensures their stability and improves their biological activities.
Collapse
Affiliation(s)
- Samah Mechmechani
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux Et Transformations, Lille, France.,Laboratoire Microbiologie Santé Et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Simon Khelissa
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux Et Transformations, Lille, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Khaled El Omari
- Laboratoire Microbiologie Santé Et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé Et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Nour-Eddine Chihib
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux Et Transformations, Lille, France.
| |
Collapse
|
21
|
Yeak KYC, Perko M, Staring G, Fernandez-Ciruelos BM, Wells JM, Abee T, Wells-Bennik MHJ. Lichenysin Production by Bacillus licheniformis Food Isolates and Toxicity to Human Cells. Front Microbiol 2022; 13:831033. [PMID: 35197958 PMCID: PMC8859269 DOI: 10.3389/fmicb.2022.831033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
Bacillus licheniformis can cause foodborne intoxication due to the production of the surfactant lichenysin. The aim of this study was to measure the production of lichenysin by food isolates of B. licheniformis in LB medium and skimmed milk and its cytotoxicity for intestinal cells. Out of 11 B. licheniformis isolates tested, most showed robust growth in high salt (1M NaCl), 4% ethanol, at 37 or 55°C, and aerobic and anaerobic conditions. All strains produced lichenysin (in varying amounts), but not all strains were hemolytic. Production of this stable compound by selected strains (high producers B4094 and B4123, and type strain DSM13T) was subsequently determined using LB medium and milk, at 37 and 55°C. Lichenysin production in LB broth and milk was not detected at cell densities < 5 log10 CFU/ml. The highest concentrations were found in the stationary phase of growth. Total production of lichenysin was 4–20 times lower in milk than in LB broth (maximum 36 μg/ml), and ∼10 times lower in the biomass obtained from milk agar than LB agar. Under all conditions tested, strain B4094 consistently yielded the highest amounts. Besides strain variation and medium composition, temperature also had an effect on lichenysin production, with twofold lower amounts of lichenysin produced at 55°C than at 37°C. All three strains produced lichenysin A with varying acyl chain lengths (C11–C18). The relative abundance of the C14 variant was highest in milk and the C15 variant highest in LB. The concentration of lichenysin needed to reduce cell viability by 50% (IC50) was 16.6 μg/ml for Caco-2 human intestinal epithelial cells and 16.8 μg/ml for pig ileum organoids. Taken together, the presence of low levels (<5 log10 CFU/ml) of B. licheniformis in foods is unlikely to pose a foodborne hazard related to lichenysin production. However, depending on the strain present, the composition, and storage condition of the food, a risk of foodborne intoxication may arise if growth to high levels is supported and such product is ingested.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- NIZO, Ede, Netherlands.,Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
22
|
Control of Multidrug-Resistant Pathogenic Staphylococci Associated with Vaginal Infection Using Biosurfactants Derived from Potential Probiotic Bacillus Strain. FERMENTATION 2022. [DOI: 10.3390/fermentation8010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biosurfactants exhibit antioxidant, antibacterial, antifungal, and antiviral activities. They can be used as therapeutic agents and in the fight against infectious diseases. Moreover, the anti-adhesive properties against several pathogens point to the possibility that they might serve as an anti-adhesive coating agent for medical inserts and prevent nosocomial infections, without using synthetic substances. In this study, the antimicrobial, antibiofilm, cell surface hydrophobicity, and antioxidative activities of biosurfactant extracted from Bacillus sp., against four pathogenic strains of Staphylococcus spp. associated with vaginal infection, were studied. Our results have shown that the tested biosurfactant possesses a promising antioxidant potential, and an antibacterial potency against multidrug clinical isolates of Staphylococcus, with an inhibitory diameter ranging between 27 and 37 mm, and a bacterial growth inhibition at an MIC of 1 mg/ mL, obtained. The BioSa3 was highly effective on the biofilm formation of different tested pathogenic strains. Following their treatment by BioSa3, a significant decrease in bacterial attachment (p < 0.05) was justified by the reduction in the optical (from 0.709 to 0.111) following their treatment by BioSa3. The antibiofilm effect can be attributed to its ability to alter the membrane physiology of the tested pathogens to cause a significant decrease (p < 0.05) of over 50% of the surface hydrophobicity. Based on the obtained result of the bioactivities in the current study, BioSa3 is a good candidate in new therapeutics to better control multidrug-resistant bacteria and overcome bacterial biofilm-associated infections by protecting surfaces from microbial contamination.
