1
|
Guo X, Yuan J, Zhang Y, Wu J, Wang X. Developmental landscape and asymmetric gene expression in the leaf vasculature of Brassica rapa revealed by single-cell transcriptome. HORTICULTURE RESEARCH 2025; 12:uhaf060. [PMID: 40271455 PMCID: PMC12017798 DOI: 10.1093/hr/uhaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/16/2025] [Indexed: 04/25/2025]
Abstract
Leaf vasculature not only acts as a channel for nutrients and signaling information but also influences leaf morphology. It consists of several distinct cell types with specialized functions. Cell type-specific characterizations based on single-cell RNA sequencing technology could aid in understanding the identities of vascular tissues and their roles in leaf morphogenesis in Brassica rapa. Here, we generated a single-cell transcriptome landscape of the Chinese cabbage leaf vasculature. A total of 12 cell clusters covering seven known cell types were identified. Different vascular cell types were characterized by distinct identities. The xylem parenchyma and companion cells exhibited an active expression pattern of amino acid metabolism genes. Tracheary elements and sieve elements were enriched in many genes related to cell wall biosynthesis, and the phloem parenchyma was enriched in many sugar transporter-encoding genes. Pseudo-time analyses revealed the developmental trajectories of the xylem and phloem and the potential roles of auxin and ethylene in xylem development. Furthermore, we identified key candidate regulators along the differentiation trajectory of the sieve elements and companion cells. Most of the homoeologous genes in the syntenic triads from the three subgenomes showed asymmetric gene expression patterns in different vascular cell types. Collectively, our study revealed that Chinese cabbage leaf vasculature cells had highly heterogeneous transcriptomes, providing new insights into the complex processes of leaf vasculature development in B. rapa leafy vegetables and other Brassica crops.
Collapse
Affiliation(s)
- Xinlei Guo
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jingping Yuan
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuanyuan Zhang
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Wang Y, Zhang Y, Huang G, Wang J, Lv L, Zhao S, Lu X, Zhang M, Guo M, Zhang C, Men Q, Guo X, Zhao C. Association analysis of maize stem vascular bundle micro-characteristics with yield components based on micro-CT and identification of related genes. Sci Rep 2025; 15:13009. [PMID: 40234583 PMCID: PMC12000327 DOI: 10.1038/s41598-025-96518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
The distribution pattern of vascular bundles and microstructure characteristics significantly impact crop yield. Previous studies have primarily focused on investigating the micro-phenotypic characteristics and genetic regulation of individual internode, neglecting the exploration of the relationship between different internodes. This study, for the first time, comprehensively analyzed multi-scale phenotypic information of stem cross-sections, zones, and vascular bundles in three different internodes (basal third internode, ear internode and highest internode) of 268 inbred maize lines using Micro-computed tomography scanning. Key findings revealed that basal third internode and ear internode exhibited more stable microscopic characteristics than highest internode. Inbred lines with higher numbers of vascular bundle and well-developed inner zone in ear internode exhibited better yield characteristics, particularly in the kernel number per row. Genome-wide association analysis respectively identified 15, 1 and 1 putative candidate genes in basal third internode, ear internode and highest internode. These genes encode a variety of enzymes, such as oxidases, synthetases, ligase enzyme and protein kinases. Notably, Zm00001d042490 may be an important putative candidate gene for The number of vascular bundles in the periphery zone and corn grain traits. This study provides an important theoretical basis and genetic resources for accurately identifying different internode phenotypes of maize stalks, potentially advancing the selection of high-yielding, high-quality maize varieties.
Collapse
Affiliation(s)
- Yanru Wang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lujia Lv
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuaihao Zhao
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Minkun Guo
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changyu Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingmei Men
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
3
|
Kragler F, Bock R. The biology of grafting and its applications in studying information exchange between plants. NATURE PLANTS 2025:10.1038/s41477-025-01982-2. [PMID: 40200023 DOI: 10.1038/s41477-025-01982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Grafting techniques have been used for centuries for trait improvement in agriculture and horticulture. In recent years, technical progress with the grafting of species previously thought to be recalcitrant to the formation of a graft union, and the discovery of new types of information exchange between grafted plants, have stirred renewed interest in the use of grafting as a research tool. In this Review, we describe our current understanding of the molecular and cellular processes involved in the establishment of successful grafts between plants of the same genotype (homografts) or different genotypes (heterografts). We also highlight recent progress with the elucidation of the mechanisms underlying the exchange of macromolecules (small RNAs, messenger RNAs and proteins) across graft junctions as well as the transfer of cell organelles and its role in horizontal gene and genome transfer. Finally, we discuss novel applications of grafting, including new opportunities for transgene-free genetic engineering, and the relevance of grafting in plant evolution.
Collapse
Affiliation(s)
- Friedrich Kragler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Lei Z, Zhang X, Wang M, Mao J, Hu X, Lin Y, Xiong X, Qin Y. Silencing of miR169a improves drought stress by enhancing vascular architecture, ROS scavenging, and photosynthesis of Solanum tuberosum L. FRONTIERS IN PLANT SCIENCE 2025; 16:1553135. [PMID: 40182552 PMCID: PMC11965352 DOI: 10.3389/fpls.2025.1553135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Vascular bundles regulate water balance, nutrient uptake and transport, and stress responses, ultimately influencing the yield and quality of crops. However, our understanding of the genetic functions of microRNAs (miRNAs) during vascular development remains limited. In this research, the role of miR169a in potatoes was studied. Silencing StmiR169a in potatoes promoted vascular bundle formation, resulting in not only upright and robust stems but also longer roots and more extensive root systems. Histological analysis revealed a significant increase in the number of xylem vessels in the vascular bundles of stems and roots of RNAi-mediated miR169a lines (STTM169). Silencing miR169a led to higher water use efficiency, enhanced photosynthesis rates, elevated enzymatic antioxidant activity, and reduced levels of reactive oxygen species (ROS), thereby enhancing the drought resistance of potatoes. However, overexpression of miR169a lines (OE169a) showed the opposite effects. The nuclear factor Y subunit NF-YA3 was identified as a target gene of StmiR169a. The miR169a/NF-YA3 module may be involved in the regulation of potato vascular bundle development and the response to drought stress.
