1
|
Lei L, Li J, Liu Z, Zhang D, Liu Z, Wang Q, Gao Y, Mo B, Li J. Identification of diagnostic markers pyrodeath-related genes in non-alcoholic fatty liver disease based on machine learning and experiment validation. Sci Rep 2024; 14:25541. [PMID: 39462099 PMCID: PMC11513955 DOI: 10.1038/s41598-024-77409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a global health challenge. While pyroptosis is implicated in various diseases, its specific involvement in NAFLD remains unclear. Thus, our study aims to elucidate the role and mechanisms of pyroptosis in NAFLD. Utilizing data from the Gene Expression Omnibus (GEO) database, we analyzed the expression levels of pyroptosis-related genes (PRGs) in NAFLD and normal tissues using the R data package. We investigated protein interactions, correlations, and functional enrichment of these genes. Key genes were identified employing multiple machine learning techniques. Immunoinfiltration analyses were conducted to discern differences in immune cell populations between NAFLD patients and controls. Key gene expression was validated using a cell model. Analysis of GEO datasets, comprising 206 NAFLD samples and 10 controls, revealed two key PRGs (TIRAP, and GSDMD). Combining these genes yielded an area under the curve (AUC) of 0.996 for diagnosing NAFLD. In an external dataset, the AUC for the two key genes was 0.825. Nomogram, decision curve, and calibration curve analyses further validated their diagnostic efficacy. These genes were implicated in multiple pathways associated with NAFLD progression. Immunoinfiltration analysis showed significantly lower numbers of various immune cell types in NAFLD patient samples compared to controls. Single sample gene set enrichment analysis (ssGSEA) was employed to assess the immune microenvironment. Finally, the expression of the two key genes was validated in cell NAFLD model using qRT-PCR. We developed a prognostic model for NAFLD based on two PRGs, demonstrating robust predictive efficacy. Our findings enhance the understanding of pyroptosis in NAFLD and suggest potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Liping Lei
- Department of Geriatric Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jixue Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zirui Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dongdong Zhang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zihan Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qing Wang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yi Gao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541002, Guangxi, China.
| | - Jiangfa Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Bergheim I, Moreno-Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14224. [PMID: 38634717 DOI: 10.1111/eci.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
3
|
Schirone L, Overi D, Carpino G, Carnevale R, De Falco E, Nocella C, D’Amico A, Bartimoccia S, Cammisotto V, Castellani V, Frati G, Sciarretta S, Gaudio E, Pignatelli P, Alvaro D, Violi F. Oleuropein, a Component of Extra Virgin Olive Oil, Improves Liver Steatosis and Lobular Inflammation by Lipopolysaccharides-TLR4 Axis Downregulation. Int J Mol Sci 2024; 25:5580. [PMID: 38891768 PMCID: PMC11171925 DOI: 10.3390/ijms25115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Gut-dysbiosis-induced lipopolysaccharides (LPS) translocation into systemic circulation has been suggested to be implicated in nonalcoholic fatty liver disease (NAFLD) pathogenesis. This study aimed to assess if oleuropein (OLE), a component of extra virgin olive oil, lowers high-fat-diet (HFD)-induced endotoxemia and, eventually, liver steatosis. An immunohistochemistry analysis of the intestine and liver was performed in (i) control mice (CTR; n = 15), (ii) high-fat-diet fed (HFD) mice (HFD; n = 16), and (iii) HFD mice treated with 6 µg/day of OLE for 30 days (HFD + OLE, n = 13). The HFD mice developed significant liver steatosis compared to the controls, an effect that was significantly reduced in the HFD + OLE-treated mice. The amount of hepatocyte LPS localization and the number of TLR4+ macrophages were higher in the HFD mice in the than controls and were lowered in the HFD + OLE-treated mice. The number of CD42b+ platelets was increased in the liver sinusoids of the HFD mice compared to the controls and decreased in the HFD + OLE-treated mice. Compared to the controls, the HFD-treated mice showed a high percentage of intestine PAS+ goblet cells, an increased length of intestinal crypts, LPS localization and TLR4+ expression, and occludin downregulation, an effect counteracted in the HFD + OLE-treated mice. The HFD-fed animals displayed increased systemic levels of LPS and zonulin, but they were reduced in the HFD + OLE-treated animals. It can be seen that OLE administration improves liver steatosis and inflammation in association with decreased LPS translocation into the systemic circulation, hepatocyte localization of LPS and TLR4 downregulation in HFD-induced mouse model of NAFLD.
Collapse
Affiliation(s)
- Leonardo Schirone
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.S.); (R.C.); (G.F.); (S.S.)
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.O.); (G.C.); (E.G.)
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.O.); (G.C.); (E.G.)
| | - Roberto Carnevale
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.S.); (R.C.); (G.F.); (S.S.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (A.D.); (S.B.)
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (A.D.); (S.B.)
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (V.C.); (P.P.)
| | - Alessandra D’Amico
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (A.D.); (S.B.)
| | - Simona Bartimoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (A.D.); (S.B.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (V.C.); (P.P.)
| | - Valentina Castellani
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00185 Rome, Italy;
| | - Giacomo Frati
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.S.); (R.C.); (G.F.); (S.S.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (A.D.); (S.B.)
| | - Sebastiano Sciarretta
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.S.); (R.C.); (G.F.); (S.S.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (A.D.); (S.B.)
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.O.); (G.C.); (E.G.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (V.C.); (P.P.)
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (V.C.); (P.P.)
| |
Collapse
|
4
|
Zhang Q, Shen X, Yuan X, Huang J, Zhu Y, Zhu T, Zhang T, Wu H, Wu Q, Fan Y, Ni J, Meng L, He A, Shi C, Li H, Hu Q, Wang J, Chang C, Huang F, Li F, Chen M, Liu A, Ye S, Zheng M, Fang H. Lipopolysaccharide binding protein resists hepatic oxidative stress by regulating lipid droplet homeostasis. Nat Commun 2024; 15:3213. [PMID: 38615060 PMCID: PMC11016120 DOI: 10.1038/s41467-024-47553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Qilun Zhang
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xuting Shen
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Xin Yuan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jing Huang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Tengteng Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Tao Zhang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qian Wu
- Department of pathology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Leilei Meng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Anyuan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Chaowei Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Hao Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fan Huang
- Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Meng Chen
- Graduate School of Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Shandong Ye
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Mao Zheng
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China.
