1
|
Gamperl AK, Porter ES, Brooks AB. The scaled sardine's unique metabolic phenotype and its implications for the susceptibility of small tropical pelagic fishes to climate change. Sci Rep 2025; 15:14496. [PMID: 40281081 PMCID: PMC12032093 DOI: 10.1038/s41598-025-98638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Small pelagic fishes (e.g., sardines, anchovies and their relatives) are preyed upon by large predatory fishes, birds and mammals, and thus, are key species in marine food webs and with respect to ecosystem health and productivity. However, we know little about their physiology, and such information will be critical to predicting how their populations may be impacted by human-induced rapid environmental change (HIREC) and in implementing effective conservation strategies. As a first step, we determined the maximum swimming speed, aerobic capacity [maximum metabolic rate (MMR) and aerobic scope (AS)] and cost of transport (COT; the energy required to swim a given distance) of scaled sardines (Harengula jaguana) collected in Eleuthera (The Bahamas). The scaled sardine's critical swimming speed (Ucrit) was ~ 5-6 body length's per second, and this agrees with data collected on free-swimming schools of similar fishes in the wild. However, they had unexpectedly high values for MMR and AS (~ 25% and 70% greater than tuna, respectively), and for COT. These findings have important implications with regard to how these ecologically important fishes will potentially respond to HIREC-related challenges such as increased temperature and decreases in the biomass and size of plankton upon which they feed.
Collapse
Affiliation(s)
- Anthony Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL, A1C 5S7, Canada.
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL, A1C 5S7, Canada
| | - Amy B Brooks
- Cape Eleuthera Institute, The Island School, Eleuthera, Bahamas
| |
Collapse
|
2
|
Gamperl AK, Nati JJH, Clow KA, Sandrelli RM, Gerber L, Porter ES, Peroni EC. It's a good thing that severely hypoxic salmon (Salmo salar) have a limited capacity to increase heart rate when warmed. J Exp Biol 2025; 228:JEB249594. [PMID: 39882674 PMCID: PMC11925397 DOI: 10.1242/jeb.249594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
With climate change, fish are facing rising temperatures, an increase in the frequency and severity of heat waves and hypoxia, sometimes concurrently. However, only limited studies have examined the combined effects of increases in temperature and hypoxia on fish physiology and survival. We measured the cardiorespiratory physiology of 12°C-acclimated Atlantic salmon when exposed acutely to normoxia [100% air saturation (sat.)] versus 75 and 50% air sat., and then warmed to their critical thermal maximum (CTmax) at 2°C h-1. Fish exposed to 50% air sat. became bradycardic, were unable to increase heart rate (fH) when warmed, and had lower values for metabolic scope and CTmax (21.3 vs 26.1°C in normoxic fish). The effects of 75% air sat. on cardiorespiratory parameters and CTmax were intermediate. We then used atropine (1.2 mg kg-1) and 8-cyclopentyltheophylline (CPT; 50 nmol kg-1) to investigate what role(s) cholinergic tone on the heart and cardiac adenosinergic effects, respectively, play in preventing severely hypoxic salmon (40% air sat.) from increasing fH when warmed. CPT had no/limited effects on salmon cardiorespiratory parameters and thermal tolerance. However, atropine increased fH in hypoxic fish and allowed it to rise with temperature, and this resulted in salmon that were much less tolerant to warming. Collectively, these results: (1) show that fish in severely hypoxic environments will be very susceptible to climate change-associated heat waves; and (2) suggest that cholinergic tone on the heart is not removed when severely hypoxic fish are exposed to rising temperatures to protect the heart's pumping capacity.
Collapse
Affiliation(s)
- Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Julie J. H. Nati
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Lucie Gerber
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Emma S. Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Ellen C. Peroni
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
3
|
Malorey P, Porter ES, Gamperl AK, Briffa M, Wilson ADM. Swimming performance, but not metabolism, is related to a boldness-activity syndrome in schoolmaster snapper (Lutjanus apodus). JOURNAL OF FISH BIOLOGY 2024; 105:1811-1829. [PMID: 39251204 DOI: 10.1111/jfb.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
Commercial overexploitation and climate change can alter the physiology and behavior of marine organisms, although intraspecific phenotypic responses to such changes can vary greatly depending on the environment, species, and severity of the stressor. Under the pace-of-life syndrome (POLS) hypothesis, behavior, physiology, and life-history traits are linked, and thus, affected by selection targeting any aspect of organismal biology. However, these links are understudied in tropical marine fishes, and further work is needed to better understand the impacts of fisheries and climate change on wild stocks. Moreover, tropical regions have a greater reliance on fisheries; thus investigations should focus on species with substantial socioeconomic value to ensure benefits at the local level. This study aimed to address this need by measuring the behavior (boldness and activity), metabolism, and swimming performance (using a critical swim speed [Ucrit] test) of schoolmaster snapper Lutjanus apodus in Eleuthera, the Bahamas. We report a strong positive correlation between boldness and activity, high repeatability of these behavioral metrics, and two groupings that were consistent with "proactive" and "reactive" behavioral types. These behavioral types differed significantly in their swimming performance, with reactive individuals having a 13.1% higher mean Ucrit. In contrast, no significant differences were found in the measured metabolic parameters between behavioral types. This study is the first to investigate the intraspecific links between behavior and physiology in a snapper species, using the novel and ecologically relevant comparison of Ucrit with behavioral syndrome types. These data suggest that additional research is needed to better predict the success of proactive/reactive tropical fish if overexploited and as influenced by climate change.
Collapse
Affiliation(s)
- Peter Malorey
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, Newfoundland and Labrador, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, Newfoundland and Labrador, Canada
| | - Mark Briffa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
4
|
Nati JJH, Malorey P, Gamperl AK. Near-maximally swimming schoolmaster snapper (Lutjanus apodus) have a greater metabolic capacity, and slightly lower thermal tolerance, than when tested at rest. J Exp Biol 2024; 227:jeb249273. [PMID: 39387104 DOI: 10.1242/jeb.249273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
To assess the relationship among various measures of thermal tolerance and performance suggested for use in fish, we determined the critical thermal maximum (CTmax), critical swimming speed (Ucrit), maximum thermal tolerance while swimming [CTSmax] and realistic aerobic scope (ASR) of juvenile schoolmaster snapper (Lutjanus apodus). Their CTSmax (37.5±0.1°C) was only slightly lower than their CTmax (38.9±0.1°C) and this is probably because their maximum metabolic rate (MMR) and ASR during the former test were ∼42 and 65% higher, respectively. Furthermore, we did not observe a transition to unsteady (i.e. anaerobically fueled) swimming in the CTSmax test as we did in the Ucrit protocol. These data strongly suggest that thermal tolerance tests on fishes whose lifestyle involves schooling or sustained activity should be performed at ecologically relevant swimming speeds. Our results do not support the hypothesis that failure during a CTSmax test is due to a fish's inability to meet its tissue oxygen demands.
Collapse
Affiliation(s)
- Julie J H Nati
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL A1C 5S7, Canada
| | - Peter Malorey
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL A1C 5S7, Canada
| |
Collapse
|
5
|
Sandrelli RM, Porter ES, Gamperl AK. Hyperoxia does not improve the acute upper thermal tolerance of a tropical marine fish (Lutjanus apodus). J Exp Biol 2024; 227:jeb247703. [PMID: 39369300 PMCID: PMC11574356 DOI: 10.1242/jeb.247703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Fish can experience hyperoxia in shallow environments due to photosynthetic activity and this has been suggested to provide them with a metabolic refuge during acute warming. However, this hypothesis has never been tested on a tropical marine species. Thus, we fitted 29°C-acclimated wild schoolmaster snapper (Lutjanus apodus; a species known to experience diel hyperoxia in mangrove creeks and coastal waters) with Transonic® flow probes and exposed them to an acute increase in temperature (at 1°C h-1) in respirometers under normoxia and hyperoxia (150% air saturation), until their critical thermal maximum (CTmax). The CTmax of both groups was ∼39°C, and no differences in maximum cardiac function were recorded as the fish were warmed. However, temperature-induced factorial aerobic scope was significantly greater in fish tested under hyperoxia. These data suggest that hyperoxia will not protect coastal tropical fish species during marine heat waves, despite its effects on metabolic scope/capacity.
Collapse
Affiliation(s)
- Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| |
Collapse
|
6
|
Schneider AE, Esbaugh AJ, Cupp AR, Suski CD. Silver carp experience metabolic and behavioral changes when exposed to water from the Chicago Area Waterway. Sci Rep 2024; 14:24689. [PMID: 39455602 PMCID: PMC11511862 DOI: 10.1038/s41598-024-71442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2024] [Indexed: 10/28/2024] Open
Abstract
One of the hallmarks of invasive species is their propensity to spread. Removing an invasive species after establishment is virtually impossible, and so considerable effort is invested in preventing the range expansion of invaders. Silver carp (Hypophthalmichthys molitrix) were discovered in the Mississippi River in 1981 and have spread throughout the basin. Despite their propensity to expand, the 'leading edge' in the Illinois River has stalled south of Chicago and has remained stable for a decade. Studies have indicated that contaminants in the Chicago Area Waterway System (CAWS) may be contributing to the lack of upstream movement, but this hypothesis has not been tested. This study used a laboratory setting to quantify the role of contaminants in deterring upstream movement of silver carp within the CAWS. For this, water was collected from the CAWS near the upstream edge of the distribution and transported to a fish culture facility. Silver carp and one native species were exposed to CAWS water, and activity, behavior, avoidance, and metabolic rates were quantified. Results showed that silver carp experience an elevated metabolic cost in CAWS water, along with reductions in swimming behavior. Together, results indicate a role for components of CAWS water at deterring range expansion.
