1
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Dahlén AD, Roshanbin S, Aguilar X, Bucher NM, Lopes van den Broek S, Sehlin D, Syvänen S. PET imaging of TREM2 in amyloid-beta induced neuroinflammation. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07358-0. [PMID: 40434494 DOI: 10.1007/s00259-025-07358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE The triggering receptor expressed on myeloid cells 2 (TREM2) has become a promising target for biologics in both monitoring and treating neuroinflammation in Alzheimer's disease (AD). This study aimed to develop and compare bispecific anti-TREM2 antibodies featuring different transferrin receptor (TfR) binders to enhance brain delivery, identifying the most suitable format for in vivo PET imaging of TREM2 in transgenic AD mice. METHODS Three bispecific TREM2-antibody formats were produced and evaluated for their ability to cross the blood-brain barrier (BBB) via TfR-mediated transcytosis and bind TREM2. Blood concentration profiles up to 72 h post-injection (p.i.), and ex vivo brain uptake of iodine-125-labeled antibody constructs were quantified in AppNL-G-F and age-matched wild type (WT) mice using a γ-counter. The best-performing bispecific TREM2-antibody was radiolabeled with iodine-124 and used for in vivo PET imaging of brain TREM2 levels in AppNL-G-F mice at 72 h p.i. Brain TREM2 concentrations were subsequently quantified using ELISA. RESULTS The antibody format carrying two scFv8D3 TfR-binders (IgG-scFv2), demonstrated the highest brain concentrations of all tested bispecific constructs. This antibody also exhibited significantly higher brain concentrations in AppNL-G-F mice compared to WT mice at both 48 and 72 h p.i. This difference was further visualized and quantified through in vivo PET imaging. Moreover, brain concentrations of the antibody ligand correlated with elevated TREM2 levels in brain homogenates. CONCLUSION These findings highlight IgG-scFv2 as a promising radioligand for in vivo PET imaging of TREM2, advancing non-invasive neuroinflammation studies and supporting drug development for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Amelia D Dahlén
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Nadja M Bucher
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Sara Lopes van den Broek
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Asgari Z, Iranzadeh S, Roghani M. Myricetin alleviates learning and memory deficits in trimethyltin Alzheimer's phenotype via attenuating hippocampal endoplasmic reticulum stress and regulating inflammation and oxidative stress. Brain Res Bull 2025; 227:111382. [PMID: 40383238 DOI: 10.1016/j.brainresbull.2025.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Trimethyltin hydrochloride (TMT) induces hippocampal neurodegeneration and learning and memory impairments, providing a useful experimental model for Alzheimer's disease (AD) research. This study aimed to explore the neuroprotective effects of myricetin, a naturally occurring flavonoid with antioxidant and anti-inflammatory properties, against TMT-induced hippocampal damage and elucidate some of its underlying molecular mechanisms. Male NMRI mice (n = 32) were divided into four experimental groups: control, control + myricetin, TMT, and TMT + myricetin. Neurodegeneration was induced by intraperitoneal TMT injection (2.8 mg/kg), followed by daily oral administration of myricetin (25 mg/kg) for 21 days. Learning and memory-related function was assessed using passive avoidance, novel object recognition, and Y-maze tests. After behavioral tasks, hippocampal levels of oxidative stress parameters (glutathione (GSH), superoxide dismutase (SOD), catalase, malondialdehyde (MDA)), inflammatory markers (tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10)), and endoplasmic reticulum stress pathway proteins (GRP78, PERK, IRE1α, and CHOP) were evaluated. Histological examinations included Nissl staining to quantify neuronal degeneration in CA1 and dentate gyrus regions, as well as glial fibrillary acidic protein (GFAP) immunohistochemistry. Myricetin treatment attenuated TMT-induced learning and memory impairments and neuronal loss in the CA1 and dentate gyrus subfields. It significantly enhanced hippocampal levels of GSH, SOD and catalase activities, and IL-10 while reducing levels of MDA, TNF-α, and GFAP immunoreactivity. Moreover, myricetin alleviated the TMT-induced elevation of GRP78, PERK, IRE1α, and CHOP. These findings suggest that myricetin holds promise as a therapeutic candidate for AD and other neurodegenerative disorders by counteracting oxidative stress, suppressing neuroinflammation, and modulating endoplasmic reticulum stress pathways.
Collapse
Affiliation(s)
- Zahra Asgari
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Saeid Iranzadeh
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
4
|
Tortolani D, Decandia D, Giacovazzo G, Scipioni L, Panuccio A, Ciaramellano F, Eugelio F, Fanti F, Latagliata EC, La Barbera L, Cutuli D, Compagnone D, D’Amelio M, Coccurello R, Oddi S, Petrosini L, Maccarrone M. Chronic palmitoylethanolamide administration via slow-release subcutaneous pellets promotes neuroprotection and mitigates neuroinflammation in the Tg2576 mouse model of Alzheimer's disease. Front Cell Neurosci 2025; 19:1571428. [PMID: 40313591 PMCID: PMC12043567 DOI: 10.3389/fncel.2025.1571428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive and non-cognitive decline associated with neuropathological hallmarks, including neuroinflammation. Palmitoylethanolamide (PEA), an endogenous lipid with anti-inflammatory and neuroprotective properties, has emerged as a promising therapeutic agent in managing AD. This study investigated the therapeutic effects of chronic (6-months) PEA administration via subcutaneous pellet in Tg2576 mice, a validated model of AD. The impact of PEA on amyloid precursor protein (APP) processing, astrocytic activation, microglial reactivity and neuroinflammation, nitrosative stress, dendritic spine density in hippocampal CA1 pyramidal neurons, and cognitive performance was assessed. Chronic PEA treatment of Tg2576 mice increased the expression of the α-secretase ADAM9 and reduced astrogliosis. Furthermore, PEA attenuated microglia reactivity, downregulated pro-inflammatory (CXCL13, MCP-1, GCSF) and upregulated anti-inflammatory (CXC3CL1 and IL-9) cytokine expression. Chronic PEA administration also decreased protein nitrosylation, downregulated calcineurin expression, restored dendritic spine density, and improved cognitive functions. Chronic PEA administration offers a promising therapeutic approach for AD by mitigating neuroinflammation, oxidative stress, and synaptic dysfunction, ultimately leading to cognitive function restoration.
Collapse
Affiliation(s)
- Daniel Tortolani
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Davide Decandia
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Lucia Scipioni
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Anna Panuccio
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | | | - Fabiola Eugelio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Livia La Barbera
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Debora Cutuli
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marcello D’Amelio
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Laura Petrosini
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
5
|
Fourriere L, Gleeson PA. Organelle perturbation in Alzheimer's disease: do intracellular amyloid-ß and the fragmented Golgi mediate early intracellular neurotoxicity? Front Cell Dev Biol 2025; 13:1550211. [PMID: 40302938 PMCID: PMC12037564 DOI: 10.3389/fcell.2025.1550211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease is a devastating and incurable neurological disease. Most of the current research has focused on developing drugs to clear the extracellular amyloid plaques in the brain of Alzheimer's disease patients. However, this approach is limited as it does not treat the underlying cause of the disease. In this review, we highlight the evidence in the field showing that the accumulation of intracellular toxic amyloid-ß could underpin very early events in neuronal death in both familial early-onset and sporadic late-onset alzheimer's disease. Indeed, intracellular amyloid-ß, which is produced within intracellular compartments, has been shown to perturb endosomal and secretory organelles, in different neuronal models, and the brain of Alzheimer's patients, leading to membrane trafficking defects and perturbation of neuronal function associated with cognition defects. The Golgi apparatus is a central transport and signaling hub at the crossroads of the secretory and endocytic pathways and perturbation of the Golgi ribbon structure is a hallmark of Alzheimer's disease. Here, we discuss the role of the Golgi as a major player in the regulation of amyloid-β production and propose that the Golgi apparatus plays a key role in a cellular network which can seed the onset of Alzheimer's disease. Moreover, we propose that the Golgi is central in an intracellular feedback loop leading to an enhanced level of amyloid-β production resulting in early neuronal defects before the appearance of clinical symptoms. Further advances in defining the molecular pathways of this intracellular feedback loop could support the design of new therapeutic strategies to target a primary source of neuronal toxicity in this disease.
Collapse
|
6
|
Massussi M, Bellicini MG, Adamo M, Pilotto A, Metra M, Padovani A, Proietti R. Connecting the dots: A narrative review of the relationship between heart failure and cognitive impairment. ESC Heart Fail 2025; 12:1119-1131. [PMID: 39477682 PMCID: PMC11911588 DOI: 10.1002/ehf2.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 10/11/2024] [Indexed: 03/18/2025] Open
Abstract
Large clinical data underscore that heart failure is independently associated to an increased risk of negative cognitive outcome and dementia. Emerging evidence suggests that cerebral hypoperfusion, stemming from reduced cardiac output and vascular pathology, may contribute to the largely overlapping vascular dementia and Alzheimer's disease. Despite these insights, cognitive outcomes remain largely overlooked in heart failure management. This narrative review outlines the prevalence and risk of cognitive impairment in heart failure patients, exploring potential shared pathophysiological mechanisms and examining the impact of heart failure therapy on cognitive deficits. Additionally, it discusses clinical implications and suggests future treatment approaches targeting therapeutic outcomes. Cognitive impairment is prevalent among individuals with heart failure, with reported rates varying widely depending on assessment methods. Shared pathological pathways and risk factors, including atrial fibrillation (AF), hypertension, obesity and type 2 diabetes mellitus, suggest a causal link. Mechanisms such as poor perfusion, microembolic events, ischaemic syndromes and cerebral inflammation contribute to this relationship. Moreover, heart failure itself may exacerbate cognitive dysfunction. This emerging understanding posits that vascular dementia and Alzheimer's disease may represent a pathophysiological continuum, driven by both the accumulation of misfolded proteins and cerebrovascular pathology due to cardiovascular dysfunction. Understanding these links is crucial for developing effective treatment strategies. The complex interplay between heart failure and cognitive impairment underscores the necessity for a holistic patient care approach. Both conditions share analogous disease processes, influencing self-management and independence in patients. Prioritizing brain health in heart failure management is essential to enhance patient prognosis and general well-being.