Collapse
|
23
|
Valorization of waste frying oil to lipopeptide biosurfactant by indigenous Bacillus licheniformis through co-utilization in mixed substrate fermentation. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Formation and development of biofilm- an alarming concern in food safety perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK, Saratale GD, Saratale RG, Chung SM, Kumar M. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants (Basel) 2021; 10:1472. [PMID: 34573103 PMCID: PMC8469275 DOI: 10.3390/antiox10091472] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the current scenario of changing climatic conditions and the rising global population, there is an urgent need to explore novel, efficient, and economical natural products for the benefit of humankind. Biosurfactants are one of the latest explored microbial synthesized biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries, as a source of raw materials, for the lubrication, wetting, foaming, emulsions formulations, and as stabilizing dispersions. The amphiphilic nature of biosurfactants have shown to be a great advantage, distributing themselves into two immiscible surfaces by reducing the interfacial surface tension and increasing the solubility of hydrophobic compounds. Furthermore, their eco-friendly nature, low or even no toxic nature, durability at higher temperatures, and ability to withstand a wide range of pH fluctuations make microbial surfactants preferable compared to their chemical counterparts. Additionally, biosurfactants can obviate the oxidation flow by eliciting antioxidant properties, antimicrobial and anticancer activities, and drug delivery systems, further broadening their applicability in the food and pharmaceutical industries. Nowadays, biosurfactants have been broadly utilized to improve the soil quality by improving the concentration of trace elements and have either been mixed with pesticides or applied singly on the plant surfaces for plant disease management. In the present review, we summarize the latest research on microbial synthesized biosurfactant compounds, the limiting factors of biosurfactant production, their application in improving soil quality and plant disease management, and their use as antioxidant or antimicrobial compounds in the pharmaceutical industries.
Collapse
Affiliation(s)
- Ajay Kumar
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Sandeep Kumar Singh
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Chandra Kant
- Department of Botany, Dharma Samaj College, Aligarh 202001, India;
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College, Sonbhadra, Duddhi 231218, India;
| | - Dharmendra Kumar
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Prem Pratap Singh
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Arpan Modi
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Samir Droby
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | | | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Seoul 10326, Korea;
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| |
Collapse
|
26
|
Hudson LK, Orellana LAG, Bryan DW, Moore A, Munafo JP, den Bakker HC, Denes TG. Phylogeny of the Bacillus altitudinis Complex and Characterization of a Newly Isolated Strain with Antilisterial Activity. J Food Prot 2021; 84:1321-1332. [PMID: 33793813 DOI: 10.4315/jfp-20-498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/27/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bacillus strain UTK D1-0055 was isolated from a laboratory environment and appeared to have antilisterial activity. The genome was sequenced, the strain was identified as Bacillus altitudinis, and a high-quality complete annotated genome was produced. The taxonomy was evaluated for this and related Bacillus species (B. aerophilus, B. pumilus, B. safensis, B. stratosphericus, and B. xiamenensis) because the taxonomy is unclear and contains errors in public databases such as NCBI. The included strains grouped into seven clusters based on average nucleotide identity. Strains designated as B. aerophilus, B. altitudinis, and B. stratosphericus grouped together in the cluster containing the B. altitudinis type strain, suggesting that these three species should be considered a single species, B. altitudinis. The antimicrobial activity of UTK D1-0055 was evaluated against a panel of 15 Listeria strains (nine Listeria monocytogenes serotypes, Listeria innocua, and Listeria marthii), other foodborne pathogens (six Salmonella enterica serotypes and Escherichia coli), and three representative fungi (Saccharomyces cerevisiae, Botrytis cinerea, and Hyperdermium pulvinatum). Antibacterial activity was observed against all Listeria strains, but no antibacterial effects were found against the other tested bacterial and fungal strains. Biosynthetic gene clusters were identified in silico that may be related to the observed antibacterial activity, and these clusters included genes that putatively encode bacteriocins and nonribosomally synthesized peptides. The B. altitudinis strain identified in this investigation had a broad range of antilisterial activity, suggesting that it and other related strains may be useful for biocontrol in the food industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Leticia A G Orellana
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA.,Zamorano Pan-American Agricultural School, San Antonio de Oriente, Francisco Morazán, Honduras
| | - Daniel W Bryan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Andrew Moore
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Henk C den Bakker
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30602, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
27
|
Pattem J, Swift T, Rimmer S, Holmes T, MacNeil S, Shepherd J. Development of a novel micro-bead force spectroscopy approach to measure the ability of a thermo-active polymer to remove bacteria from a corneal model. Sci Rep 2021; 11:13697. [PMID: 34211063 PMCID: PMC8249514 DOI: 10.1038/s41598-021-93172-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Microbial keratitis occurs from the infection of the cornea by fungi and or bacteria. It remains one of the most common global causes of irreversible blindness accounting for 3.5% (36 million) of blind people as of 2015. This paper looks at the use of a bacteria binding polymer designed to bind Staphylococcus aureus and remove it from the corneal surface. Mechanical unbinding measurements were used to probe the interactions of a thermo-active bacteria-binding polymer, highly-branched poly(N-isopropyl acrylamide), functionalised with modified vancomycin end groups (HB-PNIPAM-Van) to bacteria placed on rabbit corneal surfaces studied ex-vivo. This was conducted during sequential temperature phase transitions of HB-PNIPAM-Van-S. aureus below, above and below the lower critical solution temperature (LCST) in 3 stages, in-vitro, using a novel micro-bead force spectroscopy (MBFS) approach via atomic force microscopy (AFM). The effect of temperature on the functionality of HB-PNIPAM-Van-S. aureus showed that the polymer-bacteria complex reduced the work done in removing bacterial aggregates at T > LCST (p < 0.05), exhibiting reversibility at T < LCST (p < 0.05). At T < LCST, the breaking force, number of unbinding events, percentage fitted segments in the short and long range, and the percentage of unbinding events occurring in the long range (> 2.5 µm) increased (p < 0.05). Furthermore, the LCST phase transition temperature showed 100 × more unbinding events in the long-range z-length (> 2.5 µm) compared to S. aureus aggregates only. Here, we present the first study using AFM to assess the reversible mechanical impact of a thermo-active polymer-binding bacteria on a natural corneal surface.