Collapse
Affiliation(s)
- Ziqian Lei
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Xingyuan Zhang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Ming Wang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Mao
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinxi Hu
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Yuan Lin
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Xingyao Xiong
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Yuzhi Qin
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Yuelushan Laboratory, Changsha, Hunan, China
| |
Collapse
|
5
|
Park C, Cho HS, Lim Y, Cho CH, Nam H, Choi S, Lim H, Kim YD, Yoon HS, Cho H, Hwang I. Evolution of the JULGI-SMXL4/5 module for phloem development in angiosperms. Proc Natl Acad Sci U S A 2025; 122:e2416674122. [PMID: 40053365 PMCID: PMC11912460 DOI: 10.1073/pnas.2416674122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Bifacial cambium, which produces xylem and phloem, and monopodial architecture, characterized by apical dominance and lateral branching from axillary buds, are key developmental features of seed plants, consisting of angiosperms and gymnosperms. These allow seed plants to adapt to diverse environments by optimizing resource allocation and structural integrity. In seed plants, SUPPRESSOR OF MAX2-LIKE (SMXL) family members function in phloem development and strigolactone-induced inhibition of axillary bud outgrowth. Although strigolactone signaling regulates most SMXL family members, the only known regulator of SMXL4 and SMXL5 is the RNA-binding protein JULGI. We demonstrate that in angiosperms, by directly regulating SMXL4/5 expression, JULGI uncouples SMXL4/5 activity from strigolactone signaling. JULGI and ancestral SMXLs from seedless vascular plants or SMXL4/5 from seed plants are coexpressed in the phloem tissues of vascular plants, from lycophytes to angiosperms. Core angiosperm SMXL4/5 mRNAs contain a G-rich element in the 5' untranslated region (UTR) that serves as a target sequence for JULGI to negatively regulate SMXL4/5 expression. Heterologous expression of JULGIs from various angiosperms rescued the Arabidopsis jul1 jul2 mutant. Expressing SMXL4/5s from seed plants and ancestral SMXLs rescued Arabidopsis smxl4 smxl5. Angiosperm SMXL4/5s lack an RGKT motif for proteasomal degradation. Indeed, treatment with the synthetic strigolactone analog rac-GR24 induced proteasomal degradation of SMXL from ferns and SMXL5a from gymnosperms, but not SMXL4/5 from angiosperms. These findings suggest that in ancestral angiosperms, the 5' UTR of SMXL4/5 gained G-rich elements, creating a regulatory module with JULGI that allows the phloem development pathway to act independently of strigolactone signaling.
Collapse
Affiliation(s)
- Chanyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Yookyung Lim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Chung Hyun Cho
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Hoyoung Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Sangkyu Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hojun Lim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Young-Dong Kim
- Department of Life Sciences, Hallym University, Chuncheon24252, Korea
| | - Hwan Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon16419, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| |
Collapse
|
6
|
Zhang C, Shen M, Xu Y, Sun Y, Sun L, Fan Y, Li H, Lu H. SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana. Int J Biol Macromol 2025; 295:139495. [PMID: 39788248 DOI: 10.1016/j.ijbiomac.2025.139495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells. In contrast, SCPL48 overexpression resulted in increased vessel cell abundance and accelerated degradation of vessel cell contents, suggesting its critical role in xylem vessel cell differentiation. Notably, SCPL48 expression was significantly up-regulated in response to ABA treatment and drought stress, with SCPL48 overexpression lines demonstrating enhanced drought resistance. Further molecular analyses revealed that SCPL48 was directly targeted and transcriptionally activated by key SCW regulators VND6, and MYB46. Furthermore, the expression of PCD-related protease genes, including XCP1, XSP1, RNS3, MC9, γVPE, and CEP1, showed compensatory changes in both scpl48 mutants and SCPL48 overexpression lines. Collectively, our findings demonstrate that SCPL48 functions as a key regulator in xylem vessel cell differentiation, PCD and drought stress responses.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxiao Shen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaoming Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Leiqian Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yawei Fan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Brown HR, Sutton AP. Trees suck. Notes on the physics of transpiration in trees. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:71-86. [PMID: 39725358 DOI: 10.1016/j.pbiomolbio.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
The Cohesion Theory of the ascent of water in trees is a quiet triumph of modern science. Besides hydrodynamics, the physics of transpiration involves capillarity, evaporation and osmosis - phenomena which all have a history of considerable theoretical confusion. The aim of this paper is to supplement existing accounts of this physics in the plant science literature.
Collapse
Affiliation(s)
- Harvey R Brown
- Faculty of Philosophy, University of Oxford, Radcliffe Observatory Quarter 555 Woodstock Road, Oxford OX2 6GG, UK; Faculty of Natural Sciences, Department of Physics Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Adrian P Sutton
- Faculty of Philosophy, University of Oxford, Radcliffe Observatory Quarter 555 Woodstock Road, Oxford OX2 6GG, UK; Faculty of Natural Sciences, Department of Physics Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
8
|
Li S, Wang X, Gao L, Tian Y, Ma S. Functional Characterization of CsBAS1, CsSND1, and CsIRX6 in Cucumber Defense Against Meloidogyne incognita. Int J Mol Sci 2025; 26:2133. [PMID: 40076769 PMCID: PMC11900111 DOI: 10.3390/ijms26052133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Vascular tissue development plays a pivotal role in plant growth and defense against biotic stress. Root-knot nematodes, particularly Meloidogyne incognita (M. incognita), are globally distributed phytopathogens that cause severe economic losses in a variety of vascular plants. In this study, three vascular bundle development-related genes, including CsBAS1, CsSND1, and CsIRX6, were identified in cucumber. Tissue-specific expression analysis revealed that CsSND1 and CsIRX6 were highly expressed in roots. Infection with M. incognita showed dynamic expression changes for CsBAS1, CsSND1, and CsIRX6. Specially, CsIRX6 and CsSND1 were upregulated at 14 days post-inoculation (dpi), while CsBAS1 was downregulated at both 7 dpi and 14 dpi. Tissue localization studies using promoter-GUS constructs demonstrated pCsBAS1-GUS and pCsSND1-GUS activity in galls and specific vascular tissues, while CsIRX6 mRNA was detected in giant cells (GCs) at 14 dpi using in situ methods. Virus-induced gene silencing (VIGS) of CsBAS1, CsSND1, and CsIRX6 revealed their distinct roles in nematode-induced gall formation. Silencing CsBAS1 and CsSND1 resulted in increased root growth and gall size, whereas silencing CsIRX6 led to reduced gall size. These findings highlight the functional significance of CsBAS1, CsSND1, and CsIRX6 in cucumber defense against M. incognita, offering insights into the interplay between vascular development and plant defense mechanisms.
Collapse
Affiliation(s)
- Shihui Li
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Xueyun Wang
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Si Ma
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Nicotra D, Mosca A, Dimaria G, Massimino ME, Di Stabile M, La Bella E, Ghadamgahi F, Puglisi I, Vetukuri RR, Catara V. Mitigating Water Stress in Plants with Beneficial Bacteria: Effects on Growth and Rhizosphere Bacterial Communities. Int J Mol Sci 2025; 26:1467. [PMID: 40003931 PMCID: PMC11855071 DOI: 10.3390/ijms26041467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Climate change has reshaped global weather patterns and intensified extreme events, with drought and soil salinity negatively impacting the yield and quality of crop production. To mitigate the detrimental effects of drought stress, the introduction of beneficial plant growth-promoting rhizobacteria (PGPR) has proven to be a promising approach. In this study, we evaluated a synthetic microbial community (SynCom) comprising bacterial strains belonging to the species Bacillus velezensis, Pseudomonas simiae, P. salmasensis, Glutamicibacter halophytocola, and Leclercia sp., which have been demonstrated to promote tomato growth both individually and collectively. The SynCom and most of its individual bacterial strains were shown to mitigate the detrimental effects of polyethylene glycol (PEG)-induced drought stress in vitro in Arabidopsis thaliana seedlings, either by reducing alterations in xylem elements or promoting the formation of new xylem strands. In a greenhouse trial, soil drenching with the SynCom and two individual strains, B. velezensis PSE31B and P. salmasensis POE54, improved the water stress response in soilless-grown tomato plants under a 40% reduced irrigation regime. Additionally, bacterial treatments positively influenced the diversity of rhizosphere bacterial communities, with distinct changes in bacterial composition, which suggest a treatment-specific interplay between the introduced strains and the native microbiome. These findings highlight the potential of microbial consortia and individual PGPR strains as sustainable tools to improve plant resilience to abiotic stresses.