Collapse
Affiliation(s)
- Amy E Schneider
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA
| | - A J Esbaugh
- Department of Marine Science, University of Texas Austin, Austin, TX, 78712, USA
| | - Aaron R Cupp
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - C D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
7
|
Higgins E, Bouyoucos IA, Downie AT, Illing B, Martins APB, Simpfendorfer CA, Rummer JL. How hot is too hot? Thermal tolerance, performance, and preference in juvenile mangrove whiprays, Urogymnus granulatus. J Therm Biol 2024; 124:103943. [PMID: 39151217 DOI: 10.1016/j.jtherbio.2024.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/18/2024]
Abstract
Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (ṀO2max and ṀO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (ṀO2max) and 1.6 (ṀO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.
Collapse
Affiliation(s)
- Emily Higgins
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.
| | - Adam T Downie
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Björn Illing
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Ana P B Martins
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
8
|
Belding LD, Thorstensen MJ, Quijada-Rodriguez AR, Bugg WS, Yoon GR, Loeppky AR, Allen GJP, Schoen AN, Earhart ML, Brandt C, Ali JL, Weihrauch D, Jeffries KM, Anderson WG. Integrated organismal responses induced by projected levels of CO 2 and temperature exposures in the early life stages of lake sturgeon. Mol Ecol 2024; 33:e17432. [PMID: 38887831 DOI: 10.1111/mec.17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Atmospheric CO2 and temperature are rising concurrently, and may have profound impacts on the transcriptional, physiological and behavioural responses of aquatic organisms. Further, spring snowmelt may cause transient increases of pCO2 in many freshwater systems. We examined the behavioural, physiological and transcriptomic responses of an ancient fish, the lake sturgeon (Acipenser fulvescens) to projected levels of warming and pCO2 during its most vulnerable period of life, the first year. Specifically, larval fish were raised in either low (16°C) or high (22°C) temperature, and/or low (1000 μatm) or high (2500 μatm) pCO2 in a crossed experimental design over approximately 8 months. Following overwintering, lake sturgeon were exposed to a transient increase in pCO2 of 10,000 μatm, simulating a spring melt based on data in freshwater systems. Transcriptional analyses revealed potential connections to otolith formation and reduced growth in fish exposed to high pCO2 and temperature in combination. Network analyses of differential gene expression revealed different biological processes among the different treatments on the edges of transcriptional networks. Na+/K+-ATPase activity increased in fish not exposed to elevated pCO2 during development, and mRNA abundance of the β subunit was most strongly predictive of enzyme activity. Behavioural assays revealed a decrease in total activity following an acute CO2 exposure. These results demonstrate compensatory and compounding mechanisms of pCO2 and warming dependent on developmental conditions in lake sturgeon. Conserved elements of the cellular stress response across all organisms provide key information for how other freshwater organisms may respond to future climate change.
Collapse
Affiliation(s)
- Luke D Belding
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - William S Bugg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alison R Loeppky
- Ecology and Environmental Impact, WSP Canada Inc., Winnipeg, Manitoba, Canada
| | - Garrett J P Allen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Alexandra N Schoen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jennifer L Ali
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kenneth M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Eisenberg RM, Sandrelli RM, Gamperl AK. Comparing methods for determining the metabolic capacity of lumpfish (Cyclopterus lumpus Linnaeus 1758). JOURNAL OF FISH BIOLOGY 2024; 104:1813-1823. [PMID: 38486407 DOI: 10.1111/jfb.15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 06/27/2024]
Abstract
Lumpfish (Cyclopterus lumpus) mortalities have been reported during the summer at some North Atlantic salmon cage-sites where they serve as "cleaner fish." To better understand this species' physiology and whether limitations in their metabolic capacity and thermal tolerance can explain this phenomenon, we compared the aerobic scope (AS) of 6°C-acclimated lumpfish (~50 g and 8.8 cm in length at the beginning of experiments) when all individuals (N = 12) were given a chase to exhaustion, a critical swim speed (Ucrit) test, and a critical thermal maximum (CTMax) test (rate of warming 2°C h-1). The Ucrit and CTMax of the lumpfish were 2.36 ± 0.08 body lengths per second and 20.6 ± 0.3°C. The AS of lumpfish was higher during the Ucrit test (206.4 ± 8.5 mg O2 kg-1 h-1) versus that measured in either the CTMax test or after the chase to exhaustion (141.0 ± 15.0 and 124.7 ± 15.5 mg O2 kg-1 h-1, respectively). Maximum metabolic rate (MMR), AS, and "realistic" AS (ASR) measured using the three different protocols were not significantly correlated, indicating that measurements of metabolic capacity using one of these methods cannot be used to estimate values that would be obtained using another method. Additional findings include that (1) the lumpfish's metabolic capacity is comparable to that of Atlantic cod, suggesting that they are not as "sluggish" as previously suggested in the literature, and (2) their CTMax (20.6°C when acclimated to 6°C), in combination with their recently determined ITMax (20.6°C when acclimated to 10°C), indicates that high sea-cage temperatures are unlikely to be the primary cause of lumpfish mortalities at salmon sea-cages during the summer.
Collapse
Affiliation(s)
- Rachel M Eisenberg
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Anthony Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
10
|
du Toit HD, Rishworth GM, Strydom NA, Welman S. High levels of metacercarial infestation (family: Diplostomidae) do not affect host energetics and swimming performance in the Epaulette goby (Coryogalops sordidus, Gobiidae). JOURNAL OF FISH BIOLOGY 2024; 104:1165-1179. [PMID: 38235536 DOI: 10.1111/jfb.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Parasites have deleterious effects on their hosts, often resulting in altered host behavior or increased energy expenditure. When organisms are exposed to suboptimal environments, parasite loading may increase. Microbialite pools along the warm temperate South African coastline have been hypothesized as refugia for Epaulette gobies (Coryogalops sordidus, Gobiidae) when they are outside of their previously known subtropical distribution. The aim of this study was to determine if C. sordidus individuals infected with metacercarial cysts display higher metabolic rates or different swimming behavior compared to noninfected individuals. We measured each goby's swimming performance using a critical station-holding speed (Ucrit) test (n = 60) and visually scored their swimming behavior (n = 52) during these measurements. Also, we measured the metabolic rate of gobies using an intermittent flow respirometer system to determine standard metabolic rate (SMR) and maximum metabolic rate (MMR) from gobies at 21°C before and after swimming trials. Metacercarial load carried by infected gobies seemingly had no impact on the host's energetics (SMR or MMR), swimming ability (as repeated Ucrit tests), or swimming behavior compared to noninfected gobies. Thus, the metacercarial intensity observed in gobies in the current study appeared to have no impact on host swimming performance or behavior. Furthermore, the swimming capacity observed for C. sordidus, in general, suggests that this goby is a poor swimmer compared to other gobiid species.
Collapse
Affiliation(s)
- Hendrik D du Toit
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
| | - Gavin M Rishworth
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gqeberha, South Africa
| | - Nadine A Strydom
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gqeberha, South Africa
| | - Shaun Welman
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
| |
Collapse
|
11
|
Yoon GR, Thorstensen MJ, Bugg WS, Bouyoucos IA, Deslauriers D, Anderson WG. Comparison of metabolic rate between two genetically distinct populations of lake sturgeon. Ecol Evol 2023; 13:e10470. [PMID: 37664502 PMCID: PMC10468615 DOI: 10.1002/ece3.10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental temperatures differ across latitudes in the temperate zone, with relatively lower summer and fall temperatures in the north leading to a shorter growing season prior to winter. As an adaptive response, during early life stages, fish in northern latitudes may grow faster than their conspecifics in southern latitudes, which potentially manifests as different allometric relationships between body mass and metabolic rate. In the present study, we examined if population or year class had an effect on the variation of metabolic rate and metabolic scaling of age-0 lake sturgeon (Acipenser fulvescens) by examining these traits in both a northern (Nelson River) and a southern (Winnipeg River) population. We compiled 6 years of data that used intermittent flow respirometry to measure metabolic rate within the first year of life for developing sturgeon that were raised in the same environment at 16°C. We then used a Bayesian modeling approach to examine the impacts of population and year class on metabolic rate and mass-scaling of metabolic rate. Despite previous reports of genetic differences between populations, our results showed that there were no significant differences in standard metabolic rate, routine metabolic rate, maximum metabolic rate, and metabolic scaling between the two geographically separated populations at a temperature of 16°C. Our analysis implied that the lack of metabolic differences between populations could be due to family effects/parental contribution, or the rearing temperature used in the study. The present research provided insights for conservation and reintroduction strategies for these populations of lake sturgeon, which are endangered or threatened across most of their natural range.