Collapse
Affiliation(s)
- J Pattem
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK. .,National Centre for Molecular Hydrodynamics, and, Soft Matter Biomaterials and Bio-Interfaces, University of Nottingham, The Limes Building, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - T Swift
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - S Rimmer
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - T Holmes
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, UK
| | - S MacNeil
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, UK
| | - J Shepherd
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
Paraszkiewicz K, Moryl M, Płaza G, Bhagat D, K Satpute S, Bernat P. Surfactants of microbial origin as antibiofilm agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:401-420. [PMID: 31509014 DOI: 10.1080/09603123.2019.1664729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The microbial world provides new energy sources and many various 'green' chemicals. One type of chemicals produced by microorganisms is the biosurfactant group. Biosurfactants are universal molecules, exhibiting surface properties often accompanied by desired biological activity. Biosurfactants are considered to be environmentally 'friendly' due to their low toxicity and biodegradable nature. These compounds have unique features and therefore they can find potential applications in many different industries, ranging from biotechnology to environmental remediation technologies. Antibacterial and antifungal activities make them relevant for applications as inhibitory agents against microbial biofilm. This review covers the current knowledge and the recent advances in the field of biosurfactants as antibiofilm agents.
Collapse
Affiliation(s)
- Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Magdalena Moryl
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Grażyna Płaza
- Institute of Production Engineering, Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| | - Diksha Bhagat
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
29
|
Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. BIORESOURCE TECHNOLOGY 2021; 330:124963. [PMID: 33744735 DOI: 10.1016/j.biortech.2021.124963] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 05/05/2023]
Abstract
Microbial surfactants are a large number of amphipathic biomolecules with a myriad of biomolecule constituents from various microbial sources that have been studied for their surface tension reduction activities. With unique properties, their applications have been increased in different areas including environment, medicine, healthcare, agriculture and industries. The present review aims to study the biochemistry and biosynthesis of biosurfactants exhibiting varying biomolecular structures which are produced by different microbial sources. It also provides details on roles played by biosurfactants in nature as well as their potential applications in various sectors. Basic biomolecule content of all the biosurfactants studied showed presence of carbohydrates, aminoacids, lipids and fattyacids. The data presented here would help in designing, synthesis and application of tailor-made novel biosurfactants. This would pave a way for perspectives of research on biosurfactants to overcome the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Anoop R Markande
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa - 388 421, Anand, Gujarat, India
| | - Divya Patel
- Multi-disciplinary Research Unit, Surat Municipal Institute of Medical Education & Research, Surat 395010, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| |
Collapse
|
30
|
Carolin C F, Kumar PS, Ngueagni PT. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124827. [PMID: 33352424 DOI: 10.1016/j.jhazmat.2020.124827] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the worldwide search regarding renewable products from natural resources is increasing due to the toxicity of chemical counterparts. Biosurfactants are surface-active compounds that contain several physiological functions that are used in industries like food, pharmaceutical, petroleum and agriculture. Microbial lipopeptides have gained more attention among the researchers for their low toxicity, efficient action and good biodegradability when compared with other surfactants. Because of their versatile properties, lipopeptide compounds are utilized in the remediation of organic and inorganic pollutants. This review presented a depth evaluation of lipopeptide surfactants in the bioremediation process and their properties to maintain a sustainable environment. Lipopeptide can acts as a replacement to chemical surfactants only if they meet industrial-scale production and low-cost substrates. This review also demonstrated the production of a lipopeptide biosurfactant from a low-cost substrate and depicted plausible techniques to manage the substrate residues to determine its ability in the different applications particularly in the bioremediation process.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| | - P Tsopbou Ngueagni
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Laboratoire de Chimie Inorganique Appliquée, Faculté des Sciences, Université de Yaoundé I, B.P: 812, Yaoundé, Cameroon
| |
Collapse
|
31
|
Cheffi M, Maalej A, Mahmoudi A, Hentati D, Marques AM, Sayadi S, Chamkha M. Lipopeptides production by a newly Halomonas venusta strain: Characterization and biotechnological properties. Bioorg Chem 2021; 109:104724. [PMID: 33618256 DOI: 10.1016/j.bioorg.2021.104724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022]
Abstract