Collapse
Affiliation(s)
- Daniele Nicotra
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alexandros Mosca
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Maria Elena Massimino
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Massimiliano Di Stabile
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Emanuele La Bella
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (D.N.); (A.M.); (G.D.); (M.E.M.); (M.D.S.); (E.L.B.); (I.P.)
| |
Collapse
|
10
|
Augstein F, Melnyk CW. Modern and historical uses of plant grafting to engineer development, stress tolerance, chimeras, and hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70057. [PMID: 39982814 PMCID: PMC11844807 DOI: 10.1111/tpj.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025]
Abstract
For millennia, people have grafted plants to propagate them and to improve their traits. By cutting and joining different species or cultivars together, the best properties of shoot and roots are combined in one plant to increase yields, improve disease resistance, modify plant growth or enhance abiotic stress tolerance. Today, grafting has evolved from what originated as an early form of trait engineering. The fundamental technique remains the same, but new species are being grafted, new techniques have developed and new applications for modifying development and stress tolerance are appearing. In addition, engineering possibilities such as graft chimeras, graft hybrids and the use of mobile RNAs are emerging. Here, we summarize advances in plant grafting with a focus on engineering novel traits. We discuss traditional uses of grafting to engineer traits but also focus on recent developments, challenges and opportunities for plant improvement through grafting.
Collapse
Affiliation(s)
- Frauke Augstein
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Charles W. Melnyk
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
11
|
Madariaga D, Arro D, Irarrázaval C, Soto A, Guerra F, Romero A, Ovalle F, Fedrigolli E, DesRosiers T, Serbe-Kamp É, Marzullo T. A library of electrophysiological responses in plants - a model of transversal education and open science. PLANT SIGNALING & BEHAVIOR 2024; 19:2310977. [PMID: 38493508 PMCID: PMC10950275 DOI: 10.1080/15592324.2024.2310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024]
Abstract
Electrophysiology in plants is understudied, and, moreover, an ideal model for student inclusion at all levels of education. Here, we report on an investigation in open science, whereby scientists worked with high school students, faculty, and undergraduates from Chile, Germany, Serbia, South Korea, and the USA. The students recorded the electrophysiological signals of >15 plant species in response to a flame or tactile stimulus applied to the leaves. We observed that approximately 60% of the plants studied showed an electrophysiological response, with a delay of ~ 3-6 s after stimulus presentation. In preliminary conduction velocity experiments, we verified that observed signals are indeed biological in origin, with information transmission speeds of ~ 2-9 mm/s. Such easily replicable experiments can serve to include more investigators and students in contributing to our understanding of plant electrophysiology.
Collapse
Affiliation(s)
- Danae Madariaga
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Derek Arro
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | | | - Alejandro Soto
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Felipe Guerra
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Angélica Romero
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Fabián Ovalle
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Elsa Fedrigolli
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Thomas DesRosiers
- College of Literature, Science, and Arts, University of Michigan, Ann Arbor, MI, USA
| | - Étienne Serbe-Kamp
- Hirnkastl, Max Planck Institute for Biological Intelligence, LMU Munich, Munich, Germany
- Research and Development, Backyard Brains, Ann Arbor, MI, USA
| | - Timothy Marzullo
- Research and Development, Backyard Brains, Ann Arbor, MI, USA
- Research and Development, Backyard Brains, Seoul, South Korea
| |
Collapse
|
12
|
De Francesco S, Le Disquet I, Pereda-Loth V, Tisseyre L, De Pascale S, Amitrano C, Carnero Diaz E, De Micco V. Combined Effects of Microgravity and Chronic Low-Dose Gamma Radiation on Brassica rapa Microgreens. PLANTS (BASEL, SWITZERLAND) 2024; 14:64. [PMID: 39795322 PMCID: PMC11722926 DOI: 10.3390/plants14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions. This paper investigates the combined effect of chronic ionizing radiation and reduced gravity on Brassica rapa seed germination and microgreens growth. Four cultivation scenarios were designed: standard Earth conditions, chronic irradiation alone, simulated reduced gravity alone, and a combination of irradiation and reduced gravity. An analysis of the harvested microgreens revealed that growth was moderately reduced under chronic irradiation combined with altered gravity, likely due to oxidative stress, primarily concentrated in the roots. Indeed, an accumulation of reactive oxygen species (ROS) was observed, as well as of polyphenols, likely to counteract oxidative damage and preserve the integrity of essential structures, such as the root stele. These findings represent an important step toward understanding plant acclimation in space to achieve sustainable food production on orbital and planetary platforms.
Collapse
Affiliation(s)
- Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| | - Isabel Le Disquet
- Institute of Systematic, Evolution, Biodiversity of Sorbonne University, 75005 Paris, France;
| | - Veronica Pereda-Loth
- Evolsan-GSBMS, Faculté de Santé, University of Toulouse III, 31062 Toulouse, France; (V.P.-L.); (L.T.)
| | - Lenka Tisseyre
- Evolsan-GSBMS, Faculté de Santé, University of Toulouse III, 31062 Toulouse, France; (V.P.-L.); (L.T.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| | - Eugénie Carnero Diaz
- Institute of Systematic, Evolution, Biodiversity of Sorbonne University, 75005 Paris, France;
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| |
Collapse
|
13
|
Wang Y, Zheng Y, Shi Y, Jiang D, Kuang Q, Ke X, Li M, Wang Y, Yue X, Lu Q, Hou X. YELLOW, SERRATED LEAF is essential for cotyledon vein patterning in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2504-2516. [PMID: 39226151 PMCID: PMC11637768 DOI: 10.1093/plphys/kiae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Venation develops complex patterns within the leaves of angiosperms, and the mechanism of leaf vein patterning remains poorly understood. Here, we report a spontaneous mutant that exhibits yellow serrated leaves and defective cotyledon vein patterning. We mapped and cloned the relevant gene YELLOW, SERRATED LEAF (YSL), a previously unreported gene in plants. YSL interacts with VH1-interacting kinase (VIK), a protein that functions in cotyledon venation development. VIK is a vascular-specific adaptor protein kinase that interacts with another vascular developmental protein, VASCULAR HIGHWAY1 (VH1)/BRASSINOSTEROID INSENSITIVE 1-LIKE 2 (BRL2), which is a receptor-like kinase of the BRASSINOSTEROID INSENSITIVE 1 (BRI1) family. Mutation of YSL affects the auxin response and the expression of auxin-related genes in Arabidopsis (Arabidopsis thaliana). Our results reveal that YSL affects cotyledon vein patterning by interacting with VIK in Arabidopsis.
