1
|
Yang Z, Jiao Z, Chen Z, Qiao C, Huang C, Wang L, Rao Z, Zhang R, Wang Z. Programmable Bacterial Architects Crafting Sonosensitizers for Tumor-Specific Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504206. [PMID: 40401604 DOI: 10.1002/adma.202504206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Sonodynamic therapy (SDT) is a non-invasive cancer treatment that uses ultrasound to activate sonosensitizers for selective tumor ablation. With its superior tissue penetration compared to photodynamic therapy, SDT demonstrates the potential to stimulate antitumor immune responses by modulating the tumor microenvironment. However, its clinical application remains limited by poor tumor specificity and suboptimal sonosensitizer accumulation, which reduces efficacy and causes off-target effects. To address these challenges, an Engineered Probiotic-based Calibrated 5-ALA Supply system (SPEC5) is developed to confer tumor selectivity for SDT. Engineered non-pathogenic E. coli with recombinant plasmids enables efficient 5-ALA biosynthesis through kinetic remodeling. Homologous tumor cell membrane cloaking further enhances tumor targeting and immune evasion. Upon intravenous injection, SPEC5 selectively colonizes in the tumor, supporting the sonosensitizer protoporphyrin IX (PpIX) in situ biosynthesis via 5-aminolevulinic acid (5-ALA) continuous supply. A hypoxia-inducible promoter regulating O-acetylserine sulfhydrylase ensures the tumor specificity of PpIX production. This system achieves robust sensitizer accumulation in tumors, enhancing SDT efficacy and inducing potent antitumor immune activation with minimal systemic toxicity. Post-treatment, the bacteria are rapidly cleared to ensure safety. This study presents a novel strategy for tumor-specific sonosensitizer supply, revolutionizing 5-ALA-based SDT and paving the way for advanced tumor-targeted therapies with enhanced immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhiping Jiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhuang Chen
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chuting Huang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Lingyun Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhiping Rao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
2
|
Braun MT, Del Tredici K, Wölling A, Wiest L. 'Photodynamic therapy light': An enhanced treatment protocol for actinic keratoses with minimal pain and optimal clinical outcome by combining laser-assisted low irradiance PDT with shortened daylight PDT. Photodiagnosis Photodyn Ther 2025; 51:104372. [PMID: 39424249 DOI: 10.1016/j.pdpdt.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Between 2003 and 2016, 546 patients in our clinic discontinued outpatient treatment for actinic keratoses (AKs) using conventional photodynamic therapy (PDT) because of intolerable pain, thereby necessitating the use of a less painful procedure. Therefore, we developed a novel off-label PDT protocol: 'PDT light'. METHODS Laser-assisted low irradiance PDT (li-PDT) was performed beginning in 2014. The dosage was gradually lowered to 8-12 J/cm² in 2018, so that we achieved considerable pain reduction while maintaining comparable therapeutic efficacy. A further considerable reduction in pain was achieved from 2018 onwards by combining the advantages of li-PDT with daylight PDT (DLPDT), thereby resulting in 2018 in the new technique 'PDT light'. Patients with AK Olsen grades 1 or 2 and field cancerization initially received a mild-fractionated CO2 laser pretreatment prior to MAL-incubation (methyl aminolaevulinate, Metvix ®) under occlusion for 1.5-3 h. Then, patients were illuminated on average for 1.02 min with the Aktilite-LED and, after application of an UV-screen on the illuminated area, sent out into daylight for 1 h. RESULTS Between March and November 2019, we successfully treated 152 cases using the enhanced 'PDT light' procedure, with 137 cases achieving at follow-up 1 (on average after 8.14 months) good-to-excellent clearance rates (CLA and CLB together 90 %) and minimal adverse effects. CONCLUSIONS The novel 'PDT light' protocol proved to be an excellent and nearly painless method with an average visual-analogue scale (VAS) score of 1.19. Additional advantages included reduced illumination time, shorter outpatient stays in the clinic, fewer adverse effects, and better patient compliance than with DLPDT alone.
Collapse
Affiliation(s)
- Martin T Braun
- Bodensee Laser Clinic Dr. Braun, Owinger Straße 2, Überlingen 88662, Germany.
| | | | - Anna Wölling
- Bodensee Laser Clinic Dr. Braun, Owinger Straße 2, Überlingen 88662, Germany
| | - Luitgard Wiest
- Dermatology Unit, Über der Klause 1, Munich 81545, Germany
| |
Collapse
|
3
|
Salmivuori M, Grönroos M, Tani T, Räsänen J, Snellman E, Neittaanmäki N. Long-term outcome of photodynamic therapy with hexyl aminolevulinate, 5-aminolevulinic acid nanoemulsion and methyl aminolevulinate for low-risk Basal Cell Carcinomas. Photodiagnosis Photodyn Ther 2025; 51:104432. [PMID: 39645015 DOI: 10.1016/j.pdpdt.2024.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Non-surgical treatments are cost-effective options for low-risk basal cell carcinomas (BCCs) i.e. superficial or small nodular BCCs located outside the high-risk locations. Hexyl aminolevulinate (HAL) and 5-aminolevulinic acid nanoemulsion (BF-200 ALA) with enhanced penetration depth enables the use of lower concentrations compared to methylaminolevulinate (MAL) in photodynamic therapy (PDT). We have previously reported comparable short-term efficacies for MAL 16 %, BF-200 ALA 7.8 % and HAL 2 % in PDT of low-risk BCC, and here we report the long-term results. OBJECTIVES The goal of this trial was to compare long-term outcomes of HAL and BF-200 ALA, compared to MAL in PDT of low-risk BCCs. METHODS Ninety-eight histologically verified low-risk BCCs on the trunk or extremities were included and randomized into three arms to receive PDT in two sessions with MAL, BF-200 ALA or HAL. A blinded dermatologist assessed the response, cosmetic outcome, and obtained biopsies for histological verification at three months, one year and five years. Histologically verified non-responsive lesions were excised. Patients' satisfaction with the treatment was also queried. RESULTS According to intention-to-treat (ITT) analyses, the cumulative response rate at one year was 90.6 % for MAL, 81.3 % for BF-200 ALA, and 75.8 % for HAL, and correspondingly at five years 71.9 %, 54.6 % and 60.6 %. There were no statistically significant differences between interventions and comparator. The overall cumulative response rate for PDT was 82.5 % at one year and 62.2 % at five, and 48.6 % of the treatment failures were recorded at five years. The recurrent lesions were excised as second line treatment. No aggressive subtypes were reported, with only superficial or nodular growth in the final histopathological report. There were no significant differences in cosmetic outcome or patient satisfaction. CONCLUSIONS This trial shows that HAL has potential for dermatological PDT. However, the long-term efficacy of PDT in the treatment of low-risk BCCs remains rather low.
Collapse
Affiliation(s)
- M Salmivuori
- Department of Dermatology and Allergology, Wellbeing services of Päijät-Häme and Päijät-Häme Central Hospital, Keskussairaalankatu 7 15850 Lahti, Finland; Department of Dermatology, Allergology and Venereology, Helsinki University Hospital and University of Helsinki, Finland.
| | - M Grönroos
- Department of Dermatology and Allergology, Wellbeing services of Päijät-Häme and Päijät-Häme Central Hospital, Keskussairaalankatu 7 15850 Lahti, Finland; Skin Hospital/Suomen Ihosairaala, Finland
| | - T Tani
- HUSLAB Laboratory Services, Helsinki University Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - J Räsänen
- Department of Dermatology, Tampere University Hospital, Tampere, Finland
| | - E Snellman
- Department of Dermatology, Tampere University Hospital, Tampere, Finland; Tampere University, Tampere, Finland
| | - N Neittaanmäki
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Pathology, Gothenburg, Sweden
| |
Collapse
|
4
|
Zhang H, Xie WC, Yao Y, Tang ZY, Ni WX, Wang B, Gao S, Sessler JL, Zhang JL. Electrostatic Force-Enabled Microneedle Patches that Exploit Photoredox Catalysis for Transdermal Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3038-3051. [PMID: 39739671 DOI: 10.1021/acsami.4c18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Microneedle patches for topical administration of photodynamic therapy (PDT) sensitizers are attractive owing to their safety, selectivity, and noninvasiveness. However, low-efficiency photosensitizer delivery coupled with the limitations of the hypoxic tumor microenvironment remains challenging. To overcome these issues, we developed an effective microneedle patch based on intermolecular electrostatic interactions within a photosensitizer matrix containing a zinc-containing porphyrin analogue, ZnBP (w). This design improved the mechanical strength of the microneedle patch and enhanced the photosensitizer loading efficiency in aqueous environments. A key feature of the system is efficient electron transfer between ZnBP (w) and NADH upon photoirradiation. Electrostatic interactions between ZnBP (w) and NADH were hypothesized to support initial binding and subsequent photoinduced electron transfer, disrupting NADH/NAD+ homeostasis and inducing tumor cell death. The developed microneedle patch demonstrated an antiangiogenesis effect in a vascular malformation model and an antitumor effect in a melanoma mouse model after transdermal administration. This study highlights the benefits of electrostatic interactions in designing microneedle PDT patches and their clinical potential, particularly in reducing systemic phototoxicity.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Chuan Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Yuhang Yao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zi-Yi Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| |
Collapse
|
5
|
Mishra AP, Kumar R, Harilal S, Nigam M, Datta D, Singh S, Waranuch N, Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:497-532. [PMID: 39480523 DOI: 10.1007/s00210-024-03469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Advancements in therapeutic strategies and combinatorial approaches for cancer management have led to the majority of cancers in the initial stages to be regarded as treatable and curable. However, certain high-grade cancers in the initial stages are still regarded as chronic and difficult to manage, requiring novel therapeutic strategies. In this era of targeted and precision therapy, novel strategies for targeted delivery of drug and synergistic therapies, integrating nanotherapeutics, polymeric materials, and modulation of the tumor microenvironment are being developed. One such strategy is the study and utilization of smart-nano biomedicine, which refers to stimuli-responsive polymeric materials integrated with the anti-cancer drug that can modulate the reactive oxygen species (ROS) in the tumor microenvironment or can be ROS responsive for the mitigation as well as management of various cancers. The article explores in detail the ROS, its types, and sources; the antioxidant system, including scavengers and their role in cancer; the ROS-responsive targeted polymeric materials, including synergistic therapies for the treatment of cancer via modulating the ROS in the tumor microenvironment, involving therapeutic strategies promoting cancer cell death; and the current landscape and future prospects.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rajesh Kumar
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India.