A halotolerant marine strain PHKT of Halomonas venusta was isolated from contaminated seawater as an efficient biosurfactant producer candidate, on low-value substrate (glycerol). The produced biosurfactants (Bios-PHKT) were characterized as lipopeptides molecules, belonging to surfactin and pumilacidin families, by using Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FT-IR) and Tandem Mass Spectrometry (MALDI-TOF/MS-MS). Bios-PHKT has a critical micelle concentration (CMC) of 125 mg/L, and showed a high steadiness against a wide spectrum of salinity (0-120 g/L NaCl), temperature (4-121 °C) and pH (2-12), supporting its powerful tensioactive properties under various environmental conditions. Likewise, the cytotoxic test revealed that the biosurfactant Bios-PHKT, at concentrations lower than 125 µg/mL, was not cytotoxic for human HEK-293 cells since the cell survival is over than 80%. Furthermore, Bios-PHKT lipopeptides showed excellent anti-adhesive and anti-biofilm activities, being able to avoid and disrupt the biofilm formation by certain pathogenic microorganisms. In addition, the biosurfactant Bios-PHKT showed a remarkable anti-proliferative activity towards tumor B16 melanoma cell line. Besides, Bios-PHKT exhibited an excellent in vitro and in vivo wound healing process. In light of these promising findings, Bios-PHKT could be successfully used in different biotechnological applications.
Collapse
Affiliation(s)
- Meriam Cheffi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Amina Maalej
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Asma Mahmoudi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Dorra Hentati
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Ana Maria Marques
- Section of Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - Sami Sayadi
- Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
32
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
33
|
Nikolova C, Gutierrez T. Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives. Front Bioeng Biotechnol 2021; 9:626639. [PMID: 33659240 PMCID: PMC7917263 DOI: 10.3389/fbioe.2021.626639] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Surfactants are a group of amphiphilic chemical compounds (i.e., having both hydrophobic and hydrophilic domains) that form an indispensable component in almost every sector of modern industry. Their significance is evidenced from the enormous volumes that are used and wide diversity of applications they are used in, ranging from food and beverage, agriculture, public health, healthcare/medicine, textiles, and bioremediation. A major drive in recent decades has been toward the discovery of surfactants from biological/natural sources-namely bio-surfactants-as most surfactants that are used today for industrial applications are synthetically-manufactured via organo-chemical synthesis using petrochemicals as precursors. This is problematic, not only because they are derived from non-renewable resources, but also because of their environmental incompatibility and potential toxicological effects to humans and other organisms. This is timely as one of today's key challenges is to reduce our reliance on fossil fuels (oil, coal, gas) and to move toward using renewable and sustainable sources. Considering the enormous genetic diversity that microorganisms possess, they offer considerable promise in producing novel types of biosurfactants for replacing those that are produced from organo-chemical synthesis, and the marine environment offers enormous potential in this respect. In this review, we begin with an overview of the different types of microbial-produced biosurfactants and their applications. The remainder of this review discusses the current state of knowledge and trends in the usage of biosurfactants by the Oil and Gas industry for enhancing oil recovery from exhausted oil fields and as dispersants for combatting oil spills.
Collapse
Affiliation(s)
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Hamdi M, Nasri R, Amor IB, Li S, Gargouri J, Nasri M. Structural features, anti-coagulant and anti-adhesive potentials of blue crab (Portunus segnis) chitosan derivatives: Study of the effects of acetylation degree and molecular weight. Int J Biol Macromol 2020; 160:593-601. [DOI: 10.1016/j.ijbiomac.2020.05.246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
|
35
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jordan K, Sampers I, Wagner M, Da Silva Felicio MT, Georgiadis M, Messens W, Mosbach‐Schulz O, Allende A. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA J 2020; 18:e06092. [PMID: 32874300 PMCID: PMC7448082 DOI: 10.2903/j.efsa.2020.6092] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A multi-country outbreak of Listeria monocytogenes ST6 linked to blanched frozen vegetables (bfV) took place in the EU (2015-2018). Evidence of food-borne outbreaks shows that L. monocytogenes is the most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV, for the elderly (65-74 years old) population, is up to 3,600 times greater than cooked bfV and very likely lower than any of the evaluated ready-to-eat food categories. The main factors affecting contamination and growth of L. monocytogenes in bfV during processing are the hygiene of the raw materials and process water; the hygienic conditions of the food processing environment (FPE); and the time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling). Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations used for thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of the possible control options suggests that application of a complete HACCP plan is either not possible or would not further enhance food safety. Instead, specific prerequisite programmes (PRP) and operational PRP activities should be applied such as cleaning and disinfection of the FPE, water control, t/T control and product information and consumer awareness. The occurrence of low levels of L. monocytogenes at the end of the production process (e.g. < 10 CFU/g) would be compatible with the limit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed (i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C), L. monocytogenes levels need to be considerably lower (not detected in 25 g). Routine monitoring programmes for L. monocytogenes should be designed following a risk-based approach and regularly revised based on trend analysis, being FPE monitoring a key activity in the frozen vegetable industry.