Collapse
Affiliation(s)
- Yetao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yutong Zheng
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Deyuan Jiang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Kuang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ming Li
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohong Yue
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qin Lu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Gouran M, Brady SM. The transcriptional integration of environmental cues with root cell type development. PLANT PHYSIOLOGY 2024; 196:2150-2161. [PMID: 39288006 PMCID: PMC11638006 DOI: 10.1093/plphys/kiae425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
Plant roots navigate the soil ecosystem with each cell type uniquely responding to environmental stimuli. Below ground, the plant's response to its surroundings is orchestrated at the cellular level, including morphological and molecular adaptations that shape root system architecture as well as tissue and organ functionality. Our understanding of the transcriptional responses at cell type resolution has been profoundly enhanced by studies of the model plant Arabidopsis thaliana. However, both a comprehensive view of the transcriptional basis of these cellular responses to single and combinatorial environmental cues in diverse plant species remains elusive. In this review, we highlight the ability of root cell types to undergo specific anatomical or morphological changes in response to abiotic and biotic stresses or cues and how they collectively contribute to the plant's overall physiology. We further explore interconnections between stress and the temporal nature of developmental pathways and discuss examples of how this transcriptional reprogramming influences cell type identity and function. Finally, we highlight the power of single-cell and spatial transcriptomic approaches to refine our understanding of how environmental factors fine tune root spatiotemporal development. These complex root system responses underscore the importance of spatiotemporal transcriptional mapping, with significant implications for enhanced agricultural resilience.
Collapse
Affiliation(s)
- Mona Gouran
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Huo J, Li C, Zhao Y, Han G, Li X, Zhang Z. Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats. PLANT PHYSIOLOGY 2024; 196:2450-2462. [PMID: 39268873 DOI: 10.1093/plphys/kiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/15/2024]
Abstract
The growth and survival of woody plant species is mainly driven by evolutionary and environmental factors. However, little is known about the hydraulic mechanisms that respond to growth limitation and enable desert shrub survival in arid habitats. To shed light on these hydraulic mechanisms, 9-, 31-, and 56-yr-old Caragana korshinskii plants that had been grown under different soil water conditions at the southeast edge of the Tengger Desert, Ningxia, China, were used in this study. The growth of C. korshinskii was mainly limited by soil water rather than shrub age in nonwatered habitats, which indicated the importance of maintaining shrub survival prior to growth under drought. Meanwhile, higher vessel density, narrower vessels, and lower xylem hydraulic conductivity indicated that shrubs enhanced hydraulic safety and reduced their hydraulic efficiency in arid conditions. Importantly, xylem hydraulic conductivity is mediated by variation in xylem hydraulic architecture-regulated photosynthetic carbon assimilation and growth of C. korshinskii. Our study highlights that the synergistic variation in xylem hydraulic safety and hydraulic efficiency is the hydraulic mechanism of limiting growth and maintaining survival in C. korshinskii under drought, providing insights into the strategies for growth and survival of desert shrubs in arid habitats.
Collapse
Affiliation(s)
- Jianqiang Huo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengyi Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environmental of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoling Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhishan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
16
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024; 282:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
17
|
Jian Y, Liu Z, He P, Shan L. An emerging connected view: Phytocytokines in regulating stomatal, apoplastic, and vascular immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102623. [PMID: 39236593 DOI: 10.1016/j.pbi.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Foliar pathogens exploit natural openings, such as stomata and hydathodes, to invade plants, multiply in the apoplast, and potentially spread through the vasculature. To counteract these threats, plants dynamically regulate stomatal movement and apoplastic water potential, influencing hydathode guttation and water transport. This review highlights recent advances in understanding how phytocytokines, plant small peptides with immunomodulatory functions, regulate these processes to limit pathogen entry and proliferation. Additionally, we discuss the coordinated actions of stomatal movement, hydathode guttation, and the vascular system in restricting pathogen entry, multiplication, and dissemination. We also explore future perspectives and key questions arising from these findings, aiming to advance our knowledge of plant immunity and improve disease resistance strategies.
Collapse
Affiliation(s)
- Yunqing Jian
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Zhang J, Cheng C, Xiao F, Zhang X, Zhang C, Zhao Y, Xu J, Zhang S, Wang X. Effects of ploidy level on leaf morphology, stomata, and anatomical structure of Hibiscus syriacus L. BMC PLANT BIOLOGY 2024; 24:1133. [PMID: 39604869 PMCID: PMC11603925 DOI: 10.1186/s12870-024-05778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Hibiscus syriacus L. is a deciduous shrub with a strong environmental resistance and wide application prospects. The genetic background and ploidy levels of Hibiscus cultivars are complex, and polyploid breeding has long been an important method for developing new Hibiscus cultivars. However, the relationship of ploidy levels with leaf morphology, stomatal characteristics, and leaf anatomy remains unclear. RESULTS This study analyzed three ploidy levels (triploid, tetraploid, and hexaploid) of Hibiscus syriacus. Flow cytometry confirmed the ploidy levels, and morphological traits were evaluated. Leaf length, leaf width, and petiole length decreased with increasing ploidy. Stomatal length, stomatal width, guard cell length, and guard cell width increased and stomatal number and density decreased with increasing ploidy. The hexaploids exhibited the highest midrib diameter and palisade tissue thickness values. Correlation analyses revealed that stomatal morphology served as a reliable marker for determining ploidy levels. CONCLUSION This study highlights the impact of varying ploidy levels on the leaf and stomatal morphologies and leaf anatomy of Hibiscus syriacus. These findings can provide theoretical guidance for improving Hibiscus cultivars in terms of stress resistance, adaptability, and ornamental traits, and for developing new cultivars with enhanced characteristics. Future research should focus on utilizing these morphological markers to optimize breeding strategies for Hibiscus cultivars.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Landscape Architecture, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Chuyu Cheng
- College of Landscape Architecture, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Fen Xiao
- Institute of Biodiversity, Hunan Academy of Forestry, Changsha, 410004, China
| | - Xinxin Zhang
- College of Landscape Architecture, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Chen Zhang
- College of Landscape Architecture, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Yazhi Zhao
- College of Landscape Architecture, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Jing Xu
- College of Landscape Architecture, Central South University of Forestry & Technology, Changsha, 410004, China
| | | | - Xiaohong Wang
- College of Landscape Architecture, Central South University of Forestry & Technology, Changsha, 410004, China.