| | - Seetha Harilal
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal Karnataka, 576104, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
6
|
Nackiewicz J, Kliber-Jasik M, Pogoda-Mieszczak K, Skonieczna M. Gallium octacarboxyphthalocyanine hydroxide as a potential pro-apoptotic drug against cancer skin cells. Bioorg Chem 2024; 152:107736. [PMID: 39208675 DOI: 10.1016/j.bioorg.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Novel anticancer strategies reduce side effects on healthy tissues by elevating the lethal abilities of cancer cells. The development of effective particles with good bioavailability and selectivity remains problematic. For undesirable features, green chemistry is used to synthesize the best compounds, or natural-based particles are improved. Photodynamic therapy (PDT), modelled on phthalocyanines (Pcs), still delivers second-generation sensitizers which are complemented with metal ions, such as Zn2+, Al3+, or Ga3+. Gallium octacarboxyphthalocyanine hydroxide (Ga(OH)PcOC), was designed for skin cancer treatment, and was used as a pro-apoptotic and pro-oxidative agent on normal skin cell lines, fibroblasts (NHDF), and keratinocytes (HaCaT), with promising selectivity against melanoma cancer cells (Me45) in vitro. Compared to the previous reported findings, where the ZnPcOC acted on the skin cell lines at higher doses, the sensitivities to the Ga(OH)PcOC allows for an effective reduction of the sensitizer dose. The effective dose, for a novel Ga(OH)PcOC particle, was significantly reduced from 30 µM to 6 µM on Me45 cancer cells, tested using 24 h MTT viability, as well as cytometric pro-oxidative and pro-apoptotic assays. The promising photosensitizer did not reduce viability in normal fibroblasts and keratinocytes without reactive oxygen species (ROS) elevation or apoptosis induction. The improvement to the previous findings is better Ga-based photosensitizer selectivity against the cancer Me45 cells, then observed in Zn-based compounds.
Collapse
Affiliation(s)
- Joanna Nackiewicz
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052, Poland.
| | - Marta Kliber-Jasik
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052, Poland
| | - Kinga Pogoda-Mieszczak
- Department of Systems Biology and Engineering, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| |
Collapse
|
7
|
Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy: Past, Current, and Future. Int J Mol Sci 2024; 25:11325. [PMID: 39457108 PMCID: PMC11508366 DOI: 10.3390/ijms252011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The Greek roots of the word "photodynamic" are as follows: "phos" (φω~ς) means "light" and "dynamis" (δύναμις) means "force" or "power". Photodynamic therapy (PDT) is an innovative treatment method based on the ability of photosensitizers to produce reactive oxygen species after the exposure to light that corresponds to an absorbance wavelength of the photosensitizer, either in the visible or near-infrared range. This process results in damage to pathological cancer cells, while minimizing the impact on healthy tissues. PDT is a promising direction in the treatment of many diseases, with particular emphasis on the fight against cancer and other diseases associated with excessive cell growth. The power of light contributed to the creation of phototherapy, whose history dates back to ancient times. It was then noticed that some substances exposed to the sun have a negative effect on the body, while others have a therapeutic effect. This work provides a detailed review of photodynamic therapy, from its origins to the present day. It is surprising how a seemingly simple beam of light can have such a powerful healing effect, which is used not only in dermatology, but also in oncology, surgery, microbiology, virology, and even dentistry. However, despite promising results, photodynamic therapy still faces many challenges. Moreover, photodynamic therapy requires further research and improvement.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Sara Czech
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland;
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| |
Collapse
|
8
|
Xue Z, Chou W, Xu Y, Cheng Z, Ren X, Sun T, Tong W, Xie Y, Chen J, Zhang N, Sheng X, Wang Y, Zhao H, Yang J, Ding H. Battery-free optoelectronic patch for photodynamic and light therapies in treating bacteria-infected wounds. Biosens Bioelectron 2024; 261:116467. [PMID: 38901392 DOI: 10.1016/j.bios.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Light therapy is an effective approach for the treatment of a variety of challenging dermatological conditions. In contrast to existing methods involving high doses and large areas of illumination, alternative strategies based on wearable designs that utilize a low light dose over an extended period provide a precise and convenient treatment. In this study, we present a battery-free, skin-integrated optoelectronic patch that incorporates a coil-powered circuit, an array of microscale violet and red light emitting diodes (LEDs), and polymer microneedles (MNs) loaded with 5-aminolevulinic acid (5-ALA). These polymer MNs, based on the biodegradable composite materials of polyvinyl alcohol (PVA) and hyaluronic acid (HA), serve as light waveguides for optical access and a medium for drug release into deeper skin layers. Unlike conventional clinical photomedical appliances with a rigid and fixed light source, this flexible design allows for a conformable light source that can be applied directly to the skin. In animal models with bacterial-infected wounds, the experimental group with the combination treatment of metronomic photodynamic and light therapies reduced 2.48 log10 CFU mL-1 in bactericidal level compared to the control group, indicating an effective anti-infective response. Furthermore, post-treatment analysis revealed the activation of proregenerative genes in monocyte and macrophage cell populations, suggesting enhanced tissue regeneration, neovascularization, and dermal recovery. Overall, this optoelectronic patch design broadens the scope for targeting deep skin lesions, and provides an alternative with the functionality of standard clinical light therapy methods.
Collapse
Affiliation(s)
- Zhao Xue
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yixuan Xu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Ziyi Cheng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuechun Ren
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbin Tong
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Nuohan Zhang
- GMA Optoelectronic Technology Limited, Xinyang 464000, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
9
|
Saeidi A, Gülses A, Jamil M, Alolayan A, Elsayed S, Wiltfang J, Flörke C. Retrospective Analysis of Clinicopathological Characteristics of Surgically Treated Basal Cell Carcinomas of the Face: A Single-Centre Maxillofacial Surgery Experience. J Clin Med 2024; 13:5470. [PMID: 39336956 PMCID: PMC11432292 DOI: 10.3390/jcm13185470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Basal cell carcinoma is the most common nonmelanoma skin cancer, followed by cutaneous squamous cell carcinoma. The objective of the current study was to retrospectively evaluate the epidemiology, characteristic variations, histological aspects, and prognosis of basal cell carcinoma of the facial region based on a single-centre experience. Methods: Data from 125 patients admitted to the Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein (UKSH), Kiel, for surgical treatment of basal cell carcinomas of the face between January 2015 and April 2021 were evaluated. Results: The mean patient age was 79.58 years, 60.5% were male and 39.5% were female. Six patients (4.8%) had tumour recurrence with no regional metastasis. Seventy-nine patients (63%) were classified as T1. The nose and the temporal region were the most common areas. The mean tumour thickness was 3.20 mm. Conclusions: Micronodular, sclerosing/morphoeic, nodular, and superficial growth patterns of basal cell carcinoma are highly correlated to recurrence, so an excision safety margin is recommended. There is a strong correlation between tumour thickness and recurrence among basal cell carcinoma cases. When completely excised, the recurrence rate for basal cell carcinoma is relatively low.
Collapse
Affiliation(s)
- Abdullah Saeidi
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, Taibah University, Madinah 42353, Saudi Arabia (S.E.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, 24118 Kiel, Germany
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, 24118 Kiel, Germany
| | - Maryam Jamil
- King Fahd General Hospital, Jeddah MOH, Jeddah 21589, Saudi Arabia;
| | - Albraa Alolayan
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, Taibah University, Madinah 42353, Saudi Arabia (S.E.)
| | - Shadia Elsayed
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, Taibah University, Madinah 42353, Saudi Arabia (S.E.)
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, 24118 Kiel, Germany
| | - Christian Flörke
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, 24118 Kiel, Germany
| |
Collapse
|
10
|
León D, Reyes ME, Weber H, Gutiérrez Á, Tapia C, Silva R, Viscarra T, Buchegger K, Ili C, Brebi P. In Vitro Effect of Epigallocatechin Gallate on Heme Synthesis Pathway and Protoporphyrin IX Production. Int J Mol Sci 2024; 25:8683. [PMID: 39201369 PMCID: PMC11354225 DOI: 10.3390/ijms25168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG's role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells.