Collapse
Affiliation(s)
- Gwangseok R. Yoon
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Matt J. Thorstensen
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - William S. Bugg
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Pacific Salmon FoundationVancouverBritish ColumbiaCanada
| | - Ian A. Bouyoucos
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - David Deslauriers
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQuébecCanada
| | - W. Gary Anderson
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
12
|
Porter ES, Gamperl AK. Cardiorespiratory physiology and swimming capacity of Atlantic salmon (Salmo salar) at cold temperatures. J Exp Biol 2023; 226:jeb245990. [PMID: 37661722 PMCID: PMC10499030 DOI: 10.1242/jeb.245990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
We investigated how acclimation to 8, 4 and 1°C, and acute cooling from 8 to 1°C, affected the Atlantic salmon's aerobic and anaerobic metabolism, and cardiac function, during a critical swim speed (Ucrit) test. This study revealed several interesting temperature-dependent effects. First, while differences in resting heart rate (fH) between groups were predictable based on previous research (range ∼28-65 beats min-1), with values for 1°C-acclimated fish slightly higher than those of acutely exposed conspecifics, the resting cardiac output () of 1°C-acclimated fish was much lower and compensated for by a higher resting blood oxygen extraction (ṀO2/). In contrast, the acutely exposed fish had a ∼2-fold greater resting stroke volume (VS) compared with that of the other groups. Second, increases in fH (1.2- to 1.4-fold) contributed little to during the Ucrit test, and the contributions of (VS) versus ṀO2/ to aerobic scope (AS) were very different in the two groups tested at 1°C (1°C-acclimated and 8-1°C fish). Finally, Ucrit was 2.08 and 1.69 body lengths (BL) s-1 in the 8 and 4°C-acclimated groups, but only 1.27 and 1.44 BL s-1 in the 1°C-acclimated and 8-1°C fish, respectively - this lower value in 1°C versus 8-1°C fish despite higher values for maximum metabolic rate and AS. These data: support recent studies which suggest that the capacity to increase fH is constrained at low temperatures; show that cardiorespiratory function at cold temperatures, and its response to increased demands, depends on exposure duration; and suggest that AS does not constrain swimming capacity in salmon when chronically exposed to temperatures approaching their lower limit.
Collapse
Affiliation(s)
- Emma S. Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
13
|
Prinzing TS, Bigman JS, Skelton ZR, Dulvy NK, Wegner NC. The allometric scaling of oxygen supply and demand in the California horn shark, Heterodontus francisci. J Exp Biol 2023; 226:jeb246054. [PMID: 37493039 DOI: 10.1242/jeb.246054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships.
Collapse
Affiliation(s)
- Tanya S Prinzing
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Jennifer S Bigman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98115, USA
| | - Zachary R Skelton
- Ocean Associates Inc., under contract to Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Nicholas C Wegner
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Sommer NR, Alshwairikh YA, Arietta AZA, Skelly DK, Buchkowski RW. Prey metabolic responses to predators depend on predator hunting mode and prey antipredator defenses. OIKOS 2023. [DOI: 10.1111/oik.09664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nathalie R. Sommer
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - Yara A. Alshwairikh
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - A. Z. Andis Arietta
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - David K. Skelly
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
| | - Robert W. Buchkowski
- Yale School of the Environment, Greeley Memorial Laboratory New Haven CT USA
- Dept of Biology, Univ. of Western Ontario, Biological and Geological Sciences Building London ON Canada
| |
Collapse
|
15
|
Nash N, Klymasz-Swartz AK, Nash MT, Sachs M, Yoon GR, Weihrauch D. Impact of heatwaves and environmental ammonia on energy metabolism, nitrogen excretion, and mRNA expression of related genes in the indicator model system Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106225. [PMID: 35724523 DOI: 10.1016/j.aquatox.2022.106225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Due to increasing anthropogenic impacts, heatwaves and prolonged exposure to elevated concentrations of ammonia (HEA) may occur in aquatic environments as a single stressor or a combination thereof, potentially impacting the physiology of exposed animals. In the current study, common water fleas Daphnia magna were exposed for one week to either a 5°C increase in temperature, an increase of 300 µmol l-1 total environmental ammonia, or to both of these stressors simultaneously. Exposure to elevated temperature caused a decrease in MO2, ammonia excretion rates, a downregulation of mRNA coding for key Krebs cycle enzymes and the energy consuming Na+/K+-ATPase and V-type H+-ATPase, as well as the energy distributing crustacean hyperglycemic hormone Rh-protein. High environmental ammonia inflicted a lesser inhibitory effect on the energy metabolism of Daphnia, but initiated ammonia detoxification processes via urea synthesis evident by elevated urea excretion rates and a mRNA upregulation of arginase. Effects observed under the combined stressors resembled largely the effects seen after acclimation to elevated temperature alone, potentially due to the animals' capability to efficiently detoxify critical ammonia loads. The observed physiological effects and potential threats of the environmental stressor are discussed in detail.
Collapse
Affiliation(s)
- N Nash
- University of Manitoba, Winnipeg, Canada
| | | | - M T Nash
- University of Manitoba, Winnipeg, Canada
| | - M Sachs
- University of Manitoba, Winnipeg, Canada
| | - G R Yoon
- University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
16
|
Evans BL, Hurlstone AF, Clayton PE, Stevens A, Shiels HA. Glucose uptake as an alternative to oxygen uptake for assessing metabolic rate in Danio rerio larvae. Curr Res Physiol 2022; 5:216-223. [PMID: 35637870 PMCID: PMC9142652 DOI: 10.1016/j.crphys.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Respirometry, based on oxygen uptake, is commonly employed for measuring metabolic rate. There is a growing need for metabolic rate measurements suitable for developmental studies, particularly in Danio rerio, where many important developmental stages occur at < 4 mm. However, respirometry becomes more challenging as the size of the organism reduces. Additionally, respirometry can be costly and require significant experience and technical knowledge which may prohibit uptake in non-specialist/non-physiology labs. Thus, using equipment routine in most developmental/molecular biology laboratories, we measured glucose uptake in 96-h post fertilisation (hpf) zebrafish larvae and compared it to stop-flow respirometry measures of oxygen uptake to test whether glucose uptake was a suitable alternative measure of metabolic rate. A Passing-Bablok regression revealed that within a 95% limit of agreement, the rate of glucose uptake and the rate of oxygen uptake were equivalent as measures of metabolic rate in 96 hpf Danio rerio larvae. Thus, the methodology we outline here may be a useful alternative or a complementary method for assessing metabolic rate in small organisms.
Collapse
Affiliation(s)
- Bridget L. Evans
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Adam F.L. Hurlstone
- Division of Infection, Immunity, And Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Peter E. Clayton
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Holly A. Shiels
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Godefroid M, Hédouin L, Mercière A, Dubois P. Thermal stress responses of the antipatharian Stichopathes sp. from the mesophotic reef of Mo'orea, French Polynesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153094. [PMID: 35051469 DOI: 10.1016/j.scitotenv.2022.153094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Antipatharians, also called black corals, are present in almost all oceans of the world, until extreme depths. In several regions, they aggregate in higher densities to form black coral beds that support diverse animal communities and create biodiversity hotspots. These recently discovered ecosystems are currently threatened by fishing activities and illegal harvesting for commercial purposes. Despite this, studies dedicated to the physiology of antipatharians are scarce and their responses to global change stressors have remained hardly explored since recently. Here, we present the first study on the physiological responses of a mesophotic antipatharian Stichopathes sp. (70-90 m) to thermal stress through a 16-d laboratory exposure (from 26 to 30.5 °C). Oxygen consumption measurements allowed identifying the physiological tipping point of Stichopathes sp. (Topt = 28.3 °C; 2.7 °C above mean ambient condition). Our results follow theoretical predictions as performances start to decrease beyond Topt, with lowered oxygen consumption rates, impairment of the healing capacities, increased probability of tissue necrosis and stress responses activated as a function of temperature (i.e. increase in mucocyte density and total antioxidant capacity). Altogether, our work indicates that Stichopathes sp. lives at suboptimal performances during the coldest months of the year, but also that it is likely to have low acclimatization capacity and a narrow thermal breadth.
Collapse
Affiliation(s)
- Mathilde Godefroid
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium.
| | - Laetitia Hédouin
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Alexandre Mercière
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Philippe Dubois
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium
| |
Collapse
|
18
|
Mégevand L, Kreienbühl P, Theuerkauff D, Lignot JH, Sucré E. Individual metabolism and behaviour as complementary endpoints to better understand mangrove crab community variations linked to wastewater inputs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113487. [PMID: 35405528 DOI: 10.1016/j.ecoenv.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Mangrove forests are impacted by a large range of anthropogenic activities that challenge their functioning. For example, domestic wastewater (WW) discharges are known to increase vegetation growth but recent studies indicate that they have negative effects on benthic macrofauna, especially on mangrove crabs, these ecosystem engineers playing a key role on the functioning of the mangrove. In experimental areas regularly receiving WW at low tide (Mayotte Island, Indian Ocean), a drastic decrease in burrowing crab density has been reported. In this context, the individual behavioural and physiological responses of the fiddler crab Paraleptuca chlorophthalmus exposed to short-term (6 h) pulse of WW and ammonia-N (as a potential proxy of WW) were investigated. This species is one of the most sensitive to WW within the mangrove crab community. For the behavioural experiment, crabs could choose between the aquatic and aerial environment. Individual metabolic rate (O2 consumption) was monitored after 6 h of exposure in WW or ammonia-N. Aerobic and anaerobic metabolic markers (citrate synthase and lactate dehydrogenase activities, respectively) were also evaluated. Results indicate that crabs exposed to WW are more active and mobile than controls after 3 h. Crabs actively emersed from WW and reduced their activity and mobility after 6 h. A higher metabolic rate in WW occurred immediately (t = 0 h), 3 and 6 h after WW exposure, with also, a burst in aerobic bacterial consumption in WW, but no effect of ammonia-N. No effect of WW or ammonia-N was observed on enzymatic aerobic and anaerobic metabolic markers. Therefore, short-term pulses with domestic polluted wastewater trigger quick behavioural and metabolic responses that could be deleterious if prolonged. These results could contribute to the understanding of the community-scale changes observed in benthic macrofauna after several years of regular domestic pollution pulses.