| |
Collapse
|
19
|
Liu J, Wei Q, Zhao Z, Qiang F, Li G, Wu G. Bona Fide Plant Steroid Receptors are Innovated in Seed Plants and Angiosperms through Successive Whole-Genome Duplication Events. PLANT & CELL PHYSIOLOGY 2024; 65:1655-1673. [PMID: 38757845 DOI: 10.1093/pcp/pcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Whole-genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR INSENSITIVE 1) and BRL1/3 (BRI1-LIKES 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants, while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Qiang Wei
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Zhen Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Fanqi Qiang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guishuang Li
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guang Wu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| |
Collapse
|
20
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
21
|
Qin Y, Dong X, Dong H, Wang X, Ye T, Wang Q, Duan J, Yu M, Zhang T, Du N, Shen S, Piao F, Guo Z. γ-aminobutyric acid contributes to a novel long-distance signaling in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109168. [PMID: 39366198 DOI: 10.1016/j.plaphy.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Long-distance signals play a vital role in plant stress response. γ-aminobutyric acid (GABA) has been proposed to be a signal and protects crops against diverse stresses. However, whether GABA acts as a long-distance signal to plant response to stresses remains unknown. Here, we found that the GABA content in cucurbita rootstocks, especially figleaf gourd, was significantly higher than that in cucumber. Figleaf gourd rootstock obviously enhanced cold tolerance and GABA accumulation in roots, xylem sap and leaves of grafting cucumber seedlings. Conversely, GABA synthesis inhibitor 3-mercaptopropionic acid (3-MPA) irrigation was more effective than its foliar application in inhibiting grafting-induced cold tolerance. Moreover, fluorescence microscopy confirmed that GABA can be transported from root to shoot through the xylem when the roots of grafted seedlings were fed with fluorescein isothiocyatate-labeled GABA under normal and cold stress conditions. Importantly, 3-MPA irrigation attenuated grafting-induced cold tolerance, as revealed by a decline in the GABA accumulation, the transcripts of ICE1, CBF1 and COR47, the activities of the antioxidant enzymes, and an increase in stomatal aperture. Collectively, our findings strongly support that GABA functions as a novel long-distance signal in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings by modulating CBF-signalling pathways, antioxidant system and stomatal aperture, providing new evidence for long-distance signaling-mediated cold response of plants.
Collapse
Affiliation(s)
- Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaojie Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Ting Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Qiaonan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Duan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Mingyao Yu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
22
|
Kolbert Z, Barroso JB, Boscari A, Corpas FJ, Gupta KJ, Hancock JT, Lindermayr C, Palma JM, Petřivalský M, Wendehenne D, Loake GJ. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. THE NEW PHYTOLOGIST 2024; 244:786-797. [PMID: 39223868 DOI: 10.1111/nph.20085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root-shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726, Szeged, Hungary
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, E-23071, Jaén, Spain
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d'Azur, CNRS 7254, 400 route des Chappes, BP 167, 06903, Sophia Antipolis, France
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | | | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Christian Lindermayr
- Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Munich/Neuherberg, Germany
| | - José Manuel Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - David Wendehenne
- Agroécologie, INRAE, Institut Agro Dijon, Univiversité de Bourgogne, 21000, Dijon, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
23
|
Bi S, Ao J, Jiang T, Zhu X, Zhu Y, Yang W, Zheng B, Ji M. Imaging Metabolic Flow of Water in Plants with Isotope-Traced Stimulated Raman Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407543. [PMID: 39301930 PMCID: PMC11558102 DOI: 10.1002/advs.202407543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Water plays a vital role in the life cycle of plants, participating in various critical biochemical reactions during both non-photosynthetic and photosynthetic processes. Direct visualization of the metabolic activities of water in plants with high spatiotemporal resolution is essential to reveal the functional utilization of water. Here, stimulated Raman scattering (SRS) microscopy is applied to monitor the metabolic processes of deuterated water (D2O) in model plant Arabidopsis thaliana (A. thaliana). The work shows that in plants uptaking D2O/water solution, proton-transfer from water to organic metabolites results in the formation of C-D bonds in newly synthesized biomolecules (lipid, protein, and polysaccharides, etc.) that allow high-resolution detection with SRS. Reversible metabolic pathways of oil-starch conversion between seed germination and seed development processes are verified. Spatial heterogeneity of metabolic activities along the vertical axis of plants (root, stem, and tip meristem), as well as the radial distributions of secondary growth on the horizontal cross-sections are quantified. Furthermore, metabolic flow of protons from plants to animals is visualized in aphids feeding on A. thaliana. Collectively, SRS microscopy has potential to trace a broad range of matter flows in plants, such as carbon storage and nutrition metabolism.
Collapse
Affiliation(s)
- Simin Bi
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Ting Jiang
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Xianmiao Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yimin Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Binglian Zheng
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| |
Collapse
|
24
|
Feng H, Mon W, Su X, Li Y, Zhang S, Zhang Z, Zheng K. Integrated Biological Experiments and Proteomic Analyses of Nicotiana tabacum Xylem Sap Revealed the Host Response to Tomato Spotted Wilt Orthotospovirus Infection. Int J Mol Sci 2024; 25:10907. [PMID: 39456688 PMCID: PMC11507450 DOI: 10.3390/ijms252010907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.
Collapse
Affiliation(s)
- Hongping Feng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Waiwai Mon
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
- Deputy Director of Microbiology Laboratory, Department of Biotechnology Research, Ministry of Science and Technology, Tansoe Rd., Kyaukse 05151, Myanmar
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Yu Li
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| |
Collapse
|
25
|
Huang S, Guo S, Dai L, Mi L, Li W, Xing J, Hu Z, Wu W, Duan Z, Li B, Sun T, Wang B, Zhang Y, Xiao T, Xue Y, Tang N, Li H, Zhang C, Song CP. Tubulin participates in establishing protoxylem vessel reinforcement patterns and hydraulic conductivity in maize. PLANT PHYSIOLOGY 2024; 196:931-947. [PMID: 38850036 DOI: 10.1093/plphys/kiae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.
Collapse
Affiliation(s)
- Shiquan Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Liufeng Dai
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenrao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Wenqiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ting Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Baojie Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Han Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Changqing Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| |
Collapse
|
26
|
Lin Y, Wang L, Lin B, Liu B, Guan T, Guo S, Li Q, Wei C. Differences in the uptake and translocation of differentially charged microplastics by the taproot and lateral root of mangroves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174113. [PMID: 38908577 DOI: 10.1016/j.scitotenv.2024.174113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The interception of microplastics (MPs) by mangrove roots plays an indispensable role in reducing the environmental risks of MPs. However, there remains limited research on the fate of the intercepted MPs. Hereby, the uptake and subsequent translocation of 0.2 μm and 2 μm PS MPs with different coating charge by the typical salt-secreting mangrove plants (Aegiceras corniculatum) were investigated. Compared to amino-functionalized PS with positive charge (PS-NH2), the visualized results indicated that the efficient uptake of carboxy-functionalized PS with negative charge (PS-COOH) was more dependent on taproots. But for the lateral roots, it only allowed the entry of PS-NH2 instead of PS-COOH. The specific uptake pathways of PS-NH2 on the lateral roots could attribute to the release of H+ and organic acids by root hairs, as well as the relative higher Zeta potential. After entering the Aegiceras corniculatum roots, the translocation of PS MPs was restricted by their particle sizes. Furthermore, the release of PS MPs from Aegiceras corniculatum leaf surfaces through the salt glands and stomata was observed. And the decline in the photochemical efficiency of leaves under PS MPs exposure also indirectly proved the foliar emission of PS MPs. Our study improved the understanding of the environmental behaviors and risks of the retained MPs in mangroves.
