1
|
Patel R, Gomes A, Maloney SK, Smith JT. Reduced voluntary wheel running behaviour in Kiss1r knockout mice. Physiol Behav 2024; 287:114701. [PMID: 39317294 DOI: 10.1016/j.physbeh.2024.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Kisspeptin and its receptor, Kiss1r, are novel players in the central balance of energy intake and expenditure. Recent evidence also indicates that kisspeptin signalling is important in thermoregulation and generation of the circadian rhythm. We used global Kiss1r knockout mice (Kiss1r KO), which are hypogonadal and develop obesity, to determine the impact of kisspeptin on circadian related behaviour. Voluntary wheel running was examined in Kiss1r KO and wild-type (WT) mice, using gonad intact and gonadectomised (GDX) mice to account for the effects of kisspeptin on gonadal sex steroids. Intact male and female Kiss1r KO mice covered only 10% and 30% of the distance travelled each day by their respective WT controls. In all mice, most of the running activity occurred during the dark phase. GDX WT mice ran significantly less during dark periods than the intact WT. GDX Kiss1r KO male mice ran significantly less than the GDX WT male mice, but the decrease was attenuated compared to intact mice. There was no difference between the female GDX Kiss1r KO and GDX WT. In contrast to the obese phenotype that develops in Kiss1r KO mice, body mass at the end of the study was significantly lower in the GDX Kiss1r KO than it was in the GDX WT mice. The difference in wheel running activity was not associated with any histological change in WAT, BAT, or muscle diameter. No difference in immunohistochemistry expression was seen in lateral hypothalamic orexin neurons or dopamine neurons in the ventral tegmental area / substantia nigra. We observed increased Iba1 expression (activation of microglia) in the arcuate nucleus of male Kiss1r KO mice. Overall, the circadian locomotor activity in male Kiss1r KO mice appears dependant on kisspeptin signalling and the obese phenotype does not develop in Kiss1r KO mice when they engage in voluntary activity.
Collapse
Affiliation(s)
- Raj Patel
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia
| | - Aaron Gomes
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia
| | - Jeremy T Smith
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia.
| |
Collapse
|
2
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
3
|
Dinh H, Kovács ZZA, Kis M, Kupecz K, Sejben A, Szűcs G, Márványkövi F, Siska A, Freiwan M, Pósa SP, Galla Z, Ibos KE, Bodnár É, Lauber GY, Goncalves AIA, Acar E, Kriston A, Kovács F, Horváth P, Bozsó Z, Tóth G, Földesi I, Monostori P, Cserni G, Podesser BK, Lehoczki A, Pokreisz P, Kiss A, Dux L, Csabafi K, Sárközy M. Role of the kisspeptin-KISS1R axis in the pathogenesis of chronic kidney disease and uremic cardiomyopathy. GeroScience 2024; 46:2463-2488. [PMID: 37987885 PMCID: PMC10828495 DOI: 10.1007/s11357-023-01017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing globally, especially in elderly patients. Uremic cardiomyopathy is a common cardiovascular complication of CKD, characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and fibrosis. Kisspeptins and their receptor, KISS1R, exert a pivotal influence on kidney pathophysiology and modulate age-related pathologies across various organ systems. KISS1R agonists, including kisspeptin-13 (KP-13), hold promise as novel therapeutic agents within age-related biological processes and kidney-related disorders. Our investigation aimed to elucidate the impact of KP-13 on the trajectory of CKD and uremic cardiomyopathy. Male Wistar rats (300-350 g) were randomized into four groups: (I) sham-operated, (II) 5/6 nephrectomy-induced CKD, (III) CKD subjected to a low dose of KP-13 (intraperitoneal 13 µg/day), and (IV) CKD treated with a higher KP-13 dose (intraperitoneal 26 µg/day). Treatments were administered daily from week 3 for 10 days. After 13 weeks, KP-13 increased systemic blood pressure, accentuating diastolic dysfunction's echocardiographic indicators and intensifying CKD-associated markers such as serum urea levels, glomerular hypertrophy, and tubular dilation. Notably, KP-13 did not exacerbate circulatory uremic toxin levels, renal inflammation, or fibrosis markers. In contrast, the higher KP-13 dose correlated with reduced posterior and anterior wall thickness, coupled with diminished cardiomyocyte cross-sectional areas and concurrent elevation of inflammatory (Il6, Tnf), fibrosis (Col1), and apoptosis markers (Bax/Bcl2) relative to the CKD group. In summary, KP-13's influence on CKD and uremic cardiomyopathy encompassed heightened blood pressure and potentially activated inflammatory and apoptotic pathways in the left ventricle.
Collapse
Affiliation(s)
- Hoa Dinh
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Department of Biochemistry, Bach Mai Hospital, Hanoi, 100000, Vietnam
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Merse Kis
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Klaudia Kupecz
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Anita Sejben
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Gergő Szűcs
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Fanni Márványkövi
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Marah Freiwan
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Szonja Polett Pósa
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Gülsüm Yilmaz Lauber
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Ana Isabel Antunes Goncalves
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Zsolt Bozsó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gábor Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Andrea Lehoczki
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| | - Peter Pokreisz
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - László Dux
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Márta Sárközy
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
4
|
Sliwowska JH, Woods NE, Alzahrani AR, Paspali E, Tate RJ, Ferro VA. Kisspeptin a potential therapeutic target in treatment of both metabolic and reproductive dysfunction. J Diabetes 2024; 16:e13541. [PMID: 38599822 PMCID: PMC11006622 DOI: 10.1111/1753-0407.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/21/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Kisspeptins (KPs) are proteins that were first recognized to have antimetastatic action. Later, the critical role of this peptide in the regulation of reproduction was proved. In recent years, evidence has been accumulated supporting a role for KPs in regulating metabolic processes in a sexual dimorphic manner. It has been proposed that KPs regulate metabolism both indirectly via gonadal hormones and/or directly via the kisspeptin receptor in the brain, brown adipose tissue, and pancreas. The aim of the review is to provide both experimental and clinical evidence indicating that KPs are peptides linking metabolism and reproduction. We propose that KPs could be used as a potential target to treat both metabolic and reproductive abnormalities. Thus, we focus on the consequences of disruptions in KPs and their receptors in metabolic conditions such as diabetes, undernutrition, obesity, and reproductive disorders (hypogonadotropic hypogonadism and polycystic ovary syndrome). Data from both animal models and human subjects indicate that alterations in KPs in the case of metabolic imbalance lead also to disruptions in reproductive functions. Changes both in the hypothalamic and peripheral KP systems in animal models of the aforementioned disorders are discussed. Finally, an overview of current clinical studies involving KP in fertility and metabolism show fewer studies on metabolism (15%) and only one to date on both. Presented data indicate a dynamic and emerging field of KP studies as possible therapeutic targets in treatments of both reproductive and metabolic dysfunctions.