Collapse
Affiliation(s)
- Laura Mégevand
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France.
| | - Pauline Kreienbühl
- Centre Universitaire de Formation et de Recherche de Mayotte (CUFR), 97660 Dembeni, Mayotte, France.
| | - Dimitri Theuerkauff
- Station de Recherche Océanographiques et Sous-marines STARESO, Punta Revellata, 20260 Calvi, France.
| | - Jehan-Hervé Lignot
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France.
| | - Elliott Sucré
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France; Centre Universitaire de Formation et de Recherche de Mayotte (CUFR), 97660 Dembeni, Mayotte, France.
| |
Collapse
|
19
|
Yoon GR, Bugg WS, Fehrmann F, Yusishen ME, Suh M, Anderson WG. Long-term effects of temperature during early life on growth and fatty acid metabolism in age-0 Lake Sturgeon (Acipenser fulvescens). J Therm Biol 2022; 105:103210. [DOI: 10.1016/j.jtherbio.2022.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
|
20
|
Vazquez Roman KN, Burggren WW. Metabolic responses to crude oil during early life stages reveal critical developmental windows in the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109274. [PMID: 35051628 DOI: 10.1016/j.cbpc.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
Morphological effects of crude oil exposure on early development in fishes have been well documented, but crude oil's metabolic effects and when in early development these effects might be most prominent remains unclear. We hypothesized that zebrafish (Danio rerio) exposed to crude oil as a high energy water accommodated fraction (HEWAF) would show increased routine oxygen consumption (ṀO2) and critical oxygen tension (PCrit) and this effect would be dependent upon day of HEWAF exposure, revealing critical windows of development for exposure effects. Zebrafish were exposed to 0%, 10%, 25%, 50% or 100% HEWAF for 24 h during one of the first six days post-fertilization (dpf). Survival rate, body mass, routine ṀO2, and PCrit were then measured at 7 dpf. Survival rate and especially body mass were both decreased based on both exposure concentration and day of crude oil exposure, with the largest decrease when HEWAF exposure occurred at 3 dpf. HEWAF effects on routine ṀO2 also differed depending upon exposure day. The largest effect occurred at 3 dpf, when ṀO2 increased significantly by ~60% from 10.1 ± 0.8 μmol O2/g/h compared to control group value of 6.3 ± 0.4 μmol O2/g/h. No significant effects of HEWAF exposure on any day were evident for PCrit (85 ± 4 mmHg in the control population). Overall, the main effects on body mass and ṀO2 measured at 7 dpf occurred when HEWAF exposures occurred at ~3 dpf. This critical window for metabolism in zebrafish larvae coincides with time of hatching, which may represent an especially vulnerable period in development.
Collapse
Affiliation(s)
- Karem N Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
21
|
Porter E, Clow K, Sandrelli R, Gamperl A. Acute and chronic cold exposure differentially affect cardiac control, but not cardiorespiratory function, in resting Atlantic salmon (S almo salar). Curr Res Physiol 2022; 5:158-170. [PMID: 35359619 PMCID: PMC8960890 DOI: 10.1016/j.crphys.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
No studies have examined the effects of cold temperatures (∼0-1 °C) on in vivo cardiac function and control, and metabolism, in salmonids. Thus, we examined: 1) how acclimation to 8 °C vs. acclimation (>3 weeks) or acute exposure (8-1 °C at 1 °C h-1) to 1 °C influenced cardiorespiratory parameters in resting Atlantic salmon; and 2) if/how the control of cardiac function was affected. Oxygen consumption ( M ˙ O 2 ) and cardiac function [i.e., heart rate (f H) and cardiac output (Q ˙ ) ] were 50% lower in the acutely cooled and 1oC-acclimated salmon as compared to 8 °C fish, whereas stroke volume (VS) was unchanged. Intrinsic f H was not affected by whether the fish were acutely exposed or acclimated to 1 °C (values ∼51, 24 and 21 beats min-1 in 8 and 1 °C-acclimated fish, and 8-1 °C fish, respectively), and in all groups f H was primarily under adrenergic control/tone (cholinergic tone 13-18%; adrenergic tone 37-70%). However, β-adrenergic blockade resulted in a 50% increase in VS in the 1oC-acclimated group, and this was surprising as circulating catecholamine levels were ∼1-3 nM in all groups. Overall, the data suggest that this species has a limited capacity to acclimate to temperatures approaching 0 °C. However, we cannot exclude the possibility that cardiac and metabolic responses are evoked when salmon are cooled to ∼ 0-1 °C, and that this prevented further declines in these parameters (i.e., they 'reset' quickly). Our data also provide further evidence that VS is temperature insensitive, and strongly suggest that changes in adrenoreceptor mediated control of venous pressure/capacitance occur when salmon are acclimated to 1 °C.
Collapse
Affiliation(s)
- E.S. Porter
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - K.A. Clow
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - R.M. Sandrelli
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - A.K. Gamperl
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
22
|
Mégevand L, Theuerkauff D, L’Épine C, Hermet S, Corse E, L’Honoré T, Lignot JH, Sucré E. Diluted Seawater and Ammonia-N Tolerance of Two Mangrove Crab Species. New Insights to Understand the Vulnerability of Pristine Islands Ecosystems Organisms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.839160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mangrove ecosystems are the primary receptors of anthropogenic pollution in tropical areas. Assessing the vulnerability of these ecosystems can be expressed, among other indicators, by studying the health of ‘ecosystem engineers’. In this study, mangrove forests facing opposing anthropogenic pressures were studied (i) in the uninhabited island of Europa (Mozambique Channel), considered as a pristine ecosystem, and, (ii) on the island of Mayotte, facing regular domestic wastewater discharges. Using an ecophysiological approach, the effects of diluted seawater (DSW) and increased ammonia-N were studied for two fiddler crab species: Gelasimus tetragonon (GT) on the island of Europa and Paraleptuca chlorophthalmus (PC) on the island of Mayotte. Osmoregulation curves and osmoregulatory capacity were determined along with O2 consumption rates after a 96 h exposure period. Histological analyses were also carried out on two important metabolic organs: the hepatopancreas and the posterior gills. Results indicate that both crab species are good hyper-hypo-osmoregulators but only PC can maintain its osmoregulatory capacity when exposed to ammonia-N. Oxygen consumption is increased in GT after 96 h of exposure to ammonia-N but this does not occur in PC. Finally, a thickening of the gill osmoregulatory epithelium was observed after 96 h in PC when exposed to ammonium but not in GT. Therefore, the two species do not have the same tolerance to DSW and increased ammonia-N. PC shows physiological acclimation capacities in order to better manage nitrogenous enrichments. GT did not show the same physiological plasticity when exposed to ammonia-N and could be more at risk by this kind of stress. These results along with those from other studies regarding the effects of domestic effluents on mangrove crabs are discussed. Therefore, the greater vulnerability of organisms occupying pristine ecosystems could induce major changes in mangrove functioning if crabs, that are engineer species of the ecosystem, are about to reduce their bioturbation activity or, even, disappear from the mangrove forests.
Collapse
|
23
|
Bernal MA, Ravasi T, Rodgers GG, Munday PL, Donelson JM. Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evol Appl 2022; 15:249-261. [PMID: 35233246 PMCID: PMC8867710 DOI: 10.1111/eva.13337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Global warming is expected to drive some ectothermic species beyond their thermal tolerance in upcoming decades. Phenotypic plasticity, via developmental or transgenerational acclimation, is a critical mechanism for compensation in the face of environmental change. Yet, it remains to be determined if the activation of beneficial phenotypes requires direct exposure throughout development, or if compensation can be obtained just through the experience of previous generations. In this study, we exposed three generations of a tropical damselfish to combinations of current-day (Control) and projected future (+1.5°C) water temperatures. Acclimation was evaluated with phenotypic (oxygen consumption, hepatosomatic index, physical condition) and molecular (liver gene expression) measurements of third-generation juveniles. Exposure of grandparents/parents to warm conditions improved the aerobic capacity of fish regardless of thermal conditions experienced afterwards, representing a true transgenerational effect. This coincided with patterns of gene expression related to inflammation and immunity seen in the third generation. Parental effects due to reproductive temperature significantly affected the physical condition and routine metabolic rate (oxygen consumption) of offspring, but had little impact on gene expression of the F3. Developmental temperature of juveniles, and whether they matched conditions during parental reproduction, had the largest influence on the liver transcriptional program. Using a combination of both phenotypic and molecular approaches, this study highlights how the conditions experienced by both previous and current generations can influence plasticity to global warming in upcoming decades.
