1
|
Khan A, Kango N, Srivastava R. Impact of Dietary Probiotics on the Immune and Reproductive Physiology of Pubertal Male Japanese Quail (Coturnix coturnix japonica) Administered at the Onset of Pre-Puberty. Probiotics Antimicrob Proteins 2025; 17:1399-1417. [PMID: 38170389 DOI: 10.1007/s12602-023-10209-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Fertility in males is dependent on the proper production of sperms involving the synchronization of numerous factors like oxidative stress, inflammatory processes, and hormonal regulation. Inflammation associated with oxidative stress is also known to impair sperm function. Nutritional factors like probiotics and prebiotics have the potential benefits to modulate these factors which may enhance male fertility. In the present study, immature male Japanese quail at the beginning of 3rd week were administered with Lactobacillus rhamnosus (L), Bifidobacterium longum (B), and mannan-oligosaccharides (M) through dietary supplementation in individual groups as well as in combinations like LB and MLB. Markers of oxidative stress including SOD and catalase were examined by native PAGE; inflammatory biomarkers (IL-1β, IL-10, and NFκB), apoptotic markers (caspase 3 and caspase 7), steroidal hormones, and their receptors estrogen receptor alpha (ERα) and beta (ERβ) were assessed in testis. The study reveals that dietary supplementation of 1% L, B, and M in combination significantly and positively increases the overall growth of immature male quail specifically testicular weight and gonadosomatic index (GSI). Furthermore, significant improvement in testicular cell size; increased steroidal hormones like testosterone, FSH, and LH levels; increase in SOD, catalase enzymes; decrease in apoptotic factors Caspase 3, Caspase 7 and immune system strength observed indicated by a decrease in expression of IL-1β, NFκB; and increase of IL-10 in testis when LBM was used in combination. These variations are attributed to the increase in testicular estrogen receptors alpha and beta, facilitated by the neuroendocrine gonadal axis, ultimately leading to improved male fertility. It can be concluded that the dietary supplementation in combination with L, B, and M enhances male fertility in immature quail by increased expression of estrogen receptors via gut microbiota modulation. It also sheds light on the potential use of these nutritional factors in avian species as therapeutic interventions to overcome low fertility problems in quail thereby benefitting the poultry industry.
Collapse
Affiliation(s)
- Aamir Khan
- Avian Reproductive Physiology & Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Prayagraj, U.P., 211002, India.
| |
Collapse
|
2
|
Ni H, Yang Y, Wang C, Li Z, Liu W, Han Y, Jiang H, Sun H, Li Y, Zhang Y. Multiomics analysis uncovers host-microbiota interactions regulate hybrid vigor traits in geese. Poult Sci 2025; 104:105289. [PMID: 40393267 DOI: 10.1016/j.psj.2025.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Economic hybridization represents a predominant breeding strategy for enhancing poultry quality. In this study, we bred hybrid geese (ZF) by crossing Xianghai Flying geese (FG) as paternal lines with Zi geese (ZG) as maternal lines. ZF exhibited integrated superior traits, including increased body weight and breast muscle index, reduced abdominal fat, and improved meat quality (enhanced tenderness, deeper red meat color), with notably higher ileal villus height than parental lines. Integrated phenotypic, transcriptomic, gut microbiome and metabolomic analyses systematically revealed regulatory mechanisms underlying heterosis. The analysis showed 87 differentially expressed genes common between ZF and both parents, mainly enriched in energy metabolism and cytoskeletal and cell adhesion-related pathways. Protein-protein interaction networks revealed KDR, CS, PDHA1, IDH2, and GAPDH as key candidate genes (fold change > 2 and P < 0.0001) regulating the host phenotype. Meanwhile, ZF exhibited microbiome reconfiguration, characterized by the dominance of Bacteroides producing short-chain fatty acids (SCFAs), along with beneficial genera such as Megamonas, Romboutsia, and Subdoligranulum. Additionally, there was a depletion of the pathogenic genus Desulfovibrio. Integrated multi-omics analyses demonstrated that host genes and microbiota interact closely, synergistically governing hybrid vigor traits. The findings provide the first theoretical basis for revealing the potential molecular mechanisms by which the host-gut microbiota interactions regulate hybrid vigor traits in geese.