Collapse
Affiliation(s)
- Joanna Helena Sliwowska
- Department of Veterinary Medicine and Animal Sciences, Laboratory of Neurobiology, Poznan University of Life Sciences, Poznan, Poland
| | - Nicola Elizabeth Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Abdullah Rzgallah Alzahrani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elpiniki Paspali
- Department of Chemical Engineering, University of Strathclyde, Glasgow, UK
| | - Rothwelle Joseph Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Valerie Anne Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
5
|
Gomes VCL, Beckers KF, Crissman KR, Landry CA, Flanagan JP, Awad RM, Piero FD, Liu CC, Sones JL. Sexually dimorphic pubertal development and adipose tissue kisspeptin dysregulation in the obese and preeclamptic-like BPH/5 mouse model offspring. Front Physiol 2023; 14:1070426. [PMID: 37035685 PMCID: PMC10076539 DOI: 10.3389/fphys.2023.1070426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Preeclampsia (PE) is a devastating hypertensive disorder of pregnancy closely linked to obesity. Long-term adverse outcomes may occur in offspring from preeclamptic pregnancies. Accordingly, sex-specific changes in pubertal development have been described in children from preeclamptic women, but the underlying mechanisms remain vastly unexplored. Features of PE are spontaneously recapitulated by the blood pressure high subline 5 (BPH/5) mouse model, including obesity and dyslipidemia in females before and throughout pregnancy, superimposed hypertension from late gestation to parturition and fetal growth restriction. A sexually dimorphic cardiometabolic phenotype has been described in BPH/5 offspring: while females are hyperphagic, hyperleptinemic, and overweight, with increased reproductive white adipose tissue (rWAT), males have similar food intake, serum leptin concentration, body weight and rWAT mass as controls. Herein, pubertal development and adiposity were further investigated in BPH/5 progeny. Precocious onset of puberty occurs in BPH/5 females, but not in male offspring. When reaching adulthood, the obese BPH/5 females display hypoestrogenism and hyperandrogenism. Kisspeptins, a family of peptides closely linked to reproduction and metabolism, have been previously shown to induce lipolysis and inhibit adipogenesis. Interestingly, expression of kisspeptins (Kiss1) and their cognate receptor (Kiss1r) in the adipose tissue seem to be modulated by the sex steroid hormone milieu. To further understand the metabolic-reproductive crosstalk in the BPH/5 offspring, Kiss1/Kiss1r expression in male and female rWAT were investigated. Downregulation of Kiss1/Kiss1r occurs in BPH/5 females when compared to males. Interestingly, dietary weight loss attenuated circulating testosterone concentration and rWAT Kiss1 downregulation in BPH/5 females. Altogether, the studies demonstrate reproductive abnormalities in offspring gestated in a PE-like uterus, which appear to be closely associated to the sexually dimorphic metabolic phenotype of the BPH/5 mouse model.
Collapse
Affiliation(s)
- Viviane C. L. Gomes
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Kalie F. Beckers
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Kassandra R. Crissman
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Camille A. Landry
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Juliet P. Flanagan
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Reham M. Awad
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Fabio Del Piero
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Jenny L. Sones
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
6
|
Ziarniak K, Yang T, Boycott C, Beetch M, Sassek M, Grzeda E, Ma Y, Sliwowska JH, Stefanska B. DNA hypermethylation of Kiss1r promoter and reduction of hepatic Kiss1r in female rats with type 2 diabetes. Epigenetics 2022; 17:2332-2346. [PMID: 36094166 PMCID: PMC9665141 DOI: 10.1080/15592294.2022.2119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Kisspeptin, produced from the brain and peripheral tissues, may constitute an important link in metabolic regulation in response to external cues, such as diet. The kisspeptin system is well described in the brain. However, its function and regulation in the peripheral tissues, especially in relation to metabolic disease and sex differences, remain to be elucidated. As Kiss1 and Kiss1r, encoding for kisspeptin and kisspeptin receptors, respectively, are altered by overnutrition/fasting and regulated by DNA methylation during puberty and cancer, epigenetic mechanisms in metabolic disorders are highly probable. In the present study, we experimentally induced type 2 diabetes mellitus (DM2) in female Wistar rats using high-fat diet/streptozocin. We analysed expression and DNA methylation of Kiss1 and Kiss1r in the peripheral tissues, using quantitative-reverse-transcription PCR (qRT-PCR) and pyrosequencing. We discovered differential expression of Kiss1 and Kiss1r in peripheral organs in DM2 females, as compared with healthy controls, and the profile differed from patterns reported earlier in males. DM2 in females was linked to the increased Kiss1 mRNA in the liver and increased Kiss1r mRNA in the liver and adipose tissue. However, Kiss1r promoter was hypermethylated in the liver, suggesting gene silencing. Indeed, the increase in DNA methylation of Kiss1r promoter was accompanied by a reduction in Kiss1r protein, implying epigenetic or translational gene repression. Our results deliver novel evidence for tissue-specific differences in Kiss1 and Kiss1r expression in peripheral organs in DM2 females and suggest DNA methylation as a player in regulation of the hepatic kisspeptin system in DM2.