| |
Collapse
|
5
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. SCOPE OF REVIEW There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. MAJOR CONCLUSIONS The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX, Ma Y. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. Front Cell Dev Biol 2023; 11:1199519. [PMID: 37261074 PMCID: PMC10228659 DOI: 10.3389/fcell.2023.1199519] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging as the leading causes of liver disease worldwide. These conditions can lead to cirrhosis, liver cancer, liver failure, and other related ailments. At present, liver transplantation remains the sole treatment option for end-stage NASH, leading to a rapidly growing socioeconomic burden. Kupffer cells (KCs) are a dominant population of macrophages that reside in the liver, playing a crucial role in innate immunity. Their primary function includes phagocytosing exogenous substances, presenting antigens, and triggering immune responses. Moreover, they interact with other liver cells during the pathogenesis of NAFLD, and this crosstalk may either delay or exacerbate disease progression. Stimulation by endogenous signals triggers the activation of KCs, resulting in the expression of various inflammatory factors and chemokines, such as NLRP3, TNF-α, IL-1B, and IL-6, and contributing to the inflammatory cascade. In the past 5 years, significant advances have been made in understanding the biological properties and immune functions of KCs in NAFLD, including their interactions with tissue molecules, underlying molecular mechanisms, signaling pathways, and relevant therapeutic interventions. Having a comprehensive understanding of these mechanisms and characteristics can have enormous potential in guiding future strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Ma
- *Correspondence: Kun-Xing Yang, ; Yong Ma,
| |
Collapse
|
7
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
8
|
Milbank E, Díaz-Trelles R, Dragano N, Latorre J, Mukthavaram R, Mayneris-Perxachs J, Ortega F, Federici M, Burcelin R, Karmali PP, Tachikawa K, Chivukula P, López M, Fernández-Real JM, Moreno-Navarrete JM. Liver lipopolysaccharide binding protein prevents hepatic inflammation in physiological and pathological non-obesogenic conditions. Pharmacol Res 2023; 187:106562. [PMID: 36410673 DOI: 10.1016/j.phrs.2022.106562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharide binding protein (LBP) knockout mice models are protected against the deleterious effects of major acute inflammation but its possible physiological role has been less well studied. We aimed to evaluate the impact of liver LBP downregulation (using nanoparticles containing siRNA- Lbp) on liver steatosis, inflammation and fibrosis during a standard chow diet (STD), and in pathological non-obesogenic conditions, under a methionine and choline deficient diet (MCD, 5 weeks). Under STD, liver Lbp gene knockdown led to a significant increase in gene expression markers of liver inflammation (Itgax, Tlr4, Ccr2, Ccl2 and Tnf), liver injury (Krt18 and Crp), fibrosis (Col4a1, Col1a2 and Tgfb1), endoplasmic reticulum (ER) stress (Atf6, Hspa5 and Eif2ak3) and protein carbonyl levels. As expected, the MCD increased hepatocyte vacuolation, liver inflammation and fibrosis markers, also increasing liver Lbp mRNA. In this model, liver Lbp gene knockdown resulted in a pronounced worsening of the markers of liver inflammation (also including CD68 and MPO activity), fibrosis, ER stress and protein carbonyl levels, all indicative of non-alcoholic steatohepatitis (NASH) progression. At cellular level, Lbp gene knockdown also increased expression of the proinflammatory mediators (Il6, Ccl2), and markers of fibrosis (Col1a1, Tgfb1) and protein carbonyl levels. In agreement with these findings, liver LBP mRNA in humans positively correlated with markers of liver damage (circulating hsCRP, ALT activity, liver CRP and KRT18 gene expression), and with a network of genes involved in liver inflammation, innate and adaptive immune system, endoplasmic reticulum stress and neutrophil degranulation (all with q-value<0.05). In conclusion, current findings suggest that a significant downregulation in liver LBP levels promotes liver oxidative stress and inflammation, aggravating NASH progression, in physiological and pathological non-obesogenic conditions.
Collapse
Affiliation(s)
- Edward Milbank
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Nathalia Dragano
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jèssica Latorre
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | | | - Jordi Mayneris-Perxachs
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Francisco Ortega
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, Rome, Italy
| | - Remy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université Paul Sabatier, Toulouse, France
| | | | | | | | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; Department of Medicine, University of Girona, Girona, Spain.
| | - José María Moreno-Navarrete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; Department of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
9
|
Latorre J, Díaz-Trelles R, Comas F, Gavaldà-Navarro A, Milbank E, Dragano N, Morón-Ros S, Mukthavaram R, Ortega F, Castells-Nobau A, Oliveras-Cañellas N, Ricart W, Karmali PP, Tachikawa K, Chivukula P, Villarroya F, López M, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Downregulation of hepatic lipopolysaccharide binding protein improves lipogenesis-induced liver lipid accumulation. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:599-613. [PMID: 36090751 PMCID: PMC9418749 DOI: 10.1016/j.omtn.2022.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Circulating lipopolysaccharide-binding protein (LBP) is increased in individuals with liver steatosis. We aimed to evaluate the possible impact of liver LBP downregulation using lipid nanoparticle-containing chemically modified LBP small interfering RNA (siRNA) (LNP-Lbp UNA-siRNA) on the development of fatty liver. Weekly LNP-Lbp UNA-siRNA was administered to mice fed a standard chow diet, a high-fat and high-sucrose diet, and a methionine- and choline-deficient diet (MCD). In mice fed a high-fat and high-sucrose diet, which displayed induced liver lipogenesis, LBP downregulation led to reduced liver lipid accumulation, lipogenesis (mainly stearoyl-coenzyme A desaturase 1 [Scd1]) and lipid peroxidation-associated oxidative stress markers. LNP-Lbp UNA-siRNA also resulted in significantly decreased blood glucose levels during an insulin tolerance test. In mice fed a standard chow diet or an MCD, in which liver lipogenesis was not induced or was inhibited (especially Scd1 mRNA), liver LBP downregulation did not impact on liver steatosis. The link between hepatocyte LBP and lipogenesis was further confirmed in palmitate-treated Hepa1-6 cells, in primary human hepatocytes, and in subjects with morbid obesity. Altogether, these data indicate that siRNA against liver Lbp mRNA constitutes a potential target therapy for obesity-associated fatty liver through the modulation of hepatic Scd1.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Aleix Gavaldà-Navarro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Edward Milbank
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Nathalia Dragano
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Samantha Morón-Ros
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | | | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | | | | | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Miguel López
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Marta Giralt
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Medicine, University of Girona, 17003 Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Corresponding author José María Moreno-Navarrete, PhD, Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain.
| |
Collapse
|
10
|
Liu J, Wu A, Cai J, She ZG, Li H. The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Front Immunol 2022; 13:968799. [PMID: 36119048 PMCID: PMC9471422 DOI: 10.3389/fimmu.2022.968799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of metabolic syndrome and is the most common chronic liver disease in the world. The pathogenesis of NAFLD has not been fully clarified; it involves metabolic disturbances, inflammation, oxidative stress, and various forms of cell death. The "intestinal-liver axis" theory, developed in recent years, holds that there is a certain relationship between liver disease and the intestinal tract, and changes in intestinal flora are closely involved in the development of NAFLD. Many studies have found that the intestinal flora regulates the pathogenesis of NAFLD by affecting energy metabolism, inducing endotoxemia, producing endogenous ethanol, and regulating bile acid and choline metabolism. In this review, we highlighted the updated discoveries in intestinal flora dysregulation and their link to the pathogenesis mechanism of NAFLD and summarized potential treatments of NAFLD related to the gut microbiome.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Anding Wu
- Department of general surgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translation Medicine, Huanggang, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Kamiya T, Ohtani N. The role of immune cells in the liver tumor microenvironment: an involvement of gut microbiota-derived factors. Int Immunol 2022; 34:467-474. [PMID: 35652367 DOI: 10.1093/intimm/dxac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
More than 500 species of microbiota reside in the human intestine and coexist with humans, their host. Gut microbial metabolites and components are absorbed from the intestine and influence cells in the liver, including hepatocytes and stromal cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, Kupffer cells, natural killer (NK) cells, NK T cells, and other immune cells. This gut-originated axis to the liver is called the "gut-liver axis", which underscores the importance of the link between the gut and the liver. In this review, we discuss the gut microbial components and metabolites that affect cells in the liver, particularly in association with immune cells, and the related responses. We also highlight the mechanisms underlying gut microbiota-mediated liver carcinogenesis and discuss cancer prevention, including the recently clarified modulation of immune checkpoint inhibitor efficacy by the gut microbiota.