Collapse
Affiliation(s)
- Daniela León
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Helga Weber
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Álvaro Gutiérrez
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile
| | - Claudio Tapia
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ramón Silva
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Tamara Viscarra
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Kurt Buchegger
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| |
Collapse
|
11
|
Chen Y, Guo P, Chen L, He D. 5-aminolevulinic acid induced photodynamic reactions in diagnosis and therapy for female lower genital tract diseases. Front Med (Lausanne) 2024; 11:1370396. [PMID: 39076768 PMCID: PMC11284047 DOI: 10.3389/fmed.2024.1370396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Since the patients suffering from female lower genital tract diseases are getting younger and younger and the human papilloma virus (HPV) infection is becoming more widespread, the novel non-invasive precise modalities of diagnosis and therapy are required to remain structures of the organ and tissue, and fertility as well, by which the less damage to normal tissue and fewer adverse effects are able to be achieved. In all nucleated mammalian cells, 5-Aminolevulinic acid (5-ALA) is an amino acid that occurs spontaneously, which further synthesizes in the heme biosynthetic pathway into protoporphyrin IX (PpIX) as a porphyrin precursor and photosensitizing agent. Exogenous 5-ALA avoids the rate-limiting step in the process, causing PpIX buildup in tumor tissues. This tumor-selective PpIX distribution after 5-ALA application has been used successfully for tumor photodynamic diagnosis (PDD) and photodynamic therapy (PDT). Several ALA-based drugs have been used for ALA-PDD and ALA-PDT in treating many (pre)cancerous diseases, including the female lower genital tract diseases, yet the ALA-induced fluorescent theranostics is needed to be explored further. In this paper, we are going to review the studies of the mechanisms and applications mainly on ALA-mediated photodynamic reactions and its effectiveness in treating female lower genital tract diseases.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Shaanxi Provincial People’s Hospital, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
13
|
Aebisher D, Rogóż K, Myśliwiec A, Dynarowicz K, Wiench R, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. The use of photodynamic therapy in medical practice. Front Oncol 2024; 14:1373263. [PMID: 38803535 PMCID: PMC11129581 DOI: 10.3389/fonc.2024.1373263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Kacper Rogóż
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| |
Collapse
|
14
|
Alma A, Pongetti L, Clementi A, Chester J, Toccaceli M, Ciardo S, Zappia E, Manfredini M, Pellacani G, Greco M, Bennardo L, Farnetani F. Combined Carbon Dioxide Laser with Photodynamic Therapy for Nodular Basal Cell Carcinoma Monitored by Reflectance Confocal Microscopy. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:30. [PMID: 38256291 PMCID: PMC10821002 DOI: 10.3390/medicina60010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction: Basal cell carcinoma (BCC) represents around 80% of all malignant skin cancers worldwide, constituting a substantial burden on healthcare systems. Due to excellent clearance rates (around 95%), surgery is the current gold-standard treatment. However, surgery is not always possible or preferred by patients. Numerous non-surgical therapies, sometimes combined, have been associated with promising tumor free survival rates (80-90%) in non-melanoma skin cancers (NMSCs). Most research has enrolled superficial basal cell carcinomas (sBCCs), with limited recent studies also involving low-risk nodular BCCs (nBCCs). Given lower efficacy rates compared to surgery, close monitoring during the follow-up period is essential for patients treated with non-surgical therapies. Monitoring with dermoscopy is constrained by low sensitivity rates. Reflectance confocal microscopy (RCM) is more sensitive in monitoring non-surgically treated NMSCs. Case presentation: A 41-year-old woman with a single nBCC relapse following photodynamic therapy (PDT) located on the dorsum of the nose presented to our center. Given the aesthetically sensitive location of the lesion and the patient's preference for a non-surgical approach, a combined treatment of CO2 laser and PDT was prescribed. A superpulsed CO2 laser (power: 0.5-3 W, frequency: 10 Hz, spot size 2 mm) with two PDT sessions (2 weeks apart) were conducted. At 6 weeks follow-up, monitoring performed with RCM revealed a reduction but not eradication of basaloid tumor islands. Another 2 sessions of PDT were recommended. At 3, 12 and 30 months of follow-up, the nasal dorsum area of the previous nBBC lesion was noted to be slightly hypopigmented (observed clinically), with a mild erythematous background (observed by dermoscopy). RCM evaluation confirmed the absence of RCM BCC criteria. The cosmetic outcome was very much improved. Conclusions: Combined CO2 laser and PDT for the treatment of a localized nBCC on the dorsum of the nose of a 41-year-old proved to offer tumor free survival at 30-month follow-up, as monitored with RCM. RCM is useful for the evaluation of non-surgical therapies as it has comparably higher sensitivity than dermoscopy and is especially useful in cases of suspected late recurrence. Further studies are needed to validate ongoing tumor free survival following this combined nonsurgical approach in the treatment of nBCC.
Collapse
Affiliation(s)
- Antonio Alma
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Linda Pongetti
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Alessandro Clementi
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Johanna Chester
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Matteo Toccaceli
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Silvana Ciardo
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Elena Zappia
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Marco Manfredini
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Giovanni Pellacani
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maurizio Greco
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Luigi Bennardo
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Francesca Farnetani
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| |
Collapse
|
15
|
Soto‐Moreno A, Montero‐Vilchez T, Diaz‐Calvillo P, Molina‐Leyva A, Arias‐Santiago S. The impact of photodynamic therapy on skin homeostasis in patients with actinic keratosis: A prospective observational study. Skin Res Technol 2023; 29:e13493. [PMID: 38017667 PMCID: PMC10684974 DOI: 10.1111/srt.13493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective treatment for actinic keratosis (AKs), but there is little information on how PDT affects skin barrier function. The objectives of this study are: To compare skin barrier function between skin with AKs and healthy skin and to evaluate the impact of PDT on skin homeostasis in patients with AKs. METHODS A prospective observational study was conducted in patients with AKs to evaluate epidermal barrier function and skin homeostasis before and 1 ek after receiving PDT. RESULTS A total of 21 subjects were included in the study, male/female ratio was 17:4, mean age was 75.86 years. The number of AKS observed before starting treatment was reduced with respect to those diagnosed 1 month after starting PDT (14.83 vs. 1.91, p < 0.0001). Application of PDT for treating AKs modifies epidermal barrier function. Immediately after the first session temperature, transepidermal water loss (TEWL), stratum corneum hydration (SCH) and total antioxidant capacity (TAC) increased while pH decreased on lesional skin. After 1-month follow-up, the only remained change was the increased in SCH. Higher increases in temperature were observed when using occlusive PDT compared to mixed modality. 5-ALA and M-ALA seem to have a similar impact on skin barrier. CONCLUSIONS PDT can improve skin barrier function in patients with AKs. Skin homeostasis parameters can be used to assess efficacy and optimize dosing.
Collapse
Affiliation(s)
- Alberto Soto‐Moreno
- Dermatology DepartmentHospital Universitario Virgen de las NievesGranadaSpain
| | - Trinidad Montero‐Vilchez
- Dermatology DepartmentHospital Universitario Virgen de las NievesGranadaSpain
- TECe19‐Dermatología Clínica y TraslacionalInstituto de Investigación Biosanitaria ibs. GRANADAGranadaSpain
| | - Pablo Diaz‐Calvillo
- Dermatology DepartmentHospital Universitario Virgen de las NievesGranadaSpain
| | - Alejandro Molina‐Leyva
- Dermatology DepartmentHospital Universitario Virgen de las NievesGranadaSpain
- TECe19‐Dermatología Clínica y TraslacionalInstituto de Investigación Biosanitaria ibs. GRANADAGranadaSpain
| | - Salvador Arias‐Santiago
- Dermatology DepartmentHospital Universitario Virgen de las NievesGranadaSpain
- TECe19‐Dermatología Clínica y TraslacionalInstituto de Investigación Biosanitaria ibs. GRANADAGranadaSpain
| |
Collapse
|
16
|
Yang P, He B, Zhong J, Zhao X, Bu Z. Assessment of therapeutic efficacy in seven cases of basal cell carcinoma in the ear and nose region treated with new surgical excision and immediate photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103904. [PMID: 37984528 DOI: 10.1016/j.pdpdt.2023.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/20/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most prevalent non-melanoma skin tumor. It commonly affects exposed areas. Currently, surgical resection is considered the primary approach for BCC treatment. However, BCC frequently affects exposed facial areas, leading to visible scars after surgery. PDT has garnered increasing recent attention, demonstrating superior efficacy and favorable cosmetic outcomes for superficial BCCs. However, it shows limited treatment effectiveness for deep-seated tumors. Most of the current literature focuses on the combination of surgery and postoperative PDT, while no studies have reported on the use of standard surgical excision with intraoperative margin pathological monitoring and immediate PDT. Therefore, we implemented a treatment protocol combining surgery and immediate PDT. Accordingly, this paper aimed to explore the effectiveness, cosmetic outcomes, and other relevant advantages of this therapeutic approach. METHODS We aimed to evaluate this approach in seven patients with BCC on the nose and ears. Standard surgical excision of skin lesions was performed, with intraoperative frozen section examination of the margins, followed by immediate postoperative PDT for the wounds, and continued periodic PDT during the second phase of wound healing. RESULTS All seven cases demonstrated significant improvement. The cosmetic rating was 100 % and no cases of recurrence existed among the seven patients. CONCLUSIONS This approach effectively minimized the surgical wound, improved tumor clearance, achieved precise therapeutic effects, and reduced the recurrence rate. Moreover, it produced favorable cosmetic outcomes.
Collapse
Affiliation(s)
- Ping Yang
- Department of Dermatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, China
| | - Beilei He
- The Fourth School of Medicine Affiliated to Zhejiang Chinese Medical University, China
| | - Jianbo Zhong
- Department of Dermatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, China
| | - Xingyun Zhao
- Department of Dermatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, China
| | - Zhangyu Bu
- Department of Dermatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, China.
| |
Collapse
|
17
|
Bozsányi S, Boostani M, Farkas K, Hamilton-Meikle P, Varga NN, Szabó B, Vasanits F, Kuroli E, Meznerics FA, Lőrincz K, Holló P, Bánvölgyi A, Wikonkál NM, Paragh G, Kiss N. Optically Guided High-Frequency Ultrasound to Differentiate High-Risk Basal Cell Carcinoma Subtypes: A Single-Centre Prospective Study. J Clin Med 2023; 12:6910. [PMID: 37959375 PMCID: PMC10648659 DOI: 10.3390/jcm12216910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most common type of skin cancer in the Caucasian population. Currently, invasive biopsy is the only way of establishing the histological subtype (HST) that determines the treatment options. Our study aimed to evaluate whether optically guided high-frequency ultrasound (OG-HFUS) imaging could differentiate aggressive HST BCCs from low-risk tumors. METHODS We conducted prospective clinical and dermoscopic examinations of BCCs, followed by 33 MHz OG-HFUS imaging, surgical excision, and a histological analysis. We enrolled 75 patients with 78 BCCs. In total, 63 BCCs were utilized to establish a novel OG-HFUS risk classification algorithm, while 15 were employed for the validation of this algorithm. The mean age of the patients was 72.9 ± 11.2 years. Histology identified 16 lesions as aggressive HST (infiltrative or micronodular subtypes) and 47 as low-risk HST (superficial or nodular subtypes). To assess the data, we used a one-sided Fisher's exact test for a categorical analysis and a Receiver Operating Characteristic (ROC) curve analysis to evaluate the diagnostic accuracy. RESULTS OG-HFUS distinguished aggressive BCC HSTs by their irregular shape (p < 0.0001), ill-defined margins (p < 0.0001), and non-homogeneous internal echoes (p = 0.004). We developed a risk-categorizing algorithm that differentiated aggressive HSTs from low-risk HSTs with a higher sensitivity (82.4%) and specificity (91.3%) than a combined macroscopic and dermoscopic evaluation (sensitivity: 40.1% and specificity: 73.1%). The positive and negative predictive values (PPV and NPV, respectively) for dermoscopy were 30.2% and 76.8%, respectively. In comparison, the OG-HFUS-based algorithm demonstrated a PPV of 94.7% and an NPV of 78.6%. We verified the algorithm using an independent image set, n = 15, including 12 low-risk and 3 high-risk (high-risk) with two blinded evaluators, where we found a sensitivity of 83.33% and specificity of 91.66%. CONCLUSIONS Our study shows that OG-HFUS can identify aggressive BCC HSTs based on easily identifiable morphological parameters, supporting early therapeutic decision making.