Collapse
Affiliation(s)
- Yichun Lin
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Luya Wang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China
| | - Bigui Lin
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Tingting Guan
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Shuai Guo
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Chaoxian Wei
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China.
| |
Collapse
|
27
|
Wang R, Li J, Liang Y. Role of ROS signaling in the plant defense against vascular pathogens. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102617. [PMID: 39163783 DOI: 10.1016/j.pbi.2024.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Reactive oxygen species (ROS) is a collective term for highly reactive oxygen derivatives, including singlet oxygen, hydroxyl radicals, superoxide anions, and hydrogen peroxide. In plants, ROS are produced in apoplasts, chloroplasts, mitochondria, and peroxisomes. Although ROS are toxic when their levels exceed a certain threshold, low-concentration ROS can serve as essential signaling molecules for plant growth and development, as well as plant responses to abiotic and biotic stresses. Various aspects of the role of ROS in plants have been discussed in previous reviews. In this review, we first summarize recent progress in the regulatory mechanisms of apoplastic ROS signaling and then propose its potential roles in plant defense against vascular pathogens to provide new ideas for the prevention and control of vascular diseases.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Ros-Moner E, Jiménez-Góngora T, Villar-Martín L, Vogrinec L, González-Miguel VM, Kutnjak D, Rubio-Somoza I. Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha. Nat Commun 2024; 15:8326. [PMID: 39333479 PMCID: PMC11436993 DOI: 10.1038/s41467-024-52610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.
Collapse
Affiliation(s)
- Eric Ros-Moner
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Luis Villar-Martín
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Lana Vogrinec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Víctor M González-Miguel
- Data Analysis area, Bioinformatics Core Unit, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
29
|
Phookaew P, Ma Y, Suzuki T, Stolze SC, Harzen A, Sano R, Nakagami H, Demura T, Ohtani M. Active protein ubiquitination regulates xylem vessel functionality. THE PLANT CELL 2024; 36:3298-3317. [PMID: 39092875 PMCID: PMC11371170 DOI: 10.1093/plcell/koae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Xylem vessels function in the long-distance conduction of water in land plants. The NAC transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). We previously isolated suppressor of ectopic xylem vessel cell differentiation induced by VND7 (seiv) mutants. Here, we report that the responsible genes for seiv3, seiv4, seiv6, and seiv9 are protein ubiquitination-related genes encoding PLANT U-BOX46 (PUB46), an uncharacterized F-BOX protein (FBX), PUB36, and UBIQUITIN-SPECIFIC PROTEASE1 (UBP1), respectively. We also found decreased expression of genes downstream of VND7 and abnormal xylem transport activity in the seiv mutants. Upon VND7 induction, ubiquitination levels from 492 and 180 protein groups were upregulated and downregulated, respectively. VND7 induction resulted in the ubiquitination of proteins for cell wall biosynthesis and protein transport, whereas such active protein ubiquitination did not occur in the seiv mutants. We detected the ubiquitination of three lysine residues in VND7: K94, K105, and K260. Substituting K94 with arginine significantly decreased the transactivation activity of VND7, suggesting that the ubiquitination of K94 is crucial for regulating VND7 activity. Our findings highlight the crucial roles of target protein ubiquitination in regulating xylem vessel activity.
Collapse
Affiliation(s)
- Pawittra Phookaew
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ya Ma
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Takaomi Suzuki
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Anne Harzen
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Ryosuke Sano
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Taku Demura
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
30
|
Nguyen HTL, Yoshiura A, Zheng SH, Fujita D. Characterization of QTLs for diameter in panicle neck and substitution mapping of qDPN5/qVBN5.2 and qVBN6 in rice ( Oryza sativa L.). BREEDING SCIENCE 2024; 74:337-343. [PMID: 39872323 PMCID: PMC11769591 DOI: 10.1270/jsbbs.23076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/11/2024] [Indexed: 01/30/2025]
Abstract
The vascular bundle system in the panicle neck of rice (Oryza sativa L.) connects the culm to the panicle and transports assimilates. The number of vascular bundles in the panicle neck (VBN) is correlated with the diameter of the panicle neck (DPN), but there are few reported QTLs for DPN. We conducted quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs) derived from a cross between 'Asominori' and 'IR24' and detected three QTLs-qDPN5, qDPN6, and qDPN11-on chromosomes 5, 6, and 11. The qDPN5, qDPN6, and qDPN11 were in the same position as the QTLs for VBN reported in previous studies. Within the RILs, there was a significant positive correlation between DPN and VBN. In segregating populations, each QTL had a distinct effect on both values. Analysis of chromosome segment substitution lines showed that qDPN5 and qDPN11 affected DPN and qDPN6 affected VBN. Through substitution mapping, we narrowed down the region of qDPN5 and qVBN5.2 to 960 kbp between KNJ8 Indel385 and RM18926, and the region of qVBN6 to 750 kbp between C5 Indel5756 and KNJ8 Indel493. Due to the weak effect of qDPN6 in the 'IR24' genetic background, the location of qDPN6 could not be determined.
Collapse
Affiliation(s)
- Ha Thi Le Nguyen
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
- Forest Science Institute of South Vietnam, 1 Pham Van Hai, Tan Binh District, Ho Chi Minh City, Viet Nam
| | - Ami Yoshiura
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Shao-Hui Zheng
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Daisuke Fujita
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
31
|
Malinowski R, Singh D, Kasprzewska A, Blicharz S, Basińska-Barczak A. Vascular tissue - boon or bane? How pathogens usurp long-distance transport in plants and the defence mechanisms deployed to counteract them. THE NEW PHYTOLOGIST 2024; 243:2075-2092. [PMID: 39101283 DOI: 10.1111/nph.20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024]
Abstract
Evolutionary emergence of specialised vascular tissues has enabled plants to coordinate their growth and adjust to unfavourable external conditions. Whilst holding a pivotal role in long-distance transport, both xylem and phloem can be encroached on by various biotic factors for systemic invasion and hijacking of nutrients. Therefore, a complete understanding of the strategies deployed by plants against such pathogens to restrict their entry and establishment within plant tissues, is of key importance for the future development of disease-tolerant crops. In this review, we aim to describe how microorganisms exploit the plant vascular system as a route for gaining access and control of different host tissues and metabolic pathways. Highlighting several biological examples, we detail the wide range of host responses triggered to prevent or hinder vascular colonisation and effectively minimise damage upon biotic invasions.
Collapse
Affiliation(s)
- Robert Malinowski
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Deeksha Singh
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Anna Kasprzewska
- Regulation of Gene Expression Team, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Sara Blicharz
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Aneta Basińska-Barczak
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| |
Collapse
|
32
|
Cao Y, Han Z, Zhang Z, He L, Huang C, Chen J, Dai F, Xuan L, Yan S, Si Z, Hu Y, Zhang T. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. PLANT COMMUNICATIONS 2024; 5:100938. [PMID: 38689494 PMCID: PMC11369780 DOI: 10.1016/j.xplc.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.