Collapse
Affiliation(s)
- Tomonori Kamiya
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
12
|
Page MJ, Kell DB, Pretorius E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221076390. [PMID: 35155966 PMCID: PMC8829728 DOI: 10.1177/24705470221076390] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) is the main structural component of the outer membrane of most Gram-negative bacteria and has diverse immunostimulatory and procoagulant effects. Even though LPS is well described for its role in the pathology of sepsis, considerable evidence demonstrates that LPS-induced signalling and immune dysregulation are also relevant in the pathophysiology of many diseases, characteristically where endotoxaemia is less severe. These diseases are typically chronic and progressive in nature and span broad classifications, including neurodegenerative, metabolic, and cardiovascular diseases. This Review reappraises the mechanisms of LPS-induced signalling and emphasises the crucial contribution of LPS to the pathology of multiple chronic diseases, beyond conventional sepsis. This perspective asserts that new ways of approaching chronic diseases by targeting LPS-driven pathways may be of therapeutic benefit in a wide range of chronic inflammatory conditions.
Collapse
Affiliation(s)
| | - Douglas B Kell
- Stellenbosch University, Stellenbosch, South Africa.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
13
|
Shatoor AS, Al Humayed S, Almohiy HM. Crataegus aronia prevents high-fat diet-induced hepatic steatosis in rats by activating AMPK-induced suppression of SREBP1 and activation of PPARα. J Food Biochem 2021; 45:e13945. [PMID: 34585409 DOI: 10.1111/jfbc.13945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
This study examined if the aqueous extract of Crataegus aronia (C. aronia) can prevent high-fat diet (HFD)-induced hepatic steatosis in rats by activating AMPK. Adult male Wistar rats were fed either a control diet or HFD for 12 weeks and treated either with vehicle (normal saline) or C. aronia extract (200 mg/kg/orally), daily. Also, hepatocytes were treated with increasing concentrations of the extract in the presence or absence of compound C (CC), an AMPK inhibitor. C. aronia prevented the increase in serum and hepatic lipids, reduced hepatic levels of reactive oxygen species, and increased hepatic glutathione and superoxide dismutase levels. It also downregulated the hepatic expression of SREBP1/2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase but stimulated the activity of AMPK and levels of peroxisome proliferator-activated receptor-alpha. Similar effects were reported in the cultured cells, in a dose-dependent manner but were prevented by CC. In conclusion, C. aronia ameliorates HFD-induced hepatic steatosis and oxidative stress by activating AMPK. PRACTICAL APPLICATIONS: The use of the aqueous extract of Crataegus aronia has been extensively used during the last years in traditional medicine to treat chronic disorders including nonalcoholic fatty liver disease. The findings of this study support these findings and suggest that oral administration of C. aronia aqueous extract has potent hypoglycemic effect and demonstrate the mechanism of action mimics such drugs such as metformin and involves activation of AMPK and peroxisome proliferator-activated receptor-alpha. These findings are very encouraging for further biochemical analysis and isolation of active ingredients responsible for these effects to be used in more clinical trials.
Collapse
Affiliation(s)
- Abdullah S Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Suliman Al Humayed
- Department of Internal Medicine, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Hussain M Almohiy
- Depatrtment of Radiology Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
15
|
Activation of a Specific Gut Bacteroides-Folate-Liver Axis Benefits for the Alleviation of Nonalcoholic Hepatic Steatosis. Cell Rep 2021; 32:108005. [PMID: 32783933 DOI: 10.1016/j.celrep.2020.108005] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
A beneficial gut Bacteroides-folate-liver pathway regulating lipid metabolism is demonstrated. Oral administration of a Ganoderma meroterpene derivative (GMD) ameliorates nonalcoholic hepatic steatosis in the liver of fa/fa rats by reducing endotoxemia, enhancing lipid oxidation, decreasing de novo lipogenesis, and suppressing lipid export from the liver. An altered gut microbiota with an increase of butyrate and folate plays a causative role in the effects of GMD. The commensal bacteria Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides dorei, and Bacteroides uniformis, which are enriched by GMD, are major contributors to the increased gut folate. Administration of live B. xylanisolvens reduces hepatic steatosis and enhances the folate-mediated signaling pathways in mice. Knockout of the folate biosynthetic folp gene in B. xylanisolvens blocks its folate production and beneficial effects. This work confirms the therapeutic potential of GMD and B. xylanisolvens in alleviating nonalcoholic hepatic steatosis and provides evidence for benefits of the gut Bacteroides-folate-liver pathway.
Collapse
|
16
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
17
|
Chen S, Guo H, Xie M, Zhou C, Zheng M. Neutrophil: An emerging player in the occurrence and progression of metabolic associated fatty liver disease. Int Immunopharmacol 2021; 97:107609. [PMID: 33887577 DOI: 10.1016/j.intimp.2021.107609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a common type of chronic liver disease characterized by excessive lipid accumulation in hepatocytes, but the pathogenesis is still unclear. Neutrophils, the most abundant immune cells in the human body, defend against pathogens and regulate the inflammatory response. Recent studies have indicated that excessive liver infiltration of neutrophils is a significant histological hallmark of MAFLD, and neutrophils and their derived granule proteins participate in different stages of MAFLD, including hepatic steatosis, inflammation, fibrosis, cirrhosis and hepatocellular carcinoma. Hence, in this review, we summarize the role of neutrophils in the occurrence and progression of MAFLD and provide a perspective for the clinical application of neutrophils in MAFLD diagnosis and treatment.
Collapse
Affiliation(s)
- Shiwei Chen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Cheng Zhou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China; National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
18
|
Citrulline supplementation attenuates the development of non-alcoholic steatohepatitis in female mice through mechanisms involving intestinal arginase. Redox Biol 2021; 41:101879. [PMID: 33550112 PMCID: PMC7868995 DOI: 10.1016/j.redox.2021.101879] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by now the most prevalent liver disease worldwide. The non-proteogenic amino acid l-citrulline (L-Cit) has been shown to protect mice from the development of NAFLD. Here, we aimed to further assess if L-Cit also attenuates the progression of a pre-existing diet-induced NAFLD and to determine molecular mechanisms involved. Female C57BL/6J mice were either fed a liquid fat-, fructose- and cholesterol-rich diet (FFC) or control diet (C) for 8 weeks to induce early stages of NASH followed by 5 more weeks with either FFC-feeding +/- 2.5 g L-Cit/kg bw or C-feeding. In addition, female C57BL/6J mice were either pair-fed a FFC +/- 2.5 g L-Cit/kg bw +/- 0.01 g/kg bw i.p. N(ω)-hydroxy-nor-l-arginine (NOHA) or C diet for 8 weeks. The protective effects of supplementing L-Cit on the progression of a pre-existing NAFLD were associated with an attenuation of 1) the increased translocation of bacterial endotoxin and 2) the loss of tight junction proteins as well as 3) arginase activity in small intestinal tissue, while no marked changes in intestinal microbiota composition were prevalent in small intestine. Treatment of mice with the arginase inhibitor NOHA abolished the protective effects of L-Cit on diet-induced NAFLD. Our results suggest that the protective effects of L-Cit on the development and progression of NAFLD are related to alterations of intestinal arginase activity and intestinal permeability. l-citrulline diminished progression of non-alcoholic fatty liver disease (NAFLD). l-citrulline protects from fructose-induced small intestinal barrier dysfunction. NASH development is associated with a loss of arginase activity in small intestine. l-citrulline improves intestinal arginase activity in diet-induced NAFLD. Arginase inhibitor attenuates effects of l-citrulline on NAFLD development.