Collapse
Affiliation(s)
- Szabolcs Bozsányi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Mehdi Boostani
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Klára Farkas
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Phyllida Hamilton-Meikle
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Noémi Nóra Varga
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Boglárka Szabó
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Flóra Vasanits
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Enikő Kuroli
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Fanni Adél Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Kende Lőrincz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Norbert M. Wikonkál
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (S.B.); (M.B.); (K.F.); (P.H.-M.); (N.N.V.); (B.S.); (F.V.); (E.K.); (F.A.M.); (K.L.); (P.H.); (A.B.); (N.M.W.)
| |
Collapse
|
18
|
Szymańska E, Potaś J, Maciejczyk M, Sulewska ME, Pietruska M, Zalewska A, Pietruska A, Winnicka K. Preliminary Assessment of Polysaccharide-Based Emulgels Containing Delta-Aminolevulinic Acid for Oral Lichen planus Treatment. Pharmaceuticals (Basel) 2023; 16:1534. [PMID: 38004400 PMCID: PMC10674658 DOI: 10.3390/ph16111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy using delta-aminolevulinic acid is considered a promising option in the treatment of oral lichen planus. In the present work, three emulgel compositions prepared from natural polysaccharide gums, tragacanth, xanthan and gellan, were preliminarily tested for oromucosal delivery of delta-aminolevulinic acid. Apart from cytotoxicity studies in two gingival cell lines, the precise goal was to investigate whether the presence of the drug altered the rheological and mucoadhesive behavior of applied gelling agents and to examine how dilution with saliva fluid influenced the retention of the designed emulgels by oromucosal tissue. Ex vivo mucoadhesive studies revealed that a combination of xanthan and gellan gum enhanced carrier retention by buccal tissue even upon dilution with the saliva. In turn, the incorporation of delta-aminolevulinic acid favored interactions with mucosal tissue, particularly formulations comprised of tragacanth. The designed preparations had no significant impact on the cell viability after a 24 h incubation in the tested concentration range. Cytotoxicity studies demonstrated that tragacanth-based and gellan/xanthan-based emulgels might exert a protective effect on the metabolic activity of human gingival fibroblasts and keratinocytes. Overall, the presented data show the potential of designed emulgels as oromucosal platforms for delta-aminolevulinic acid delivery.
Collapse
Affiliation(s)
- Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| | - Joanna Potaś
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| | - Mateusz Maciejczyk
- Department of Hygiene and Epidemiology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland;
| | - Magdalena Ewa Sulewska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland; (M.E.S.); (M.P.)
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland; (M.E.S.); (M.P.)
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Restorative Dentistry Department, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Aleksandra Pietruska
- Student’s Research Group, Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| |
Collapse
|
19
|
Szymańska E, Potaś J, Baranowski M, Czarnomysy R, Sulewska ME, Basa A, Pietruska M, Bielawski K, Winnicka K. Evaluation of Oromucosal Natural Gum-Based Emulgels as Novel Strategy for Photodynamic Therapy of Oral Premalignant Lesions. Pharmaceutics 2023; 15:2512. [PMID: 37896272 PMCID: PMC10610218 DOI: 10.3390/pharmaceutics15102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic therapy (PDT) recently has been shown as a promising option in the treatment of premalignant lesions of the soft oral tissues. Effective delivery of photosensitizer is challenging due to poor drug adherence to the oromucosal epithelium. In the present work, emulgels composed of natural polysaccharide gums (tragacanth, xanthan and gellan) were evaluated as novel oromucosal platforms of delta-aminolevulinic acid (ALA) for PDT. Apart from mucoadhesive and textural analysis, the specific steps involved studies on drug penetration behavior and safety profile using a three-dimensional human oral epithelium model (HOE). All designed emulgels presented greater mucoadhesiveness when compared to commercial oromucosal gel. Incorporation of ALA affected textural properties of emulgels, and tragacanth/xanthan formulation with greater hardness and cohesiveness exhibited a protective function against the mechanical tongue stress. Permeability studies revealed that ALA is capable of penetrating across oromucosal epithelium by passive transport and all formulations promoted its absorption rate when compared to a commercial topical product with ALA. Importantly, the combination of tragacanth and xanthan profoundly enhanced photosensitizer retention in the buccal epithelium. Tested samples performed negligible reduction in cell viability and moderately low IL-1β release, confirming their non-irritancy and compatibility with HOE. Overall, the presented findings indicate that tragacanth/xanthan emulgel holds promise as an oromucosal ALA-carrier for PDT strategy.
Collapse
Affiliation(s)
- Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| | - Joanna Potaś
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland;
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Magdalena Ewa Sulewska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, ul. Waszyngtona 13, 15-269 Białystok, Poland; (M.E.S.); (M.P.)
| | - Anna Basa
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, ul. Waszyngtona 13, 15-269 Białystok, Poland; (M.E.S.); (M.P.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| |
Collapse
|
20
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
21
|
Ortiz-Rodríguez LA, Fang YG, Niogret G, Hadidi K, Hoehn SJ, Folkwein HJ, Jockusch S, Tor Y, Cui G, Levi L, Crespo-Hernández CE. Thieno[3,4- d]pyrimidin-4(3 H)-thione: an effective, oxygenation independent, heavy-atom-free photosensitizer for cancer cells. Chem Sci 2023; 14:8831-8841. [PMID: 37621444 PMCID: PMC10445467 DOI: 10.1039/d3sc02592f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
All-organic, heavy-atom-free photosensitizers based on thionation of nucleobases are receiving increased attention because they are easy to make, noncytotoxic, work both in the presence and absence of molecular oxygen, and can be readily incorporated into DNA and RNA. In this contribution, the DNA and RNA fluorescent probe, thieno[3,4-d]pyrimidin-4(1H)-one, has been thionated to develop thieno[3,4-d]pyrimidin-4(3H)-thione, which is nonfluorescent and absorbs near-visible radiation with about 60% higher efficiency. Steady-state absorption and emission spectra are combined with transient absorption spectroscopy and CASPT2 calculations to delineate the electronic relaxation mechanisms of both pyrimidine derivatives in aqueous and acetonitrile solutions. It is demonstrated that thieno[3,4-d]pyrimidin-4(3H)-thione efficiently populates the long-lived and reactive triplet state generating singlet oxygen with a quantum yield of about 80% independent of solvent. It is further shown that thieno[3,4-d]pyrimidin-4(3H)-thione exhibits high photodynamic efficacy against monolayer melanoma cells and cervical cancer cells both under normoxic and hypoxic conditions. Our combined spectroscopic, computational, and in vitro data demonstrate the excellent potential of thieno[3,4-d]pyrimidin-4(1H)-thione as a heavy-atom-free PDT agent and paves the way for further development of photosensitizers based on the thionation of thieno[3,4-d]pyrimidine derivatives. Collectively, the experimental and computational results demonstrate that thieno[3,4-d]pyrimidine-4(3H)-thione stands out as the most promising thiobase photosensitizer developed to this date.
Collapse
Affiliation(s)
| | - Ye-Guang Fang
- Key Lab of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University Beijing 100875 China
| | - Germain Niogret
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Kaivin Hadidi
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University Cleveland OH 44106 USA
| | - Heather J Folkwein
- Department of Chemistry, Case Western Reserve University Cleveland OH 44106 USA
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University Bowling Green Ohio 43403 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Ganglong Cui
- Key Lab of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University Beijing 100875 China
| | - Liraz Levi
- Celloram Inc Cleveland OH 44106 USA
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | | |
Collapse
|
22
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
23
|
Ruiz AJ, LaRochelle EPM, Fahrner MP, Emond JA, Samkoe KS, Pogue BW, Chapman MS. Equivalent efficacy of indoor daylight and lamp-based 5-aminolevulinic acid photodynamic therapy for treatment of actinic keratosis. SKIN HEALTH AND DISEASE 2023; 3:e226. [PMID: 37538332 PMCID: PMC10395623 DOI: 10.1002/ski2.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 04/04/2023]
Abstract
Background Photodynamic therapy (PDT) is widely used as a treatment for actinic keratoses (AK), with new sunlight-based regimens proposed as alternatives to lamp-based treatments. Prescribing indoor daylight activation could help address the seasonal temperature, clinical supervision, and access variability associated with outdoor treatments. Objective To compare the AK lesion clearance efficacy of indoor daylight PDT treatment (30 min of 5-aminolevulinic acid (ALA) pre-incubation, followed by 2 h of indoor sunlight) versus a lamp-based PDT treatment (30 min of ALA preincubation, followed by 10 min of red light). Methods A prospective clinical trial was conducted with 41 patients. Topical 10% ALA was applied to the entire treatment site (face, forehead, scalp). Patients were assigned to either the lamp-based or indoor daylight treatment. Actinic keratosis lesion counts were determined by clinical examination and recorded for pre-treatment, 1-month, and 6-month follow-up visits. Results There was no statistical difference in the efficacy of AK lesion clearance between the red-lamp (1-month clearance = 57 ± 17%, 6-month clearance = 57 ± 20%) and indoor daylight treatment (1-month clearance = 61 ± 19%, 6-month clearance = 67 ± 20%). A 95% confidence interval of the difference of the means was measured between -4.4% and 13.4% for 1-month, and -2.2% and +23.6% for 6-month timepoints when comparing the indoor daylight to the red-lamp treatment, with a priori interval of equivalence of ±20%. Limitations Ensuring an equivalent dose between the indoor and lamp treatment cohorts limited randomisation since it required performing indoor daylight treatments only during sunny days. Conclusion Indoor-daylight PDT provided equivalent AK treatment efficacy to a lamp-based regimen while overcoming temperature limitations and UV-block sunscreen issues associated with outdoor sunlight treatments in the winter. Clinical trial registration Clinicaltrials.gov listing: NCT03805737.