Collapse
Affiliation(s)
- Hongyu Ni
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Chengwen Wang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Zongdi Li
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Wuyang Liu
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yuxin Han
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Hao Jiang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
3
|
Liu J, Gu H, Jia R, Li S, Chen Z, Zheng A, Chang W, Liu G. Effects of Lactobacillus acidophilus on production performance and immunity of broiler chickens and their mechanism. Front Vet Sci 2025; 12:1554502. [PMID: 40196813 PMCID: PMC11974341 DOI: 10.3389/fvets.2025.1554502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Lactobacillus species have attracted more and more attention as a potential antibiotic substitute for human health and animal production due to their remarkable antibacterial effects. However, the underlying mechanism is unclear. This experiment's goal was to investigate the impacts of lactic acid bacteria (LAB) on the growth performance, carcass characteristics, immune function of broiler chickens and their mechanism. Methods One hundred and eighty 1-day-old AA broilers were used and randomly allocated into 3 treatment groups with 6 replicates of 10 chickens per replicate. The 3 treatment groups were control group (CK), L. acidophilus added group (LAB-E, 1.0 × 108 CFU/kg) for the first 7 days; L. acidophilus added group (LAB-A, 1.0 × 108 CFU/kg) for the whole experimental period. Broilers had free access to water and feed. Results The results showed that addition of L. acidophilus for the whole experimental period significantly decreased ADFI, FCR and the abdominal fat percentage of broilers (p < 0.05), tended to increase the levels of IgG in broiler serum (p = 0.093). The LAB-A group had higher HDL-C content and IL-2, IL-4 content, and lower level of LPS in broiler serum compared to the controls (p < 0.05). Discussion In conclusion, L. acidophilus improved feed efficiency and immune function of broilers by controlling nutrient metabolism and inflammation responses of broilers. L. acidophilus can be used as a potential substitute for antibiotics in broiler production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Cai F, Huang M, Liu W, Wan X, Qiu K, Xu X. Dietary addition of compound organic acids improves the growth performance, carcass trait, and body health of broilers. Front Nutr 2025; 12:1536606. [PMID: 39935581 PMCID: PMC11810740 DOI: 10.3389/fnut.2025.1536606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction The poultry industry constantly seeks strategies to enhance broiler growth performance and overall health. Organic acidifiers, including L-lactic acid, L-malic acid, and acetic acid, have gained attention as potential feed additives to improve animal production by modulating gut health, enhancing nutrient absorption, and supporting immune function. Despite their promising effects in other animal species, the impact of this novel compound organic acidifier on broiler performance, metabolism, and immune response has not been fully elucidated. This study aims to evaluate the effects of this compound acidifier on growth performance, serum lipid profile, antioxidant status, and immune parameters in broilers, providing insights into its potential benefits as a dietary supplement for broiler health and productivity. Methods A total of 240 broilers were randomly divided into four groups: a control group and three treatment groups receiving 0.25%, 0.5%, or 1.0% acidifier, with six replicates of ten birds each. Over a 6-week period, various parameters were measured, including serum triglycerides, high-density lipoproteins, lysozyme, immunoglobulins (IgA, IgM), superoxide dismutase (SOD) activity, IL-2, TNF-α, and gene expressions related to lipid metabolism. Results Over a 6-week period, the acidifier decreased serum triglycerides and high-density lipoproteins while also enhancing growth performance. Additionally, it raised the serum levels of lysozyme, IgA, IgM, and the SOD. Additionally, IL-2 and TNF-α concentrations in the jejunum mucosa decreased. The acidifier upregulated PPARα, AMPK, FABP1 and MTTP expressions, and downregulated APOB100. Overall, the acidifier effectively improved broiler growth performance during the early development phase primarily by enhancing hepatic lipid metabolism, antioxidant capacity, and immune function. Conclusion These results suggest that the acidifier may accelerate liver lipid metabolism in broilers by modulating the gene expression profiles involved in lipid metabolism.