Collapse
|
19
|
Yu SY, Xu L. The interplay between host cellular and gut microbial metabolism in NAFLD development and prevention. J Appl Microbiol 2021; 131:564-582. [PMID: 33411984 DOI: 10.1111/jam.14992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Metabolism regulation centred on insulin resistance is increasingly important in nonalcoholic fatty liver disease (NAFLD). This review focuses on the interactions between the host cellular and gut microbial metabolism during the development of NAFLD. The cellular metabolism of essential nutrients, such as glucose, lipids and amino acids, is reconstructed with inflammation, immune mechanisms and oxidative stress, and these alterations modify the intestinal, hepatic and systemic environments, and regulate the composition and activity of gut microbes. Microbial metabolites, such as short-chain fatty acids, secondary bile acids, protein fermentation products, choline and ethanol and bacterial toxicants, such as lipopolysaccharides, peptidoglycans and bacterial DNA, play vital roles in NAFLD. The microbe-metabolite relationship is crucial for the modulation of intestinal microbial composition and metabolic activity. The intestinal microbiota and their metabolites participate in epithelial cell metabolism via a series of cell receptors and signalling pathways and remodel the metabolism of various cells in the liver via the gut-liver axis. Microbial metabolic manipulation is a promising strategy for NAFLD prevention, but larger-sampled clinical trials are required for future application.
Collapse
Affiliation(s)
- S-Y Yu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - L Xu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
20
|
Fontana L, Plaza-Díaz J, Robles-Bolívar P, Valente-Godínez H, Sáez-Lara MJ, Abadía-Molina F, Gómez-Llorente C, Gil Á, Álvarez-Mercado AI. Bifidobacterium breve CNCM I-4035, Lactobacillus paracasei CNCM I-4034 and Lactobacillus rhamnosus CNCM I-4036 Modulate Macrophage Gene Expression and Ameliorate Damage Markers in the Liver of Zucker-Lepr
fa/fa
Rats. Nutrients 2021; 13:202. [PMID: 33440736 PMCID: PMC7826559 DOI: 10.3390/nu13010202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has reached pandemic proportions worldwide. We have previously reported that the probiotic strains Bifidobacterium breve CNCM I-4035, Lactobacillus paracasei CNCM I-4034 and Lactobacillus rhamnosus CNCM I-4036 exert anti-inflammatory effects in the intestine of Zucker-Lepr fa/fa rats. In this work, we focused on their hepatic effects. M1 macrophages are related to inflammation and NAFLD pathogenesis, whereas M2 macrophages release anti-inflammatory mediators. We evaluated the effects of these 3 strains on macrophage polarization, inflammation and liver damage of Zucker-Lepr fa/fa rats. The animals received either a placebo or 1010 CFU of probiotics orally for 30 days. Nos2 and Cd86 mRNA levels were determined as markers of M1 macrophages, and Cd163 and Arg1 as M2 markers, respectively, by qRT-PCR. Liver damage was determined by lipid peroxidation, leukocyte infiltration and myeloperoxidase activity. We evaluated a panoply of circulating chemokines, the hepatic ratio P-Akt/Akt, NF-kB and P-NF-kB protein levels. All 3 probiotic strains modulated macrophage polarization in liver and circulating levels of inflammation-related mediators. L. paracasei CNCM I-4034 increased the ratio P-Akt/Akt and NF-kB protein levels. B. breve CNCM I-4035, L. paracasei CNCM I-4034 and L. rhamnosus CNCM I-4036 decreased both pro-inflammatory macrophage gene expression and leukocyte infiltration in the liver.
Collapse
Affiliation(s)
- Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Paula Robles-Bolívar
- Department of Cell Biology, School of Sciences, Campus de Fuente Nueva, 18071 Granada, Spain;
| | - Héctor Valente-Godínez
- Division of Health Sciences, Campus León, Department Medicine and Nutrition, University of Guanajuato, 36000 Guanajuato, Mexico;
| | - María José Sáez-Lara
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, School of Sciences, Campus de Fuente Nueva, 18071 Granada, Spain
| | - Francisco Abadía-Molina
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- Department of Cell Biology, School of Sciences, Campus de Fuente Nueva, 18071 Granada, Spain;
| | - Carolina Gómez-Llorente
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
| |
Collapse
|
21
|
Relative contribution of fat diet and physical inactivity to the development of metabolic syndrome and non-alcoholic fat liver disease in Wistar rats. Physiol Behav 2020; 225:113040. [PMID: 32603747 DOI: 10.1016/j.physbeh.2020.113040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
|
22
|
Rajcic D, Brandt A, Jin CJ, Sánchez V, Engstler AJ, Jung F, Nier A, Baumann A, Bergheim I. Exchanging dietary fat source with extra virgin olive oil does not prevent progression of diet-induced non-alcoholic fatty liver disease and insulin resistance. PLoS One 2020; 15:e0237946. [PMID: 32881925 PMCID: PMC7470337 DOI: 10.1371/journal.pone.0237946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Dietary fat is discussed to be critical in the development of non-alcoholic fatty liver disease. Here, we assess the effect of exchanging dietary fat source from butterfat to extra virgin olive oil on the progression of an already existing diet-induced non-alcoholic fatty liver disease in mice. Female C57BL/6J mice were fed a liquid butterfat-, fructose- and cholesterol-rich diet (BFC, 25E% from butterfat) or control diet (C, 12%E from soybean oil) for 13 weeks. In week 9, fat sources of some BFC- and C-fed mice were switched either to 25E% or 12E% olive oil (OFC and CO). Glucose and insulin tolerance tests were performed, and markers of liver damage and glucose metabolism were assessed. After 6 weeks of feeding, BFC-fed mice had developed marked signs of insulin resistance, which progressed to week 12 being not affected by the exchange of fat sources. Liver damage was similar between BFC- and OFC-fed mice. Markers of lipid metabolism and lipid peroxidation in liver and of insulin signaling in liver and muscle were also similarly altered in BFC- and OFC-fed mice. Taken together, our data suggest that exchanging butterfat with extra virgin olive oil has no effect on the progression of non-alcoholic fatty liver disease and glucose tolerance in mice.