Collapse
|
36
|
Jiang X, Yan X, Gu S, Yang Y, Zhao L, He X, Chen H, Ge J, Liu D. Biosurfactants of Lactobacillus helveticus for biodiversity inhibit the biofilm formation of Staphylococcus aureus and cell invasion. Future Microbiol 2020; 14:1133-1146. [PMID: 31512521 DOI: 10.2217/fmb-2018-0354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: This study aimed to evaluate the differences of biosurfactants produced by two Lactobacillus helveticus strains against the biofilm formation of Staphylococcus aureus in vitro and in vivo. Materials & methods: Scanning electron microscopy, Real time-quantitative PCR (RT-qPCR) and cell assay were used to analyze the inhibiting effect of biosurfactants against biofilm formation. Results & conclusion: Results showed that the biosurfactants have anti-adhesive and inhibiting effects on biofilm formation in vivo and in vitro. The biofilm-formative genes and autoinducer-2 signaling regulated these characteristics, and the biosurfactant L. helveticus 27170 is better than that of 27058. Host cell adhesion and invasion results indicated that the biosurfactants L. helveticus prevented the S. aureus invading the host cell, which may be a new strategy to eliminate biofilms.
Collapse
Affiliation(s)
- Xinpeng Jiang
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Xin Yan
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shanshan Gu
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yan Yang
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal & Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xinmiao He
- Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal & Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Junwei Ge
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Di Liu
- Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| |
Collapse
|
37
|
Nitulescu G, Mihai DP, Nicorescu IM, Olaru OT, Ungurianu A, Zanfirescu A, Nitulescu GM, Margina D. Discovery of natural naphthoquinones as sortase A inhibitors and potential anti-infective solutions against Staphylococcus aureus. Drug Dev Res 2019; 80:1136-1145. [PMID: 31486108 DOI: 10.1002/ddr.21599] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Three natural naphthoquinones were screened to find new anti-virulence agents as inhibitors against sortase A from Staphylococcus aureus (SaSrtA) by quantifying the increase in fluorescence intensity upon substrate cleavage at various concentrations. The 5-hydroxy-1,4-naphthalenedione derivatives, juglone and plumbagin, demonstrated a potent inhibitory effect, with IC50 values of 1.78 μM, respectively, 16.71 μM. The related 2-hydroxy-1,4-naphthalenedione derivative, lawsone, demonstrated the selectivity of the chemical scaffold having no significant effect on SaSrtA. The experimental assay was reinforced by molecular docking experiments, antimicrobial, and toxicological studies. Molecular docking studies and the electrophilic character analysis suggest bonding to the enzyme active cysteine residue by a Michael addition reaction. None of the compounds had a significant effect on the concentration of total thiol proteins in the Daphnia magna toxicological assay after 24 hr exposure. Juglone and plumbagin moderately inhibited biofilm formation with no significant effect on bacterial growth of S. aureus, Enterococcus faecalis, and Staphylococcus epidermidis, indicating a selective anti-virulence profile.
Collapse
Affiliation(s)
| | - Dragos P Mihai
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Octavian T Olaru
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Zanfirescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Denisa Margina
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
38
|
Cortés-Sánchez ADJ. Legionella, water and biotechnology. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Legionella spp. are microorganisms that are generally found in the aquatic environment (rivers, streams, lakes, among others). The importance in public health is in the fact that this bacterium is capable of multiplying and propagating in artificial aquatic systems (piping systems, storage tanks, fountains, and cooling towers), giving rise to diseases in humans called legionellosis, transmitted by inhalation of contaminated water droplets or aerosols and whose complications can lead to the death of the patient. Legionellosis is of worldwide distribution, Legionella pneumophila being the most commonly involved species in outbreaks and reported cases. The people most at risk are the elderly, people with weakened immune systems, and people with a history of smoking. Around the world, regulatory agencies and health organizations have issued and established recommendations with the purpose of controlling and preventing the risk of contracting this disease, which include the sanitation of water supplies, maintenance through regular cleaning and disinfection of facilities and devices for reducing the presence of this pathogen. The main objective of this review is to present in a general manner, aspects related to the disease known as legionellosis, its casual agents, habitat, transmission form, and phenotypic and metabolic characteristics. Likewise, the methods of control and prevention of these pathogens are presented, including a potential biotechnological alternative that can contribute to actions in favour of the protection of public health through the use of compounds with surface activity called biosurfactants.