Collapse
Affiliation(s)
- Fang Cai
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Meiping Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoling Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kai Qiu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
He K, Cheng H, McClements DJ, Xu Z, Meng M, Zou Y, Chen G, Chen L. Utilization of diverse probiotics to create human health promoting fatty acids: A review. Food Chem 2024; 458:140180. [PMID: 38964111 DOI: 10.1016/j.foodchem.2024.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Collapse
Affiliation(s)
- Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Lab of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Champati A, Bhanja SK, Rokade JJ, Yadav AS, Nayak N, Saha SK, Sonale NS, Chakma J, Mishra J, Wadajkar P. Dietary concoction of formic acid and thymol and its effects on zoo-technical performance, immunity, jejunal architecture and gut health in Turkey. Res Vet Sci 2024; 179:105394. [PMID: 39191141 DOI: 10.1016/j.rvsc.2024.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
With increasing demand for improved protein-rich food, diverse poultry birds like turkey are gaining popularity in India. However, with the rising concerns of antibiotic residues and drug resistance, safe alternatives like formic acid (FA) and thymol (TH) have attracted the attention of researchers as effective replacer of antibiotic growth promoters (AGP). This experiment investigated the effects of combinations of FA and TH on growth performance, immunity, gut microflora and jejunal microstructures in turkey. A total of 240 turkey poults were reared in 6 treatment groups for a period of 16 weeks with standard management and feeding: T1 (basal diet only); T2 (AGP); T3 (FA@2.5 ml + TH@240 mg/kg); T4 (FA@2.5 ml + TH@360 mg/kg); T5 (FA@7.5 ml + TH@240 mg/kg) and T6 (FA@7.5 ml + TH@360 mg/kg). The results revealed that T5 group had the highest final body weight and best FCR while the feed consumption across the groups was comparable. The immune status of the turkey improved (p ≤ 0.05) in treatment groups compared to control with T4 and T5 group showcasing the best CBH response, antibody titres and relative immune organ weight index. A significant improvement (p ≤ 0.05) in jejunal microstructures was observed at 16th week in T5 group over control and AGP fed group. There was significant (p ≤ 0.001) reduction in total plate and coliform counts, but a positive shift was seen in Lactobacillus population in T5 group as compared to control and AGP fed group. In conclusion, the concoction of formic acid (7.5 ml/kg) + thymol (240 mg/kg) in-feed supplement improved the performance, immune status and gut health in turkey as an efficient alternative to AGPs.
Collapse
Affiliation(s)
- Abhijeet Champati
- Department of Poultry Science, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Subrat Kumar Bhanja
- ICAR-Directorate of Poultry Research, Regional Station, Bhubaneswar, Odisha 751003, India.
| | - Jaydip Jaywant Rokade
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Ajit Singh Yadav
- Indian Council of Agricultural Research (ICAR), New Delhi 110001, India
| | - Nibedita Nayak
- ICAR-Central Coastal Agricultural Research Institute, Goa 403402, India
| | - Subodh Kumar Saha
- Animal Nutrition Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Nagesh Sambhaji Sonale
- Department of Poultry Science, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Juli Chakma
- Animal Nutrition Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Jyotiprabha Mishra
- Livestock Products Technology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Prasad Wadajkar
- Department of Poultry Science, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
7
|
Sun Y, Zhang X, Han W, Liao W, Huang J, Chen Y, Li H, Chen X, Huang Q, Zhou R, Li L. Dietary supplementation with a novel acidifier sodium diformate improves growth performance by increasing growth-related hormones levels and prevents Salmonella enterica serovar Pullorum infection in chickens. Front Vet Sci 2024; 11:1433514. [PMID: 39100761 PMCID: PMC11295659 DOI: 10.3389/fvets.2024.1433514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Since the use of antibiotics as growth promoters in animal feed has been restricted or banned in several countries, finding suitable alternatives is crucial for maintaining animal health. In this study, a novel formate acidifier named sodium diformate (NaDF) was synthesized, and the effects on growth performance and the prevention effects against Salmonella enterica serovar Pullorum infections in chickens were assessed. In broilers, NaDF supplementation improved growth performance, as evidenced by increased body weights and reduced feed conversion ratios. At 38 days of age, NaDF supplementation increased the levels of growth-hormone and ghrelin in the serum, lowered pH values in the gut, improved duodenal morphology, as shown by increased villus length/crypt depth ratios. NaDF also modulated the abundance of beneficial and harmful bacteria without changing the general microbiota diversity and short-chain fatty acids levels, which would be beneficial for maintaining gut homeostasis during its use. NaDF exhibited a broad spectrum of antibacterial activity in vitro. Supplementation with NaDF effectively decreased S. Pullorum colonization in the cecum, liver and spleen in chickens, and mitigated pathological changes in the tissues. Therefore, as a novel acidifier, NaDF can improve chicken growth performance by increasing growth-related hormones levels while maintaining the diversity of gut microbiota, and also resist intestinal bacterial infection. These results provided evidences for the application of NaDF as an effective and safe animal feed in poultry farming.