Collapse
Affiliation(s)
- Dragana Rajcic
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Cheng Jun Jin
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University of Jena, Jena, Germany
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anna Janina Engstler
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
Horst EA, van den Brink LM, Mayorga EJ, Al-Qaisi M, Rodriguez-Jimenez S, Goetz BM, Abeyta MA, Kvidera SK, Caixeta LS, Rhoads RP, Baumgard LH. Evaluating acute inflammation's effects on hepatic triglyceride content in experimentally induced hyperlipidemic dairy cows in late lactation. J Dairy Sci 2020; 103:9620-9633. [PMID: 32773314 DOI: 10.3168/jds.2020-18686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
Inflammation appears to be a predisposing factor and key component of hepatic steatosis in a variety of species. Objectives were to evaluate effects of inflammation [induced via intravenous lipopolysaccharide (LPS) infusion] on metabolism and liver lipid content in experimentally induced hyperlipidemic lactating cows. Cows (765 ± 32 kg of body weight; 273 ± 35 d in milk) were enrolled in 2 experimental periods (P); during P1 (5 d), baseline data were obtained. At the start of P2 (2 d), cows were assigned to 1 of 2 treatments: (1) intralipid plus control (IL-CON; 3 mL of saline; n = 5) or (2) intralipid plus LPS (IL-LPS; 0.375 μg of LPS/kg of body weight; n = 5). Directly following intravenous bolus (saline or LPS) administration, intralipid (20% fat emulsion) was intravenously infused continuously (200 mL/h) for 16 h to induce hyperlipidemia during which feed was removed. Blood samples were collected at -0.5, 0, 4, 8, 12, 16, 24, and 48 h relative to bolus administration, and liver biopsies were obtained on d 1 of P1 and at 16 and 48 h after the bolus. By experimental design (feed was removed during the first 16 h of d 1), dry matter intake decreased in both treatments on d 1 of P2, but the magnitude of reduction was greater in LPS cows. Dry matter intake of IL-LPS remained decreased on d 2 of P2, whereas IL-CON cows returned to baseline. Milk yield decreased in both treatments during P2, but the extent and duration was longer in LPS-infused cows. Administering LPS increased circulating LPS-binding protein (2-fold) at 8 h after bolus, after which it markedly decreased (84%) below baseline for the remainder of P2. Serum amyloid A concentrations progressively increased throughout P2 in IL-LPS cows (3-fold, relative to controls). Lipid infusion gradually increased nonesterified fatty acids and triglycerides in both treatments relative to baseline (3- and 2.5-fold, respectively). Interestingly, LPS infusion blunted the peak in nonesterified fatty acids, such that concentrations peaked (43%) higher in IL-CON compared with IL-LPS cows and heightened the increase in serum triglycerides (1.5-fold greater relative to controls). Liver fat content remained similar in IL-LPS relative to P1 at 16 h; however, hyperlipidemia alone (IL-CON) increased liver fat (36% relative to P1). No treatment differences in liver fat were observed at 48 h. In IL-LPS cows, circulating insulin increased markedly at 4 h after bolus (2-fold relative to IL-CON), and then gradually decreased during the 16 h of lipid infusion. Inducing inflammation with simultaneous hyperlipidemia altered the characteristic patterns of insulin and LPS-binding protein but did not cause fatty liver.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L S Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
24
|
Brandt A, Rajcic D, Jin CJ, Sánchez V, Engstler AJ, Jung F, Nier A, Baumann A, Bergheim I. Fortifying diet with rapeseed oil instead of butterfat attenuates the progression of diet-induced non-alcoholic fatty liver disease (NAFLD) and impairment of glucose tolerance. Metabolism 2020; 109:154283. [PMID: 32497536 DOI: 10.1016/j.metabol.2020.154283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Absolute dietary fat intake but even more so fatty acid pattern is discussed to be critical in the development of non-alcoholic fatty liver disease (NAFLD). Here, we determined if switching a butterfat enriched diet to a rapeseed oil (RO) enriched diet affects progression of an existing NAFLD and glucose intolerance in mice. METHODS For eight weeks, female C57Bl/6J mice were either fed a liquid control (C) or a butterfat-, fructose- and cholesterol-rich diet (BFC, 25E% butterfat) to induce early signs of steatohepatitis and glucose intolerance in mice. For additional five weeks mice received either BFC or C or a fat-, fructose- and cholesterol-rich and control diet, in which butterfat was replaced with RO (ROFC and CRO). Markers of glucose metabolism, liver damage and intestinal barrier were assessed. RESULTS Exchanging butterfat with RO attenuated the progression of BFC diet-induced NAFLD and glucose intolerance. Beneficial effects of RO were associated with lower portal endotoxin levels and an attenuation of the induction of the toll-like receptor-4-dependent signaling cascades in liver. Peroxisome proliferator-activated receptor γ activity was induced in small intestine of ROFC-fed mice. CONCLUSION Taken together, exchanging butterfat with RO attenuated the progression of diet-induced steatohepatitis and glucose intolerance in mice.
Collapse
Affiliation(s)
- Annette Brandt
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Cheng Jun Jin
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University of Jena, Jena, Germany
| | - Victor Sánchez
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anna Janina Engstler
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, Francis H, Cardinale V, Onori P, Safarikia S, Cammisotto V, Alvaro D, Svegliati-Baroni G, Angelico F, Gaudio E, Violi F. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology 2020; 72:470-485. [PMID: 31808577 DOI: 10.1002/hep.31056] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Lipopolysaccharides (LPS) is increased in nonalcoholic fatty liver disease (NAFLD), but its relationship with liver inflammation is not defined. APPROACH AND RESULTS We studied Escherichia coli LPS in patients with biopsy-proven NAFLD, 25 simple steatosis (nonalcoholic fatty liver) and 25 nonalcoholic steatohepatitis (NASH), and in mice with diet-induced NASH. NASH patients had higher serum LPS and hepatocytes LPS localization than controls, which was correlated with serum zonulin and phosphorylated nuclear factor-κB expression. Toll-like receptor 4 positive (TLR4+ ) macrophages were higher in NASH than simple steatosis or controls and correlated with serum LPS. NASH biopsies showed a higher CD61+ platelets, and most of them were TLR4+ . TLR4+ platelets correlated with serum LPS values. In mice with NASH, LPS serum levels and LPS hepatocyte localization were increased compared with control mice and associated with nuclear factor-κB activation. Mice on aspirin developed lower fibrosis and extent compared with untreated ones. Treatment with TLR4 inhibitor resulted in lower liver inflammation in mice with NASH. CONCLUSIONS In NAFLD, Escherichia coli LPS may increase liver damage by inducing macrophage and platelet activation through the TLR4 pathway.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Maria Del Ben
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Daniele Pastori
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Francesco Baratta
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
26
|
Al-Otaibi SN, Alshammari GM, AlMohanna FH, Al-Khalifa AS, Yahya MA. Antihyperlipidemic and hepatic antioxidant effects of Leek leaf methanol extract in high fat diet-fed rats. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1792355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Setah Naif Al-Otaibi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir Muslem Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Falah Hassan AlMohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital Research Centre, Riyadh, Saudi Arabia
| | - Abdulrahman Saleh Al-Khalifa
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Jin CJ, Baumann A, Brandt A, Engstler AJ, Nier A, Hege M, Schmeer C, Kehm R, Höhn A, Grune T, Witte OW, Bergheim I. Aging-related liver degeneration is associated with increased bacterial endotoxin and lipopolysaccharide binding protein levels. Am J Physiol Gastrointest Liver Physiol 2020; 318:G736-G747. [PMID: 32090603 DOI: 10.1152/ajpgi.00345.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aging is a risk factor in the development of many diseases, including liver-related diseases. The two aims of the present study were 1) to determine how aging affects liver health in mice in the absence of any interventions and 2) if degenerations observed in relation to blood endotoxin levels are critical in aging-associated liver degeneration. Endotoxin levels and markers of liver damage, mitochondrial dysfunction, insulin resistance, and apoptosis as well as the Toll-like receptor 4 (Tlr-4) signaling cascade were studied in liver tissue and blood, respectively, of 3- and 24-mo-old male C57BL/6J mice. In a second set of experiments, 3- to 4-mo-old and 14-mo-old female lipopolysaccharide-binding protein (LBP)-/- mice and littermates fed standard chow, markers of liver damage, insulin resistance, and mitochondrial dysfunction were assessed. Plasma activity of aspartate aminotransferase and histological signs of hepatic inflammation and fibrosis were significantly higher in old C57BL/6J mice than in young animals. The number of neutrophils, CD8α-positive cells, and mRNA expression of markers of apoptosis were also significantly higher in livers of old C57BL/6J mice compared with young animals, being also associated with a significant induction of hepatic Tlr-4 and LBP expression as well as higher endotoxin levels in peripheral blood. Compared with age-matched littermates, LBP-/- mice display less signs of senescence in liver. Taken together, our data suggest that, despite being fed standard chow, old mice developed liver inflammation and beginning fibrosis and that bacterial endotoxin may play a critical role herein.NEW & NOTEWORTHY Old age in mice is associated with marked signs of liver degeneration, hepatic inflammation, and fibrosis. Aging-associated liver degeneration is associated with elevated bacterial endotoxin levels and an induction of lipopolysaccharide-binding protein (LBP) and Toll-like receptor 4-dependent signaling cascades in liver tissue. Furthermore, in old aged LBP-/- mice, markers of senescence seem to be lessened, supporting the hypothesis that bacterial endotoxin levels might be critical in aging-associated decline of liver.