Collapse
Affiliation(s)
- Moisés A. Bernal
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Timothy Ravasi
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐son, OkinawaJapan
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Giverny G. Rodgers
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
24
|
Yoon GR, Laluk A, Bouyoucos IA, Anderson WG. Effects of Dietary Shifts on Ontogenetic Development of Metabolic Rates in Age 0 Lake Sturgeon ( Acipenser fulvescens). Physiol Biochem Zool 2022; 95:135-151. [PMID: 34990335 DOI: 10.1086/718211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn many fish species, ontogenetic dietary shifts cause changes in both quantitative and qualitative intake of energy, and these transitions can act as significant bottlenecks in survival within a given year class. In the present study, we estimated routine metabolic rate (RMR) and forced maximum metabolic rate (FMR) in age 0 lake sturgeon (Acipenser fulvescens) on a weekly basis from 6 to 76 days posthatch (dph) within the same cohort of fish. We were particularly interested in the period of dietary transition from yolk to exogenous feeding between 6 and 17 dph and as the fish transitioned from an artemia-based diet to a predominantly bloodworm diet between 49 and 67 dph. Measurement of growth rate and energy density throughout indicated that there was a brief period of growth arrest during the transition from artemia to bloodworm. The highest mass-specific RMR (mg O2 kg-1 h-1) recorded throughout the first 76 d of development occurred during the yolk sac phase and during transition from artemia to bloodworm. Similarly, diet transition from artemia to bloodworm-when growth arrest was observed-increased scaled RMR (i.e., mg O2 kg-0.89 h-1), and it did not significantly differ from scaled FMR. Log-log relationships between non-mass-specific RMR or FMR (i.e., mg O2 h-1) and body mass significantly changed as the growing fish adapted to the nutritional differences of their primary diet. We demonstrate that dietary change during early ontogeny has consequences for growth that may reflect altered metabolic performance. Results have implications for understanding cohort and population dynamics during early life and effective management for conservation fish hatcheries.
Collapse
|
25
|
Hardison EA, Kraskura K, Van Wert J, Nguyen T, Eliason EJ. Diet mediates thermal performance traits: implications for marine ectotherms. J Exp Biol 2021; 224:272691. [PMID: 34647599 DOI: 10.1242/jeb.242846] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022]
Abstract
Thermal acclimation is a key process enabling ectotherms to cope with temperature change. To undergo a successful acclimation response, ectotherms require energy and nutritional building blocks obtained from their diet. However, diet is often overlooked as a factor that can alter acclimation responses. Using a temperate omnivorous fish, opaleye (Girella nigricans), as a model system, we tested the hypotheses that (1) diet can impact the magnitude of thermal acclimation responses and (2) traits vary in their sensitivity to both temperature acclimation and diet. We fed opaleye a simple omnivorous diet (ad libitum Artemia sp. and Ulva sp.) or a carnivorous diet (ad libitum Artemia sp.) at two ecologically relevant temperatures (12 and 20°C) and measured a suite of whole-animal (growth, sprint speed, metabolism), organ (cardiac thermal tolerance) and cellular-level traits (oxidative stress, glycolytic capacity). When opaleye were offered two diet options compared with one, they had reduced cardiovascular thermal performance and higher standard metabolic rate under conditions representative of the maximal seasonal temperature the population experiences (20°C). Further, sprint speed and absolute aerobic scope were insensitive to diet and temperature, while growth was highly sensitive to temperature but not diet, and standard metabolic rate and maximum heart rate were sensitive to both diet and temperature. Our results reveal that diet influences thermal performance in trait-specific ways, which could create diet trade-offs for generalist ectotherms living in thermally variable environments. Ectotherms that alter their diet may be able to regulate their performance at different environmental temperatures.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jacey Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tina Nguyen
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
26
|
The effect of temperature on growth performance and aerobic metabolic scope in Arctic charr, Salvelinus alpinus (L.). J Therm Biol 2021; 104:103117. [DOI: 10.1016/j.jtherbio.2021.103117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
|
27
|
Killen SS, Christensen EAF, Cortese D, Závorka L, Norin T, Cotgrove L, Crespel A, Munson A, Nati JJH, Papatheodoulou M, McKenzie DJ. Guidelines for reporting methods to estimate metabolic rates by aquatic intermittent-flow respirometry. J Exp Biol 2021; 224:jeb242522. [PMID: 34520540 PMCID: PMC8467026 DOI: 10.1242/jeb.242522] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that - in the future - data can be properly assessed by other scientists and conservationists.
Collapse
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emil A. F. Christensen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - Libor Závorka
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- WasserCluster Lunz–Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amélie Crespel
- Department of Biology, University of Turku, 20500 Turku, Finland
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Environmental Science and Policy, University of California, Davis, CA 95615, USA
| | - Julie J. H. Nati
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| | - Magdalene Papatheodoulou
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Enalia Physis Environmental Research Centre (ENALIA), 2101 Nicosia, Cyprus
| | - David J. McKenzie
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
28
|
Killen SS, Nadler LE, Grazioso K, Cox A, McCormick MI. The effect of metabolic phenotype on sociability and social group size preference in a coral reef fish. Ecol Evol 2021. [DOI: 10.1002/ece3.7672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shaun S. Killen
- College of Medical, Veterinary and Life Sciences Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Lauren E. Nadler
- Department of Marine Biology and Aquaculture ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Kathryn Grazioso
- Department of Marine Biology and Ecology Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - Amy Cox
- Biological and Chemical Sciences The University of the West Indies St. Michael Barbados
| | - Mark I. McCormick
- Department of Marine Biology and Aquaculture ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| |
Collapse
|
29
|
Unger S, Goforth R, Rhodes O, Floyd T. Short-term exposure to elevated suspended sediment increases oxygen uptake of gilled larval Eastern Hellbender ( Cryptobranchus alleganiensis) salamanders. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Freshwater ecosystems are increasingly impacted by anthropogenic elevated levels of suspended sediment that may negatively affect aquatic organisms, including salamanders. Although increasing fine sediment in streams has been suggested as a reason for population declines, to date no study has empirically assessed the effect of suspended sediment on gilled larval Eastern Hellbenders (Cryptobranchus alleganiensis (Sonnini de Manoncourt and Latreille, 1801)), a critical life-history stage and a species of conservation concern. We used custom respirometers to elucidate effects of suspended sediments on larval Eastern Hellbender oxygen uptake in trials conducted in situ in Georgia (USA) streams. Mean oxygen uptake increased and was significantly higher in trials when larval salamanders were exposed to suspended sediment (mean = 5.06 mg O2/L for 800 mg/L of sediment treatment vs. 2.25 mg O2/L for 0.00 mg/L of sediment control). This may indicate elevated physiological stress in response to short-term exposure to suspended sediments. Qualitatively, individuals in both groups exhibited rocking behavior in response to low oxygen (hypoxia), albeit at different frequencies (sediment exposure = 7.6 rocks/min and control = 2.1 rocks/min). Larval salamanders may be able to temporarily compensate for low oxygen through increased rocking behavior when high suspended sediment loads are present, with future respirometry research needed.
Collapse
Affiliation(s)
- S.D. Unger
- Biology Department, Bridges Science Building, Wingate University, Wingate, NC 28174, USA
| | - R.R. Goforth
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN 47907-2033, USA
| | - O.E. Rhodes
- Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, USA
| | - T.M. Floyd
- Wildlife Resources Division, Wildlife Conservation Section, Georgia Department of Natural Resources, 116 Rum Creek Drive, Forsyth, GA 31029, USA
| |
Collapse
|
30
|
Blanco E, Reglero P, Ortega A, Folkvord A, de la Gándara F, Hernández de Rojas A, Moyano M. First estimates of metabolic rate in Atlantic bluefin tuna larvae. JOURNAL OF FISH BIOLOGY 2020; 97:1296-1305. [PMID: 32710475 DOI: 10.1111/jfb.14473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and larval dry weight (DW) (mass scaling exponent) at a constant temperature of 26°C, (b) measure the RMR under light and darkness and (c) test whether the interindividual differences in the RMR are related to larval nutritional status (RNA/DNA and DNA/DW). The RMR scaled nearly isometrically with body size (b = 0.99, 0.60-31.56 mg DW) in contrast to the allometric relationship observed in most fish larvae (average b = 0.87). The results show no significant differences in larval RMR under light and darkness, suggesting similar larval activity levels in both conditions. The size explained most of the variability in RMR (97%), and nutritional condition was unrelated to the interindividual differences in routine metabolism. This is the first study to report the metabolic rates of Atlantic bluefin tuna larvae and discuss the challenges of performing bioenergetic studies with early life stages of scombrids.
Collapse
Affiliation(s)
- Edurne Blanco
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Murcia, Spain
| | - Patricia Reglero
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain
| | - Aurelio Ortega
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Murcia, Spain
| | - Arild Folkvord
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
| | | | | | - Marta Moyano
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Hamburg, Germany
- Center of Coastal Research, University of Agder, Kristiansand, Norway
| |
Collapse
|
31
|
Nadler LE, Bengston E, Eliason EJ, Hassibi C, Helland‐Riise SH, Johansen IB, Kwan GT, Tresguerres M, Turner AV, Weinersmith KL, Øverli Ø, Hechinger RF. A brain‐infecting parasite impacts host metabolism both during exposure and after infection is established. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lauren E. Nadler
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
- Department of Marine and Environmental Sciences Nova Southeastern University Dania Beach FL USA
| | - Erik Bengston
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Erika J. Eliason
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA USA
| | - Cameron Hassibi
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Siri H. Helland‐Riise
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Ida B. Johansen
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Garfield T. Kwan
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Andrew V. Turner
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | | | - Øyvind Øverli
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Ryan F. Hechinger
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| |
Collapse
|
32
|
Zhang Y, Gilbert MJH, Farrell AP. Measuring maximum oxygen uptake with an incremental swimming test and by chasing rainbow trout to exhaustion inside a respirometry chamber yields the same results. JOURNAL OF FISH BIOLOGY 2020; 97:28-38. [PMID: 32154581 DOI: 10.1111/jfb.14311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
This study hypothesized that oxygen uptake (ṀO2 ) measured with a novel protocol of chasing rainbow trout Oncorhynchus mykiss to exhaustion inside a static respirometer while simultaneously monitoring ṀO2 (ṀO2chase ) would generate the same and repeatable peak value as when peak active ṀO2 (ṀO2active ) is measured in a critical swimming speed protocol. To reliably determine peak ṀO2chase , and compare to the peak during recovery of ṀO2 after a conventional chase protocol outside the respirometer (ṀO2rec ), this study applied an iterative algorithm and a minimum sampling window duration (i.e., 1 min based on an analysis of the variance in background and exercise ṀO2 ) to account for ṀO2 dynamics. In support of this hypothesis, peak ṀO2active (707 ± 33 mg O2 h-1 kg-1 ) and peak ṀO2chase (663 ± 43 mg O2 h-1 kg-1 ) were similar (P = 0.49) and repeatable (Pearson's and Spearman's correlation test; r ≥ 0.77; P < 0.05) when measured in the same fish. Therefore, estimates of ṀO2max can be independent of whether a fish is exhaustively chased inside a respirometer or swum to fatigue in a swim tunnel, provided ṀO2 is analysed with an iterative algorithm and a minimum but reliable sampling window. The importance of using this analytical approach was illustrated by peak ṀO2chase being 23% higher (P < 0.05) when compared with a conventional sequential interval regression analysis, whereas using the conventional chase protocol (1-min window) outside the respirometer increased this difference to 31% (P < 0.01). Moreover, because peak ṀO2chase was 18% higher (P < 0.05) than peak ṀO2rec , chasing a fish inside a static respirometer may be a better protocol for obtaining maximum ṀO2 .