Collapse
Affiliation(s)
- Mauro Massussi
- Cardiac Catheterization Laboratory and CardiologyASST Spedali Civili di BresciaBresciaItaly
| | - Maria Giulia Bellicini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Marianna Adamo
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Andrea Pilotto
- Department of Continuity of Care and Frailty, Neurology UnitASST Spedali Civili Brescia HospitalBresciaItaly
- Department of Clinical and Experimental Sciences, Neurology UnitUniversity of BresciaBresciaItaly
- Laboratory of Digital Neurology and BiosensorsUniversity of BresciaBresciaItaly
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Alessandro Padovani
- Department of Continuity of Care and Frailty, Neurology UnitASST Spedali Civili Brescia HospitalBresciaItaly
- Department of Clinical and Experimental Sciences, Neurology UnitUniversity of BresciaBresciaItaly
- Laboratory of Digital Neurology and BiosensorsUniversity of BresciaBresciaItaly
- Brain Health CenterUniversity of BresciaBresciaItaly
| | - Riccardo Proietti
- Liverpool Centre for Cardiovascular ScienceUniversity of Liverpool and Liverpool Chest and Heart HospitalLiverpoolUK
| |
Collapse
|
7
|
Du LD, Fang C, Wang YQ, Feng ZY, Abiola OF, Gao ZL, Huang JY, Ma YZ. MMP-9 inhibitor SB-3CT improves neurological outcomes in ischemic stroke mice by modulation of astrocytic lipid metabolism. Acta Pharmacol Sin 2025:10.1038/s41401-025-01505-x. [PMID: 40069489 DOI: 10.1038/s41401-025-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 03/17/2025]
Abstract
The acute phase of ischemic stroke is marked by a surge in matrix metalloproteinase-9 (MMP-9) activity. While integral to natural repair processes, MMP-9 exacerbates injury by breaking down the blood-brain barrier (BBB) and promoting edema and inflammation. MMP-9 is predominantly secreted by inflammatory cells such as neutrophils, macrophages and microglia soon after stroke onset. In this study we investigated the effects of MMP-9 inhibition via SB-3CT on astrocytic lipid metabolism, and its potential to enhance neuronal survival and recovery following ischemic stroke. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min, mice then were injected with SB-3CT (25 mg/kg, i.v.). On D3 post tMCAO, neurological outcomes were assessed, and whole brains were collected for analysis. Lipidomic analysis of brain tissue showed that SB-3CT treatment significantly restrained astrocytic cholesterol metabolism by modulating the sphingolipid and glycerophospholipid pathways. Specifically, SB-3CT reduced ceramide accumulation and promoted an increase in neuroprotective hexosylceramides, leading to enhanced neuronal survival and synaptic integrity. In addition, SB-3CT treatment reduced astrocytic and microglial reactivity, thereby mitigating neuroinflammation. In order to optimize the timing and dosage of MMP-9 inhibition to maximize the therapeutic efficacy, tMCAO mice were given three injections of SB-3CT on D0, D2 and D4 within 7 days after modeling. We found that prolonged MMP-9 inhibition alleviated astrogliosis, concurrently impaired neurological recovery and inhibited angiogenesis. These results demonstrate the critical role of lipid metabolism in MMP-9-mediated brain injury and the potential of SB-3CT as a therapeutic strategy for ischemic stroke by targeting astrocytic lipid metabolism.
Collapse
Affiliation(s)
- Li-da Du
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao, 266071, China
- Provincial Laboratory of Polymorphic Medicine, Tengzhou, 277599, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue-Qing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zi-Ying Feng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ogunleye Femi Abiola
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhao-Lin Gao
- Provincial Laboratory of Polymorphic Medicine, Tengzhou, 277599, China
| | - Ju-Yang Huang
- School of Pharmaceutical Sciences (Shenzhen). Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yin-Zhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Taweephol T, Pongpitakmetha T, Booncharoen K, Khieukhajee J, Luechaipanit W, Haethaisong T, Chongsuksantikul A, Likitjaroen Y, Thanapornsangsuth P. Short communication: Evaluating roles of plasma glial fibrillary acidic protein as Alzheimer's disease biomarker in real-world multi-center memory clinics in Thailand. J Alzheimers Dis 2025; 104:325-330. [PMID: 39924865 DOI: 10.1177/13872877251316546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The roles of reactive astrocytes in Alzheimer's disease (AD) and the correlation between plasma glial fibrillary acidic protein (GFAP) and amyloid-β are emerging. Among 133 patients with cognitive complaints from multi-center memory clinics in Thailand, 73 had AD as defined either by cerebrospinal fluid core biomarkers or amyloid PET. Plasma GFAP demonstrated an AUC of 0.74 (95%CI: 0.65-0.83) for detecting AD and showed large effects on identifying AD status with Cohen's d = 0.81 (95%CI 0.44-1.18). LOESS regression illustrated that plasma GFAP increased from the early stages of AD. Plasma GFAP has potential applications across diverse populations.
Collapse
Affiliation(s)
- Thanapoom Taweephol
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanakit Pongpitakmetha
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kittithatch Booncharoen
- Neurocognitive Unit, Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Neurology Center, Phyathai 1 Hospital, Bangkok, Thailand
| | - Jedsada Khieukhajee
- Department of Neurology, Neurological Institute of Thailand, Bangkok, Thailand
| | - Watayuth Luechaipanit
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Thanaporn Haethaisong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Adipa Chongsuksantikul
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Yuttachai Likitjaroen
- Neurocognitive Unit, Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poosanu Thanapornsangsuth
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Rocha FM, Roy A, Varshney M, Kumar A. Mapping reactive astrogliosis in Parkinson's brain with astroglial tracers BU99008 and Deprenyl: New insights from a multi-marker postmortem study. Alzheimers Dement 2025; 21:e14488. [PMID: 39936538 PMCID: PMC11848164 DOI: 10.1002/alz.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Despite significant astrocytic involvement in Parkinson's disease (PD), the knowledge regarding the role of reactive astrogliosis is still at the surface level; largely due to lack of specific biomarkers to track these processes. Novel astroglial PET-tracers BU99008 and Deprenyl, hold immense potential for visualizing reactive astrogliosis in PD. However, they have not been thoroughly investigated in PD. METHODS We employed a multi-marker approach and performed in vitro radioligand binding and autoradiography studies with 3H-BU99008 and 3H-Deprenyl together with astrocytic immunofluorescence and morphometric analyses in the frontal cortex, temporal cortex, caudate and putamen brain regions of PD (n = 4) and control (n = 7) cases. RESULTS AND DISCUSSION 3H-BU99008 and 3H-Deprenyl showed distinct binding behavior and displayed a diverse array of binding sites (single or multiple) in PD and control brains. Importantly, 3H-BU99008 and 3H-Deprenyl autoradiography studies captured pronounced reactive astrogliosis in PD brain regions, corroborated by marked changes in astrocytic markers, morphology, and cellular processes. HIGHLIGHTS Astroglial tracers BU99008 and Deprenyl displayed a range of binding sites with different levels of affinity and proportions (%) in healthy control (CN) and Parkinson's disease (PD) brains. Astroglial tracers BU99008 and Deprenyl showed a highly specific (permanent) high-affinity (HA) binding site in the nanomolar range, which might be consistent across different pathologies. Astroglial tracers BU99008 and Deprenyl highlighted distinct tracer binding behavior, indicating that they might be targeting different subpopulations or specific states of astrocytes in CN and PD brains. Astroglial tracers BU99008 and Deprenyl captured prominent reactive astrogliosis at the advanced/end stages of PD, substantiated by a significant increase in intercellular adhesion molecule 1 (ICAM-1)-positive reactive astrocytes and marked changes in astrocytic morphology and processes.