Collapse
Affiliation(s)
- Cheng Jun Jin
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.,Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anja Baumann
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anna Janina Engstler
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Marianne Hege
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Richard Kehm
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Annika Höhn
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Ina Bergheim
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Zeng J, Liu XL, Xin FZ, Zhao ZH, Shao YL, Yang RX, Pan Q, Fan JG. Effects and therapeutic mechanism of Yinzhihuang on steatohepatitis in rats induced by a high-fat, high-cholesterol diet. J Dig Dis 2020; 21:179-188. [PMID: 31950587 PMCID: PMC7187410 DOI: 10.1111/1751-2980.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We aimed to investigate the therapeutic mechanism of Yinzhihuang (YZH) liquid, a traditional Chinese medicine mainly composed of extracts of four components, on nonalcoholic steatohepatitis (NASH) induced by a high-fat, high-cholesterol diet (HFHCD) in rats. METHODS Altogether 30 Sprague-Dawley rats were randomized into three groups: control, the model group (HFHCD + saline) and the treatment group (HFHCD + YZH). Liver histological features and serum biochemical parameters were assessed by the end of the 16th week. RNA sequencing and protein mass spectrometry detection were performed. The genes and proteins expressed differentially were subjected to KEGG pathway enrichment analysis and included in a network-based regulatory model. RESULTS The weight, liver and fat indices and serum alanine transaminase, aspartate transaminase and total cholesterol levels of the HFHCD + YZH group were all significantly lower than those of the HFHCD + saline group. Moreover, their hepatic steatosis, ballooning and lobular inflammation were relieved, and 64 hepatic genes and 73 hepatic proteins were found to be reversed in their expression patterns after YZH treatment (P < 0.05). The network-based regulatory model showed that these deregulated genes and proteins were mainly involved in oxidative phosphorylation, Toll-like receptor, nucleotide-binding oligomerization domain-like receptor, peroxisome proliferator-activated receptor signaling, nuclear factor-kappa B tumor necrosis factor signaling pathways and fatty acid metabolism. CONCLUSION YZH could alleviate NASH in HFHCD-fed rats by inhibiting lipogenesis, accelerating lipid β-oxidation, alleviating oxidative stress and relieving necroinflammation in the liver.
Collapse
Affiliation(s)
- Jing Zeng
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao Lin Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Feng Zhi Xin
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ze Hua Zhao
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - You Lin Shao
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Xu Yang
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qin Pan
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Gao Fan
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Children's Digestion and NutritionShanghaiChina
| |
Collapse
|
29
|
Ji Y, Yin Y, Li Z, Zhang W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2019; 11:nu11081712. [PMID: 31349604 PMCID: PMC6724003 DOI: 10.3390/nu11081712] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yun Ji
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
30
|
Nier A, Brandt A, Baumann A, Conzelmann IB, Özel Y, Bergheim I. Metabolic Abnormalities in Normal Weight Children Are Associated with Increased Visceral Fat Accumulation, Elevated Plasma Endotoxin Levels and a Higher Monosaccharide Intake. Nutrients 2019; 11:nu11030652. [PMID: 30889844 PMCID: PMC6470572 DOI: 10.3390/nu11030652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Being overweight has been identified as the main risk factor for the development of metabolic disorders in adults and children. However, recent studies suggest that normal weight individuals are also frequently affected by metabolic abnormalities with underlying mechanisms not yet fully understood. The aim of the present study was to determine if dietary pattern and markers of intestinal permeability, as well as inflammation, differ between normal weight healthy children and normal weight children suffering from metabolic abnormalities. In total, 45 normal weight children aged 5–9 years were included in the study, of whom nine suffered from metabolic abnormalities. Anthropometric data, dietary intake and markers of inflammation, as well as intestinal permeability, were assessed in fasting blood samples. Neither BMI nor BMI-SDS differed between groups; however, children with metabolic abnormalities had a significantly larger waist circumference (+~5 cm) and a higher leptin to adiponectin ratio. While plasma leptin levels are significantly higher in normal weight children with metabolic abnormalities, neither TNF α nor sCD14, adiponectin, PAI-1 or IL-6 plasma levels differed between groups. Despite similar total calorie and macronutrient intake between groups, mean total fructose and total glucose intake (resulting mainly from sugar sweetened beverages, fruits and sweets) were higher in children with metabolic abnormalities than in healthy children. Time spent physically active was significantly higher in healthy normal weight children whereas time spent physically inactive was similar between groups. Furthermore, bacterial endotoxin levels were significantly higher in the peripheral plasma of normal weight children with metabolic abnormalities than in healthy normal weight children. Our results suggest that metabolic disorders in normal weight children are associated with a high monosaccharide intake and elevated bacterial endotoxin as well as leptin plasma levels, the latter also discussed as being indicative of visceral adiposity.
Collapse
Affiliation(s)
- Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| | - Ina Barbara Conzelmann
- Department of Nutritional Medicine, (180), University of Hohenheim, D-70599 Stuttgart, Germany.
| | - Yelda Özel
- Department of Nutritional Medicine, (180), University of Hohenheim, D-70599 Stuttgart, Germany.