Collapse
|
39
|
Yan X, Gu S, Cui X, Shi Y, Wen S, Chen H, Ge J. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb Pathog 2019; 127:12-20. [DOI: 10.1016/j.micpath.2018.11.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
|
40
|
Lenchenko E, Lozovoy D, Strizhakov A, Vatnikov Y, Byakhova V, Kulikov E, Sturov N, Kuznetsov V, Avdotin V, Grishin V. Features of formation of Yersinia enterocolitica biofilms. Vet World 2019; 12:136-140. [PMID: 30936667 PMCID: PMC6431818 DOI: 10.14202/vetworld.2019.136-140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Aim The work aimed to study the morphology of colonies and their comparison by features of the formation of Yersinia enterocolitica biofilms. Materials and Methods Bacteria were cultured on a Yersinia Selective Agar medium ("CIN-agar") at 28°C for 24 h. The microorganisms were grown in meat-peptone broth with 1.0% glucose to measure the absolute values of the optical density of the culture. The optical density of the liquid was determined in a microplate photometric analyzer Immunochem-2100 (HTI, USA) at a wavelength of 490 nm. For the study of biofilms, the specimens were fixed for 3-5 h in pairs of 25.0% solution of glutaraldehyde (according to DV), and pairs of a 1.0% aqueous solution of osmic acid (OSO4) were used for contrasting for 2-3 min. The specimens were examined with stereoscopic microscopy "BIOMED MS-1 Stereo" (Russia) and scanning electron microscope "TM 3030 plus" (Holland). Results With stereoscopic microscopy of the colonies of Y. enterocolitica, the S-forms had an elevated intensely colored center, radial striation along the periphery, smooth edges, d ≤ 1.0 mm. R-form colonies had a dark color and a dry surface, were tuberous and had a dense center with a peripheral ridge, rugged edges, d ≥ 1.5 mm. The optical density of the Y. enterocolitica S-form showed that this type of microorganism belongs to the moderate producers of biofilms since the optical density of the sample (density of the sample - Ds) exceeded the optical density of control (density of the control - Dc) by 3 times. In Y. enterocolitic a R-form (D ≤ 0.197) weakly produced biofilms, the optical density of the sample exceeded the optical density of the control by <2 times. Conclusion The ability to form biofilms, the variability of phenotypic features, and the multiplicity of virulence factors of bacteria significantly reduce the effectiveness of diagnostic studies. The development of accelerated methods of detection and differentiation of the virulent properties of pathogenic bacteria will allow scientifically to substantiate and develop a set of measures aimed at preventing animal diseases and obtaining safe livestock products to prevent human diseases. Thus, we need to pay attention to which forms of colonies do Y. enterocolitic a form on solid nutrient media: S- or R-forms. Through this study, we know that bacteria-forming S-shaped colonies are more capable of forming biofilms than R-forms. It means that they are more pathogenic and can cause persistent infections due to adhesion and biofilm formation.
Collapse
Affiliation(s)
- E Lenchenko
- Department of Veterinary Medicine, Moscow State University of Food Production, Moscow, Russia
| | - D Lozovoy
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - A Strizhakov
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - Yu Vatnikov
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Byakhova
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - Eu Kulikov
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - N Sturov
- Department of General medical practice, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Kuznetsov
- Department of General medical practice, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Avdotin
- Department of Agrobiotechnology, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Grishin
- Department of Agrobiotechnology, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
41
|
Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu Rev Food Sci Technol 2019; 10:173-195. [PMID: 30653351 DOI: 10.1146/annurev-food-032818-121805] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines the impact of microbial communities colonizing food processing environments in the form of biofilms on food safety and food quality. The focus is both on biofilms formed by pathogenic and spoilage microorganisms and on those formed by harmless or beneficial microbes, which are of particular relevance in the processing of fermented foods. Information is presented on intraspecies variability in biofilm formation, interspecies relationships of cooperativism or competition within biofilms, the factors influencing biofilm ecology and architecture, and how these factors may influence removal. The effect on the biofilm formation ability of particular food components and different environmental conditions that commonly prevail during food processing is discussed. Available tools for the in situ monitoring and characterization of wild microbial biofilms in food processing facilities are explored. Finally, research on novel agents or strategies for the control of biofilm formation or removal is summarized.