Collapse
Affiliation(s)
- Filipa M. Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Avishek Roy
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Mukesh Varshney
- Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| |
Collapse
|
10
|
Luo S, Wang Y, Hisatsune T. P2Y1 receptor in Alzheimer's disease. Neural Regen Res 2025; 20:440-453. [PMID: 38819047 PMCID: PMC11317937 DOI: 10.4103/nrr.nrr-d-23-02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer's disease treatments in the last decades. However, existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic, necessitating the exploration of alternative therapeutic strategies. Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer's disease patients, with dysregulated astrocytic purinergic receptors, particularly the P2Y1 receptor, all of which constitute the pathophysiology of Alzheimer's disease. These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer's disease. This review delves into recent insights into the association between P2Y1 receptor and Alzheimer's disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer's disease by mitigating neuroinflammation, thus offering promising avenues for developing drugs for Alzheimer's disease and potentially contributing to the development of more effective treatments.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
11
|
Ravichandran S, Snyder PJ, Alber J, Murchison CF, Chaby LE, Jeromin A, Arthur E. Association and multimodal model of retinal and blood-based biomarkers for detection of preclinical Alzheimer's disease. Alzheimers Res Ther 2025; 17:19. [PMID: 39794837 PMCID: PMC11720872 DOI: 10.1186/s13195-024-01668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD. METHODS We included 82 cognitively unimpaired (CU) participants (141 eyes; mean age: 67 years; range: 56-80) from the Atlas of Retinal Imaging in Alzheimer's Study (ARIAS). Blood samples were assessed for concentrations of Aβ42/Aβ40 ratio, NfL, p-tau181, and p-tau217 (ALZpath, Inc.) using Single molecule array (SIMOA) technology. The Spectralis II system (Heidelberg Engineering) was used to acquire macular centered Spectral Domain Optical Coherence Tomography (SD-OCT) images for evaluation of putative retinal gliosis surface area and macular retinal nerve fiber layer (mRNFL) thickness. For all participants, correlations (adjusted for age and correlation between eyes) were assessed between retinal and blood-based biomarkers. A subgroup cohort of 57 eyes from 32 participants with recent Aβ positron emission tomography (PET) results, comprising 18 preclinical patients (Aβ PET + ve, 32 eyes) and 14 controls (Aβ PET -ve, 25 eyes) with a mean age of 69 vs. 66, p = 0.06, was included for the assessment of a multimodal model to distinguish between the two groups. For this subgroup cohort, receiver operating characteristic (ROC) analysis was performed to compare the multimodal model of retinal and plasma biomarkers vs. each biomarker alone to distinguish between the two groups. RESULTS Significant correlation was found between putative retinal gliosis and p-tau217 in the univariate mixed model (β = 0.48, p = 0.007) but not for the other plasma biomarkers (p > 0.05). This positive correlation was also retained in the multivariate mixed model (β = 0.43, p = 0.022). The multimodal ROC model based on retinal (gliosis area, inner inferior RNFL thickness, inner superior RNFL thickness, and inner nasal RNFL thickness) and plasma biomarkers (p-tau217 and Aβ42/Aβ40 ratio) had an excellent AUC of 0.97 (95% CI = 0.93-1.01; p < 0.001) compared to unimodal models of retinal and plasma biomarkers. CONCLUSIONS Our analyses show the potential of integrating retinal and blood-based biomarkers for improved detection and screening of preclinical AD.
Collapse
Affiliation(s)
- Swetha Ravichandran
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, US
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, US
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, US
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, US
- Butler Hospital Memory & Aging Program, Providence, RI, US
| | - Charles F Murchison
- Alzheimer's Disease Research Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, US
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, US
| | | | | | - Edmund Arthur
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US.
| |
Collapse
|
12
|
Carrillo González NJ, Reyes Gutierrez GS, Campos-Ordoñez T, Castro-Torres RD, Beas Zárate C, Gudiño-Cabrera G. GFAPβ and GFAPδ Isoforms Expression in Mesenchymal Stem Cells, MSCs Differentiated Towards Schwann-like, and Olfactory Ensheathing Cells. Curr Issues Mol Biol 2025; 47:35. [PMID: 39852150 PMCID: PMC11764465 DOI: 10.3390/cimb47010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Olfactory ensheathing cells (OECs) and mesenchymal stem cells (MSCs) differentiated towards Schwann-like have plasticity properties. These cells express the Glial fibrillary acidic protein (GFAP), a type of cytoskeletal protein that significantly regulates many cellular functions, including those that promote cellular plasticity needed for regeneration. However, the expression of GFAP isoforms (α, β, and δ) in these cells has not been characterized. We evaluated GFAP isoforms (α, β, and δ) expression by Polymerase Chain Reaction (PCR) assay in three conditions: (1) OECs, (2) cells exposed to OECs-conditioned medium and differentiated to Schwann-like cells (dBM-MSCs), and (3) MSC cell culture from rat bone marrow undifferentiated (uBM-MSCs). First, the characterization phenotyping was verified by morphology and immunocytochemistry, using p75, CD90, and GFAP antibodies. Then, we found the expression of GFAP isoforms (α, β, and δ) in the three conditions; the expression of the GFAPα (10.95%AUC) and GFAPβ (9.17%AUC) isoforms was predominantly in OECs, followed by dBM-MSCs (α: 3.99%AUC, β: 5.66%AUC) and uBM-MSCs (α: 2.47%AUC, β: 2.97%AUC). GFAPδ isoform has a similar expression in the three groups (OEC: 9.21%AUC, dBM-MSCs: 11.10%AUC, uBM-MSCs: 9.21%AUC). These findings suggest that expression of different GFAPδ and GFAPβ isoforms may regulate cellular plasticity properties, potentially contributing to tissue remodeling processes by OECs, dBM-MSCs, and uBM-MSCs.
Collapse
Affiliation(s)
- Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| | - Gabriela Stefania Reyes Gutierrez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| | - Rubén D. Castro-Torres
- Laboratorio de Neurobiotecnología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (R.D.C.-T.); (C.B.Z.)
| | - Carlos Beas Zárate
- Laboratorio de Neurobiotecnología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (R.D.C.-T.); (C.B.Z.)
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| |
Collapse
|
13
|
Hu Z, Yang J, Zhang S, Li M, Zuo C, Mao C, Zhang Z, Tang M, Shi C, Xu Y. AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice. Neural Regen Res 2025; 20:253-264. [PMID: 38767490 PMCID: PMC11246129 DOI: 10.4103/nrr.nrr-d-23-01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00033/figure1/v/2024-05-14T021156Z/r/image-tiff The E3 ubiquitin ligase, carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP), also functions as a co-chaperone and plays a crucial role in the protein quality control system. In this study, we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer's disease. We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain. CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests, reduced amyloid-β plaques, and decreased the expression of both amyloid-β and phosphorylated tau. CHIP also alleviated the concentration of microglia and astrocytes around plaques. In APP/PS1 mice of a younger age, CHIP overexpression promoted an increase in ADAM10 expression and inhibited β-site APP cleaving enzyme 1, insulin degrading enzyme, and neprilysin expression. Levels of HSP70 and HSP40, which have functional relevance to CHIP, were also increased. Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated, which may also reflect a potential mechanism for the neuroprotective effect of CHIP. Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice. Indeed, overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mibo Tang
- Department of Gerontology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Doorduin J. Imaging neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:277-291. [PMID: 40122630 DOI: 10.1016/b978-0-443-19104-6.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Imaging can help us understand the role neuroglia plays in health and during the course of neurologic disorders. In vivo microscopy has had a great impact on our understanding of how neuroglia behaves during health and disease. While initially the technique was hindered by the limited penetration depth in brain tissue, recent advancements lead to increasing possibilities for imaging of deeper brain structures, even at super-resolution. Unfortunately, in vivo microscopy cannot be applied in a clinical setting and thus cannot be used to study neuroglia in patient populations. However, noninvasive imaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI) can. PET has provided valuable information on the involvement of neuroglia in neurologic disorders. To more specifically image microglia and astrocytes, many new PET biomarkers have been defined for which PET tracers are continuously developed, evaluated, and improved. A cell-type specific PET tracer with favorable imaging characteristics can have a huge impact on neuroglia research. While being less sensitive than PET, MRI is a more accessible imaging technique. Initially, only general neuroinflammation processes could be imaged with MRI, but newly developed methods and sequences allow for increasing cell-type specificity. Overall, while each imaging method comes with limitations, improvements are continuously made, all with the aim to truly understand the role that neuroglia play in health and disease.
Collapse
Affiliation(s)
- Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
16
|
Zyuz'kov GN, Miroshnichenko LAE, Polykova TYE, Simanina EV, Chayikovskyi AVE. Targeting Adenylate Cyclase: A Novel Concept for Stimulation of Neurogenesis and Pharmacotherapy of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2025; 25:169-180. [PMID: 39076087 DOI: 10.2174/0118715249302264240715060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The low effectiveness of existing pharmacotherapy strategies for Alzheimer's disease (AD) makes it necessary to develop a new concept for the treatment of this type of dementia. This search is promising to be carried out within the framework of the paradigm of targeting intracellular signaling pathways in Regenerative-competent Cells (RCCs). OBJECTIVES The purpose of the research is to study the impact of adenylate cyclase (AC) inhibitor on disorders of the psychoemotional status in aged male C57BL/6 mice, as well as on the dynamics of the content and functioning of RCCs nervous tissue. METHODS We examined the effect of the AC inhibitor (2',5'-Dideoxyadenosine) on conditioned reflex activity, behavioral and emotional profile in a mouse AD model (16-month-old (aged) male C57BL/6 mice), as well as the functioning of neural stem cells (NSCs), neuronal-committed progenitors (NCPs), and neuroglial cells in the subventricular zone of the cerebral hemispheres (SVZ). RESULTS In aged C57BL/6 mice, we found impairments in exploratory behavior, emotional reactivity, and memory, which are the characteristics of senile dementia. Therapy based on AC inhibition led to an increase in the number of NSCs and NPCs in the SVZ due to an increase in their proliferative activity. These changes were more pronounced in NCPs. At the same time, a decrease in the specialization intensity was recorded in NSCs. These phenomena developed against the background of increased secretion of neurotrophic growth factors by oligodendrocytes and microglial cells. The neuroregenerative effects of 2',5'-dideoxyadenosine correlated with the correction of age-related disorders of the psychoemotional status in aged mice. CONCLUSION The results provide the basis for the development of targeted drugs based on AC inhibitors to stimulate neurogenesis as an approach for the effective treatment of AD.