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
31
|
Nier A, Brandt A, Rajcic D, Bruns T, Bergheim I. Short-Term Isocaloric Intake of a Fructose- but not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol Nutr Food Res 2019; 63:e1800868. [PMID: 30570214 PMCID: PMC6590154 DOI: 10.1002/mnfr.201800868] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Indexed: 12/18/2022]
Abstract
SCOPE Dietary pattern and impairments of intestinal barrier function are discussed to be critical in the development of metabolic impairments. Here, it is determined if an isocaloric exchange of complex carbohydrates with monosaccharides affects markers of intestinal permeability and metabolic health in healthy subjects. METHODS AND RESULTS After a dietary standardization for 4 days, all 12 subjects aged 21-33 years receive an isocaloric fructose- and glucose-enriched diet for 3 days separated by a wash-out phase. Anthropometry, blood pressure, markers of intestinal permeability and metabolic as well as inflammatory parameters are determined in blood samples or isolated peripheral blood mononuclear cells collected at baseline, after standardizations and the monosaccharide interventions, respectively. While anthropometric and inflammatory parameters are not changed, the intake of an isocaloric fructose- but not glucose-enriched diet is associated with a significant increase of bacterial endotoxin plasma levels and alanine aminotransferase activity in serum, while total plasma nitrate/nitrite concentrations are significantly decreased. In peripheral blood mononuclear cells, Toll like receptors 4, 2, and MYD88 mRNA expressions are significantly induced after the fructose-rich but not the glucose-rich diet. CONCLUSION In metabolically healthy subjects, even a short-term intake of a fructose-rich diet can elevate bacterial endotoxin levels and change markers of liver health and vascular endothelial function.
Collapse
Affiliation(s)
- Anika Nier
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Annette Brandt
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Dragana Rajcic
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
| | - Tony Bruns
- Department of Internal Medicine IVUniversity Hospital Jena07743JenaGermany
| | - Ina Bergheim
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| |
Collapse
|
32
|
Skonieczna-Żydecka K, Łoniewski I, Misera A, Stachowska E, Maciejewska D, Marlicz W, Galling B. Second-generation antipsychotics and metabolism alterations: a systematic review of the role of the gut microbiome. Psychopharmacology (Berl) 2019; 236:1491-1512. [PMID: 30460516 PMCID: PMC6598971 DOI: 10.1007/s00213-018-5102-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
RATIONALE Multiple drugs are known to induce metabolic malfunctions, among them second-generation antipsychotics (SGAs). The pathogenesis of such adverse effects is of multifactorial origin. OBJECTIVES We investigated whether SGAs drive dysbiosis, assessed whether gut microbiota alterations affect body weight and metabolic outcomes, and looked for the possible mechanism of metabolic disturbances secondary to SGA treatment in animal and human studies. METHODS A systematic literature search (PubMed/Medline/Embase/ClinicalTrials.gov/PsychInfo) was conducted from database inception until 03 July 2018 for studies that reported the microbiome and weight alterations in SGA-treated subjects. RESULTS Seven articles reporting studies in mice (experiments = 8) and rats (experiments = 3) were included. Olanzapine was used in five and risperidone in six experiments. Only three articles (experiments = 4) in humans fit our criteria of using risperidone and mixed SGAs. The results confirmed microbiome alterations directly (rodent experiments = 5, human experiments = 4) or indirectly (rodent experiments = 4) with predominantly increased Firmicutes abundance relative to Bacteroidetes, as well as weight gain in rodents (experiments = 8) and humans (experiments = 4). Additionally, olanzapine administration was found to induce both metabolic alterations (adiposity, lipogenesis, plasma free fatty acid, and acetate levels increase) (experiments = 3) and inflammation (experiments = 2) in rodents, whereas risperidone suppressed the resting metabolic rate in rodents (experiments = 5) and elevated fasting blood glucose, triglycerides, LDL, hs-CRP, antioxidant superoxide dismutase, and HOMA-IR in humans (experiment = 1). One rodent study suggested a gender-dependent effect of dysbiosis on body weight. CONCLUSIONS Antipsychotic treatment-related microbiome alterations potentially result in body weight gain and metabolic disturbances. Inflammation and resting metabolic rate suppression seem to play crucial roles in the development of metabolic disorders.
Collapse
Affiliation(s)
| | - Igor Łoniewski
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland ,Sanprobi sp. z o.o. sp. k, Szczecin, Poland
| | - Agata Misera
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Britta Galling
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany ,The Zucker Hillside Hospital, Psychiatry Research, Northwell Health,, Glen Oaks, NY USA ,Hofstra Northwell School of Medicine, Hofstra University, Hempstead, NY USA
| |
Collapse
|
33
|
Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: Role of intestinal barrier function. Redox Biol 2018; 21:101092. [PMID: 30605883 PMCID: PMC6313826 DOI: 10.1016/j.redox.2018.101092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide lacking universally accepted therapies. Studies suggest that coffee consumption is associated with a reduced risk of NAFLD; however, molecular mechanisms and ingredients involved remain to be fully understood. Here, we determined the effects of regular intake of decaffeinated coffee on the development of NAFLD in mice, and molecular mechanisms involved. Methods Female C57BL/6J mice (n = 6–7/ group) were pair-fed either a liquid control diet (C) or fat-, fructose- and cholesterol-rich diet (FFC) +/- decaffeinated coffee (DeCaf, 6 g/kg BW) for 4 days or 6 weeks. Indices of liver damage, hepatic inflammation and parameters of insulin resistance and intestinal permeability as well as nitric oxide system were determined. Results Early signs of insulin resistance and non-alcoholic steatohepatitis (NASH) found after 6 weeks of FFC feeding were significantly lower in FFC+DeCaf-fed mice when compared to FFC-fed animals. Moreover, elevation of portal endotoxin levels and loss of tight junction proteins in proximal small intestine found in FFC-fed mice were significantly attenuated in FFC+DeCaf-fed animals. These beneficial effects of DeCaf were associated with a protection against the significant induction of inducible NO-synthase protein levels and 3-nitrotyrosine protein adducts found in proximal small intestine of FFC-fed mice. Similar protective effects of DeCaf were also found in mice fed the FFC diet short-term. Conclusion Our results suggest that protective effects of DeCaf on the development of NAFLD are at least in part related to maintaining intestinal barrier function. decaffeinated coffee protects mice from the development of NAFLD. decaffeinated coffee attenuated increased translocation of bacterial endotoxins. decaffeinated coffee prevents diet-induced induction of iNOS in small intestine.
Collapse
|
34
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
35
|
Duan X, Meng Q, Wang C, Liu Z, Sun H, Huo X, Sun P, Ma X, Peng J, Liu K. Effects of calycosin against high-fat diet-induced nonalcoholic fatty liver disease in mice. J Gastroenterol Hepatol 2018; 33:533-542. [PMID: 28699662 DOI: 10.1111/jgh.13884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) has become a major health concern worldwide. The present study was designed to investigate the effects of calycosin against high-fat diet (HFD)-induced NAFLD in mice. METHODS C57BL/6 J male mice were fed with HFD to induce NAFLD model and treated with or without calycosin for 12 weeks. The levels of ALT, AST, insulin, and adiponectin were measured using biochemical methods. Hemotoxylin and eosin staining and Oil Red O staining were used to determine the liver histopathology changes and measure the degree of lipid accumulation respectively. Glucose tolerance tests and insulin tolerance tests were performed followed by quantitative insulin sensitivity check index determination. Western blot and quantitative real-time polymerase chain reaction were used to explore the potential mechanism involved in the beneficial effects of calycosin. RESULTS Calycosin effectively decreased the levels of ALT and AST, increased the levels of adiponectin and insulin. Hemotoxylin and eosin staining indicated calycosin treatment remarkably improved liver injury. Oil Red O staining indicated calycosin treatment remarkably improved lipid accumulation. Quantitative insulin sensitivity check index in HFD fed mice was significantly lower than in the standard chow fed mice. Further, calycosin suppressed phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, sterol-regulatory element binding protein 1c, and FASN involved in gluconeogenesis and triglyceride synthesis. Calycosin increased glycogen synthase kinase 3 beta, glucose transporter 4, and phosphorylated insulin receptor substrates 1 and 2 expressions involved in glucose metabolism. The aforementioned beneficial effects of calycosin against HFD-induced NAFLD may be attributed to farnesoid X receptor activation. CONCLUSION Calycosin could produce the favorable effects against HFD-induced NAFLD in mice.