Collapse
Affiliation(s)
- Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain;
| | - Laura M Coughlan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,School of Microbiology, University College Cork, County Cork, Ireland
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350 France
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,APC Microbiome Ireland, Cork, County Cork, Ireland
| |
Collapse
|
42
|
Doroshenko N, Rimmer S, Hoskins R, Garg P, Swift T, Spencer HLM, Lord RM, Katsikogianni M, Pownall D, MacNeil S, Douglas CWI, Shepherd J. Antibiotic functionalised polymers reduce bacterial biofilm and bioburden in a simulated infection of the cornea. Biomater Sci 2018; 6:2101-2109. [PMID: 29881840 DOI: 10.1039/c8bm00201k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial keratitis can arise from penetrating injuries to the cornea. Corneal trauma promotes bacterial attachment and biofilm growth, which decrease the effectiveness of antimicrobials against microbial keratitis. Improved therapeutic efficacy can be achieved by reducing microbial burden prior to antimicrobial therapy. This paper assesses a highly-branched poly(N-isopropyl acrylamide) with vancomycin end groups (HB-PNIPAM-van), for reducing bacterial attachment and biofilm formation. The polymer lacked antimicrobial activity against Staphylococcus aureus, but significantly inhibited biofilm formation (p = 0.0008) on plastic. Furthermore, pre-incubation of S. aureus cells with HB-PNIPAM-van reduced cell attachment by 50% and application of HB-PNIPAM-van to infected ex vivo rabbit corneas caused a 1-log reduction in bacterial recovery, compared to controls (p = 0.002). In conclusion, HB-PNIPAM-van may be a useful adjunct to antimicrobial therapy in the treatment of corneal infections.
Collapse
Affiliation(s)
- Natalya Doroshenko
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Percival SL, Chen R, Mayer D, Salisbury AM. Mode of action of poloxamer-based surfactants in wound care and efficacy on biofilms. Int Wound J 2018; 15:749-755. [PMID: 29869367 DOI: 10.1111/iwj.12922] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
Surfactants are widely used as detergents, emulsifiers, wetting agents, foaming agents, and dispersants in both the food and oil industry. Their use in a clinical setting is also common, particularly in wound care. Complicated or chronic wounds show clinical signs of delayed healing, persistent inflammation, and the production of non-viable tissue. These types of wounds also present challenges such as infection and potentially house antimicrobial-tolerant biofilms. The use of wound cleansers to aid cleaning and debridement of the wound is essential. A large proportion of skin and wound cleansers contain surfactants but there is only a small amount of data that shows the effectiveness of them in the enhancement of wound closure. This review paper aims to explore the available literature surrounding the use and mode of action of surfactants in wound healing, in particular Poloxamer 188 (Pluronic F-68) and Poloxamer 407 (Pluronic F-127), and also uncover the potential mechanisms behind the enhancement of wound healing and comparison to other surfactants used in wound care. Furthermore, the presence of a microbial biofilm in the wound is a significant factor in delayed wound healing. Therefore, the effect of clinically used surfactants on biofilms will be discussed, with emphasis on poloxamer-based surfactants.
Collapse
Affiliation(s)
- Steven L Percival
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Rui Chen
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Dieter Mayer
- Department of Surgery, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
| | - Anne-Marie Salisbury
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| |
Collapse
|
44
|
Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front Microbiol 2018; 9:898. [PMID: 29867809 PMCID: PMC5949339 DOI: 10.3389/fmicb.2018.00898] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse microorganisms are able to grow on food matrixes and along food industry infrastructures. This growth may give rise to biofilms. This review summarizes, on the one hand, the current knowledge regarding the main bacterial species responsible for initial colonization, maturation and dispersal of food industry biofilms, as well as their associated health issues in dairy products, ready-to-eat foods and other food matrixes. These human pathogens include Bacillus cereus (which secretes toxins that can cause diarrhea and vomiting symptoms), Escherichia coli (which may include enterotoxigenic and even enterohemorrhagic strains), Listeria monocytogenes (a ubiquitous species in soil and water that can lead to abortion in pregnant women and other serious complications in children and the elderly), Salmonella enterica (which, when contaminating a food pipeline biofilm, may induce massive outbreaks and even death in children and elderly), and Staphylococcus aureus (known for its numerous enteric toxins). On the other hand, this review describes the currently available biofilm prevention and disruption methods in food factories, including steel surface modifications (such as nanoparticles with different metal oxides, nanocomposites, antimicrobial polymers, hydrogels or liposomes), cell-signaling inhibition strategies (such as lactic and citric acids), chemical treatments (such as ozone, quaternary ammonium compounds, NaOCl and other sanitizers), enzymatic disruption strategies (such as cellulases, proteases, glycosidases and DNAses), non-thermal plasma treatments, the use of bacteriophages (such as P100), bacteriocins (such us nisin), biosurfactants (such as lichenysin or surfactin) and plant essential oils (such as citral- or carvacrol-containing oils).