Collapse
Affiliation(s)
- Gleb Nikolaevich Zyuz'kov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Larisa Arkad Evna Miroshnichenko
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tatyana Yur Evna Polykova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena Vladislavovna Simanina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexander Vasil Evich Chayikovskyi
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
17
|
Gogishvili D, Honey MIJ, Verberk IMW, Vermunt L, Hol EM, Teunissen CE, Abeln S. The GFAP proteoform puzzle: How to advance GFAP as a fluid biomarker in neurological diseases. J Neurochem 2025; 169:e16226. [PMID: 39289040 DOI: 10.1111/jnc.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Glial fibrillary acidic protein (GFAP) is a well-established biomarker of reactive astrogliosis in the central nervous system because of its elevated levels following brain injury and various neurological disorders. The advent of ultra-sensitive methods for measuring low-abundant proteins has significantly enhanced our understanding of GFAP levels in the serum or plasma of patients with diverse neurological diseases. Clinical studies have demonstrated that GFAP holds promise both as a diagnostic and prognostic biomarker, including but not limited to individuals with Alzheimer's disease. GFAP exhibits diverse forms and structures, herein referred to as its proteoform complexity, encompassing conformational dynamics, isoforms and post-translational modifications (PTMs). In this review, we explore how the proteoform complexity of GFAP influences its detection, which may affect the differential diagnostic performance of GFAP in different biological fluids and can provide valuable insights into underlying biological processes. Additionally, proteoforms are often disease-specific, and our review provides suggestions and highlights areas to focus on for the development of new assays for measuring GFAP, including isoforms, PTMs, discharge mechanisms, breakdown products, higher-order species and interacting partners. By addressing the knowledge gaps highlighted in this review, we aim to support the clinical translation and interpretation of GFAP in both CSF and blood and the development of reliable, reproducible and specific prognostic and diagnostic tests. To enhance disease pathology comprehension and optimise GFAP as a biomarker, a thorough understanding of detected proteoforms in biofluids is essential.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Madison I J Honey
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Luo C, Wu G, Xiao Z, Hu R, Qiao M, Li W, Liu C, Li Z, Lan C, Huang Z. Role of miRNA regulation in IGFBP-2 overexpression and neuronal ferroptosis: Insights into the Nrf2/SLC7A11/GPX4 pathway in Alzheimer's disease. Int J Biol Macromol 2025; 287:138537. [PMID: 39653234 DOI: 10.1016/j.ijbiomac.2024.138537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with pathological features including amyloid plaque deposits and neurofibrillary tangles. In this study, the expressions of miRNA, IGFBP-2 and neuronal ferritin were detected by qPCR, Western blot and immunohistochemistry. The regulatory effects of miRNA on IGFBP-2 and neuronal ferritin were further verified by intervention experiments with miRNA mimics and inhibitors. Double luciferase reporter gene assay and RNA immunoprecipitation were used to investigate the interaction between miRNA and target genes. Finally, the effect of miRNA on Nrf2/SLC7A11/GPX4 pathway was evaluated by antioxidant enzyme activity and oxidative stress marker detection. The overexpression of IGFBP-2 was found to be significantly increased with the deposition of neuronal ferritin. Expression levels of specific mirnas were significantly down-regulated in AD models and negatively correlated with IGFBP-2 and neuronal ferritin expression. Intervention experiments with miRNA mimics and inhibitors have confirmed that these mirnas can regulate the expression of IGFBP-2 and neuronal ferritin. Further studies revealed that these mirnas affect antioxidant enzyme activity and oxidative stress levels by targeting key genes in the Nrf2/SLC7A11/GPX4 pathway, thereby regulating the deposition of neuronal ferritin.
Collapse
Affiliation(s)
- Chenliang Luo
- Graduate School of Guangxi University of Chinese Medicine, Qingxiu District, Nanning City 530200, Guangxi, China
| | - Guiyou Wu
- Graduate School of Guangxi University of Chinese Medicine, Qingxiu District, Nanning City 530200, Guangxi, China
| | - Zhen Xiao
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Rui Hu
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Mingyu Qiao
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Weineng Li
- College of Pharmacy, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Chaoyu Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City 533000, Guangxi, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City 533000, Guangxi, China
| | - Zhenzhong Li
- College of Pharmacy, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Changgong Lan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City 533000, Guangxi, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City 533000, Guangxi, China.
| | - Zhongshi Huang
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China.
| |
Collapse
|
19
|
Pelkmans W, Gispert JD. Astroglial reactivity is a key modulator of Alzheimer's disease pathological progression. Brain 2024; 147:3973-3975. [PMID: 39514769 PMCID: PMC11629679 DOI: 10.1093/brain/awae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This scientific commentary refers to ‘Association of glial fibrillary acid protein, Alzheimer's disease pathology and cognitive decline’ by Peretti et al. (https://doi.org/10.1093/brain/awae211).
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
20
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
21
|
Fang Y, Zheng Y, Gao Q, Pang M, Wu Y, Feng X, Tao X, Hu Y, Lin Z, Lin W. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep 2024; 29:2394714. [PMID: 39284589 PMCID: PMC11407389 DOI: 10.1080/13510002.2024.2394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihui Zheng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiqing Wu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoli Feng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Paidlewar M, Kumari S, Dhapola R, Sharma P, HariKrishnaReddy D. Unveiling the role of astrogliosis in Alzheimer's disease Pathology: Insights into mechanisms and therapeutic approaches. Int Immunopharmacol 2024; 141:112940. [PMID: 39154532 DOI: 10.1016/j.intimp.2024.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aβ accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aβ and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.
Collapse
Affiliation(s)
- Mohit Paidlewar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India.
| |
Collapse
|
23
|
Leipp F, Vialaret J, Mohaupt P, Coppens S, Jaffuel A, Niehoff AC, Lehmann S, Hirtz C. Glial fibrillary acidic protein in Alzheimer's disease: a narrative review. Brain Commun 2024; 6:fcae396. [PMID: 39554381 PMCID: PMC11568389 DOI: 10.1093/braincomms/fcae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Astrocytes are fundamental in neural functioning and homeostasis in the central nervous system. These cells respond to injuries and pathological conditions through astrogliosis, a reactive process associated with neurodegenerative diseases such as Alzheimer's disease. This process is thought to begin in the early stages of these conditions. Glial fibrillary acidic protein (GFAP), a type III intermediate filament protein predominantly expressed in astrocytes, has emerged as a key biomarker for monitoring this response. During astrogliosis, GFAP is released into biofluids, making it a candidate for non-invasive diagnosis and tracking of neurodegenerative diseases. Growing evidence positions GFAP as a biomarker for Alzheimer's disease with specificity and disease-correlation characteristics comparable to established clinical markers, such as Aβ peptides and phosphorylated tau protein. To improve diagnostic accuracy, particularly in the presence of confounders and comorbidities, incorporating a panel of biomarkers may be advantageous. This review will explore the potential of GFAP within such a panel, examining its role in early diagnosis, disease progression monitoring and its integration into clinical practice for Alzheimer's disease management.
Collapse
Affiliation(s)
- Florine Leipp
- Shimadzu France SAS France, Noisiel, France
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Jérôme Vialaret
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Pablo Mohaupt
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Salomé Coppens
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | | | | | - Sylvain Lehmann
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| |
Collapse
|
24
|
Lopresti BJ, Stehouwer J, Reese AC, Mason NS, Royse SK, Narendran R, Laymon CM, Lopez OL, Cohen AD, Mathis CA, Villemagne VL. Kinetic modeling of the monoamine oxidase-B radioligand [ 18F]SMBT-1 in human brain with positron emission tomography. J Cereb Blood Flow Metab 2024; 44:1262-1276. [PMID: 38735059 PMCID: PMC11542143 DOI: 10.1177/0271678x241254679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 04/07/2024] [Indexed: 05/14/2024]
Abstract
This paper describes pharmacokinetic analyses of the monoamine-oxidase-B (MAO-B) radiotracer [18F](S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) for positron emission tomography (PET) brain imaging. Brain MAO-B expression is widespread, predominantly within astrocytes. Reactive astrogliosis in response to neurodegenerative disease pathology is associated with MAO-B overexpression. Fourteen elderly subjects (8 control, 5 mild cognitive impairment, 1 Alzheimer's disease) with amyloid ([11C]PiB) and tau ([18F]flortaucipir) imaging assessments underwent dynamic [18F]SMBT-1 PET imaging with arterial input function determination. [18F]SMBT-1 showed high brain uptake and a retention pattern consistent with the known MAO-B distribution. A two-tissue compartment (2TC) model where the K1/k2 ratio was fixed to a whole brain value best described [18F]SMBT-1 kinetics. The 2TC total volume of distribution (VT) was well identified and highly correlated (r2∼0.8) with post-mortem MAO-B indices. Cerebellar grey matter (CGM) showed the lowest mean VT of any region and is considered the optimal pseudo-reference region. Simplified analysis methods including reference tissue models, non-compartmental models, and standard uptake value ratios (SUVR) agreed with 2TC outcomes (r2 > 0.9) but with varying bias. We found the CGM-normalized 70-90 min SUVR to be highly correlated (r2 = 0.93) with the 2TC distribution volume ratio (DVR) with acceptable bias (∼10%), representing a practical alternative for [18F]SMBT-1 analyses.
Collapse
Affiliation(s)
- Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey Stehouwer
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexandria C Reese
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neale S Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Dept. of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
26
|
Kang Y, Yeap YJ, Yang J, Ma S, Lim KL, Zhang Q, Lu L, Zhang C. Role of lipid droplets in neurodegenerative diseases: From pathogenesis to therapeutics. Neurosci Biobehav Rev 2024; 165:105867. [PMID: 39208878 DOI: 10.1016/j.neubiorev.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases (NDDs) are a series of disorders characterized by the progressive loss of specific neurons, leading to cognitive and locomotor impairment. NDDs affect millions of patients worldwide but lack effective treatments. Dysregulation of lipids, particularly the accumulation of lipid droplets (LDs), is strongly implicated in the pathogenesis of NDDs. How LDs contribute to the occurrence and development of NDDs, and their potential as therapeutic targets remain to be addressed. In present review, we first introduce the processes of LDs formation, transportation and degradation. We then highlight how the accumulation of LDs contributes to the pathogenesis of NDDs in a cell type-specific manner. Moreover, we discuss currently available methods for detecting LDs and elaborate on LDs-based therapeutic strategies for NDDs. Lastly, we identify gaps that need to be filled to better leverage LD-based theranostics in NDDs and other diseases. We hope this review could shed light on the role of LDs in NDDs and facilitate the development of novel therapeutic strategies for NDDs.