Collapse
Affiliation(s)
- Xingping Duan
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zigong, Zigong, Sichuan, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| |
Collapse
|
36
|
Sellmann C, Baumann A, Brandt A, Jin CJ, Nier A, Bergheim I. Oral Supplementation of Glutamine Attenuates the Progression of Nonalcoholic Steatohepatitis in C57BL/6J Mice. J Nutr 2017; 147:2041-2049. [PMID: 28931589 DOI: 10.3945/jn.117.253815] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Universally accepted therapeutic strategies for the treatment of nonalcoholic steatohepatitis (NASH) are still lacking. Studies suggest a preventive effect of oral Gln supplementation on the development of NASH; however, whether Gln also has therapeutic potential for pre-existing NASH has not yet been clarified.Objective: The aim of the present study was to determine whether Gln prevents the progression of diet-induced NASH in mice.Methods: For 8 wk, female C57BL/6J mice (6-8 wk old) were pair-fed a liquid Western-style diet [WSD, 25% of energy from fat, 50% wt:wt fructose, 0.16% wt:wt cholesterol] or control diet (C diet) to induce liver damage. From week 8 to 13, they were pair-fed the C diet or WSD alone or supplemented with l-Gln to provide 2.1 g/kg body weight (C diet + Gln or WSD + Gln). Energy intake was adjusted to the group with the lowest energy intake. Indexes of liver damage and inflammation, intestinal barrier function, and toll-like receptor 4 (Tlr4) signaling in the liver were determined.Results: The liver histology scores significantly increased from 8 to 13 wk (+31%) in WSD-fed mice and were significantly higher than in controls (P ≤ 0.05 for both time comparisons), whereas scores did not differ between C diet-fed and WSD + Gln-fed mice after 13 wk of feeding. The occludin protein concentrations in the small intestinal tissue were similarly reduced in both WSD-fed groups when compared with controls [WSD compared with C diet (-53%) and C diet + Gln (-42%), P ≤ 0.05; WSD + Gln compared with C diet + Gln (-34%), P ≤ 0.05] after 13 wk, whereas the expression of myeloid differentiation primary response gene 88 mRNA and concentration of inducible nitric oxide synthase and 4-hydroxynonenal protein adducts were significantly higher only in livers of WSD-fed mice (P ≤ 0.05 for the WSD group compared with all other groups; WSD + Gln group compared with the C diet groups: NS).Conclusion: Taken together, our data suggest that oral Gln supplementation protects mice from the progression of pre-existing, WSD-induced NASH.
Collapse
Affiliation(s)
- Cathrin Sellmann
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany; and
| | - Anja Baumann
- Molecular Nutritional Science Division, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Molecular Nutritional Science Division, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Cheng Jun Jin
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany; and
| | - Anika Nier
- Molecular Nutritional Science Division, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany; and .,Molecular Nutritional Science Division, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Nier A, Engstler AJ, Maier IB, Bergheim I. Markers of intestinal permeability are already altered in early stages of non-alcoholic fatty liver disease: Studies in children. PLoS One 2017; 12:e0183282. [PMID: 28880885 PMCID: PMC5589126 DOI: 10.1371/journal.pone.0183282] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
Background & aims Recent studies have shown that patients with manifest non-alcoholic fatty liver disease (NAFLD), e.g. steatosis grade 3 or steatohepatitis with or without beginning fibrosis frequently show altered fecal microbiota composition and elevated bacterial endotoxin levels. However, if these alterations are signs of a progressing disease or are already found in initial disease stages has not yet been clarified. Methods Twenty children with simple steatosis (grade 1) diagnosed by ultrasound and 29 normal weight healthy control children (age <10 years) were included in the study (mean age 7.6 ± 1.1 years). Metabolic parameters, markers of intestinal barrier function and inflammation were determined. Results Activity of alanine aminotransferase, concentrations of some markers of inflammation and insulin resistance were significantly higher in plasma of NAFLD children than in controls. When compared to controls, plasma bacterial endotoxin and lipopolysaccharide-binding protein (LBP) levels were significantly higher in NAFLD children (+50% and +24%, respectively), while soluble CD14 serum and D-lactate plasma levels as well as the prevalence of small intestinal bacterial overgrowth did not differ between groups. Plasma endotoxin and LBP levels were positive associated with proinflammatory markers like plasminogen activator inhibitor-1, c-reactive protein, interleukin-6 and leptin while no associations with markers of insulin resistance were found. Conclusions Taken together, our results indicate that even in juvenile patients with early stages of NAFLD e.g. simple steatosis grade 1, plasma endotoxin concentrations are already elevated further suggesting that intestinal barrier dysfunction might be present already in the initial phases of the disease.
Collapse
Affiliation(s)
- Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany
| | - Anna Janina Engstler
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany
| | - Ina Barbara Maier
- Department of Nutritional Medicine, (180), University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
38
|
Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017; 9:E335. [PMID: 28353649 PMCID: PMC5409674 DOI: 10.3390/nu9040335] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
39
|
Kitabatake H, Tanaka N, Fujimori N, Komatsu M, Okubo A, Kakegawa K, Kimura T, Sugiura A, Yamazaki T, Shibata S, Ichikawa Y, Joshita S, Umemura T, Matsumoto A, Koinuma M, Sano K, Aoyama T, Tanaka E. Association between endotoxemia and histological features of nonalcoholic fatty liver disease. World J Gastroenterol 2017; 23:712-722. [PMID: 28216979 PMCID: PMC5292346 DOI: 10.3748/wjg.v23.i4.712] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/14/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess whether surrogate biomarkers of endotoxemia were correlated with the histological features of nonalcoholic fatty liver disease (NAFLD). METHODS One hundred twenty-six NAFLD patients who had undergone percutaneous liver biopsy were enrolled. Serum lipopolysaccharide (LPS)-binding protein (LBP) and anti-endotoxin core immunoglobulin G (EndoCab IgG) antibody concentrations at the time of liver biopsy were measured using the enzyme-linked immunosorbent assays to examine for relationships between biomarker levels and histological scores. RESULTS Serum LBP concentration was significantly increased in nonalcoholic steatohepatitis (NASH) patients as compared with nonalcoholic fatty liver (NAFL) subjects and was correlated with steatosis (r = 0.38, P < 0.0001) and ballooning scores (r = 0.23, P = 0.01), but not with the severity of lobular inflammation or fibrosis. Multivariate linear regression analysis revealed that LBP was associated with steatosis score and circulating C-reactive protein, aspartate aminotransferase, and fibrinogen levels. Serum EndoCab IgG concentration was comparable between NASH and NAFL patients. No meaningful correlations were detected between EndoCab IgG and histological findings. CONCLUSION LBP/EndoCab IgG were not correlated with lobular inflammation or fibrosis. More accurate LPS biomarkers are required to stringently assess the contribution of endotoxemia to conventional NASH.
Collapse
|