Collapse
Affiliation(s)
- Alberto J. Ruiz
- Thayer School of Engineering at DartmouthHanoverNew HampshireUSA
| | | | | | | | | | - Brian W. Pogue
- Thayer School of Engineering at DartmouthHanoverNew HampshireUSA
| | - M. Shane Chapman
- Department of DermatologyGeisel School of Medicine at DartmouthHanoverNew HampshireUSA
| |
Collapse
|
24
|
Ruiz AJ, Allen R, Giallorenzi MK, Samkoe KS, Shane Chapman M, Pogue BW. Smartphone-based dual radiometric fluorescence and white-light imager for quantification of protoporphyrin IX in skin. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:086003. [PMID: 37638107 PMCID: PMC10460113 DOI: 10.1117/1.jbo.28.8.086003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Significance The quantification of protoporphyrin IX (PpIX) in skin can be used to study photodynamic therapy (PDT) treatments, understand porphyrin mechanisms, and enhance preoperative mapping of non-melanoma skin cancers. Aim We aim to develop a smartphone-based imager for performing simultaneous radiometric fluorescence (FL) and white light (WL) imaging to study the baseline levels, accumulation, and photobleaching of PpIX in skin. Approach A smartphone-based dual FL and WL imager (sDUO) is introduced alongside new radiometric calibration methods for providing SI-units of measurements in both pre-clinical and clinical settings. These radiometric measurements and corresponding PpIX concentration estimations are applied to clinical measurements to understand mechanistic differences between PDT treatments, accumulation differences between normal tissue and actinic keratosis lesions, and the correlation of photosensitizer concentrations to treatment outcomes. Results The sDUO alongside the developed methods provided radiometric FL measurements (nW / cm 2 ) with a demonstrated sub nanomolar PpIX sensitivity in 1% intralipid phantoms. Patients undergoing PDT treatment of actinic keratosis (AK) lesions were imaged, capturing the increase and subsequent decrease in FL associated with the incubation and irradiation timepoints of lamp-based PDT. Furthermore, the clinical measurements showed mechanistic differences in new daylight-based treatment modalities alongside the selective accumulation of PpIX within AK lesions. The use of the radiometric calibration enabled the reporting of detected PpIX FL in units of nW / cm 2 with the use of liquid phantom measurements allowing for the estimation of in-vivo molar concentrations of skin PpIX. Conclusions The phantom, pre-clinical, and clinical measurements demonstrated the capability of the sDUO to provide quantitative measurements of PpIX FL. The results demonstrate the use of the sDUO for the quantification of PpIX accumulation and photobleaching in a clinical setting, with implications for improving the diagnosis and treatment of various skin conditions.
Collapse
Affiliation(s)
- Alberto J. Ruiz
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- QUEL Imaging, LLC, White River Junction, Vermont, United States
| | - Richard Allen
- QUEL Imaging, LLC, White River Junction, Vermont, United States
| | - Mia K. Giallorenzi
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Kimberley S. Samkoe
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - M. Shane Chapman
- Dartmouth Health, Department of Dermatology, Lebanon, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
25
|
Li Y, Zheng L, Cao W, Yang X, Wang Q, Gu X, Liu F, Ma T, Wang X, Wang Q. 5-aminolevulinic acid-loaded dissolving microneedle array for photodynamic therapy of rheumatoid arthritis on rats. Biomed Pharmacother 2023; 162:114684. [PMID: 37058824 DOI: 10.1016/j.biopha.2023.114684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive technique that can be used to treat rheumatoid arthritis (RA) by irradiating photosensitizers with specific wavelengths of light to generate reactive oxygen species (ROS), thus leading to targeted cell necrosis. However, efficient delivery of photosensitizers with low side effects is a key issue. We developed a 5-aminolevulinic acid-loaded dissolving microneedle array (5-ALA@DMNA) that can locally and efficiently deliver photosensitizers for RA treatment by PDT. 5-ALA@DMNA was fabricated through a two-step molding process, which was characterized. The effects of 5-ALA-mediated PDT on RA fibroblast-like synoviocytes (RA-FLs) were investigated via in vitro experiments. Adjuvant arthritis rat models were established to evaluate the therapeutic effect of 5-ALA@DMNA-mediated PDT on RA. The results showed that 5-ALA@DMNA could penetrate the skin barrier and efficiently deliver photosensitizers. 5-ALA-mediated PDT can significantly inhibit the migration ability and selectively induce apoptosis of RA-FLs. Moreover, 5-ALA-mediated PDT had a significant therapeutic effect on rats with adjuvant arthritis, which may be related to the upregulation of interleukin (IL)- 4 and IL-10 and downregulation of TNF-α, IL-6, and IL-17. Thus, 5-ALA@DMNA-mediated PDT may be a potential therapy for RA.
Collapse
Affiliation(s)
- Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, China
| | - Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Wenyu Cao
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xuejing Yang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Qiuyue Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xun Gu
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Fang Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, China
| | - Xu Wang
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, China; Bengbu BBCA Medical Science Co., Ltd., Bengbu, China.
| |
Collapse
|
26
|
Wang S, Saeidi T, Lilge L, Betz V. Integrating clinical access limitations into iPDT treatment planning with PDT-SPACE. BIOMEDICAL OPTICS EXPRESS 2023; 14:714-738. [PMID: 36874501 PMCID: PMC9979674 DOI: 10.1364/boe.478217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
PDT-SPACE is an open-source software tool that automates interstitial photodynamic therapy treatment planning by providing patient-specific placement of light sources to destroy a tumor while minimizing healthy tissue damage. This work extends PDT-SPACE in two ways. The first enhancement allows specification of clinical access constraints on light source insertion to avoid penetrating critical structures and to minimize surgical complexity. Constraining fiber access to a single burr hole of adequate size increases healthy tissue damage by 10%. The second enhancement generates an initial placement of light sources as a starting point for refinement, rather than requiring entry of a starting solution by the clinician. This feature improves productivity and also leads to solutions with 4.5% less healthy tissue damage. The two features are used in concert to perform simulations of various surgery options of virtual glioblastoma multiforme brain tumors.
Collapse
Affiliation(s)
- Shuran Wang
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| | - Tina Saeidi
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
| | - Lothar Lilge
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
| | - Vaughn Betz
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| |
Collapse
|
27
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
28
|
Ruiz AJ, LaRochelle EPM, Samkoe KS, Chapman MS, Pogue BW. Effective fluence and dose at skin depth of daylight and lamp sources for PpIX-based photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 41:103260. [PMID: 36627070 DOI: 10.1016/j.pdpdt.2022.103260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Skin-based photodynamic therapy (PDT) is used for the clinical treatment of actinic keratosis (AKs) and other skin lesions with continued expansion into the standard of care. Due to the spectral dependency of photosensitizer activation and skin optical fluence, there is a need for more accurate methods to estimate the delivered dose at depth from different PDT light sources and treatment regimens. AIM Develop radiometric methods for calculating photosensitizer-effective fluence and dose at depth and determine differences between red-lamp, blue-lamp, and daylight-based PDT treatments. METHODS Radiometric measurements of FDA-approved PDT lamp sources, outdoor daylight, and indoor daylight were performed for clinically relevant AK treatments. The protoporphyrin IX (PpIX) equivalent irradiance, fluence, and dose for each light source were calculated from the PpIX absorption spectrum and a 7-layer skin fluence model. The effective fluence and dose at depth was estimated by combining the spectral attenuation predicted at each wavelength and depth with the source fluence at each wavelength. RESULTS The red-lamp source had the highest illuminance (112,000 lumen/m2), but lowest PpIX-effective irradiance (9.6 W/m2), and highest effective fluence at depth (10.8 W/m2 at 500 µm). In contrast, the blue light source had the lowest illuminance (2300 lumen/m2), but highest PpIX effective irradiance (37.0 W/m2), and ultimately the lowest effective fluence at depth (0.18 W/cm2 at 500 µm). The daylight source had values of (outdoor | indoor) illuminance of (49,200 | 37,800 lumen/m2), effective irradiance of (19.2 | 10.7 W/m2), and effective fluence of (1.50 | 1.08 W/m2 at 500 µm). The effective fluence and dose at depth facilitated the comparison of treatment regimens, for example, calculating an equivalent dose for a 2 hr indoor daylight treatment and a 10 min red-light treatment for the 300-1000 μm depth range. CONCLUSIONS The consideration of PpIX-effective fluence at varying depths is necessary to provide adequate comparisons of the delivered dose from PDT light sources. Methods for calculating radiometric fluence and delivered dose at depth were introduced, with open source MATLAB code, to help overcome the limitations of commonly used photometric and irradiance-based reporting.
Collapse
Affiliation(s)
- Alberto J Ruiz
- Dartmouth Engineering, 15 Thayer Drive, Hanover, NH 03755, USA; QUEL Imaging, LLC, White River Junction, VT 0500, USA.
| | | | | | - M Shane Chapman
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Brian W Pogue
- Dartmouth Engineering, 15 Thayer Drive, Hanover, NH 03755, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
29
|
Fernández Guarino M, Fernández-Nieto D, Montes LV, Lobo DDP. Methyl Aminolaevulinic Acid versus Aminolaevulinic Acid Photodynamic Therapy of Actinic Keratosis with Low Doses of Red-Light LED Illumination: Results of Long-Term Follow-Up. Biomedicines 2022; 10:biomedicines10123218. [PMID: 36551974 PMCID: PMC9775939 DOI: 10.3390/biomedicines10123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) treatment for multiple actinic keratosis (AK) has been found effective when lower doses of red light were used with methyl aminolaevulinic acid (MAL). The aim of this study was to compare the results of lower doses of red light conventional PDT (h-PDT, 16 J/cm2) with MAL and aminolaevulinic acid (ALA) in a long-term follow-up. Patients with more than five symmetrical AK on the scalp who were candidates for PDT were selected and divided randomly between MAL and ALA treatment and patients were followed at 3 and 12 months. The responses were assessed by counting the total AK and the AK per patient. Pain and adverse events were also compiled. A total of 46 patients were treated, 24 with MAL, and 22 with ALA. The two groups were comparable at baseline (p > 0.005). No significant differences were found in the results of both treatments at 12 months, despite ALA exhibiting slightly better results at 3 months. No differences in pain and adverse events were assessed. Both ALA and MAL were effective when lower doses of red light were used in c-PDT. Long term efficacy was also documented. Further studies are necessary to determine the inferior point of red-light illumination without losing efficacy.