Collapse
Affiliation(s)
- Yangfan Zhang
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew J H Gilbert
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P Farrell
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Nyboer EA, Chrétien E, Chapman LJ. Divergence in aerobic scope and thermal tolerance is related to local thermal regime in two populations of introduced Nile perch (Lates niloticus). JOURNAL OF FISH BIOLOGY 2020; 97:231-245. [PMID: 32333608 DOI: 10.1111/jfb.14355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 05/21/2023]
Abstract
We tested whether thermal tolerance and aerobic performance differed between two populations of Nile perch (Lates niloticus) originating from the same source population six decades after their introduction into two lakes in the Lake Victoria basin in East Africa. We used short-term acclimation of juvenile fish to a range of temperatures from ambient to +6°C, and performed critical thermal maximum (CTmax ) and respirometry tests to measure upper thermal tolerance, resting and maximum metabolic rates, and aerobic scope (AS). Across acclimation temperatures, Nile perch from the cooler lake (Lake Nabugabo, Uganda) tended to have lower thermal tolerance (i.e., CTmax ) and lower aerobic performance (i.e., AS) than Nile perch from the warmer waters of Lake Victoria (Bugonga region, Uganda). Effects of temperature acclimation were more pronounced in the Lake Victoria population, with the Lake Nabugabo fish showing less thermal plasticity in most metabolic traits. Our results suggest phenotypic divergence in thermal tolerance between these two introduced populations in a direction consistent with an adaptive response to local thermal regimes.
Collapse
Affiliation(s)
- Elizabeth A Nyboer
- Department of Biology, McGill University, Montreal, Canada
- Department of Biology, Carleton Univeristy, Ottawa, Canada
| | - Emmanuelle Chrétien
- Département de sciences biologiques, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
34
|
Liss KCM, Lopez LK, Donelson JM, Wong MYL. Predator–prey interactions and metabolic rates are altered in stable and unstable groups in a social fish. OIKOS 2020. [DOI: 10.1111/oik.06690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katharina C. M. Liss
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, Univ. of Wollongong Wollongong NSW 2522 Australia
| | - Laura K. Lopez
- LSA Ecology and Evolutionary Biology, Univ. of Michigan MI USA
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville QLD Australia
| | - Marian Y. L. Wong
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, Univ. of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
35
|
Byrnes EE, Lear KO, Morgan DL, Gleiss AC. Respirometer in a box: development and use of a portable field respirometer for estimating oxygen consumption of large-bodied fishes. JOURNAL OF FISH BIOLOGY 2020; 96:1045-1050. [PMID: 32057104 DOI: 10.1111/jfb.14287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
This study developed a portable, low-cost field respirometer for measuring oxygen consumption rates of large-bodied fishes. The respirometer performed well in laboratory tests and was used to measure the oxygen consumption rates ( M ˙ O2 ) of bull sharks Carcharhinus leucas (mean: 249.21 ± 58.10 mg O2 kg-1 h-1 at 27.05°C). Interspecific comparisons and assessments of oxygen degradation curves indicated that the respirometer provided reliable measurements of M ˙ O2 . This system presents a field-based alternative to laboratory respirometers, opening opportunities for studies on species in remote localities, increasing the ability to validate physiological field studies.
Collapse
Affiliation(s)
- Evan E Byrnes
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| | - Karissa O Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| | - David L Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| | - Adrian C Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia
- College of Science, Health Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
36
|
Burggren WW, Arriaga-Bernal JC, Méndez-Arzate PM, Méndez-Sánchez JF. Metabolic physiology of the Mayan cichlid fish (Mayaheros uropthalmus): Re-examination of classification as an oxyconformer. Comp Biochem Physiol A Mol Integr Physiol 2019; 237:110538. [DOI: 10.1016/j.cbpa.2019.110538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
|
37
|
The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs. Sci Rep 2019; 9:13937. [PMID: 31558794 PMCID: PMC6763422 DOI: 10.1038/s41598-019-50303-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Ocean warming associated with global climate change is already inducing geographic range shifts of marine species. Juvenile coral reef fishes transported into temperate latitudes (termed ‘vagrant’ fishes) can experience winter water temperatures below their normal thermal minimum. Such environmental extremes may increase energetic costs for such fishes, resulting in reduced performance, which may be the governing factor that limits the potential for poleward range expansion of such fishes. This study compared the juvenile physiological performance and behaviour of two congeneric tropical damselfishes which settle during austral summer months within temperate eastern Australia: Abudefduf vaigiensis have an extended southern range, and lower threshold survival temperature than the congeneric A. whitleyi. Physiological and behavioural performance parameters that may be affected by cooler temperature regimes at higher latitudes were measured in aquaria. Lower water temperature resulted in reduced growth rates, feeding rates, burst escape speed and metabolic rates of both species, with significantly reduced performance (up to six-fold reductions) for fishes reared at 18 °C relative to 22 °C and 26 °C. However, A. whitleyi exhibited lower growth rates than A. vaigiensis across all temperatures, and lower aerobic capacity at the lowest temperature (18 °C). This difference between species in growth and metabolic capacity suggests that the extended southern distribution and greater overwintering success of A. vaigiensis, in comparison to A. whitleyi is related to thermal performance parameters which are critical in maintaining individual health and survival. Our results support previous findings in the region that water temperature below 22 °C represents a critical physiological threshold for tropical Abudefduf species expatriating into temperate south-eastern Australia.
Collapse
|
38
|
Zhang Y, Gilbert MJH, Farrell AP. Finding the peak of dynamic oxygen uptake during fatiguing exercise in fish. ACTA ACUST UNITED AC 2019; 222:jeb.196568. [PMID: 31053645 DOI: 10.1242/jeb.196568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/29/2019] [Indexed: 12/24/2022]
Abstract
As fish approach fatigue at high water velocities in a critical swimming speed (U crit) test, their swimming mode and oxygen cascade typically move to an unsteady state because they adopt an unsteady, burst-and-glide swimming mode despite a constant, imposed workload. However, conventional rate of oxygen uptake (Ṁ O2 ) sampling intervals (5-20 min) tend to smooth any dynamic fluctuations in active Ṁ O2 (Ṁ O2active) and thus likely underestimate the peak Ṁ O2active Here, we used rainbow trout (Oncorhynchus mykiss) to explore the dynamic nature of Ṁ O2active near U crit using various sampling windows and an iterative algorithm. Compared with a conventional interval regression analysis of Ṁ O2active over a 10-min period, our new analytical approach generated a 23% higher peak Ṁ O2active Therefore, we suggest that accounting for such dynamics in Ṁ O2active with this new analytical approach may lead to more accurate estimates of maximum Ṁ O2 in fishes.
Collapse
Affiliation(s)
- Yangfan Zhang
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Matthew J H Gilbert
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Anthony P Farrell
- Department of Zoology & Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
39
|
Long-term acclimation to near-future ocean acidification has negligible effects on energetic attributes in a juvenile coral reef fish. Oecologia 2019; 190:689-702. [DOI: 10.1007/s00442-019-04430-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
40
|
Morozov S, McCairns RJS, Merilä J. FishResp: R package and GUI application for analysis of aquatic respirometry data. CONSERVATION PHYSIOLOGY 2019; 7:coz003. [PMID: 30746152 PMCID: PMC6364290 DOI: 10.1093/conphys/coz003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Intermittent-flow respirometry is widely used to measure oxygen uptake rates and subsequently estimate aerobic metabolic rates of aquatic animals. However, the lack of a standard quality-control software to detect technical problems represents a potential impediment to comparisons across studies in the field of evolutionary and conservation physiology. Here, we introduce 'FishResp', a versatile R package and its graphical implementation for quality-control and filtering of raw respirometry data. Our goal is to provide a straightforward, cross-platform and free software to help improve the quality and comparability of metabolic rate estimates for reducing methodological fragmentation in the field of aquatic respirometry. FishResp accepts data from various respirometry systems, allows users to detect potential mechanical problems which can occur during oxygen uptake measurements (e.g. chamber leaking, poor water circulation), and offers six options to correct raw data for microbial oxygen consumption. The software performs filtering of raw data based on user criteria, and produces accurate and unbiased estimates of absolute and mass-specific metabolic rates. Using data from three-spined sticklebacks (Gasterosteus aculeatus) and Trinidadian guppies (Poecilia reticulata), we demonstrate the virtues of FishResp, highlighting the importance of detecting mechanical problems and correcting measurements for background respiration.