Collapse
Affiliation(s)
- Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Qin Zhang
- Yuncheng Central Hospital, Yuncheng 044020, China.
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China; Shanxi Engineering Research Center for Precisive Diagnosis and Treatment of Neurodegenerative Diseases, Jinzhong 030600, China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China; Shanxi Engineering Research Center for Precisive Diagnosis and Treatment of Neurodegenerative Diseases, Jinzhong 030600, China.
| |
Collapse
|
27
|
Bettcher BM, Lopez Paniagua D, Wang Y, McConnell BV, Coughlan C, Carlisle TC, Thaker AA, Lippitt W, Filley CM, Pelak VS, Shapiro AL, Heffernan KS, Potter H, Solano A, Boyd J, Carlson NE. Synergistic effects of GFAP and Aβ42: Implications for white matter integrity and verbal memory across the cognitive spectrum. Brain Behav Immun Health 2024; 40:100834. [PMID: 39206431 PMCID: PMC11357780 DOI: 10.1016/j.bbih.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Plasma glial fibrillary acidic protein (GFAP), an astrocytic biomarker, has previously been linked with Alzheimer's disease (AD) status, amyloid levels, and memory performance in older adults. The neuroanatomical pathways by which astrogliosis/astrocyte reactivity might impact cognitive outcomes remains unclear. We evaluated whether plasma GFAP and amyloid levels had a synergistic effect on fornix structure, which is critically involved in AD-associated cholinergic pathways. We also examined whether fornix structure mediates associations between GFAP and verbal memory. Methods In a cohort of both asymptomatic and symptomatic older adults (total n = 99), we assessed plasma GFAP, amyloid-β42 (Aβ42), other AD-related proteins, and vascular markers, and we conducted comprehensive memory testing. Tractography-based methods were used to assess fornix structure with whole brain diffusion metrics to control for diffuse alterations in brain white matter. Results In individuals in the low plasma amyloid-β42 (Aβ42) group, higher plasma GFAP was associated with lower fractional anisotropy (FA; p = 0.007), higher mean diffusivity (MD; p < 0.001), higher radial diffusivity (RD; p < 0.001), and higher axial diffusivity (DA; p = 0.001) in the left fornix. These associations were independent of APOE gene status, plasma levels of total tau and neurofilament light, plasma vascular biomarkers, and whole brain diffusion metrics. In a sub-analysis of participants in the low plasma Aβ42 group (n = 33), fornix structure mediated the association between higher plasma GFAP levels and lower verbal memory performance. Discussion Higher plasma GFAP was associated with altered fornix microstructure in the setting of greater amyloid deposition. We also expanded on our prior GFAP-verbal memory findings by demonstrating that in the low plasma Aβ42 group, left fornix integrity may be a primary white matter conduit for the negative associations between GFAP and verbal memory performance. Overall, these findings suggest that astrogliosis/astrocyte reactivity may play an early, pivotal role in AD pathogenesis, and further demonstrate that high GFAP and low Aβ42 in plasma may reflect a particularly detrimental synergistic role in forniceal-memory pathways.
Collapse
Affiliation(s)
- Brianne M. Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Lopez Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Wang
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V. McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashesh A. Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Radiology, Denver Health, Denver, CO, USA
| | - William Lippitt
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S. Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Allison L.B. Shapiro
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S. Heffernan
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jada Boyd
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E. Carlson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Syk M, Tornvind E, Gallwitz M, Fällmar D, Amandusson Å, Rothkegel H, Danfors T, Thulin M, Rasmusson AJ, Cervenka S, Pollak TA, Endres D, van Elst LT, Bodén R, Nilsson BM, Nordmark G, Burman J, Cunningham JL. An exploratory study of the damage markers NfL, GFAP, and t-Tau, in cerebrospinal fluid and other findings from a patient cohort enriched for suspected autoimmune psychiatric disease. Transl Psychiatry 2024; 14:304. [PMID: 39048548 PMCID: PMC11269634 DOI: 10.1038/s41398-024-03021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
There is growing evidence suggesting that immunological mechanisms play a significant role in the development of psychiatric symptoms in certain patient subgroups. However, the relationship between clinical red flags for suspected autoimmune psychiatric disease and signs of central nervous system (CNS) pathology (e.g., routine cerebrospinal fluid (CSF) alterations, CNS damage markers, neurophysiological or neuroimaging findings) has received limited attention. Here, we aimed to describe the prevalence and distribution of potential CNS pathologies in psychiatric patients in relation to clinical red flags for autoimmune psychiatric disease and psychiatric symptoms. CSF routine findings and CNS damage markers; neurofilament light chain protein (NfL), glial fibrillary acidic protein (GFAP) and total Tau (t-Tau), in CSF from 127 patients with psychiatric disease preselected for suspected immunological involvement were related to recently proposed clinical red flags, psychiatric features, and MRI and EEG findings. Twenty-one percent had abnormal routine CSF findings and 27% had elevated levels of CNS damage markers. Six percent had anti-neuronal antibodies in serum and 2% had these antibodies in the CSF. Sixty-six percent of patients examined with MRI (n = 88) had alterations, mostly atrophy or nonspecific white matter lesions. Twenty-seven percent of patients with EEG recordings (n = 70) had abnormal findings. Elevated NfL levels were associated with comorbid autoimmunity and affective dysregulation symptoms. Elevated t-Tau was associated with catatonia and higher ratings of agitation/hyperactivity. Elevated GFAP was associated with acute onset, atypical presentation, infectious prodrome, tics, depressive/anxiety symptom ratings and overall greater psychiatric symptom burden. In conclusion, preselection based on suspected autoimmune psychiatric disease identifies a population with a high prevalence of CSF alterations suggesting CNS pathology. Future studies should examine the value of these markers in predicting treatment responses.
Collapse
Affiliation(s)
- Mikaela Syk
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Emma Tornvind
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Maike Gallwitz
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - David Fällmar
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Åsa Amandusson
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Holger Rothkegel
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Måns Thulin
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Annica J Rasmusson
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Simon Cervenka
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Bodén
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Björn M Nilsson
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
30
|
Shahidehpour RK, Nelson PT, Bachstetter AD. A pathologic study of Perivascular pTDP-43 Lin bodies in LATE-NC. Acta Neuropathol Commun 2024; 12:114. [PMID: 38997773 PMCID: PMC11241908 DOI: 10.1186/s40478-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND TAR DNA-Binding Protein 43 (TDP-43) pathological inclusions are a distinctive feature in dozens of neurodegenerative pathologies, including limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Prior investigations identified vascular-associated TDP-43-positive micro-lesions, known as "Lin bodies," located on or near the brain capillaries of some individuals with LATE-NC. This study aimed to investigate the relationship between the accumulation of Lin bodies and glial cells in LATE-NC and the potential co-localization with ferritin, a protein associated with iron storage. Using multiplexed immunohistochemistry and digital pathology tools, we conducted pathological analyses to investigate the relationship between Lin bodies and glial markers (GFAP for astrocytes, IBA1 for microglia) and ferritin. Analyses were conducted on post-mortem brain tissues collected from individuals with pathologically confirmed Alzheimer's disease neuropathological changes (ADNC) and LATE-NC. RESULTS As shown previously, there was a robust association between Lin bodies and GFAP-positive astrocyte processes. Moreover, we also observed Lin bodies frequently co-localizing with ferritin, suggesting a potential link to compromised vascular integrity. Subsequent analyses demonstrated increased astrocytosis near Lin body-positive vessels compared to those without Lin bodies, particularly in ADNC cases. These results suggest that the accumulation of Lin bodies may elicit an increased glial response, particularly among astrocytes, possibly related to impaired vascular integrity. CONCLUSIONS Lin bodies are associated with a local reactive glial response. The strong association of Lin bodies with ferritin suggests that the loss of vascular integrity may be either a cause or a consequence of the pTDP-43 pathology. The reactive glia surrounding the affected vessels could further compromise vascular function.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
31
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
32
|
Nam MH, Na H, Justin Lee C, Yun M. A Key Mediator and Imaging Target in Alzheimer's Disease: Unlocking the Role of Reactive Astrogliosis Through MAOB. Nucl Med Mol Imaging 2024; 58:177-184. [PMID: 38932762 PMCID: PMC11196512 DOI: 10.1007/s13139-023-00837-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/28/2024] Open
Abstract
Astrocytes primarily maintain physiological brain homeostasis. However, under various pathological conditions, they can undergo morphological, transcriptomic, and functional transformations, collectively referred to as reactive astrogliosis. Recent studies have accumulated lines of evidence that reactive astrogliosis plays a crucial role in the pathology of Alzheimer's disease (AD). In particular, monoamine oxidase B, a mitochondrial enzyme mainly expressed in astrocytes, significantly contributes to neuronal dysfunction and neurodegeneration in AD brains. Moreover, it has been reported that reactive astrogliosis precedes other pathological hallmarks such as amyloid-beta plaque deposition and tau tangle formation in AD. Due to the early onset and profound impact of reactive astrocytes on pathology, there have been extensive efforts in the past decade to visualize these cells in the brains of AD patients using positron emission tomography (PET) imaging. In this review, we summarize the recent studies regarding the essential pathological importance of reactive astrocytes in AD and their application as a target for PET imaging.