Collapse
Affiliation(s)
- Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
33
|
Zhao S, Jiao J, Zhang C, Li F, Fan X, Wu P, Feng K, Li L. Identification of the function of a key gene NnHCT1 in lignin synthesis in petioles of Nelumbo nucifera. Int J Biol Macromol 2024; 274:133391. [PMID: 38917921 DOI: 10.1016/j.ijbiomac.2024.133391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Leaf petiole or stem strength is an important agronomic trait affecting the growth of underground organs as a channel for material exchange and plays a vital role in the quality and yield of crops and vegetables. There are two different types of petioles in lotus, floating leaf petioles and vertical leaf petioles; however, the internal difference mechanism between these petioles is unclear. In this study, we investigated the differences between the initial vertical leaf petioles and the initial floating leaf petioles based on RNA sequencing (RNA-seq), and >2858 differentially expressed genes were annotated. These genes were chiefly enriched in phenylpropanoid biosynthesis, which is the source of the lignin and cellulose in petioles and stems. Lignin biology-related gene NnHCT1 was identified, and subsequent biological function validation demonstrated that the transient overexpression of NnHCT1 significantly increased the lignin and cellulose contents in lotus petioles and tobacco leaves. In contrast, silencing NnHCT1 through virus-induced gene silencing significantly reduced petiole lignin synthesis. Additionally, differentially up-regulated MYB family transcription factors were identified using RNA-seq. Yeast-one-hybrid and dual-luciferase reporter assays demonstrated that MYB4 could bind to the NnHCT1 promoter and up-regulate NnHCT1 expression. These findings demonstrate the significant potential of NnHCT1 to enhance lignin synthesis, thereby improving stem or petiole resistance to stunting and explaining the need for the study of differential petiole relationships in plants.
Collapse
Affiliation(s)
- Shuping Zhao
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Jiao Jiao
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Chuyan Zhang
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Fenghua Li
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Xiaojing Fan
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Kai Feng
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Liangjun Li
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
34
|
Kopecká R, Černý M. Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22. PLANTS (BASEL, SWITZERLAND) 2024; 13:1983. [PMID: 39065510 PMCID: PMC11281318 DOI: 10.3390/plants13141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians.
Collapse
Affiliation(s)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
35
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
36
|
Vafina G, Akhiyarova G, Korobova A, Finkina EI, Veselov D, Ovchinnikova TV, Kudoyarova G. The Long-Distance Transport of Jasmonates in Salt-Treated Pea Plants and Involvement of Lipid Transfer Proteins in the Process. Int J Mol Sci 2024; 25:7486. [PMID: 39000596 PMCID: PMC11242760 DOI: 10.3390/ijms25137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport.
Collapse
Affiliation(s)
- Gulnara Vafina
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Alla Korobova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ekaterina I Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana V Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
37
|
Liu J, Carriquí M, Xiong D, Kang S. Influence of IAA and ABA on maize stem vessel diameter and stress resistance in variable environments. PHYSIOLOGIA PLANTARUM 2024; 176:e14443. [PMID: 39039017 DOI: 10.1111/ppl.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
38
|
D'Incà R, Mattioli R, Tomasella M, Tavazza R, Macone A, Incocciati A, Martignago D, Polticelli F, Fraudentali I, Cona A, Angelini R, Tavazza M, Nardini A, Tavladoraki P. A Solanum lycopersicum polyamine oxidase contributes to the control of plant growth, xylem differentiation, and drought stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:960-981. [PMID: 38761363 DOI: 10.1111/tpj.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.
Collapse
Affiliation(s)
- Riccardo D'Incà
- Department of Science, University Roma Tre, 00146, Rome, Italy
| | | | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | | | - Fabio Polticelli
- Department of Science, University Roma Tre, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy
| | | | - Alessandra Cona
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| |
Collapse
|
39
|
Owens A, Zhang T, Gu P, Hart J, Stobbs J, Cieslak M, Elomaa P, Prusinkiewicz P. The hidden diversity of vascular patterns in flower heads. THE NEW PHYTOLOGIST 2024; 243:423-439. [PMID: 38361330 DOI: 10.1111/nph.19571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Vascular systems are intimately related to the shape and spatial arrangement of the plant organs they support. We investigate the largely unexplored association between spiral phyllotaxis and the vascular system in Asteraceae flower heads. We imaged heads of eight species using synchrotron-based X-ray micro-computed tomography and applied original virtual reality and haptic software to explore head vasculature in three dimensions. We then constructed a computational model to infer a plausible patterning mechanism. The vascular system in the head of the model plant Gerbera hybrida is qualitatively different from those of Bellis perennis and Helianthus annuus, characterized previously. Cirsium vulgare, Craspedia globosa, Echinacea purpurea, Echinops bannaticus, and Tanacetum vulgare represent variants of the Bellis and Helianthus systems. In each species, the layout of the main strands is stereotypical, but details vary. The observed vascular patterns can be generated by a common computational model with different parameter values. In spite of the observed differences of vascular systems in heads, they may be produced by a conserved mechanism. The diversity and irregularities of vasculature stand in contrast with the relative uniformity and regularity of phyllotactic patterns, confirming that phyllotaxis in heads is not driven by the vasculature.
Collapse
Affiliation(s)
- Andrew Owens
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Philmo Gu
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jeremy Hart
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jarvis Stobbs
- Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, SK, S7N 2V3, Canada
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | | |
Collapse
|
40
|
Zhu X, Du C, Gao B, He B. Artificial cellulosic leaf with adjustable enzymatic CO 2 sequestration capability. Nat Commun 2024; 15:4898. [PMID: 38851785 PMCID: PMC11162438 DOI: 10.1038/s41467-024-49320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Developing artificial leaves to address the environmental burden of CO2 is pivotal for advancing our Net Zero Future. In this study, we introduce EcoLeaf, an artificial leaf that closely mimics the characteristics of natural leaves. It harnesses visible light as its sole energy source and orchestrates the controlled expansion and contraction of stomata and the exchange of petiole materials to govern the rate of CO2 sequestration from the atmosphere. Furthermore, EcoLeaf has a cellulose composition and mechanical strength similar to those of natural leaves, allowing it to seamlessly integrate into the ecosystem during use and participate in natural degradation and nutrient cycling processes at the end of its life. We propose that the carbon sequestration pathway within EcoLeaf is adaptable and can serve as a versatile biomimetic platform for diverse biogenic carbon sequestration pathways in the future.
Collapse
Affiliation(s)
- Xing Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chenxi Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Bo Gao
- School of Chemical Engineering, Northwest University, Xi'an, 710127, China
| | - Bin He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Key Laboratory of Paper Based Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
41
|
Lu L, Delrot S, Liang Z. From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. MOLECULAR HORTICULTURE 2024; 4:22. [PMID: 38835095 DOI: 10.1186/s43897-024-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit "quality"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.