Collapse
Affiliation(s)
- Sergey Morozov
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - R J Scott McCairns
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, Rennes, France
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Rodgers GG, Rummer JL, Johnson LK, McCormick MI. Impacts of increased ocean temperatures on a low-latitude coral reef fish - Processes related to oxygen uptake and delivery. J Therm Biol 2019; 79:95-102. [PMID: 30612692 DOI: 10.1016/j.jtherbio.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/23/2018] [Accepted: 12/09/2018] [Indexed: 02/04/2023]
Abstract
Increasing temperatures are expected to significantly affect the physiological performance of ectotherms, particularly in tropical locations. The shape of an organism's thermal reaction norm can provide important information on its capacity to persist under climate change scenarios; however, difficulty lies in choosing a measurable trait that best depicts physiological performance. This study investigated the effects of elevated temperatures on processes related to oxygen uptake and delivery, including oxygen consumption, haematology, and tissue health for a low-latitude population of coral reef damselfish. Acanthochromis polyacanthus were collected from the Torres Strait (10°31-46'S, 142°20-35'E) and maintained at current average ocean temperatures (+0 °C; seasonally cycling), + 1.5 °C and + 3 °C higher than present day temperatures for 10 months. Aerobic performance indicated a limit to metabolic function at + 3 °C (33 °C), following an increase in aerobic capacity at + 1.5 °C (31.5 °C). Neither haematological parameters nor gill morphology showed the same improvement in performance at + 1.5 °C. Gill histopathology provided the first indicator of a decline in organism health, which corresponded with mortality observations from previous research. Findings from this study suggest thermal specialisation in this low-latitude population as well as variation in thermal sensitivity, depending on the physiological trait.
Collapse
Affiliation(s)
- G G Rodgers
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - J L Rummer
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia
| | - L K Johnson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - M I McCormick
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
42
|
Frenette BD, Bruckerhoff LA, Tobler M, Gido KB. Temperature effects on performance and physiology of two prairie stream minnows. CONSERVATION PHYSIOLOGY 2019; 7:coz063. [PMID: 31687142 PMCID: PMC6822539 DOI: 10.1093/conphys/coz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 04/10/2019] [Accepted: 07/28/2019] [Indexed: 05/10/2023]
Abstract
Earth's atmosphere has warmed by ~1°C over the past century and continues to warm at an increasing rate. Effects of atmospheric warming are already visible in most major ecosystems and are evident across all levels of biological organization. Linking functional responses of individuals to temperature is critical for predicting responses of populations and communities to global climate change. The southern redbelly dace Chrosomus erythrogaster and the central stoneroller Campostoma anomalum are two minnows (Cyprinidae) that commonly occur in the Flint Hills region of the USA but show different patterns of occurrence, with dace largely occupying headwater reaches and stonerollers persisting in both headwater and intermediate-sized streams. We tested for differences between species in critical thermal maximum, energy metabolism, sustained swimming and activity over an ecologically relevant temperature gradient of acclimation temperatures. Typically, metrics increased with acclimation temperature for both species, although stoneroller activity decreased with temperature. We observed a significant interaction between species and temperature for critical thermal maxima, where stonerollers only had higher critical thermal maxima at the coldest temperature and at warm temperatures compared to the dace. We did not find evidence suggesting differences in the energy metabolism of dace and stonerollers. We detected interspecific differences in sustained swimming performance, with dace having higher swimming speed than stonerollers regardless of acclimation temperature. Finally, there was a significant interaction between temperature and species for activity; dace activity was higher at intermediate and warm temperatures compared to stonerollers. We observed subtle interspecific differences in how performance metrics responded to temperature that did not always align with observed patterns of distribution for these species. Thus, other ecological factors likely are important drivers of distributional patterns in these species.
Collapse
Affiliation(s)
- Bryan D Frenette
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
- Corresponding author: Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA.
| | - Lindsey A Bruckerhoff
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| | - Keith B Gido
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
43
|
Louison MJ, Stein J, Suski C. Metabolic phenotype is not associated with vulnerability to angling in bluegill sunfish (Lepomis macrochirus). CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior work has described a link between an individual’s metabolic rate and a willingness to take risks. One context in which high metabolic rates and risk-prone behaviors may prove to be maladaptive is in fish that strike fishing lures only to be captured by anglers. It has been shown that metabolic phenotype may be altered by angling; however, little work has assessed metabolic rate in fish and its relationship to angling vulnerability in a realistic angling trial. To address this, we subjected a set of bluegill sunfish (Lepomis macrochirus Rafinesque, 1819) to a series of angling sessions. Following this, a subset of 23 fish that had been captured at least once and 25 fish that had not been captured were assessed for metabolic phenotype (standard and maximum metabolic rates, postexercise oxygen consumption, and recovery time) via intermittent flow respirometry. Contrary to predictions, captured and uncaptured fish did not differ in any measurement of metabolic rate. These results suggest that metabolic phenotype is not a determinant of angling vulnerability within the studied context. It is possible, therefore, that previously described alterations in metabolic phenotype owing to angling pressure may be context-specific and may not apply to all species and angling contexts.
Collapse
Affiliation(s)
- Michael J. Louison
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801, USA
| | - J.A. Stein
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana–Champaign 1816 South Oak Street, Champaign, IL 61820, USA
| | - C.D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Bouyoucos IA, Weideli OC, Planes S, Simpfendorfer CA, Rummer JL. Dead tired: evaluating the physiological status and survival of neonatal reef sharks under stress. CONSERVATION PHYSIOLOGY 2018; 6:coy053. [PMID: 30254751 PMCID: PMC6142904 DOI: 10.1093/conphys/coy053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 05/30/2023]
Abstract
Marine protected areas (MPAs) can protect shark populations from targeted fisheries, but resident shark populations may remain exposed to stressors like capture as bycatch and environmental change. Populations of young sharks that rely on shallow coastal habitats, e.g. as nursery areas, may be at risk of experiencing these stressors. The purpose of this study was to characterize various components of the physiological stress response of neonatal reef sharks following exposure to an exhaustive challenge under relevant environmental conditions. To accomplish this, we monitored markers of the secondary stress response and measured oxygen uptake rates ( M˙O2 ) to compare to laboratory-derived baseline values in neonatal blacktip reef (Carcharhinus melanopterus) and sicklefin lemon sharks (Negaprion acutidens). Measurements occurred over three hours following exposure to an exhaustive challenge (gill-net capture with air exposure). Blood lactate concentrations and pH deviated from baseline values at the 3-h sample, indicating that both species were still stressed 3 h after capture. Evidence of a temperature effect on physiological status of either species was equivocal over 28-31°C. However, aspects of the physiological response were species-specific; N. acutidens exhibited a larger difference in blood pH relative to baseline values than C. melanopterus, possibly owing to higher minimum M˙O2 . Neither species experienced immediate mortality during the exhaustive challenge; although, single instances of delayed mortality were documented for each species. Energetic costs and recovery times could be extrapolated for C. melanopterus via respirometry; sharks were estimated to expend 9.9 kJ kg-1 (15% of energy expended on daily swimming) for a single challenge and could require 8.4 h to recover. These data suggest that neonatal C. melanopterus and N. acutidens are resilient to brief gill-net capture durations, but this was under a narrow temperature range. Defining species' vulnerability to stressors is important for understanding the efficacy of shark conservation tools, including MPAs.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
| | - Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
- Laboratoire d’Excellence “CORAIL”, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
45
|
Mochnacz NJ, Kissinger BC, Deslauriers D, Guzzo MM, Enders EC, Anderson WG, Docker MF, Isaak DJ, Durhack TC, Treberg JR. Development and testing of a simple field-based intermittent-flow respirometry system for riverine fishes. CONSERVATION PHYSIOLOGY 2017; 5:cox048. [PMID: 30245823 PMCID: PMC5610584 DOI: 10.1093/conphys/cox048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 05/26/2023]
Abstract
By understanding range-wide intraspecific variation in metabolic rate we can better understand how organisms have adapted to their environment. However, methods to quantify metabolic rate of fishes from remote areas or those that cannot be brought back to the laboratory because of imperilment status are lacking. Consequently, practical and reliable field-based methods are needed. To address this need, we developed a simple yet robust intermittent-flow respirometry system, adapted from a design commonly used in the laboratory that is readily suited for field use. Standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope (AS) estimates were obtained from juvenile lake trout (Salvelinus namaycush) and brook trout (Salvelinus fontinalis) using both field- and laboratory-based systems. Whole-fish SMR, MMR and AS estimates from the field and laboratory methods did not differ from one another (ANCOVA and LMM: all P > 0.05) for either species and were comparable to estimates previously reported. Our field setup is a simpler system than the conventional laboratory-based system that requires less power and equipment to operate, yet still offers users the ability to: (1) acclimate fish to the respirometry chamber; (2) measure oxygen consumption during a shorter period (1 h), which yield metabolic rate estimates comparable to systems that take measurements over longer periods; and (3) take repeated oxygen consumption measurements with manual user-defined flush and measurement phase routines. Developing practical and reliable field respirometry methods, as demonstrated here, is important if we wish to improve our ability to predict how imperiled species will respond to changes in their environment. Such knowledge is critical for informing conservation strategies.