Collapse
|
30
|
Zhao H, Wang X, Geng Z, Liang N, Li Q, Hu X, Wei Z. Dual-function microneedle array for efficient photodynamic therapy with transdermal co-delivered light and photosensitizers. LAB ON A CHIP 2022; 22:4521-4530. [PMID: 36047443 DOI: 10.1039/d2lc00505k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photodynamic therapy (PDT), as a globally accepted method for treating different forms of skin or mucosal disorders, requires efficient co-delivery of photosensitizers and corresponding therapeutic light. The adverse effects of intravenous injection of photosensitizers have been reduced by the development of microneedle arrays for transdermal local photosensitizer delivery. However, the drawbacks of the only available therapeutic light delivery method at the moment, which is directly applying light to the skin surface, are yet to be improved. This study presents a new strategy in which therapeutic light and photosensitizer were transdermally co-delivered into local tissues. A flexible dual-function microneedle array (DfMNA) which contains 400 microneedles was developed. Each microneedle consists of a dissolvable needle tip (140 μm in height) for delivering the photosensitizer and a transparent needle body (660 μm in height) for guiding therapeutic light. Using port-wine stains, which is a frequently occurring skin disorder caused by vascular malformation, as a model disease, the effectiveness of DfMNA mediated PDT has been verified on mice. Compared with the standard operation procedure of clinical PDT, the DfMNA decreases the amount of photosensitizer from 300 μg to 0.5 μg and reduces therapeutic light irradiance from 100 mW cm-2 to 60 mW cm-2 while realizing better treatment effects. As a result, the skin damage and the burden on the metabolic system have been alleviated. The DfMNA has a remarkably reduced photosensitizer amount and, for the first time, realized transdermal delivery of therapeutic light for PDT, thus avoiding the disadvantages of existing PDT methodologies.
Collapse
Affiliation(s)
- Huiting Zhao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xu Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhanhui Geng
- Institute of Quartermaster Engineering and Technology, Institute of System and Engineering, Academy of Military Sciences of People's Liberation Army, Beijing, 100010, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qin Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiaoming Hu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zewen Wei
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
31
|
Eskikaya O, Ozdemir S, Tollu G, Dizge N, Ramaraj R, Manivannan A, Balakrishnan D. Synthesis of two different zinc oxide nanoflowers and comparison of antioxidant and photocatalytic activity. CHEMOSPHERE 2022; 306:135389. [PMID: 35718032 DOI: 10.1016/j.chemosphere.2022.135389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Nanoflowers are a newly developed class of nanoparticles that show flower-like structures and attract much attention due to their simple preparation methods, high stability, and increased efficiency. The aim of the study is to investigate a strong alternative to reduce the severity of infection and increase the treatment of wastewater by exhibiting biofilm inhibition in medical and environmental applications of the ZnO-NFs with two different shapes. ZnO-NFs were synthesized by two different processes hydrothermal method (named ZnO-NF1) and the precipitation method (named ZnO-NF2). ZnO-NFs produced by two different synthesis methods were compared for the photocatalytic and antioxidant efficiency. The effects of Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes concentration, photocatalyst amount, and reaction time were investigated on dye removal efficiency for photocatalytic experiments. The color was completely removed for 25 mg/L BR18 and RR180 dyes for 75 min and 90 min, respectively, using 1.5 g/L photocatalyst amount using ZnO-NF1. However, 59.18% dye removal efficiency was obtained for 90 min by using a 1.5 g/L ZnO-NF2 photocatalyst for 25 mg/L BR18 dye removal, while a dye removal efficiency of 90.00% was detected for 90 min using 2 g/L ZnO-NF2 for 25 mg/L RR180 dye. Then, comparison of general properties such as antibacterial, antibiofilm, microbial cell viability, DNA fragmentation, antioxidant activities, and antimicrobial photodynamic therapy of ZnO-NFs were investigated. The antioxidant activity of ZnO-NF2 was found to be higher than ZnO-NF1 at each concentration (82.32% and 87.18% for ZnO-NF1 and ZnO-NF2, respectively, at 200 mg/mL).
Collapse
Affiliation(s)
- Ozan Eskikaya
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey
| | - Gülsah Tollu
- Department of Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | | | - Arthi Manivannan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
32
|
Mansuri P, Tabaie SM, Naderi MS, Kebriti K, Esmaeeli Djavid G, Shirkavand A. Systemic Photodynamic Therapy With Chlorine e6 as a Photosensitizer for the Treatment of Nodular BCC: A Case Report. J Lasers Med Sci 2022; 13:e44. [PMID: 36743148 PMCID: PMC9841372 DOI: 10.34172/jlms.2022.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Introduction: Photodynamic therapy (PDT) is a demonstrated therapeutic method for basal cellcarcinoma (BCC), which is the most common human cancer. Here, we present a case report about systemic PDT with chlorine e6 as a photosensitizer (PS) for BCC treatment. Case Report: A 78-year-old man was diagnosed with a history of a 4-year nodular BCC in the nasal area. The patient was under control and treatment for hypertension and type 2 diabetes. Chlorine e6 was injected intravenously at a 0.08 mg/kg dosage in 500 cc normal saline within 20 minutes. Three hours after injection, laser irradiation was performed with a wavelength of 665 nm, a dosage of 150 J/cm2, and an irradiance value of 150 mW/cm2. His nodular BCC was completely cured without any side effects after one session of PDT with chlorine e6. Conclusion: Systemic PDT with chlorine e6 as a PS may be safe and effective in removing BCC lesions due to the data obtained in a two-month follow-up.
Collapse
Affiliation(s)
- Parvin Mansuri
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Seyed Mehdi Tabaie
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran,Correspondence to Seyed Mehdi Tabaie,
| | - Mina Sadat Naderi
- Department of Biophysics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Katayoun Kebriti
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Afshan Shirkavand
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
33
|
Dey A, Singhvi G, Puri A, Kesharwani P, Dubey SK. An insight into photodynamic therapy towards treating major dermatological conditions. J Drug Deliv Sci Technol 2022; 76:103751. [PMID: 36159728 PMCID: PMC9495279 DOI: 10.1016/j.jddst.2022.103751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT), as the name suggests is a light-based, non-invasive therapeutic treatment method that has garnered immense interest in the recent past for its efficacy in treating several pathological conditions. PDT has prominent use in the treatment of several dermatological conditions, which consequently have cosmetic benefits associated with it as PDT improves the overall appearance of the affected area. PDT is commonly used for repairing sun-damaged skin, providing skin rejuvenation, curbing pre-cancerous cells, treating conditions like acne, keratosis, skin-microbial infections, and cutaneous warts, etc. PDT mediates its action by generating oxygen species that are involved in bringing about immunomodulation, suppression of microbial load, wound-healing, lightening of scarring, etc. Although there are several challenges associated with PDT, the prominent ones being pain, erythema, insufficient delivery of the photosensitizing agent, and poor clinical outcomes, still PDT stands to be a promising approach with continuous efforts towards maximizing clinical efficacy while being cautious of the side effects and working towards lessening them. This article discusses the major skin-related conditions which can be treated or managed by employing PDT as a better or comparable alternative to conventional treatment approaches such that it also brings about aesthetic improvements thereof.
Collapse
Affiliation(s)
- Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India-333031
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute — Frederick, Frederick, MD, 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| |
Collapse
|
34
|
Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers (Basel) 2022; 14:cancers14184462. [PMID: 36139623 PMCID: PMC9496990 DOI: 10.3390/cancers14184462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present review represents the outstanding and promising recent literature reports (2017–2022) on nanoparticle-based formulations developed for anticancer therapy with photodynamic therapy (PDT), photosensitizers, and chemotherapeutics. Besides brief descriptions of chemotherapeutics’ classification and of PDT mechanisms and limitations, several examples of nanosystems endowed with different responsiveness (e.g., acidic pH and reactive oxygen species) and peculiarity (e.g., tumor oxygenation capacity, active tumor targeting, and biomimetic features) are described, and for each drug combination, in vitro and in vivo results on preclinical cancer models are reported. Abstract The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models.
Collapse
Affiliation(s)
- Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Celeste Milani
- Department of Biology, University of Padova, 35100 Padova, Italy
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, 40129 Bologna, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| |
Collapse
|
35
|
Wang T, Han Q, Hu W, Ren H. Efficacy evaluation and dermoscopy predictors of photodynamic therapy with different pretreatments in the treatment of actinic keratosis. J DERMATOL TREAT 2022; 33:2853-2857. [PMID: 35694912 DOI: 10.1080/09546634.2022.2089325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to accurately evaluate the efficacy of photodynamic therapy (PDT) on actinic keratosis (AK) in the Asian population and its relationship with preconditioning and dermoscopy grading, and to determine whether some dermoscopic features of AK can independently predict the response to PDT to optimize the choice of clinical treatment. MATERIALS AND METHODS From January 2017 to January 2020, patients who were diagnosed as AK with only one lesion in our hospital were included in our study. PDT was performed after pretreatment with ablative fractional CO2 laser or cryotherapy. Logistic regression analysis was used to evaluate the characteristics of dermoscopy to determine the independent predictors of efficacy. RESULTS A total of 95 patients were enrolled in the study, and the final clinical evaluation was 92 cases (96.8%) as complete remission and 3 cases (3.2%) as partial remission/no response. Dermoscopy showed complete remission in 77 cases (81.1%) and partial remission/no response in 18 cases (18.9%). No significant difference was observed in the complete remission rate of dermoscopy grade 1 lesion after laser or cryotherapy pretreatment (p > 0.05), but for dermoscopy grade 2 and grade 3 lesions, the complete remission rate (dermoscopy evaluation) of the cryotherapy pretreatment group was higher than that of laser group (p < 0.05). The probability of complete remission with red pseudonetwork at the T0 time point increased by 3.8 times (odds ratio [OR] = 3.870,95%confidence interval [CI]:1.077-13.912, p = 0.048), while the probability of complete response for lesions with slight erosion at the baseline decreased by 85% (OR = 0.150,95%CI:0.033-0.671, p = 0.013). CONCLUSION For dermoscopy grade 2 and 3 lesions, PDT after pretreatment with cryotherapy is more effective. Dermoscopy pseudo-reticular structure and microscopic erosions were independent predictors of PDT efficacy. These findings may help clinicians to better select patients with AK for PDT.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Dermatology, The First People's Hospital of Lianyungang, Affiliated to Xuzhou Medical University, Lianyungang, China
| | - Qi Han
- Department of Orthopedics, The First People's Hospital of Lianyungang, Affiliated to Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Wenlong Hu
- Department of Dermatology, The First People's Hospital of Lianyungang, Affiliated to Xuzhou Medical University, Lianyungang, China
| | - Hong Ren
- Department of Dermatology, The First People's Hospital of Lianyungang, Affiliated to Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
36
|
Photodynamic Therapy with 5-Aminolevulinic Acid Patch for the Treatment of Actinic Keratosis. J Clin Med 2022; 11:jcm11113164. [PMID: 35683551 PMCID: PMC9181164 DOI: 10.3390/jcm11113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is an emerging treatment option in the care of actinic keratosis (AK). A self-adhesive 5-ALA patch was recently developed that allows a precise PDT procedure. Here, we review the current literature and report the findings of our case series that observed the outcomes and safety of 5-ALA patch PDT. Ten patients with a total of 40 AKs were treated with a single session of conventional or daylight PDT using 5-ALA patch at the Department of Dermatology and Venereology, Sapienza University of Rome or at the European Institute of Oncology, Milan, Italy. Complete response was observed in three patients, while partial response was seen in seven patients. Overall tolerability was good or excellent, with local adverse events observed in four patients. This is the first case series reported where the 5-ALA patch was applied using daylight PDT, and its efficacy and tolerability in the treatment of AK were demonstrated. In conclusion, the self-adhesive 5-ALA patch is a convenient application of PDT that provides a well-tolerated and effective treatment option with satisfactory cosmetic outcomes.