Collapse
Affiliation(s)
- Yufan Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaofen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Weiyao Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Weilian Liao
- Animal Disease Prevention and Control Center of Jiangle, Sanming, China
| | - Jing Huang
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Yong Chen
- Alliance Biotech Co., Ltd., Sanming, China
| | | | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| |
Collapse
|
8
|
Shi S, Ge M, Xiong Y, Zhang Y, Li W, Liu Z, Wang J, He E, Wang L, Zhou D. The novel probiotic preparation based on Lactobacillus spp. mixture on the intestinal bacterial community structure of Cherry Valley duck. World J Microbiol Biotechnol 2024; 40:194. [PMID: 38713319 DOI: 10.1007/s11274-023-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/27/2023] [Indexed: 05/08/2024]
Abstract
The development and utilization of probiotics have many environmental benefits when they are used to replace antibiotics in animal production. In this study, intestinal lactic acid bacteria were isolated from the intestines of Cherry Valley ducks. Probiotic lactic acid bacterial strains were screened for antibacterial activity and tolerance to produce a Lactobacillus spp. mixture. The effects of the compound on the growth performance and intestinal flora of Cherry Valley ducks were studied. Based on the results of the antibacterial activity and tolerance tests, the highly active strains Lactobacillus casei 1.2435, L. salivarius L621, and L. salivarius L4 from the intestines of Cherry Valley ducks were selected. The optimum ratio of L. casei 1.2435, L. salivarius L621, and L. salivarius L4 was 1:1:2, the amount of inoculum used was 1%, and the fermentation time was 14 h. In vivo experiments showed that compared with the control group, the relative abundances of intestinal Lactobacillus and Blautia were significantly increased in the experimental group fed the lactobacilli compound (P < 0.05); the relative abundances of Parabacteroides, [Ruminococcus]_torques_group, and Enterococcus were significantly reduced (P < 0.05), and the growth and development of the dominant intestinal flora were promoted in the Cherry Valley ducks. This study will provide more opportunities for Cherry Valley ducks to choose microecological agents for green and healthy breeding.
Collapse
Affiliation(s)
- Shuiqin Shi
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Mengrui Ge
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Yan Xiong
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Yixun Zhang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Wenhui Li
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Zhimuzi Liu
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Jianfen Wang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Enhui He
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Liming Wang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China.
| | - Duoqi Zhou
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China.
| |
Collapse
|
9
|
Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, Fang X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult Sci 2024; 103:103287. [PMID: 38104412 PMCID: PMC10966786 DOI: 10.1016/j.psj.2023.103287] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Remarkable changes have occurred in poultry farming and meat processing in recent years, driven by advancements in breeding technology, feed processing technology, farming conditions, and management practices. The incorporation of probiotics, prebiotics, and phytoextracts has made significant contributions to the development of poultry meat products that promote both health and functionality throughout the growth phase and during meat processing. Poultry fed with these substances improve meat quality, while incorporating probiotics, prebiotics, and phytoextracts in poultry processing, as additives or supplements, inhibits pathogens and offers health benefits to consumers. However, it is vital to assess the safety of functional fermented meat products containing these compounds and their potential effects on consumer health. Currently, there's still uncertainty in these aspects. Additionally, research on utilizing next-generation probiotic strains and synergistic combinations of probiotics and prebiotics in poultry meat products is in its early stages. Therefore, further investigation is required to gain a comprehensive understanding of the beneficial effects and safety considerations of these substances in poultry meat products in the future. This review offered a comprehensive overview of the applications of probiotics and prebiotics in poultry farming, focusing on their effects on nutrient utilization, growth efficiency, and gut health. Furthermore, potential of probiotics, prebiotics, and phytoextracts in enhancing poultry meat production was explored for improved health benefits and functionality, and possible issues associated with the use of these substances were discussed. Moreover, the conclusions drawn from this review and potential future perspectives in this field are presented.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ziying Fang