Collapse
Affiliation(s)
- Lizhen Lu
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, Villenave d'Ornon, 33882, France
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
42
|
Yu G, Zhang L, Xue H, Chen Y, Liu X, Del Pozo JC, Zhao C, Lozano-Duran R, Macho AP. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Rep 2024; 43:114179. [PMID: 38691455 DOI: 10.1016/j.celrep.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yujiao Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
43
|
Khatoon K, Warsi ZI, Singh A, Singh K, Khan F, Singh P, Shukla RK, Verma RS, Singh MK, Verma SK, Husain Z, Parween G, Singh P, Afroz S, Rahman LU. Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens. PLANT CELL REPORTS 2024; 43:147. [PMID: 38771491 DOI: 10.1007/s00299-024-03233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
KEY MESSAGE Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.
Collapse
Affiliation(s)
- Kahkashan Khatoon
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Zafar Iqbal Warsi
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Akanksha Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Kajal Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Feroz Khan
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Palak Singh
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Kumar Shukla
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Ram Swaroop Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Munmun K Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sanjeet K Verma
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Zakir Husain
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Gazala Parween
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Pooja Singh
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Shama Afroz
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Laiq Ur Rahman
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
44
|
Chen J, Liu L, Chen G, Wang S, Liu Y, Zhang Z, Li H, Wang L, Zhou Z, Zhao J, Zhang X. CsRAXs negatively regulate leaf size and fruiting ability through auxin glycosylation in cucumber. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1024-1037. [PMID: 38578173 DOI: 10.1111/jipb.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Leaves are the main photosynthesis organ that directly determines crop yield and biomass. Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over. Here, we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability. Csrax5 single mutant exhibited enlarged leaf size and stem diameter, and Csrax1/2/5 triple mutant displayed further enlargement phenotype. Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem. The fruiting ability of Csrax1/2/5 plants was significantly enhanced, while that of CsRAX5 overexpression lines was greatly weakened. Similarly, cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines. Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2. Therefore, our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber. Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Ye Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zeqin Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongfei Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Liming Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
45
|
El Arbi N, Schürholz AK, Handl MU, Schiffner A, Hidalgo Prados I, Schnurbusch L, Wenzl C, Zhao X, Zeng J, Lohmann JU, Wolf S. ARGONAUTE10 controls cell fate specification and formative cell divisions in the Arabidopsis root. EMBO J 2024; 43:1822-1842. [PMID: 38565947 PMCID: PMC11066080 DOI: 10.1038/s44318-024-00072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Department of Plant Physiology, Umea Plant Science Centre, Umea, Sweden
| | - Ann-Kathrin Schürholz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Corden Pharma, Heidelberg, Germany
| | - Marlene U Handl
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Alexei Schiffner
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Inés Hidalgo Prados
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Liese Schnurbusch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Christian Wenzl
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Xin'Ai Zhao
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jian Zeng
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| |
Collapse
|
46
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
47
|
Ma Y, Wang Z, Humphries J, Ratcliffe J, Bacic A, Johnson KL, Qu G. WALL-ASSOCIATED KINASE Like 14 regulates vascular tissue development in Arabidopsis and tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112013. [PMID: 38309474 DOI: 10.1016/j.plantsci.2024.112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Initiation of plant vascular tissue is regulated by transcriptional networks during development and in response to environmental stimuli. The WALL-ASSOCIATED KINASES (WAKs) and WAK-likes (WAKLs) are cell surface receptors involved in cell expansion and defence in cells with primary walls, yet their roles in regulation of vascular tissue development that contain secondary walls remains unclear. In this study, we showed tomato (Solanum lycopersicum) SlWAKL2 and the orthologous gene in Arabidopsis thaliana, AtWAKL14, were specifically expressed in vascular tissues. SlWAKL2-RNAi tomato plants displayed smaller fruit size with fewer seeds and vascular bundles compared to wild-type (WT) and over-expression (OE) lines. RNA-seq data showed that SlWAKL2-RNAi fruits down-regulated transcript levels of genes related to vascular tissue development compared to WT. Histological analysis showed T-DNA insertion mutant wakl14-1 had reduced plant stem length with fewer number of xylem vessels and interfascicular fibres compared to WT, with no significant differences in cellulose and lignin content. Mutant wakl14-1 also showed reduced number of vascular bundles in fruit. A proWAKL14::mCherry-WAKL14 fusion protein was able to complement wakl14-1 phenotypes and showed mCherry-WAKL14 associated with the plasma membrane. In vitro binding assays showed both SlWAKL2 and AtWAKL14 can interact with pectin and oligogalacturonides. Our results reveal novel roles of WAKLs in regulating vascular tissue development.
Collapse
Affiliation(s)
- Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia; La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Zhenghang Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - John Humphries
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China.
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
48
|
Liu J, Fan Y, Liu Y, He M, Sun Y, Zheng Q, Mi L, Liu J, Liu W, Tang N, Zhao X, Hu Z, Guo S, Yan D. APP1/NTL9-CalS8 module ensures proper phloem differentiation by stabilizing callose accumulation and symplastic communication. THE NEW PHYTOLOGIST 2024; 242:154-169. [PMID: 38375601 DOI: 10.1111/nph.19617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yongxiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yanke Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Qi Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Junzhong Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Wencheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| |
Collapse
|
49
|
Zhang Y, Gu S, Du J, Huang G, Shi J, Lu X, Wang J, Yang W, Guo X, Zhao C. Plant microphenotype: from innovative imaging to computational analysis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:802-818. [PMID: 38217351 PMCID: PMC10955502 DOI: 10.1111/pbi.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 01/15/2024]
Abstract
The microphenotype plays a key role in bridging the gap between the genotype and the complex macro phenotype. In this article, we review the advances in data acquisition and the intelligent analysis of plant microphenotyping and present applications of microphenotyping in plant science over the past two decades. We then point out several challenges in this field and suggest that cross-scale image acquisition strategies, powerful artificial intelligence algorithms, advanced genetic analysis, and computational phenotyping need to be established and performed to better understand interactions among genotype, environment, and management. Microphenotyping has entered the era of Microphenotyping 3.0 and will largely advance functional genomics and plant science.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shenghao Gu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianjun Du
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
50
|
Liu Z, Ruonala R, Helariutta Y. Control of phloem unloading and root development. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154203. [PMID: 38428153 DOI: 10.1016/j.jplph.2024.154203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Root growth and development need proper carbon partitioning between sources and sinks. Photosynthesis products are unloaded from the phloem and enter the root meristem cell by cell. While sugar transporters play a major role in phloem loading, phloem unloading occurs via the plasmodesmata in growing root tips. The aperture and permeability of plasmodesmata strongly influence symplastic unloading. Recent research has dissected the symplastic path for phloem unloading and identified several genes that regulate phloem unloading in the root. Callose turnover and membrane lipid composition alter the shape of plasmodesmata, allowing fine-tuning to adapt phloem unloading to the environmental and developmental conditions. Unloaded sugars act both as an energy supply and as signals to coordinate root growth and development. Increased knowledge of how phloem unloading is regulated enhances our understanding of carbon allocation in plants. In the future, it may be possible to modulate carbon allocation between sources and sinks in a manner that would contribute to increased plant biomass and carbon fixation.
Collapse
Affiliation(s)
- Zixuan Liu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Raili Ruonala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ykä Helariutta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|