Collapse
Affiliation(s)
- Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Heesu Na
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Altomare D, Libri I, Alberici A, Rivolta J, Padovani A, Ashton NJ, Zetterberg H, Blennow K, Borroni B. Plasma biomarkers increase diagnostic confidence in patients with Alzheimer's disease or frontotemporal lobar degeneration. Alzheimers Res Ther 2024; 16:107. [PMID: 38734612 PMCID: PMC11088144 DOI: 10.1186/s13195-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The recent development of techniques to assess plasma biomarkers has changed the way the research community envisions the future of diagnosis and management of Alzheimer's disease (AD) and other neurodegenerative disorders. This work aims to provide real world evidence on the clinical impact of plasma biomarkers in an academic tertiary care center. METHODS Anonymized clinical reports of patients diagnosed with AD or Frontotemporal Lobar Degeneration with available plasma biomarkers (Aβ42, Aβ42/Aβ40, p-tau181, p-tau231, NfL, GFAP) were independently assessed by two neurologists who expressed diagnosis and diagnostic confidence three times: (T0) at baseline based on the information collected during the first visit, (T1) after plasma biomarkers, and (T2) after traditional biomarkers (when available). Finally, we assessed whether clinicians' interpretation of plasma biomarkers and the consequent clinical impact are consistent with the final diagnosis, determined after the conclusion of the diagnostic clinical and instrumental work-up by the actual managing physicians who had complete access to all available information. RESULTS Clinicians assessed 122 reports, and their concordance ranged from 81 to 91% at the three time points. At T1, the presentation of plasma biomarkers resulted in a change of diagnosis in 2% (2/122, p = 1.00) of cases, and in increased diagnostic confidence in 76% (91/120, p < 0.001) of cases with confirmed diagnosis. The change in diagnosis and the increase in diagnostic confidence after plasma biomarkers were consistent with the final diagnosis in 100% (2/2) and 81% (74/91) of cases, respectively. At T2, the presentation of traditional biomarkers resulted in a further change of diagnosis in 13% (12/94, p = 0.149) of cases, and in increased diagnostic confidence in 88% (72/82, p < 0.001) of cases with confirmed diagnosis. CONCLUSIONS In an academic tertiary care center, plasma biomarkers supported clinicians by increasing their diagnostic confidence in most cases, despite a negligible impact on diagnosis. Future prospective studies are needed to assess the full potential of plasma biomarkers on clinical grounds.
Collapse
Affiliation(s)
- Daniele Altomare
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Ilenia Libri
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Department of Continuity of Care and Frailty, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Jasmine Rivolta
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Department of Continuity of Care and Frailty, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, UCL, London, W1T 7NF, UK
- Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy.
- Department of Continuity of Care and Frailty, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy.
| |
Collapse
|
34
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
35
|
Lee C, Friedman A. Generating PET scan patterns in Alzheimer's by a mathematical model. PLoS One 2024; 19:e0299637. [PMID: 38625863 PMCID: PMC11020767 DOI: 10.1371/journal.pone.0299637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 04/18/2024] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia. The cause of the disease is unknown, and it has no cure. Symptoms include cognitive decline, memory loss, and impairment of daily functioning. The pathological hallmarks of the disease are aggregation of plaques of amyloid-β (Aβ) and neurofibrillary tangles of tau proteins (τ), which can be detected in PET scans of the brain. The disease can remain asymptomatic for decades, while the densities of Aβ and τ continue to grow. Inflammation is considered an early event that drives the disease. In this paper, we develop a mathematical model that can produce simulated patterns of (Aβ,τ) seen in PET scans of AD patients. The model is based on the assumption that early inflammations, R and [Formula: see text], drive the growth of Aβ and τ, respectively. Recently approved drugs can slow the progression of AD in patients, provided treatment begins early, before significant damage to the brain has occurred. In line with current longitudinal studies, we used the model to demonstrate how to assess the efficacy of such drugs when given years before the disease becomes symptomatic.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Mathematics, Kyonggi University, Suwon, Republic of Korea
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
36
|
Chong JR, Chai YL, Yam ATY, Hilal S, Vrooman H, Venketasubramanian N, Blennow K, Zetterberg H, Ashton NJ, Chen CP, Lai MKP. Association of plasma GFAP with elevated brain amyloid is dependent on severity of white matter lesions in an Asian cognitively impaired cohort. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12576. [PMID: 38605996 PMCID: PMC11007806 DOI: 10.1002/dad2.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION While elevated blood glial fibrillary acidic protein (GFAP) has been associated with brain amyloid pathology, whether this association occurs in populations with high cerebral small vessel disease (CSVD) concomitance remains unclear. METHODS Using a Singapore-based cohort of cognitively impaired subjects, we assessed associations between plasma GFAP and neuroimaging measures of brain amyloid and CSVD, including white matter hyperintensities (WMH). We also examined the diagnostic performance of plasma GFAP in detecting brain amyloid beta positivity (Aβ+). RESULTS When stratified by WMH status, elevated brain amyloid was associated with higher plasma GFAP only in the WMH- group (β = 0.383; P < 0.001). The diagnostic performance of plasma GFAP in identifying Aβ+ was significantly higher in the WMH- group (area under the curve [AUC] = 0.896) than in the WMH+ group (AUC = 0.712, P = 0.008). DISCUSSION The biomarker utility of plasma GFAP in detecting brain amyloid pathology is dependent on the severity of concomitant WMH. Highlight Glial fibrillary acidic protein (GFAP)'s association with brain amyloid is unclear in populations with high cerebral small vessel disease (CSVD).Plasma GFAP was measured in a cohort with CSVD and brain amyloid.Plasma GFAP was better in detecting amyloid in patients with low CSVD versus high CSVD.Biomarker utility of GFAP in detecting brain amyloid depends on the severity of CSVD.
Collapse
Affiliation(s)
- Joyce R. Chong
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| | - Yuek Ling Chai
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| | - Amelia T. Y. Yam
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| | - Saima Hilal
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
- Saw Swee Hock School of Public HealthNational University of Singapore and National University Health SystemKent RidgeSingapore
- Department of Radiology and Nuclear MedicineErasmus Medical CenterRotterdamthe Netherlands
| | - Henri Vrooman
- Department of Radiology and Nuclear MedicineErasmus Medical CenterRotterdamthe Netherlands
| | | | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGöteborgSweden
- Department of Neurodegenerative DiseaseThe UCL Queen Square Institute of NeurologyLondonUK
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Christopher P. Chen
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| | - Mitchell K. P. Lai
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| |
Collapse
|
37
|
Ishibashi K. Clinical application of MAO-B PET using 18F-THK5351 in neurological disorders. Geriatr Gerontol Int 2024; 24 Suppl 1:31-43. [PMID: 37973072 PMCID: PMC11503588 DOI: 10.1111/ggi.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Monoamine oxidase B (MAO-B) is an enzyme localized to the outer mitochondrial membrane and highly concentrated in astrocytes. Temporal changes in regional MAO-B levels can be used as an index of astrocytic proliferation, known as activated astrocytes or astrogliosis. MAO-B is a marker to evaluate the degree of astrogliosis. Therefore, MAO-B positron emission tomography (PET) is a powerful imaging technique for visualizing and quantifying ongoing astrogliosis through the estimate of regional MAO-B levels. Each neurodegenerative disorder generally has a characteristic distribution pattern of astrogliosis secondary to neuronal loss and pathological protein aggregation. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neurodegeneration marker for identifying degenerative lesions. Any inflammation in the brain usually accompanies astrogliosis starting from an acute phase to a chronic phase. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neuroinflammation marker for identifying inflammatory lesions. MAO-B levels are high in gliomas originating from astrocytes but low in lymphoid tumors. Therefore, MAO-B PET can be used as a brain tumor marker for identifying astrocytic gliomas by imaging MAO-B levels and distinguishing between astrocytic and lymphoid tumors. This review summarizes the clinical application of MAO-B PET using 18F-THK5351 as markers for neurodegeneration, neuroinflammation, and brain tumors in neurological disorders. Because we assume that MAO-B PET is clinically applied to an individual patient, we focus on visual inspection of MAO-B images at the individual patient level. Geriatr Gerontol Int 2024; 24: 31-43.
Collapse
Affiliation(s)
- Kenji Ishibashi
- Diagnostic Neuroimaging Research, Research Team for NeuroimagingTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| |
Collapse
|
38
|
Fontana IC, Kumar A, Okamura N, Nordberg A. Multitracer Approach to Understanding the Complexity of Reactive Astrogliosis in Alzheimer's Brains. ACS Chem Neurosci 2024; 15:328-336. [PMID: 38133820 PMCID: PMC10797624 DOI: 10.1021/acschemneuro.3c00646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A monoamine oxidase B (MAO-B) selective positron emission tomography (PET) tracer [11C]-deuterium-l-deprenyl holds promise for imaging reactive astrogliosis in neurodegenerative diseases, such as Alzheimer's disease (AD). Two novel PET tracers ([11C]-BU99008 and [18F]-SMBT-1) have recently been developed to assess the complexity of reactive astrogliosis in the AD continuum. We have investigated the binding properties of SMBT-1, l-deprenyl, and BU99008 in AD and cognitively normal control (CN) brains. Competition binding assays with [3H]-l-deprenyl and [3H]-BU99008 versus unlabeled SMBT-1 in postmortem AD and CN temporal and frontal cortex brains demonstrated that SMBT-1 interacted with [3H]-deprenyl at a single binding site (nM range) and with [3H]-BU99008 at multiple binding sites (from nM to μM). Autoradiography studies on large frozen postmortem AD and CN hemisphere brain sections demonstrated that 1 μM SMBT-1 almost completely displaced the [3H]-l-deprenyl binding (>90%), while SMBT-1 only partly displaced the [3H]-BU99008 binding (50-60% displacement) in cortical regions. In conclusion, SMBT-1, l-deprenyl, and BU99008 interact at the same MAO-B binding site, while BU99008 shows an additional independent binding site in AD and CN brains. The high translational power of our studies in human AD and CN brains suggests that the multitracer approach with SMBT-1, l-deprenyl, and BU99008 could be useful for imaging reactive astrogliosis.