Collapse
Affiliation(s)
- Kamil Ziarniak
- Laboratory of Neurobiology, Department of Zoology, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznan, Poland.,Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, Canada
| | - Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, Canada
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Emilia Grzeda
- Laboratory of Neurobiology, Department of Zoology, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznan, Poland
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, Canada
| | - Joanna H Sliwowska
- Laboratory of Neurobiology, Department of Zoology, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznan, Poland
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Guzelkas I, Orbak Z, Doneray H, Ozturk N, Sagsoz N. Serum kisspeptin, leptin, neuropeptide Y, and neurokinin B levels in adolescents with polycystic ovary syndrome. J Pediatr Endocrinol Metab 2022; 35:481-487. [PMID: 35170267 DOI: 10.1515/jpem-2021-0487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Polycystic ovary syndrome (PCOS) is characterized by ovarian dysfunction, clinical and/or biochemical hyperandrogenism, and polycystic ovaries. Its pathogenesis is still unclear. This study aimed to investigate the relationship between kisspeptin, leptin, neuropeptide Y (NPY), and neurokinin B (NKB) levels for evaluating the pathogenesis of PCOS. METHODS Levels of these parameters were analyzed in 20 patients with PCOS, and 16 healthy adolescents. RESULTS Serum NPY levels were significantly higher in the obese and non-obese PCOS group (p<0.01). There was a negative correlation between the kisspeptin and the NKB levels (p<0.01) in the PCOS group but not in the control group. This negative correlation was also found in both PCOS groups (p<0.01). In the obese PCOS group, serum kisspeptin levels were significantly lower than the control and non-obese PCOS groups (p<0.05) although serum leptin and NPY levels were significantly higher in the obese PCOS group (p<0.01). CONCLUSIONS The high NPY levels in both obese and non-obese patients with PCOS indicate that NPY plays a role in the pathogenesis independently from obesity. Significantly high leptin and low kisspeptin levels in the obese PCOS group suggested that they may be associated with obesity rather than PCOS.
Collapse
Affiliation(s)
- Ismail Guzelkas
- Department of Pediatrics, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Zerrin Orbak
- Department of Pediatric Endocrinology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Hakan Doneray
- Department of Pediatric Endocrinology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Nurinnisa Ozturk
- Department of Biochemistry, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Nevin Sagsoz
- Department of Obstetrics and Gynecology, Kırıkkale University Faculty of Medicine, Kırıkkale, Turkey
| |
Collapse
|
8
|
Kavanagh GS, Tadi J, Balkenhol SM, Kauffman AS, Maloney SK, Smith JT. Kisspeptin impacts on circadian and ultradian rhythms of core body temperature: Evidence in kisspeptin receptor knockout and kisspeptin knockdown mice. Mol Cell Endocrinol 2022; 542:111530. [PMID: 34896241 PMCID: PMC9907773 DOI: 10.1016/j.mce.2021.111530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/26/2023]
Abstract
Kisspeptin is vital for the regulation of both fertility and metabolism. Kisspeptin receptor (Kiss1r) knockout (KO) mice exhibit increased adiposity and reduced energy expenditure in adulthood. Kiss1r mRNA is expressed in brown adipose tissue (BAT) and Kiss1r KO mice exhibit reduced Ucp1 mRNA in BAT and impaired thermogenesis. We hypothesised that mice with diminished kisspeptin signalling would exhibit reduced core body temperature (Tc) and altered dynamics of circadian and ultradian rhythms of Tc. Tc was recorded every 15-min over 14-days in gonadectomised wild-type (WT), Kiss1r KO, and also Kiss1-Cre (95% reduction in Kiss1 transcription) mice. Female Kiss1r KOs had higher adiposity and lower Ucp1 mRNA in BAT than WTs. No change was detected in Kiss1-Cre mice. Mean Tc during the dark phase was lower in female Kiss1r KOs versus WTs, but not Kiss1-Cre mice. Female Kiss1r KOs had a lower mesor and amplitude of the circadian rhythm of Tc than did WTs. In WT mice, there were more episodic ultradian events (EUEs) of Tc during the dark phase than the light phase, but this measure was similar between dark and light phases in Kiss1r KO and Kiss1-Cre mice. The amplitude of EUEs was higher in the dark phase in female Kiss1r KO and male Kiss1-Cre mice. Given the lack of clear metabolic phenotype in Kiss1-Cre mice, 5% of Kiss1 transcription may be sufficient for proper metabolic control, as was shown for fertility. Moreover, the observed alterations in Tc suggest that kisspeptin has a role in circadian and ultradian rhythm-driven pathways.
Collapse
Affiliation(s)
- Georgia S Kavanagh
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jason Tadi
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Sydney M Balkenhol
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy T Smith
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
9
|
Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol 2022; 317:113973. [PMID: 34971635 DOI: 10.1016/j.ygcen.2021.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
10
|
Fang P, She Y, Zhao J, Yan J, Yu X, Jin Y, Wei Q, Zhang Z, Shang W. Emerging roles of kisspeptin/galanin in age-related metabolic disease. Mech Ageing Dev 2021; 199:111571. [PMID: 34517021 DOI: 10.1016/j.mad.2021.111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Age is a major risk factor for developing metabolic diseases such as obesity and diabetes. There is an unprecedented rise in obesity and type 2 diabetes in recent decades. A convincing majority of brain-gut peptides are associated with a higher risk to develop metabolic disorders, and may contribute to the pathophysiology of age-related metabolic diseases. Accumulating basic studies revealed an intriguing role of kisspeptin and galanin involved in the amelioration of insulin resistance in different ways. In patients suffered from obesity and diabetes a significant, sex-related changes in the plasma kisspeptin and galanin levels occurred. Kisspeptin is anorexigenic to prevent obesity, its level is negatively correlative with obesity and insulin resistance. While galanin is appetitive to stimulate food intake and body weight, its level is positively correlative with obesity, HOMA-IR and glucose/triglyceride concentration. In turn, kisspeptin and galanin also distinctly increase glucose uptake and utilization as well as energy expenditure. This article reviews recent evidence dealing with the role of kisspeptin and galanin in the pathophysiology of age-related metabolic diseases. It should be therefore taken into account that the targeted modulation of those peptidergic signaling may be potentially helpful in the future treatment of age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingbo Wei
- Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Oviedo-Ojeda MF, Roque-Jiménez JA, Whalin M, Lee-Rangel HA, Relling AE. Effect of supplementation with different fatty acid profile to the dam in early gestation and to the offspring on the finishing diet on offspring growth and hypothalamus mRNA expression in sheep. J Anim Sci 2021; 99:6153448. [PMID: 33640974 DOI: 10.1093/jas/skab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation with omega-3 and omega-9 fatty acids (FA) during late gestation regulates offspring development; however, their effect in the first third of gestation is unknown in sheep. The objective of this experiment was to evaluate the effects of the maternal supplementation with an enriched source of monounsaturated FA (MUFA) or an enriched source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during the first third of gestation on productive performance on ewes and offspring, and hypothalamic neuropeptides on offspring. Seventy-nine post-weaning lambs, born of sheep supplemented in the first third of gestation with 1.61% Ca salts rich with MUFA or EPA+DHA (dam supplementation, DS), were distributed in a 2×2 factorial arrangement of treatments to finishing diets containing 1.48% of Ca salts of MUFA or EPA+DHA (lamb supplementation, LS). The finishing period of the offspring lasted for 56 d. During the finishing period dry matter intake (DMI, daily) and body weight (BW) were recorded. Plasma was collected for metabolites analysis. Twenty-four lambs were slaughtered, and hypothalamus was collected for mRNA expression of hormone receptors, neuropeptides, and lipid transport genes. The data were analyzed with a mixed model in SAS (9.4) using repeated measurements, when needed. There was a DS×LS interaction for BW (P = 0.10) where LS with EPA+DHA born from DS with MUFA were heavier than the other 3 treatments. Lambs born from DS with MUFA have a greater DMI (P < 0.01) than the offspring born from DS with EPA+DHA. Lambs born from MUFA supplemented dams had a greater (P ≤ 0.05) hypothalamus mRNA expression for cocaine and amphetamine regulated transcript, growth hormone receptor, metastasis suppressor 1, leptin receptor, pro-opiomelanocortin, and Neuropeptide Y. These results indicate that growth depends not on the type of FA during the finishing phase but the interaction of different sources of FA ad different stages. Also, supplementation with FA during early pregnancy changes productive performance and neuropeptides' mRNA expression of lambs independently of the finishing diet.
Collapse
Affiliation(s)
- Mario Francisco Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - José Alejandro Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor Aarón Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro Enrique Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
12
|
Patel R, Smith JT. Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domest Anim Endocrinol 2020; 73:106467. [PMID: 32278499 DOI: 10.1016/j.domaniend.2020.106467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Kisspeptin, encoded by Kiss1 gene expressing neurons in the hypothalamus, is a requisite for fertility and now appears critical in the regulation of energy balance. Kisspeptin neurons, particularly those in the arcuate nucleus (ARC), receive information directly and indirectly from a diverse array of brain regions including the bed nucleus of the stria terminalis, amygdala, interpeduncular nucleus, hippocampus, and cortex. On the other hand, kisspeptin neuron projections clearly extend to GnRH neuron cell bodies in rodents, sheep, and primates and beyond to other-non-GnRH-brain areas. Kiss1r, the kisspeptin receptor, is expressed on GnRH neurons and also in additional brain areas and peripheral tissues, indicating a nonreproductive role. Kisspeptin neurons clearly receive signals pertinent to deviations in energy balance but are now recognized as a novel neuroendocrine player in the fine balance of energy intake and expenditure. Mice that have a dysfunctional gene for Kiss1r develop an obese and diabetic phenotype. The mechanism behind this altered metabolic state is still mostly unknown; however, Kiss1r expression in the pancreas and brown adipose tissue is clearly functional and required for normal glucose tolerance and energy expenditure, respectively. Kisspeptin neurons in the ARC also participate in the generation of circadian rhythms, specifically those concerning food intake and metabolism, offering a potential explanation for the obesity in Kiss1r knockout mice. Overall, the discoveries of new mechanistic roles for kisspeptin in both normal and pathophysiologic states of energy balance may lead to further understating of obesity prevalence and novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- R Patel
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009
| | - J T Smith
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009.
| |
Collapse
|
13
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
14
|
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020; 12:E2604. [PMID: 32867089 PMCID: PMC7551451 DOI: 10.3390/nu12092604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all psychiatric diseases, yet our understanding of its pathophysiological components continues to be fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on the main biological aspects involving central and peripheral neurohormonal pathways, endocrine function, as well as the microbiome-gut-brain axis. It emerged from the unique complexity of constantly accumulating new discoveries, which hamper the ability to look at the disease in a more comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and potential new directions that require further investigation in clinical settings.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Emil Dadański
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Barbara Bętkowska-Korpała
- Department of Psychiatry, Jagiellonian University Medical College, Institute of Medical Psychology, Jakubowskiego St 2, 30-688 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| |
Collapse
|
15
|
Dong TS, Vu JP, Oh S, Sanford D, Pisegna JR, Germano P. Intraperitoneal Treatment of Kisspeptin Suppresses Appetite and Energy Expenditure and Alters Gastrointestinal Hormones in Mice. Dig Dis Sci 2020; 65:2254-2263. [PMID: 31729619 DOI: 10.1007/s10620-019-05950-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kisspeptin is a neuropeptide that plays an integral role in the regulation of energy intake and reproduction by acting centrally on the hypothalamus-pituitary-gonadal axis. Our current study explores for the first time the effects of a pharmacological treatment of intraperitoneal kisspeptin-10 on murine feeding behavior, respirometry parameters, energy balance, and metabolic hormones. METHODS Two groups (n = 16) of age- and sex-matched C57BL/6 wild-type adult mice were individually housed in metabolic cages and intraperitoneally injected with either kisspeptin-10 (2 nmol in 200 µl of saline) (10 µM) or vehicle before the beginning of a dark-phase cycle. Microstructure of feeding and drinking behavior, respirometry gases, respiratory quotient (RQ), total energy expenditure (TEE), metabolic hormones, oral glucose tolerance, and lipid profiles were measured. RESULTS Intraperitoneal treatment with kisspeptin-10 caused a significant reduction in food intake, meal frequency, meal size, and eating rate. Kisspeptin-10 significantly decreased TEE during both the dark and light phase cycles, while also increasing the RQ during the dark-phase cycle. In addition, mice injected with kisspeptin-10 had significantly higher plasma levels of insulin (343.8 pg/ml vs. 106.4 pg/ml; p = 0.005), leptin (855.5 pg/ml vs. 173.1 pg/ml; p = 0.02), resistin (9411.1 pg/ml vs. 4116.5 pg/ml; p = 0.001), and HDL (147.6 mg/dl vs 97.1 mg/dl; p = 0.04). CONCLUSION A pharmacological dose of kisspeptin-10 significantly altered metabolism by suppressing food intake, meal size, eating rate, and TEE while increasing the RQ. These changes were linked to increased levels of insulin, leptin, resistin, and HDL. The current results suggest that a peripheral kisspeptin treatment could alter metabolism and energy homeostasis by suppressing appetite, food intake, and fat accumulation.