Collapse
Affiliation(s)
- Serena Galié
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Coral García-Gutiérrez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elisa M. Miguélez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
45
|
Hamdi M, Hajji S, Affes S, Taktak W, Maâlej H, Nasri M, Nasri R. Development of a controlled bioconversion process for the recovery of chitosan from blue crab (Portunus segnis) exoskeleton. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Teixeira Souza KS, Gudiña EJ, Schwan RF, Rodrigues LR, Dias DR, Teixeira JA. Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2018; 346:152-158. [PMID: 29268161 DOI: 10.1016/j.jhazmat.2017.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/12/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
In this work, biosurfactant production by Wickerhamomyces anomalus CCMA 0358 was increased through the development of an optimized culture medium using response surface methodology. The optimized culture medium contained yeast extract (4.64 g/L), ammonium sulfate (4.22 g/L), glucose (1.39 g/L) and olive oil (10 g/L). Biosurfactant production using this medium was validated both in flasks and bioreactor, and the surface tension was reduced from 49.0 mN/m up to 31.4 mN/m and 29.3 mN/m, respectively. In both cases, the highest biosurfactant production was achieved after 24 h of growth. W. anomalus CCMA 0358 demonstrated to be a fast biosurfactant producer (24 h) as compared to other yeast strains previously reported (144-240 h). The produced biosurfactant remained stable at high temperature (121 °C), NaCl concentrations as high as 300 g/L, and pH values between 6 and 12. The crude biosurfactant allowed the recovery of 20% of crude oil from contaminated sand, being a promising candidate for application in bioremediation or in the petroleum industry.
Collapse
Affiliation(s)
- Karla S Teixeira Souza
- Department of Biology, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000 Lavras, MG, Brazil
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Rosane F Schwan
- Department of Biology, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000 Lavras, MG, Brazil
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Disney R Dias
- Department of Food Science, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000 Lavras, MG, Brazil
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
47
|
Percival S, Mayer D, Malone M, Swanson T, Gibson D, Schultz G. Surfactants and their role in wound cleansing and biofilm management. J Wound Care 2017; 26:680-690. [DOI: 10.12968/jowc.2017.26.11.680] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S.L. Percival
- CEO and Professor (honorary), Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd and Liverpool University, Liverpool, UK
| | - D. Mayer
- Head of Vascular Surgery Unit, Department of Surgery, HFR Fribourg—Cantonal Hospital, Fribourg, Switzerland
| | - M. Malone
- Head of Department, Podiatric Medicine/Senior Research Fellow, Infectious Disease and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| | - T Swanson
- High Risk Foot Service, Liverpool Hospital, South Western Sydney Local Health District, Liverpool, Australia
| | - D. Gibson
- Assistant Professor, Institute for Wound Research, University of Florida, Gainesville, US
| | - G. Schultz
- Professor, Institute for Wound Research, Department Obstetrics and Gynaecology, University of Florida, Gainesville, US
| |
Collapse
|
48
|
Jemil N, Ben Ayed H, Manresa A, Nasri M, Hmidet N. Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiol 2017; 17:144. [PMID: 28659164 PMCID: PMC5490168 DOI: 10.1186/s12866-017-1050-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The present work aims to investigate the antioxidant and antimicrobial activities as well as the potential of DCS1 lipopeptides produced by Bacillus methylotrophicus DCS1 strain at inhibition and disruption of biofilm formation. RESULTS The produced biosurfactants were characterized as lipopeptides molecules by using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR). The DCS1 lipopeptides were assayed for their antioxidant activity through five different tests. The scavenging effect on DPPH radicals at a concentration of 1 mg mL-1 was 80.6%. The reducing power reached a maximum value of 3.0 (OD700 nm) at 2 mg mL-1. Moreover, the DCS1 lipopeptides exhibited a strong inhibition of β-carotene bleaching by linoleic acid assay with 80.8% at 1 mg mL-1 and showed good chelating ability and lipid peroxidation inhibition. The in vitro antimicrobial activity of DCS1 lipopeptides showed that they display significant antibacterial and antifungal activities. The anti-adhesive activity of DCS1 lipopeptides was evaluated against several pathogenic microorganisms. The lipopeptides showed excellent anti-adhesive activity, even at low concentrations, in a polystyrene surface pre-treatment against all the microorganisms tested. Further, they can disrupt performed biofilms. CONCLUSION This study shows the potentiality of DCS1 lipopeptides as natural antioxidants, antimicrobial and/or anti-adhesive agent for several biomedical and industrial applications.
Collapse
Affiliation(s)
- Nawel Jemil
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P, 1173-3038, Sfax, Tunisia.
| | - Hanen Ben Ayed
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P, 1173-3038, Sfax, Tunisia
| | - Angeles Manresa
- Section of Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, 08028, Barcelona, Spain
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P, 1173-3038, Sfax, Tunisia
| | - Noomen Hmidet
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P, 1173-3038, Sfax, Tunisia
| |
Collapse
|
49
|
Khalili E, Huyop F, Myra Abd Manan F, Wahab RA. Optimization of cultivation conditions in banana wastes for production of extracellular β-glucosidase by Trichoderma harzianum Rifai efficient for in vitro inhibition of Macrophomina phaseolina. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1342562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Elham Khalili
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Fahrul Huyop
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Fatin Myra Abd Manan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|