Collapse
|
37
|
Mpourazanis G, Konschake W, Vogiatzis R, Papalexis P, Georgakopoulou VE, Ntritsos G, Sklapani P, Trakas N. The Role and Effectiveness of Photodynamic Therapy on Patients With Actinic Keratosis: A Systematic Review and Meta-Analysis. Cureus 2022; 14:e26390. [PMID: 35911353 PMCID: PMC9332024 DOI: 10.7759/cureus.26390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/05/2022] Open
Abstract
Actinic keratoses (AKs) are the most common neoplastic lesions and are recognized as a precursor to squamous cell skin cancer. Photodynamic therapy (PDT) is a therapeutic option for multiple AKs in line with field cancerization. The aim of this study was to assess the effectiveness of PDT on patients with AKs using a meta-analysis, in order to evaluate the possible superiority of one treatment over the others. For this purpose, the PubMed, MEDLINE, Scopus, OVID, Science Direct, British Journal of Dermatology, Research Gate, and Embase databases were searched in March 2022. The search terms used were 'photodynamic therapy' and 'actinic keratosis'. We utilized the random-effects meta-analysis model to compare methyl aminolevulinate PDT (MAL-PDT) and the combination of a nanoscale-lipid vesicle formulation with the prodrug 5-aminolevulinic acid (BF-200 ALA) on a complete response (CR) of the lesions. Our meta-analysis indicated that the comparison of BF-200 ALA versus MAL-PDT showed marginally higher CRs than MAL-PDT.
Collapse
Affiliation(s)
- George Mpourazanis
- Department of Obstetrics and Gynecology, General Hospital of Ioannina G. Hatzikosta, Ioannina, GRC
| | - Wolfgang Konschake
- Department of Dermatology, Ernst-Moritz-Arndt Medical University of Greifswald, Greifswald, DEU
| | - Romanos Vogiatzis
- Department of Dermatology, Ernst-Moritz-Arndt Medical University of Greifswald, Greifswald, DEU
| | - Petros Papalexis
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Vasiliki E Georgakopoulou
- Department of Pulmonology, Laiko General Hospital, Athens, GRC
- First Department of Pulmonology, Sismanogleio Hospital, Athens, GRC
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, GRC
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta, GRC
| | | | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens, GRC
| |
Collapse
|
38
|
Cells to Surgery Quiz: April 2022. J Invest Dermatol 2022; 142:e51-e57. [DOI: 10.1016/j.jid.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022]
|
39
|
Hur GH, Ryu AR, Kim YW, Lee MY. The Potential Anti-Photoaging Effect of Photodynamic Therapy Using Chlorin e6-Curcumin Conjugate in UVB-Irradiated Fibroblasts and Hairless Mice. Pharmaceutics 2022; 14:pharmaceutics14050968. [PMID: 35631555 PMCID: PMC9143416 DOI: 10.3390/pharmaceutics14050968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Photodynamic therapy (PDT) has been used to treat cancers and non-malignant skin diseases. In this study, a chlorin e6–curcumin conjugate (Ce6-PEG-Cur), a combination of chlorin e6 (Ce6) and curcumin via a PEG linker, was used as a photosensitizer. The in vitro and in vivo effects of PDT using Ce6-PEG-Cur were analyzed in UVB-irradiated fibroblasts and hairless mice. The UVB-induced expression of MMPs was reduced in Hs68 fibroblast cells, and procollagen type Ⅰ expression was enhanced by Ce6-PEG-Cur-mediated PDT on a Western blotting gel. Moreover, UVB-induced collagen levels were restored upon application of Ce6-PEG-Cur-mediated PDT. Ce6-PEG-Cur-mediated PDT inhibited the expression of phosphorylated p38 in the MAPK signaling pathway, and it reduced the expression of phosphorylated NF-κB. In animal models, Ce6-PEG-Cur-mediated PDT inhibited the expression of MMPs, whereas procollagen type Ⅰ levels were enhanced in the dorsal skin of UVB-irradiated mice. Moreover, UVB-induced dorsal roughness was significantly reduced following Ce6-PEG-Cur-mediated PDT treatment. H&E staining and Masson’s trichrome staining showed that the thickness of the epidermal region was reduced, and the density of collagen fibers increased. Taken together, Ce6-PEG-Cur-mediated PDT might delay and improve skin photoaging by ultraviolet light, suggesting its potential for use as a more effective photo-aging treatment.
Collapse
Affiliation(s)
- Ga-Hee Hur
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
| | - Yong-Wan Kim
- Dongsung Bio Pharmaceutical Co., Ltd., Seoul 01340, Korea;
| | - Mi-Young Lee
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
- Correspondence: ; Tel.: +82-41-530-1355
| |
Collapse
|
40
|
Daylight-PDT: everything under the sun. Biochem Soc Trans 2022; 50:975-985. [PMID: 35385082 PMCID: PMC9162453 DOI: 10.1042/bst20200822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
5-Aminolevulinic acid-based photodynamic therapy (ALA-PDT) was first implemented over three decades ago and has since been mainly part of clinical practice for the management of pre-cancerous and cancerous skin lesions. Photodynamic therapy relies on the combination of a photosensitizer, light and oxygen to cause photo-oxidative damage of cellular components. 5-Aminolevulinic acid (ALA) is a natural precursor of the heme biosynthetic pathway, which when exogenously administered leads to the accumulation of the photoactivatable protoporphyrin IX. Although, effective and providing excellent cosmetic outcomes, its use has been restricted by the burning, stinging, and prickling sensation associated with treatment, as well as cutaneous adverse reactions that may be induced. Despite intense research in the realm of drug delivery, pain moderation, and light delivery, a novel protocol design using sunlight has led to some of the best results in terms of treatment response and patient satisfaction. Daylight PDT is the protocol of choice for the management of treatment of multiple or confluent actinic keratoses (AK) skin lesions. This review aims to revisit the photophysical, physicochemical and biological characteristics of ALA-PDT, and the underlying mechanisms resulting in daylight PDT efficiency and limitations.
Collapse
|
41
|
Serda M, Gawecki R, Dulski M, Sajewicz M, Talik E, Szubka M, Zubko M, Malarz K, Mrozek-Wilczkiewicz A, Musioł R. Synthesis and applications of [60]fullerene nanoconjugate with 5-aminolevulinic acid and its glycoconjugate as drug delivery vehicles. RSC Adv 2022; 12:6377-6388. [PMID: 35424628 PMCID: PMC8981668 DOI: 10.1039/d1ra08499b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
The 5-aminolevulinic acid (5-ALA) prodrug is widely used in clinical applications, primarily for skin cancer treatments and to visualize brain tumors in neurosurgery. Unfortunately, its applications are limited by unfavorable pharmacological properties, especially low lipophilicity; therefore, efficient nanovehicles are needed. For this purpose, we synthesized and characterized two novel water-soluble fullerene nanomaterials containing 5-ALA and d-glucuronic acid components. Their physicochemical properties were investigated using NMR, XPS, ESI mass spectrometry, as well as TEM and SEM techniques. In addition, HPLC and fluorescence measurements were performed to evaluate the biological activity of the fullerene nanomaterials in 5-ALA delivery and photodynamic therapy (PDT); additional detection of selected mRNA targets was carried out using the qRT-PCR methodology. The cellular response to the [60]fullerene conjugates resulted in increased levels of ABCG2 and PEPT-1 genes, as determined by qRT-PCR analysis. Therefore, we designed a combination PDT approach based on two fullerene materials, C60-ALA and C60-ALA-GA, along with the ABCG2 inhibitor Ko143.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice Szkolna 9 40-006 Katowice Poland +48322599978 +48323591545
| | - Robert Gawecki
- Silesian Center for Education and Interdisciplinary Research 75 Pulku Piechoty 1a 41-500 Chorzow Poland.,A. Chełkowski Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
| | - Mateusz Dulski
- Institute of Materials Science, University of Silesia in Katowice 75 Pulku Piechoty, 1A Chorzow 41-500 Poland
| | - Mieczysław Sajewicz
- Institute of Chemistry, University of Silesia in Katowice Szkolna 9 40-006 Katowice Poland +48322599978 +48323591545
| | - Ewa Talik
- A. Chełkowski Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
| | - Magdalena Szubka
- A. Chełkowski Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
| | - Maciej Zubko
- Institute of Materials Science, University of Silesia in Katowice 75 Pulku Piechoty, 1A Chorzow 41-500 Poland.,Department of Physics, Faculty of Science, University of Hradec Králové Rokitanského 62 500 03 Hradec Králové Czech Republic
| | - Katarzyna Malarz
- Silesian Center for Education and Interdisciplinary Research 75 Pulku Piechoty 1a 41-500 Chorzow Poland.,A. Chełkowski Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
| | - Anna Mrozek-Wilczkiewicz
- Silesian Center for Education and Interdisciplinary Research 75 Pulku Piechoty 1a 41-500 Chorzow Poland.,A. Chełkowski Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice Szkolna 9 40-006 Katowice Poland +48322599978 +48323591545
| |
Collapse
|
42
|
Investigation of the HelioVital filter foil revealed protective effects against UVA1 irradiation-induced DNA damage and against UVA1-induced expression of matrixmetalloproteinases (MMP) MMP1, MMP2, MMP3 and MMP15. Photochem Photobiol Sci 2022; 21:361-372. [PMID: 35174452 DOI: 10.1007/s43630-022-00177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
The damaging effects of solar ultraviolet (UV) radiation exposure to human skin are well known and can reach from accelerated skin aging (photoaging) to skin cancer. Much of the damaging effects of solar UVA (320-400 nm) radiation is associated with the induction of reactive oxygen species (ROS), which are capable to cause oxidative damage to DNA like the oxidized guanosine 8-hydroxy-2' -deoxyguanosine (8-OHdG). Therefore, new UV protective strategies, have to be tested for their efficiency to shield against UV induced damage. We investigated the protective effects of HelioVital sun protection filter foil against UVA1 irradiation in skin cells. It could be shown, that HelioVital sun protection filter foil has protective effects against UVA1 irradiation induced changes in matrix metalloproteinase (MMP) expression. Furthermore a UVA1-dependant regulation of MMP15 in human fibroblasts could be shown for the first time in this context. In addition, this study demonstrated the protective effect of the HelioVital filter film against UVA1-induced ROS production and DNA damage. These results could pave the way for clinical studies with HelioVital filter foil shielding against the damaging effects of phototherapy and other forms of irradiation therapy, thereby increasing the safety and treatment opportunities of these forms of therapy.