Collapse
Affiliation(s)
- Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - John P Vu
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- AbbVie, Sunnyvale, CA, USA
| | - Suwan Oh
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Daniel Sanford
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
16
|
Skowron K, Jasiński K, Kurnik-Łucka M, Stach P, Kalita K, Węglarz WP, Gil K. Hypothalamic and brain stem neurochemical profile in anorectic rats after peripheral administration of kisspeptin-10 using 1 H-nmr spectroscopy in vivo. NMR IN BIOMEDICINE 2020; 33:e4306. [PMID: 32253803 DOI: 10.1002/nbm.4306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Although anorexia nervosa is classified as a psychiatric disorder associated with socio-environmental and psychological factors, a deeper insight into the dominant neurobiological basis is needed to develop a more effective approach of treatment. Given the high contribution of genetic predisposition and the underlying pathophysiology of neurohormonal circuits, it seems that pharmacological targeting of these mechanisms may provide us with better therapeutic outcomes. METHODS 1 H-NMR spectroscopy was used to measure concentrations of the hypothalamus and brain stem metabolites in an activity-based rodent model (ABA) after subcutaneous administration of kisspeptin-10. Because anorexia mainly affects young women and often leads to hypogonadotropic-hypogonadism, we investigated the influence of this neuropeptide, which is involved in reproductive function by regulating the hypothalamic-pituitary-gonadal axis, on the ABA model development. RESULTS Kisspeptin reinforced food consumption in an activity-based rodent model of anorexia changing a pattern of weight loss. 1 H-NMR spectroscopy of the hypothalamus and brain stem of ABA rats revealed a statistically significant change in the concentration of creatine (Cr; decreased, P = 0.030), phosphocreatine (PCr; increased, P = 0.030), γ-aminobutyric acid (GABA; decreased, P = 0.011), glutathione (GSH; increased, P = 0.011) and inositol (INS; increased, P = 0.047) compared to the control group. Subcutaneous administration of kisspeptin reversed the decrease in GABA (P = 0.018) and Cr (P = 0.030) levels in the hypothalamus as well as restored glutamate (GLU; P = 0.040) level in the brain stem. CONCLUSIONS We suspect that kisspeptin through modulation of hypothalamic GABAergic signaling increases food intake, and thus positively alters brain metabolism.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Jasiński
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | | | - Paulina Stach
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kalita
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Władysław P Węglarz
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
17
|
Talbi R, Navarro VM. Novel insights into the metabolic action of Kiss1 neurons. Endocr Connect 2020; 9:R124-R133. [PMID: 32348961 PMCID: PMC7274555 DOI: 10.1530/ec-20-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
Kiss1 neurons are essential regulators of the hypothalamic-pituitary-gonadal (HPG) axis by regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic GnRH pulse generator driving fertility, also participate in the regulation of metabolism through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin (POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent developments, mainly derived from animal models, on the role of Kiss1 neurons in the regulation of energy balance, including food intake, energy expenditure and the influence of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways underlying this effect, and the existing controversies related to the anorexigenic action of kisspeptin in the different experimental models, are also discussed.
Collapse
Affiliation(s)
- Rajae Talbi
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Correspondence should be addressed to V M Navarro:
| |
Collapse
|
18
|
Halvorson CL, De Bond JP, Maloney SK, Smith JT. Thermoneutral conditions correct the obese phenotype in female, but not male, Kiss1r knockout mice. J Therm Biol 2020; 90:102592. [PMID: 32479387 DOI: 10.1016/j.jtherbio.2020.102592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022]
Abstract
Kisspeptin, a neuropeptide that activates gonadotropin-releasing hormone (GnRH) neurons, has also been implicated as a regulator of energy balance. Kisspeptin receptor (Kiss1r) knockout (KO) mice display an obese phenotype in adulthood compared to wild-type (WT) controls due to reduced energy expenditure. Additionally, experimental evidence shows that the temperature of typical rodent housing conditions (22 °C) increases the metabolism of mice above basal levels. Female Kiss1r KO mice show reduced core temperature and impaired temperature adaptation to an acute cold challenge, suggesting their temperature homeostasis processes are altered. The present study examined the phenotype of gonadectomised Kiss1r KO mice at both sub-thermoneutral and thermoneutral temperature (22 °C and 30 °C). Our results confirmed the obese phenotype in Kiss1r KO mice at 22 °C, and revealed a sexually dimorphic effect of thermal neutrality on the phenotype. In female KO mice, the obesity observed at 22 °C was attenuated at 30 °C. Plasma leptin levels were higher in KO than WT female mice at 22 °C (P < 0.001) but not at 30 °C. Importantly, the expression of Ucp1 mRNA in brown adipose tissue was lower in KO mice compared to WT mice at 22 °C (P < 0.05), but not different from WT at 30 °C. In male KO mice, a metabolic phenotype was observed at 22 °C and 30 °C. These results provide further evidence for kisspeptin-mediated regulation of adiposity via altered energy expenditure. Moreover, thermoneutral housing alleviated the obese phenotype in female Kiss1r KO mice, compared to WT, indicating the impairment in these mice may relate to an inability to adapt to the chronic cold stress that is experienced at 22 °C.