Collapse
Affiliation(s)
- Igor C. Fontana
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
| | - Amit Kumar
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
| | - Nobuyuki Okamura
- Department
of Pharmacology, Tohoku Medical and Pharmaceutical
University, Sendai 983-8536, Japan
| | - Agneta Nordberg
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
- Theme
Inflammation and Aging, Karolinska University
Hospital, S-141 57 Stockholm, Sweden
| |
Collapse
|
39
|
Rodriguez-Vieitez E, Kumar A, Malarte ML, Ioannou K, Rocha FM, Chiotis K. Imaging Neuroinflammation: Quantification of Astrocytosis in a Multitracer PET Approach. Methods Mol Biol 2024; 2785:195-218. [PMID: 38427196 DOI: 10.1007/978-1-0716-3774-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The recent progress in the development of in vivo biomarkers is rapidly changing how neurodegenerative diseases are conceptualized and diagnosed and how clinical trials are designed today. Alzheimer's disease (AD) - the most common neurodegenerative disorder - is characterized by a complex neuropathology involving the deposition of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated tau proteins, accompanied by the activation of glial cells, i.e., astrocytes and microglia, and neuroinflammatory response, leading to neurodegeneration and cognitive dysfunction. An increasing diversity of positron emission tomography (PET) imaging radiotracers is available to selectively target the different pathophysiological processes of AD. Along with the success of Aβ PET and the more recent tau PET imaging, there is a great interest to develop PET tracers to image glial reactivity and neuroinflammation. While most research to date has focused on imaging microgliosis, there is an upsurge of interest in imaging reactive astrocytes in the AD continuum. There is increasing evidence that reactive astrocytes are morphologically and functionally heterogeneous, with different subtypes that express different markers and display various homeostatic or detrimental roles across disease stages. Therefore, multiple biomarkers are desirable to unravel the complex phenomenon of reactive astrocytosis. In the field of in vivo PET imaging in AD, the research concerning reactive astrocytes has predominantly focused on targeting monoamine oxidase B (MAO-B), most often using either 11C-deuterium-L-deprenyl (11C-DED) or 18F-SMBT-1 PET tracers. Additionally, imidazoline2 binding (I2BS) sites have been imaged using 11C-BU99008 PET. Recent studies in our group using 11C-DED PET imaging suggest that astrocytosis may be present from the early stages of disease development in AD. This chapter provides a detailed description of the practical approach used for the analysis of 11C-DED PET imaging data in a multitracer PET paradigm including 11C-Pittsburgh compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG). The multitracer PET approach allows investigating the comparative regional and temporal patterns of in vivo brain astrocytosis, fibrillar Aβ deposition, glucose metabolism, and brain structural changes. It may also contribute to understanding the potential role of novel plasma biomarkers of reactive astrocytes, in particular the glial fibrillary acidic protein (GFAP), at different stages of disease progression. This chapter attempts to stimulate further research in the field, including the development of novel PET tracers that may allow visualizing different aspects of the complex astrocytic and microglial response in neurodegenerative diseases. Progress in the field will contribute to the incorporation of PET imaging of glial reactivity and neuroinflammation as biomarkers with clinical application and motivate further investigation on glial cells as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Ioannou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Filipa M Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Liu X, Liu X, Liu Y, Yang B, Li Y, Li F, Qian K, Zu J, Zhang W, Zhou S, Zhang T, Liu J, Cui G, Xu C. Utility of serum neurofilament light chain and glial fibrillary acidic protein as diagnostic biomarkers of freezing of gait in Parkinson's disease. Brain Res 2024; 1822:148660. [PMID: 37924925 DOI: 10.1016/j.brainres.2023.148660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Freezing of gait (FOG) is one of the most distressing features of Parkinson's disease (PD), increasing the risks of fractures and seriously affecting patients' quality of life. We aimed to examine the potential diagnostic roles of serum neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP) in PD patients with FOG (PD-FOG). We included 99 patients, comprising 54 PD patients without FOG (PD-NoFOG), 45 PD-FOG and 37 healthy controls (HCs). Our results indicated serum markers were significantly higher in PD-FOG and postural instability and gait difficulty (PIGD) motor subtype patients than in PD-NoFOG and non-PIGD subtype patients (P < 0.05), respectively. Patients with high concentrations of the markers NFL and GFAP had higher PIGD scores and greater FOG severity than those with low concentrations. Moreover, serum levels of both NFL and GFAP were significantly positively associated with age, FOG severity, PD-FOG status, and negatively associated with Mini-Mental State Examination (MMSE) scores. Logistic regression analysis identified serum levels of NFL and GFAP as independent risk factors for PD-FOG. Mediation analysis revealed that MMSE scores fully mediated the relationship between serum GFAP levels and FOG-Q scores, accounting for 33.33% of the total effects (indirect effect = 0.01, 95% CI 0.01-0.02). NFL levels differentiated PD-FOG from PD-NoFOG with reliable diagnostic accuracy (AUC 0.75, 95% CI 0.66-0.84), and the combination of NFL, GFAP, duration and MMSE scores demonstrated high accuracy (AUC 0.84, 95% CI 0.76-0.91). Our findings support the notion that NFL and GFAP may be potential biomarkers for the diagnosis of PD-FOG.
Collapse
Affiliation(s)
- Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Xuanjing Liu
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Yuning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Bo Yang
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Yangdanyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Fujia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Kun Qian
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Su Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Life Sciences College, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| |
Collapse
|
42
|
LoBue C, Stopschinski BE, Calveras NS, Douglas PM, Huebinger R, Cullum CM, Hart J, Gonzales MM. Blood Markers in Relation to a History of Traumatic Brain Injury Across Stages of Cognitive Impairment in a Diverse Cohort. J Alzheimers Dis 2024; 97:345-358. [PMID: 38143366 PMCID: PMC10947497 DOI: 10.3233/jad-231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been linked to multiple pathophysiological processes that could increase risk for Alzheimer's disease and related dementias (ADRD). However, the impact of prior TBI on blood biomarkers for ADRD remains unknown. OBJECTIVE Using cross-sectional data, we assessed whether a history of TBI influences serum biomarkers in a diverse cohort (approximately 50% Hispanic) with normal cognition, mild cognitive impairment, or dementia. METHODS Levels of glial fibrillary acidic protein (GFAP), neurofilament light (NFL), total tau (T-tau), and ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) were measured for participants across the cognitive spectrum. Participants were categorized based on presence and absence of a history of TBI with loss of consciousness, and study samples were derived through case-control matching. Multivariable general linear models compared concentrations of biomarkers in relation to a history of TBI and smoothing splines modelled biomarkers non-linearly in the cognitively impaired groups as a function of time since symptom onset. RESULTS Each biomarker was higher across stages of cognitive impairment, characterized by clinical diagnosis and Mini-Mental State Examination performance, but these associations were not influenced by a history of TBI. However, modelling biomarkers in relation to duration of cognitive symptoms for ADRD showed differences by history of TBI, with only GFAP and UCHL1 being elevated. CONCLUSIONS Serum GFAP, NFL, T-tau, and UCHL1 were higher across stages of cognitive impairment in this diverse clinical cohort, regardless of TBI history, though longitudinal investigation of the timing, order, and trajectory of the biomarkers in relation to prior TBI is warranted.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Barbara E. Stopschinski
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nil Saez Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter M. Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ryan Huebinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - C. Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mitzi M. Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
| |
Collapse
|
43
|
Lee SH, Son HJ. Second Wave, Late-Stage Neuroinflammation in Cleared Brains of Aged 5xFAD Alzheimer's Mice Detected by Macrolaser Light Sheet Microscopy Imaging. Int J Mol Sci 2023; 24:17058. [PMID: 38069392 PMCID: PMC10707588 DOI: 10.3390/ijms242317058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
This study leverages the innovative imaging capabilities of macrolaser light-sheet microscopy to elucidate the 3D spatial visualization of AD-associated neuropathologic networks in the transparent brains of 44-week-old 5xFAD mice. Brain samples from ten AD and seven control mice were prepared through a hydrophilic tissue-clearing pipeline and immunostained with thioflavin S (β-amyloid), anti-CD11b antibody (microglia), and anti-ACSA-2 antibody (astrocytes). The 5xFAD group exhibited significantly higher average total surface volumes of β-amyloid accumulation than the control group (AD, 898,634,368 µm3 [383,355,488-1,324,986,752]; control, 33,320,178 µm3 [11,156,785-65,390,988], p = 0.0006). Within the AD group, there was significant interindividual and interindividual variability concerning the number and surface volume of individual amyloid particles throughout the entire brain. In the context of neuroinflammation, the 5xFAD group showed significantly higher average total surface volumes of anti-ACSA-2-labeled astrocytes (AD, 59,064,360 µm3 [27,815,500-222,619,280]; control, 20,272,722 µm3 [9,317,288-27,223,352], p = 0.0047) and anti-CD11b labeled microglia (AD, 51,210,100 µm3 [15,309,118-135,532,144]; control, 23,461,593 µm3 [14,499,170-27,924,110], p = 0.0162) than the control group. Contrary to the long-standing finding that early-stage neuroinflammation precedes the subsequent later-stage of neurodegeneration, our data reveal that the second wave, late-stage active neuroinflammation persists in the aged AD brains, even as they continue to show signs of ongoing neurodegeneration and significant amyloid accumulation.