Collapse
|
43
|
Putra IB, Jusuf NK, Theresia C. The Efficacy of Topical Photodynamic Therapy in Precancerous Lesions of the Skin: A Literature Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Precancerous skin lesions are associated with high probability of malignant transformation to squamous cell carcinoma. Early detection and management are necessary to improve prognosis and outcomes. Literatures showed that topical photodynamic therapy (PDT) is a promising treatment method which can be successfully applied in several conditions in dermatology. This study aims to review the efficacy of topical PDT for various precancerous lesions in dermatology, such as actinic keratosis, Bowen disease, and Bowenoid papulosis.
Collapse
|
44
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Gálvez END, Aguilera J, Fonda-Pascual P, de Gálvez MV, de Andrés-Díaz JR, Vidal-Asensi S, Herrera-Acosta E, Gago-Calderon A. Analysis and evaluation of the operational characteristics of a new photodynamic therapy device. Photodiagnosis Photodyn Ther 2022; 37:102719. [PMID: 35021108 DOI: 10.1016/j.pdpdt.2022.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
One of the key aspects of photodynamic therapy is the light source that is used to irradiate the lesion to be treated. The devices used must ensure that their emission spectrum matches the absorption spectrum of the photosensitizer, so that treatment radiation is delivered only on the injured area, without irradiating healthy tissue at superficial or deep levels. Irradiance values must be adequate in order to avoid thermal damage, exceed the oxygen replenishment rate and avoid long treatment times. Furthermore, the device should be user-friendly, inexpensive, and able to be adapted to different photosensitizers. We have developed an easy-to-use and highly customizable device based on LED technology. Its innovative geometric design allows radiation to be delivered to a small treatment surface, since the LEDs are arranged in three arms, the configuration of which directs their radiation on the treatment point. Different high-power color LEDs are disposed on the arms, and can be independently selected based on the most effective wavelengths for exciting the different photodynamic therapy photosensitizers. We have tested the prototype in 5 different patients (1 actinic keratose, 1 actinic cheilitis, 1 superficial basal cell carcinoma and 2 Bowen's disease) and after 1-2 sessions of total cumulative dose of 25-50 J / cm2, 100% clearance of lesions were obtained. Our device can be used by any professional in the field, whether for medical or research purposes. It facilitates the development of treatment protocols and trials with different photosensitizers.
Collapse
Affiliation(s)
- Enrique Navarrete-de Gálvez
- Project Engineering Area, Department of Graphic Expression Design and Projects, University of Málaga, Málaga, Spain
| | - José Aguilera
- Photobiological Dermatology Laboratory Medical Research Centre, Department of Dermatology and Medicine, School of Medicine, University of Málaga, Málaga, Spain.
| | | | - María Victoria de Gálvez
- Photobiological Dermatology Laboratory Medical Research Centre, Department of Dermatology and Medicine, School of Medicine, University of Málaga, Málaga, Spain
| | - José Ramón de Andrés-Díaz
- Project Engineering Area, Department of Graphic Expression Design and Projects, University of Málaga, Málaga, Spain
| | | | - Enrique Herrera-Acosta
- Photobiological Dermatology Laboratory Medical Research Centre, Department of Dermatology and Medicine, School of Medicine, University of Málaga, Málaga, Spain; Dermatology Service, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Alfonso Gago-Calderon
- Project Engineering Area, Department of Graphic Expression Design and Projects, University of Málaga, Málaga, Spain
| |
Collapse
|
47
|
Elsner P. Zweitlinientherapie eines Basalzellkarzinoms mittels photodynamischer Therapie als grober Behandlungsfehler. AKTUELLE DERMATOLOGIE 2021. [DOI: 10.1055/a-1204-5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ZusammenfassungEin Hautarzt führte bei einem Patienten 2 Sitzungen einer photodynamischen Therapie zur Behandlung eines Basalzellkarzinoms an der rechten Wange durch. 3 Jahre später wurde der Kläger wegen des Verdachts eines Rezidivs an der rechten Wange ambulant operiert; es waren Nachoperationen erforderlich. Der Patient machte zivilgerichtlich Schadensersatz sowie ein Schmerzensgeld mit der Begründung geltend, er sei nicht über Behandlungsalternativen zur photodynamischen Therapie aufgeklärt worden und diese Therapie habe nicht dem fachmedizinischen Standard entsprochen. Während das zuständige Landgericht seine Klage ablehnend beschied, gab das Oberlandesgericht der Berufung statt und hielt fest, dass ein Behandlungsfehler darin liegt, wenn ein Arzt nicht die Therapie der 1. Wahl, den sog. „Golden Standard“, sondern die Therapie der 2. Wahl anwendet. Verlässt der Arzt den „Goldstandard“, ohne den Patienten hierauf hinzuweisen, so handelt er unverständlich und nicht mehr nachvollziehbar und damit grob fehlerhaft, wenn der Patient bereits zur Durchführung der Therapie der 1. Wahl entschlossen war. Dies führte im vorliegenden Fall zur Beweislastumkehr für die Kausalität des vom Patienten beklagten Gesundheitsschadens.
Collapse
Affiliation(s)
- P. Elsner
- Klinik für Hautkrankheiten, Universitätsklinikum Jena
| |
Collapse
|
48
|
Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13091332. [PMID: 34575408 PMCID: PMC8470722 DOI: 10.3390/pharmaceutics13091332] [Citation(s) in RCA: 467] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality that has gained great attention in the past years as a new therapy for cancer treatment. PDT uses photosensitizers that, after being excited by light at a specific wavelength, react with the molecular oxygen to create reactive oxygen species in the target tissue, resulting in cell death. Compared to conventional therapeutic modalities, PDT presents greater selectivity against tumor cells, due to the use of photosensitizers that are preferably localized in tumor lesions, and the precise light irradiation of these lesions. This paper presents a review of the principles, mechanisms, photosensitizers, and current applications of PDT. Moreover, the future path on the research of new photosensitizers with enhanced tumor selectivity, featuring the improvement of PDT effectiveness, has also been addressed. Finally, new applications of PDT have been covered.
Collapse
|
49
|
Experimental investigation of a combinational iron chelating protoporphyrin IX prodrug for fluorescence detection and photodynamic therapy. Lasers Med Sci 2021; 37:1155-1166. [PMID: 34218351 PMCID: PMC8918167 DOI: 10.1007/s10103-021-03367-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 10/31/2022]
Abstract
Photodynamic therapy (PDT) is an oxygen-dependent, light-activated, and locally destructive drug treatment of cancer. Protoporphyrin IX (PpIX)-induced PDT exploits cancer cells' own innate heme biosynthesis to hyper-accumulate the naturally fluorescent and photoactive precursor to heme, PpIX. This occurs as a result of administering heme precursors (e.g., aminolevulinic acid; ALA) because the final step of the pathway (the insertion of ferrous iron into PpIX by ferrochelatase to form heme) is relatively slow. Separate administration of an iron chelating agent has previously been demonstrated to significantly improve dermatological PpIX-PDT by further limiting heme production. A newly synthesized combinational iron chelating PpIX prodrug (AP2-18) has been assessed experimentally in cultured primary human cells of bladder and dermatological origin, as an alternative photosensitizing agent to ALA or its methyl or hexyl esters (MAL and HAL respectively) for photodetection/PDT. Findings indicated that the technique of iron chelation (either through the separate administration of the established hydroxypyridinone iron chelator CP94 or the just as effective combined AP2-18) did not enhance either PpIX fluorescence or PDT-induced (neutral red assessed) cell death in human primary normal and malignant bladder cells. However, 500 µM AP2-18 significantly increased PpIX accumulation and produced a trend of increased cell death within epithelial squamous carcinoma cells. PpIX accumulation destabilized the actin cytoskeleton in bladder cancer cells prior to PDT and resulted in caspase-3 cleavage/early apoptosis afterwards. AP2-18 iron chelation should continue to be investigated for the enhancement of dermatological PpIX-PDT applications but not bladder photodetection/PDT.
Collapse
|
50
|
Neupane R, Boddu SHS, Abou-Dahech MS, Bachu RD, Terrero D, Babu RJ, Tiwari AK. Transdermal Delivery of Chemotherapeutics: Strategies, Requirements, and Opportunities. Pharmaceutics 2021; 13:960. [PMID: 34206728 PMCID: PMC8308987 DOI: 10.3390/pharmaceutics13070960] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Chemotherapeutic drugs are primarily administered to cancer patients via oral or parenteral routes. The use of transdermal drug delivery could potentially be a better alternative to decrease the dose frequency and severity of adverse or toxic effects associated with oral or parenteral administration of chemotherapeutic drugs. The transdermal delivery of drugs has shown to be advantageous for the treatment of highly localized tumors in certain types of breast and skin cancers. In addition, the transdermal route can be used to deliver low-dose chemotherapeutics in a sustained manner. The transdermal route can also be utilized for vaccine design in cancer management, for example, vaccines against cervical cancer. However, the design of transdermal formulations may be challenging in terms of the conjugation chemistry of the molecules and the sustained and reproducible delivery of therapeutically efficacious doses. In this review, we discuss the nano-carrier systems, such as nanoparticles, liposomes, etc., used in recent literature to deliver chemotherapeutic agents. The advantages of transdermal route over oral and parenteral routes for popular chemotherapeutic drugs are summarized. Furthermore, we also discuss a possible in silico approach, Formulating for Efficacy™, to design transdermal formulations that would probably be economical, robust, and more efficacious.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - Sai H. S. Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Mariam Sami Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
- Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|