Collapse
Affiliation(s)
- C L Halvorson
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - J P De Bond
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - S K Maloney
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - J T Smith
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
19
|
Conde K, Roepke TA. 17β-Estradiol Increases Arcuate KNDy Neuronal Sensitivity to Ghrelin Inhibition of the M-Current in Female Mice. Neuroendocrinology 2020; 110:582-594. [PMID: 31484184 PMCID: PMC7056582 DOI: 10.1159/000503146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
Abstract
Obesity and anorexia result in dysregulation of the hypothalamic-pituitary-gonadal axis, negatively impacting reproduction. Ghrelin, secreted from the stomach, potentially mediates negative energy states and neuroendocrine control of reproduction by acting through the growth hormone secretagogue receptor (GHSR). GHSR is expressed in hypothalamic arcuate (ARC) Kisspeptin/Neurokinin B (Tac2)/Dynorphin (KNDy) neurons. Ghrelin is known to inhibit the M-current produced by KCNQ channels in other ARC neurons. In addition, we have shown 17β-estradiol (E2) increases Ghsr expression in KNDy neurons 6-fold and increases the M-current in NPY neurons. We hypothesize that E2 increases GHSR expression in KNDy neurons to increase ghrelin sensitivity during negative energy states. Furthermore, we suspect ghrelin targets the M-current in KNDy neurons to control reproduction and energy homeostasis. We utilized ovariectomized Tac2-EGFP adult female mice, pretreated with estradiol benzoate (EB) or oil vehicle and performed whole-cell-patch-clamp recordings to elicit the M-current in KNDy neurons using standard activation protocols in voltage-clamp. Using the selective KCNQ channel blocker XE-991 (40 µM) to target the M-current, oil- and EB-treated mice showed a decrease in the maximum peak current by 75.7 ± 13.8 pA (n = 10) and 68.0 ± 14.7 pA (n = 11), respectively. To determine the actions of ghrelin on the M-current, ghrelin was perfused (100 nM) in oil- and EB-treated mice resulting in the suppression of the maximum peak current by 58.5 ± 15.8 pA (n = 9) and 59.2 ± 11.9 pA (n = 9), respectively. KNDy neurons appeared more sensitive to ghrelin when pretreated with EB, revealing that ARC KNDy neurons are more sensitive to ghrelin during states of high E2.
Collapse
Affiliation(s)
- Kristie Conde
- Graduate Program in Neuroscience, Rutgers University Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Troy A Roepke
- Graduate Program in Neuroscience, Rutgers University Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, New Jersey, USA,
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA,
| |
Collapse
|
20
|
Tolson KP, Marooki N, Wolfe A, Smith JT, Kauffman AS. Cre/lox generation of a novel whole-body Kiss1r KO mouse line recapitulates a hypogonadal, obese, and metabolically-impaired phenotype. Mol Cell Endocrinol 2019; 498:110559. [PMID: 31442544 PMCID: PMC6814569 DOI: 10.1016/j.mce.2019.110559] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Kisspeptin and its receptor, Kiss1r, act centrally to stimulate reproduction. Recent evidence indicates that kisspeptin is also important for body weight and metabolism, as whole-body Kiss1r KO mice, developed with gene trap technology, display obesity and reduced metabolism. Kiss1r is expressed in brain and multiple peripheral tissues, but it is unknown which is responsible for the metabolic phenotype. Here, we sought to confirm that 1) the metabolic phenotype of the gene trap Kiss1r KOs is due to disruption of kisspeptin signaling and not off-target effects of viral mutagenesis, and 2) the Kiss1r flox line is suitable for creating conditional KOs to study the metabolic phenotype. We used Cre/lox technology (Zp3-Cre/Kiss1r flox) to develop a new global Kiss1r KO ("Kiss1r gKO") to compare with the original gene trap KO phenotype. We confirmed that deleting exon 2 of Kiss1r from the entire body induces hypogonadism in both sexes. Moreover, global deletion of Kiss1r induced obesity in females, but not males, along with increased adiposity and impaired glucose tolerance, similar to the gene trap Kiss1r KOs. Likewise, Kiss1r gKO females had decreased VO2 and VCO2, likely underlying their obesity. These findings support that our previous results in gene trap Kiss1r KOs are due to disrupted kisspeptin signaling, and further highlight a role for Kiss1r signaling in energy expenditure and metabolism besides controlling reproduction. Moreover, given Kiss1r expression in multiple cell-types, our findings indicate that the Kiss1r flox line is viable for future investigations to isolate specific target cells of kisspeptin's metabolic effects.
Collapse
Affiliation(s)
- Kristen P Tolson
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nuha Marooki
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Wolfe
- Department of Pediatrics and Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy T Smith
- School of Human Sciences, University of Western Australia, Perth, Australia
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Tolson KP, Marooki N, De Bond JAP, Walenta E, Stephens SBZ, Liaw RB, Savur R, Wolfe A, Oh DY, Smith JT, Kauffman AS. Conditional knockout of kisspeptin signaling in brown adipose tissue increases metabolic rate and body temperature and lowers body weight. FASEB J 2019; 34:107-121. [PMID: 31914628 DOI: 10.1096/fj.201901600r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
The peptide kisspeptin and its receptor, Kiss1r, act centrally to stimulate reproduction. Evidence indicates that kisspeptin signaling is also important for body weight (BW) and metabolism. We recently reported that Kiss1r KO mice develop obesity, along with reduced metabolism and energy expenditure, independent of estradiol levels. Outside the brain, Kiss1r is expressed in several metabolic tissues, including brown adipose tissue (BAT), but it is unknown which specific tissue is responsible for the metabolic phenotype in Kiss1r KOs. We first determined that global Kiss1r KO mice have significant alterations in body temperature and BAT thermogenic gene expression, perhaps contributing to their obesity. Next, to test whether kisspeptin signaling specifically in BAT influences BW, metabolism, or body temperature, we used Cre/lox technology to generate conditional Kiss1r knockout exclusively in BAT (BAT-Kiss1r KO). Unlike global Kiss1r KOs, BAT-Kiss1r KOs (lacking Kiss1r in just BAT) were not hypogonadal, as expected. Surprisingly, however, BAT-Kiss1r KOs of both sexes displayed significantly lower BW and adiposity than controls. This novel BAT-Kiss1r KO phenotype was of greater magnitude in females and was associated with improved glucose tolerance, increased metabolism, energy expenditure, and locomotor activity, along with increased body temperature and BAT gene expression, specifically Cox8b. Our findings suggest that the previously observed obesity and decreased metabolism in global Kiss1r KOs reflect impaired kisspeptin signaling in non-BAT tissues. However, the novel finding of increased metabolism and body temperature and lower BW in BAT-Kiss1r KOs reveal a previously unidentified role for endogenous kisspeptin signaling in BAT in modulating metabolic and thermogenic physiology.