Collapse
Affiliation(s)
- Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| |
Collapse
|
44
|
Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Curr Issues Mol Biol 2023; 45:8816-8839. [PMID: 37998730 PMCID: PMC10670294 DOI: 10.3390/cimb45110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aβ) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aβ immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (R.D.); (R.I.K.); (P.B.); (K.N.); (G.A.)
| |
Collapse
|
45
|
Kim HW, Lee S, Yang JH, Moon Y, Lee J, Moon WJ. Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study. Korean J Radiol 2023; 24:1131-1141. [PMID: 37899522 PMCID: PMC10613848 DOI: 10.3348/kjr.2023.0490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. MATERIALS AND METHODS This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). RESULTS Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. CONCLUSION Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.
Collapse
Affiliation(s)
- Hyeong Woo Kim
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Subin Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Yang
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Zyuz'kov GN, Miroshnichenko LA, Chaikovskii AV, Kotlovskaya LY. The Role of JNK and p53 in the Regulation of Secretory Function of Neuroglial Cells of Various Types in β-Amyloid-Induced Neurodegeneration. Bull Exp Biol Med 2023; 175:753-756. [PMID: 37987942 DOI: 10.1007/s10517-023-05939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 11/22/2023]
Abstract
We studied the effect of JNK and p53 inhibitors on the production of neurotrophic factors stimulating the realization of the growth potential of neural stem cells by neuroglial cells of various types under conditions of simulation of induced β-amyloid neurodegeneration in vitro. It was shown that β-amyloid stimulates the production of neurotrophins by astrocytes and microglial cells, but does not affect the functioning of oligodendrocytes. JNK and p53 were not involved in the secretion of neurotrophins by intact astrocytes. The stimulating role of p53 on the implementation of their secretory activity under the influence of a neurotoxic agent was revealed. At the same time, the inhibitory role of JNK and p53 in the production of neurotrophic growth factors by oligodendrocytes and microglial cells was revealed both under conditions of their optimal vital activity and when β-amyloid was added to the cell culture.
Collapse
Affiliation(s)
- G N Zyuz'kov
- Laboratory of Pathophysiology and Experimental Therapy, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - L A Miroshnichenko
- Laboratory of Pathophysiology and Experimental Therapy, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A V Chaikovskii
- Laboratory of Pathophysiology and Experimental Therapy, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L Yu Kotlovskaya
- Laboratory of Pathophysiology and Experimental Therapy, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
47
|
Chouliaras L, O'Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28:4084-4097. [PMID: 37608222 PMCID: PMC10827668 DOI: 10.1038/s41380-023-02215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Dementia is a leading cause of disability and death worldwide. At present there is no disease modifying treatment for any of the most common types of dementia such as Alzheimer's disease (AD), Vascular dementia, Lewy Body Dementia (LBD) and Frontotemporal dementia (FTD). Early and accurate diagnosis of dementia subtype is critical to improving clinical care and developing better treatments. Structural and molecular imaging has contributed to a better understanding of the pathophysiology of neurodegenerative dementias and is increasingly being adopted into clinical practice for early and accurate diagnosis. In this review we summarise the contribution imaging has made with particular focus on multimodal magnetic resonance imaging (MRI) and positron emission tomography imaging (PET). Structural MRI is widely used in clinical practice and can help exclude reversible causes of memory problems but has relatively low sensitivity for the early and differential diagnosis of dementia subtypes. 18F-fluorodeoxyglucose PET has high sensitivity and specificity for AD and FTD, while PET with ligands for amyloid and tau can improve the differential diagnosis of AD and non-AD dementias, including recognition at prodromal stages. Dopaminergic imaging can assist with the diagnosis of LBD. The lack of a validated tracer for α-synuclein or TAR DNA-binding protein 43 (TDP-43) imaging remain notable gaps, though work is ongoing. Emerging PET tracers such as 11C-UCB-J for synaptic imaging may be sensitive early markers but overall larger longitudinal multi-centre cross diagnostic imaging studies are needed.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret's Hospital, Epping, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
48
|
Chiotis K, Johansson C, Rodriguez-Vieitez E, Ashton NJ, Blennow K, Zetterberg H, Graff C, Nordberg A. Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer's disease with multi-modal PET and plasma GFAP. Mol Neurodegener 2023; 18:60. [PMID: 37697307 PMCID: PMC10496408 DOI: 10.1186/s13024-023-00647-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Plasma assays for the detection of Alzheimer's disease neuropathological changes are receiving ever increasing interest. The concentration of plasma glial fibrillary acidic protein (GFAP) has been suggested as a potential marker of astrocytes or recently, amyloid-β burden, although this hypothesis remains unproven. We compared plasma GFAP levels with the astrocyte tracer 11C-Deuterium-L-Deprenyl (11C-DED) in a multi-modal PET design in participants with sporadic and Autosomal Dominant Alzheimer's disease. METHODS Twenty-four individuals from families with known Autosomal Dominant Alzheimer's Disease mutations (mutation carriers = 10; non-carriers = 14) and fifteen patients with sporadic Alzheimer's disease were included. The individuals underwent PET imaging with 11C-DED, 11C-PIB and 18F-FDG, as markers of reactive astrogliosis, amyloid-β deposition, and glucose metabolism, respectively, and plasma sampling for measuring GFAP concentrations. Twenty-one participants from the Autosomal Dominant Alzheimer's Disease group underwent follow-up plasma sampling and ten of these participants underwent follow-up PET imaging. RESULTS In mutation carriers, plasma GFAP levels and 11C-PIB binding increased, while 11C-DED binding and 18F-FDG uptake significantly decreased across the estimated years to symptom onset. Cross-sectionally, plasma GFAP demonstrated a negative correlation with 11C-DED binding in both mutation carriers and patients with sporadic disease. Plasma GFAP indicated cross-sectionally a significant positive correlation with 11C-PIB binding and a significant negative correlation with 18F-FDG in the whole sample. The longitudinal levels of 11C-DED binding showed a significant negative correlation with longitudinal plasma GFAP concentrations over the follow-up interval. CONCLUSIONS Plasma GFAP concentration and astrocyte 11C-DED brain binding levels followed divergent trajectories and may reflect different underlying processes. The strong negative association between plasma GFAP and 11C-DED binding in Autosomal Dominant and sporadic Alzheimer's disease brains may indicate that if both are markers of reactive astrogliosis, they may detect different states or subtypes of astrogliosis. Increased 11C-DED brain binding seems to be an earlier phenomenon in Alzheimer's disease progression than increased plasma GFAP concentration.
Collapse
Affiliation(s)
- Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementia, Karolinska University Hospital-Solna, Solna, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
49
|
Mothes T, Portal B, Konstantinidis E, Eltom K, Libard S, Streubel-Gallasch L, Ingelsson M, Rostami J, Lindskog M, Erlandsson A. Astrocytic uptake of neuronal corpses promotes cell-to-cell spreading of tau pathology. Acta Neuropathol Commun 2023; 11:97. [PMID: 37330529 PMCID: PMC10276914 DOI: 10.1186/s40478-023-01589-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023] Open
Abstract
Tau deposits in astrocytes are frequently found in Alzheimer's disease (AD) and other tauopathies. Since astrocytes do not express tau, the inclusions have been suggested to be of neuronal origin. However, the mechanisms behind their appearance and their relevance for disease progression remain unknown. Here we demonstrate, using a battery of experimental techniques that human astrocytes serve as an intermediator, promoting cell-to-cell spreading of pathological tau. Human astrocytes engulf and process, but fail to fully degrade dead neurons with tau pathology, as well as synthetic tau fibrils and tau aggregates isolated from AD brain tissue. Instead, the pathogenic tau is spread to nearby cells via secretion and tunneling nanotube mediated transfer. By performing co-culture experiments we could show that tau-containing astrocytes induce tau pathology in healthy human neurons directly. Furthermore, our results from a FRET based seeding assay, demonstrated that the tau proteoforms secreted by astrocytes have an exceptional seeding capacity, compared to the original tau species engulfed by the cells. Taken together, our study establishes a central role for astrocytes in mediating tau pathology, which could be of relevance for identifying novel treatment targets for AD and other tauopathies.
Collapse
Affiliation(s)
- Tobias Mothes
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Benjamin Portal
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Evangelos Konstantinidis
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Khalid Eltom
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Neuro-Oncology and Neurodegeneration, Uppsala University, Uppsala, Sweden
| | - Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
- University Health Network, Krembil Brain Institute, Toronto, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Jinar Rostami
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Maria Lindskog
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
50
|
Parker CA, Nutt DJ, Tyacke RJ. Imidazoline-I2 PET Tracers in Neuroimaging. Int J Mol Sci 2023; 24:9787. [PMID: 37372936 DOI: 10.3390/ijms24129787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Targeting neuroinflammation, and in particular, microglial activation and astrocytosis, is a current area of the focus of new treatment interventions for a number of neurodegenerative disorders. Probing the roles of microglia and astrocytes in human disease requires the development of useful tools, such as PET imaging tools that are specific for the cell type(s) of interest. This review concentrates on the recent advances in the development of Imidazoline2 binding site (I2BS) PET tracers, which are purported to target astrocytes, and hence could represent key clinical imaging tools for targeting astrocytes in neurodegenerative disease. Five PET tracers for the I2BS are described in this review, with only one (11C-BU99008) being currently validated to GMP for clinical use, and data reported from healthy volunteers, Alzheimer's disease patients, and Parkinson's disease patients. The clinical data utilising 11C-BU99008 have revealed the potential early involvement of astrogliosis in neurodegeneration that might precede the activation of microglia, which, if confirmed, could provide a vital new means for potentially targeting neurodegeneration earlier in the disease course.
Collapse
Affiliation(s)
- Christine A Parker
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David J Nutt
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Robin J Tyacke
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|