Collapse
Affiliation(s)
- Neil J Mochnacz
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
- Fisheries and Oceans Canada, Winnipeg, MB, Canada R3T 2N6
| | - Benjamin C Kissinger
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
| | - David Deslauriers
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
| | - Matthew M Guzzo
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
| | - Eva C Enders
- Fisheries and Oceans Canada, Winnipeg, MB, Canada R3T 2N6
| | - W. Gary Anderson
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
| | - Margaret F Docker
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
| | - Dan J Isaak
- United States Forest Service, Boise, ID, United States 83702
| | - Travis C Durhack
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
| | - Jason R Treberg
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada R3T 2N2
- University of Manitoba, Department of Human Nutritional Sciences, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
46
|
Herbert NA, Bröhl S, Springer K, Kunzmann A. Clownfish in hypoxic anemones replenish host O 2 at only localised scales. Sci Rep 2017; 7:6547. [PMID: 28747629 PMCID: PMC5529556 DOI: 10.1038/s41598-017-06695-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/16/2017] [Indexed: 11/28/2022] Open
Abstract
The clownfish-anemone association exemplifies a symbiosis where both members benefit from nutrient exchange and protection from predators. Clownfish also perform aeration-like behaviour in their host anemones at night, but it is not yet known whether this is stimulated by the onset of hypoxia, and whether both members benefit from O2 replenishment. Oxygen at 3 distances above the sea anemone Entacmaea quadricolor (0.2, 1.2 and 2.2 cm) therefore was measured under 3 light levels (photon flux density = 0, 55 and 110 µmol m−2 s−1), with and without the anemonefish Amphiprion frenatus. Hypoxia (O2 < 50% air saturation) was recorded in the anemone, but only at 0.2 cm away from the anemone surface under dark conditions when A. frenatus was absent. This localised layer of hypoxia was eliminated by the presence of A. frenatus exhibiting aeration-like behaviour. Respirometry revealed that A. frenatus is extremely hypoxia tolerant (Scrit = 14.3% at 25 °C), suggesting that aeration behaviour does not provide a major metabolic advantage to clownfish because they do not breathe water at 0.2 cm and are not metabolically constrained by O2 at distances ≥ 1.2 cm. That the aeration behaviour of A. frenatus facilitates only the metabolism of its O2-conforming host reveals a unique aspect of this symbiotic relationship.
Collapse
Affiliation(s)
- N A Herbert
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, PO Box 349, Warkworth, 0941, New Zealand.
| | - S Bröhl
- Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - K Springer
- Marine Botany BreMarE, University of Bremen, Leobenerstr.1, 28359, Bremen, Germany
| | - A Kunzmann
- Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| |
Collapse
|
47
|
Hasler CT, Bouyoucos IA, Suski CD. Tolerance to Hypercarbia Is Repeatable and Related to a Component of the Metabolic Phenotype in a Freshwater Fish. Physiol Biochem Zool 2017; 90:583-587. [PMID: 28708460 DOI: 10.1086/693376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Freshwater fish may be exposed to high levels of carbon dioxide (CO2) because of several actions, including anesthesia and high levels of aquatic respiration and potentially as the result of using high-CO2 plumes as a barrier to the movements of invasive fishes. Metabolic phenotype can potentially drive how freshwater fish respond to high CO2. We therefore quantified how tolerance (measured using time to equilibrium loss [ELT]) was driven by metabolic phenotype in a cosmopolitan freshwater fish species, Micropterus salmoides. ELT was repeatable, with 60% of the variance across trials attributable to individual differences. For each fish, standard metabolic rate and maximum metabolic rate were measured using respirometers and time to exhaustion after a chase test was recorded. Fish with high anaerobic performance were less tolerant to elevated CO2, potentially as a result of preexisting metabolic acidosis. Standard metabolic rate and aerobic scope did not predict ELT. Our findings define which fish may be more vulnerable to high CO2, a potential mechanism for this tolerance, and show that tolerance to high CO2 may be acted on by natural selection. Should freshwater ecosystems become elevated in CO2, by either natural means or anthropogenic means, it is possible that there is potential for heritable selection of CO2 tolerance, evidenced by the fact that ELT was found to be repeatable.
Collapse
|
48
|
Louison MJ, Adhikari S, Stein JA, Suski CD. Hormonal responsiveness to stress is negatively associated with vulnerability to angling capture in fish. J Exp Biol 2017; 220:2529-2535. [DOI: 10.1242/jeb.150730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
ABSTRACT
Differences in behavior and physiology amongst individuals often alter relative fitness levels in the environment. However, the ideal behavioral/physiological phenotype in a given environment may be altered by human activity, leading to an evolutionary response in the affected population. One example of this process can be found in fisheries (including recreational freshwater fisheries), where selective capture and harvest of individuals with certain phenotypes can drive evolutionary change. While some life history traits and behavioral tendencies influencing capture likelihood have been studied, the physiological mechanisms driving this vulnerability remain poorly understood. To address this, we assessed how two major physiological characteristics (hormonal responsiveness to stress and metabolic phenotype) and one behavioral characteristic (boldness) impact the likelihood of an individual being captured by anglers. Largemouth bass, Micropterus salmoides, derived from a population artificially selected for differential angling vulnerability were assessed for boldness and for stress responsiveness (as indicated by plasma cortisol levels) following an air-exposure challenge. Largemouth bass were then stocked into a pond where experimental angling trials took place, and a subset of captured and uncaptured fish were afterwards assessed for metabolic phenotype. The results showed that stress responsiveness was the primary driver of angling vulnerability, with individuals that experienced lower rises in cortisol following the air-exposure challenge more likely to be captured. Neither boldness nor metabolic phenotype influenced capture probability. The results from this study indicate that fisheries-induced selective pressure may act on physiology, potentially altering stress responsiveness and its associated behaviors in populations exploited by recreational anglers.
Collapse
Affiliation(s)
- Michael J. Louison
- Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Shivani Adhikari
- Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Jeffrey A. Stein
- Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
49
|
Schreiber B, Monka J, Drozd B, Hundt M, Weiss M, Oswald T, Gergs R, Schulz R. Thermal requirements for growth, survival and aerobic performance of weatherfish larvae Misgurnus fossilis. JOURNAL OF FISH BIOLOGY 2017; 90:1597-1608. [PMID: 28097662 DOI: 10.1111/jfb.13261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Thermal requirements of larval weatherfish Misgurnus fossilis were investigated in terms of growth, survival and aerobic performance. Growth and survival of M. fossilis larvae acclimated to five temperatures (11, 15, 19, 23 and 27° C) were measured over 25 days. In the upper temperature treatments (19, 23 and 27° C), survival of larvae was stable throughout the entire rearing period (>75%), whereas 11 and 15° C resulted in severe declines in survival (to <10%). Growth of larvae (expressed as dry mass and total length) was highest at 19 and 23° C, but significantly decreased at 27° C. Routine metabolic rate of 3 days post-hatch larvae was estimated as oxygen consumption rate (ṀO2 ) during acute exposure (30 min to 1 h) to seven temperatures (11, 15, 19, 23, 27, 31 and 35° C). Larval oxygen uptake increased with each consecutive temperature step from 11 to 27° C, until a plateau was reached at temperatures >27° C. All larvae of the 35° C regime, however, died within the ṀO2 measurement period. M. fossilis larvae show greater than expected tolerance of high temperatures. On the other hand, low temperatures that are within the range of likely habitat conditions are critical because they might lead to high mortality rates when larvae are exposed over periods >10 days. These findings help to improve rearing conditions and to identify suitable waters for stocking and thus support the management of re-introduction activities for endangered M. fossilis.
Collapse
Affiliation(s)
- B Schreiber
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - J Monka
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - B Drozd
- University of South Bohemia in České Budějovice, FFPW USB, CENAKVA, IAPW, Husova tř. 458/102, 370 05, České Budějovice, Czech Republic
| | - M Hundt
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - M Weiss
- Alfred Wegener Institute for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - T Oswald
- Struktur und Genehmigungsdirektion Süd (Rheinland-Pfalz), Friedrich-Ebert-Str. 14, 67433, Neustadt, Germany
| | - R Gergs
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
- Federal Environment Agency, Schichauweg 58, 12307, Berlin, Germany
| | - R Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| |
Collapse
|
50
|
Killen SS, Norin T, Halsey LG. Do method and species lifestyle affect measures of maximum metabolic rate in fishes? JOURNAL OF FISH BIOLOGY 2017; 90:1037-1046. [PMID: 27778342 PMCID: PMC5347950 DOI: 10.1111/jfb.13195] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 05/24/2023]
Abstract
The rate at which active animals can expend energy is limited by their maximum aerobic metabolic rate (MMR). Two methods are commonly used to estimate MMR as oxygen uptake in fishes, namely during prolonged swimming or immediately following brief exhaustive exercise, but it is unclear whether they return different estimates of MMR or whether their effectiveness for estimating MMR varies among species with different lifestyles. A broad comparative analysis of MMR data from 121 fish species revealed little evidence of different results between the two methods, either for fishes in general or for species of benthic, benthopelagic or pelagic lifestyles.
Collapse
Affiliation(s)
- S. S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr BuildingUniversity of GlasgowGlasgowG12 8QQU.K.
| | - T. Norin
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr BuildingUniversity of GlasgowGlasgowG12 8QQU.K.
| | - L. G. Halsey
- Department of Life SciencesUniversity of RoehamptonHolybourne AvenueLondonSW15 4JDU.K.
| |
Collapse
|