Collapse
Affiliation(s)
- Kristen P Tolson
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Nuha Marooki
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Julie-Ann P De Bond
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Evelyn Walenta
- Department of Medicine, University of California, San Diego, CA, USA
| | - Shannon B Z Stephens
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Reanna B Liaw
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Rishi Savur
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Andrew Wolfe
- Department of Pediatrics and Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Da Young Oh
- Department of Medicine, University of California, San Diego, CA, USA
| | - Jeremy T Smith
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Dudek M, Ziarniak K, Cateau ML, Dufourny L, Sliwowska JH. Diabetes Type 2 and Kisspeptin: Central and Peripheral Sex-Specific Actions. Trends Endocrinol Metab 2019; 30:833-843. [PMID: 31699240 DOI: 10.1016/j.tem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/23/2023]
Abstract
Kisspeptin (KP) plays a major role in the regulation of reproduction governed by the hypothalamic-pituitary-gonadal (HPG) axis. However, recent findings suggest that the KP system is present not only centrally (at the level of the hypothalamus), but also in the peripheral organs crucial for the control of metabolism. The KP system is sexually differentiated in the hypothalamus, and it is of particular interest to study whether sex-specific responses to type 2 diabetes (DM2) exist centrally and peripherally. As collection of data is limited in humans, animal models of DM2 are useful to understand crosstalk between metabolism and reproduction. Sex-specific variations in the KP system reported in animals suggest a need for the development of gender specific therapeutic strategies to treat DM2.
Collapse
Affiliation(s)
- Monika Dudek
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland
| | - Marie-Line Cateau
- UMR Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours-IFCE, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Laurence Dufourny
- UMR Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours-IFCE, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Joanna Helena Sliwowska
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland.
| |
Collapse
|
23
|
Cázarez-Márquez F, Milesi S, Laran-Chich MP, Klosen P, Kalsbeek A, Simonneaux V. Kisspeptin and RFRP3 modulate body mass in Phodopus sungorus via two different neuroendocrine pathways. J Neuroendocrinol 2019; 31:e12710. [PMID: 30887598 DOI: 10.1111/jne.12710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/15/2023]
Abstract
Many animals exhibit remarkable metabolic and reproductive adaptations to seasonal changes in their environment. When day length shortens, Djungarian hamsters (Phodopus sungorus) reduce their body weight and inhibit their reproductive activity, whereas the opposite occurs in springtime. These physiological adaptations are considered to depend on photoperiodic changes in hypothalamic genes encoding the peptides kisspeptin (Kp) and RFamide-related peptide 3 (RFRP3) for the control of reproduction, as well as pro-opiomelanocortin and somatostatin for metabolic regulation. The present study investigates the effect of Kp and RFRP3 on long-term body weight regulation, aiming to establish whether metabolic and reproductive hypothalamic networks may interact during adaptation to seasonal physiology. We found that chronic central administration of both Kp and RFRP3 in short photoperiod-adapted male Djungarian hamsters increased body weight, although via different pathways. The effect of Kp was dependent on testicular activity because castration prevented the body weight increase and was associated with an increase in pro-opiomelanocortin and neuropeptide Y expression. On the other hand, the orexigenic effect of RFRP3 was associated with an increase in circulating insulin and leptin levels, although it had no effect on any of the hypothalamic metabolic genes investigated, and did not change circulating levels of sex steroids. Notably, neither Kp, nor RFRP3 altered female hamster metabolic parameters. Thus, using a rodent model exhibiting seasonal changes in reproduction and metabolism, the present study demonstrates that, in addition to its role in the central control of reproduction, Kp also participates in body weight control in a sex-dependent manner via an anabolic action of testosterone. Conversely, RFRP3 affects body weight control in males mostly by acting on adiposity, with no overt effect on the reproductive system in both sexes.
Collapse
Affiliation(s)
- Fernando Cázarez-Márquez
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastien Milesi
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | | | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| |
Collapse
|
24
|
Wolfe A, Hussain MA. The Emerging Role(s) for Kisspeptin in Metabolism in Mammals. Front Endocrinol (Lausanne) 2018; 9:184. [PMID: 29740399 PMCID: PMC5928256 DOI: 10.3389/fendo.2018.00184] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Kisspeptin was initially identified as a metastasis suppressor. Shortly after the initial discovery, a key physiologic role for kisspeptin emerged in the regulation of fertility, with kisspeptin acting as a neurotransmitter via the kisspeptin receptor, its cognate receptor, to regulate hypothalamic GnRH neurons, thereby affecting pituitary-gonadal function. Recent work has demonstrated a more expansive role for kisspeptin signaling in a variety of organ systems. Kisspeptin has been revealed as a significant player in regulating glucose homeostasis, feeding behavior, body composition as well as cardiac function. The direct impact of kisspeptin on peripheral metabolic tissues has only recently been recognized. Here, we review the emerging endocrine role of kisspeptin in regulating metabolic function. Controversies and current limitations in the field as well as areas of future studies toward kisspeptin's diverse array of functions will be highlighted.
Collapse
Affiliation(s)
- Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - Mehboob A. Hussain
- Department of Internal Medicine Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, United States
| |
Collapse
|
25
|
Bertoldo MJ, Andraweera PH, Bromfield EG, Cousins FL, Lindsay LA, Paiva P, Regan SL, Rose RD, Akison LK. Recent and emerging reproductive biology research in Australia and New Zealand: highlights from the Society for Reproductive Biology Annual Meeting, 2017. Reprod Fertil Dev 2018; 30:1049-1054. [PMID: 29381876 DOI: 10.1071/rd17445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/27/2022] Open
Abstract
Research in reproductive science is essential to promote new developments in reproductive health and medicine, agriculture and conservation. The Society for Reproductive Biology (SRB) 2017 conference held in Perth (WA, Australia) provided a valuable update on current research programs in Australia and New Zealand. This conference review delivers a dedicated summary of significant questions, emerging concepts and innovative technologies presented in the symposia. This research demonstrates significant advances in the identification of precursors for a healthy pregnancy, birth and child, and discusses how these factors can influence disease risk. A key theme included preconception parental health and its effect on gametogenesis, embryo and fetal development and placental function. In addition, the perturbation of key developmental checkpoints was shown to contribute to a variety of pathological states that have the capacity to affect health and fertility. Importantly, the symposia discussed in this review emphasised the role of reproductive biology as a conduit for understanding the transmission of non-communicable diseases, such as metabolic disorders and cancers. The research presented at SRB 2017 has revealed key findings that have the prospect to change not only the fertility of the present generation, but also the health and reproductive capacity of future generations.
Collapse
Affiliation(s)
- M J Bertoldo
- Fertility and Research Centre, School of Women's and Children's Health, The University of New South Wales, Wallace Wurth Building, Randwick, NSW 2052, Australia
| | - P H Andraweera
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - E G Bromfield
- Priority Research Centre for Reproductive Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - F L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3141, Australia
| | - L A Lindsay
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Anderson Stuart Building, F13, Sydney, NSW 2006, Australia
| | - P Paiva
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, Royal Women's Hospital, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - S L Regan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - R D Rose
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - L K Akison
- School of Biomedical Sciences, Sir William MacGregor Building, The University of Queensland, St Lucia, Qld 4072, Australia
| |
Collapse
|
26
|
Dudek M, Ziarniak K, Sliwowska JH. Kisspeptin and Metabolism: The Brain and Beyond. Front Endocrinol (Lausanne) 2018; 9:145. [PMID: 29713310 PMCID: PMC5911457 DOI: 10.3389/fendo.2018.00145] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Apart from the well-established role of kisspeptin (Kp) in the regulation of reproductive functions, recent data described its action in the control of metabolism. Of particular interest for the review is the population of Kp neurons localized in the arcuate nucleus (ARC) of the hypothalamus, the site of the brain where reproductive and metabolic cross talk occurs. However, within the hypothalamus Kp does not work alone, but rather interacts with other neuropeptides, e.g., neurokinin B, dynorphin A, proopiomelanocortin, the cocaine- and amphetamine-regulated transcript, agouti-related peptide, and neuropeptide Y. Beyond the brain, Kp is expressed in peripheral tissues involved in metabolic functions. In this review, we will mainly focus on the local action of this peptide in peripheral organs such as the pancreas, liver, and the adipose tissue. We will concentrate on dysregulation of the Kp system in cases of metabolic imbalance, e.g., obesity and diabetes. Importantly, these patients besides metabolic health problems often suffer from disruptions of the reproductive system, manifested by abnormalities in menstrual cycles, premature child birth, miscarriages in women, decreased testosterone levels and spermatogenesis in men, hypogonadism, and infertility. We will review the evidence from animal models and clinical data indicating that Kp could serve as a promising agent with clinical applications in regulation of reproductive problems in individuals with obesity and diabetes. Finally, emerging data indicate a role of Kp in regulation of insulin secretion, potentially leading to development of further therapeutic uses of this peptide to treat metabolic problems in patients with these lifestyle diseases.
Collapse
|
27
|
Wahab F, Atika B, Ullah F, Shahab M, Behr R. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway. Front Endocrinol (Lausanne) 2018; 9:123. [PMID: 29643834 PMCID: PMC5882778 DOI: 10.3389/fendo.2018.00123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
A large body of data has established the hypothalamic kisspeptin (KP) and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body's current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.
Collapse
Affiliation(s)
- Fazal Wahab
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- *Correspondence: Fazal Wahab,
| | - Bibi Atika
- Department of Developmental Biology, Faculty of Biology, University of Göttingen, Göttingen, Germany
| | - Farhad Ullah
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Higo S, Iijima N, Ozawa H. Characterisation of Kiss1r (Gpr54)-Expressing Neurones in the Arcuate Nucleus of the Female Rat Hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 27981646 DOI: 10.1111/jne.12452] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/20/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Abstract
Kisspeptin is essential in reproduction and acts by stimulating neurones expressing gonadotrophin-releasing hormone (GnRH). Recent studies suggest that kisspeptin has multiple roles in the modulation of neuronal circuits in systems outside the hypothalamic-pituitary-gonadal axis. Our recent research using in situ hybridisation (ISH) clarified the histological distribution of Kiss1r (Gpr54)-expressing neurones in the rat brain that were presumed to be putative targets of kisspeptin. The arcuate nucleus (ARN) of the hypothalamus is one of the brain regions in which Kiss1r expression in non-GnRH neurones is prominent. However, the characteristics of Kiss1r-expressing neurones in the ARN remain unclear. The present study aimed to determine the neurochemical characteristics of Kiss1r-expressing neurones in the ARN using ISH and immunofluorescence. We revealed that the majority (approximately 63%) of Kiss1r-expressing neurones in the ARN were pro-opiomelanocortin (POMC) neurones, which have an anorexic effect in mammals. Additionally, a few Kiss1r-expressing neurones in the dorsal ARN are tuberoinfundibular dopamine (TIDA) neurones, which control milk production by inhibiting prolactin secretion from the anterior pituitary. TIDA neurones showed a relatively weak Kiss1r ISH signal compared to POMC neurones, as well as low co-expression of Kiss1r (approximately 15%). We also examined the expression of Kiss1r in neuropeptide Y and kisspeptin neurones, which are reported to arise from POMC-expressing progenitor cells during development. However, the vast majority of neuropeptide Y and kisspeptin neurones in the ARN did not express Kiss1r. These results suggest that kisspeptin may directly regulate energy homeostasis and milk production by modulating the activity of POMC and TIDA neurones, respectively. Our results provide an insight into the wide variety of roles that kisspeptin plays in homeostatic and neuroendocrine functions.
Collapse
Affiliation(s)
- S Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - N Iijima
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - H Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|