- Weiran Food Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518000, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
10
|
Elbaz AM, Farrag B, Mesalam NM, Basuony HA, Badran AMM, Abdel-Moneim AME. Growth performance, digestive function, thyroid activity, and immunity of growing rabbits fed olive cake with or without Saccharomyces cerevisiae or citric acid. Trop Anim Health Prod 2023; 55:376. [PMID: 37878115 PMCID: PMC10600033 DOI: 10.1007/s11250-023-03794-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
The present study investigated the impact of dietary inclusion of olive cakes (OC) with or without Saccharomyces cerevisiae (SC) and citric acid (CA) on growth, digestive function, thyroid activity, antioxidant status, immunity, and intestinal architecture of growing rabbits. One hundred forty 35-day-old male New Zealand white rabbits were randomly assigned into seven experimental groups with five replicates each, as follows: control (CN), fed the basal diet; OC20 and OC25, fed diets with 20 and 25% OC; OS20 and OS25, fed diets containing 20 and 25% OC with S. cerevisiae at 5 g/kg diet; OA20 and OA25, fed diets supplemented with 20 and 25% OC with 1.0% citric acid. No differences in live body weight, feed intake, feed conversion ratio, and carcass traits were noticed among experimental groups, while body weight gain and carcass (%) were increased (P < 0.05) in OS20 compared to the control. Digestibility coefficients of all nutrients and activities of amylase, cellulose, and trypsin did not differ in treated groups compared to the control except for OS20, which recorded enhancement in nutrient digestibility. Plasma triiodothyronine and thyroxine were elevated (P < 0.05), while triglycerides and cholesterol were reduced (P < 0.05) in OS20 compared to CN. Plasma concentrations of immunoglobulin M and G and superoxide dismutase were increased in treated groups compared to the control. Dietary inclusion of SC and CA improved rabbits' intestinal health, as the cecal Lactobacillus count was increased, E. coli count was decreased, and villus height was elevated in SC- and CA-treated groups. In conclusion, dietary incorporation of SC or CA enhanced the nutritional value of OC and improved growth performance, nutrient digestibility, thyroid activity, antioxidative status, and gut health of growing rabbits.
Collapse
Affiliation(s)
| | | | - Noura M Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hamdy A Basuony
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Aml M M Badran
- Poultry Breeding Department, Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, Giza, Egypt
| | | |
Collapse
|
11
|
Saeed A, Ali H, Yasmin A, Baig M, Ullah A, Kazmi A, Ahmed MA, Albadrani GM, El-Demerdash FM, Bibi M, Abdel-Daim MM, Ali I, Hussain S. Unveiling the Antibiotic Susceptibility and Antimicrobial Potential of Bacteria from Human Breast Milk of Pakistani Women: An Exploratory Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6399699. [PMID: 37377461 PMCID: PMC10292949 DOI: 10.1155/2023/6399699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Human life quality and expectancy have increased dramatically over the past 5 decades because of improvements in nutrition and antibiotic's usage fighting against infectious diseases. Yet, it was soon revealed that the microbes adapted to develop resistance to any of the drugs that were used. Recently, there is great concern that commensal bacteria from food and the gastrointestinal tract of humans and animals could act as a reservoir for antibiotic resistance genes. Methodology. This study was intended for evaluating the phenotypic antibiotic resistance/sensitivity profiles of probiotic bacteria from human breast milk and evaluating the inhibitory effect of the probiotic bacteria against both Gram-negative and Gram-positive bacteria. RESULTS The results point out that some of the isolated bacteria were resistant to diverse antibiotics including gentamycin, imipenem, trimethoprim sulfamethoxazole, and nalidixic acid. Susceptibility profile to certain antibiotics like vancomycin, tetracycline, ofloxacin, chloramphenicol, streptomycin, rifampicin, and bacitracin was also observed. The antimicrobial qualities of cell-free supernatants of some probiotic bacteria inhibited the growth of indicator bacteria. Also, antimicrobial properties of the probiotic bacteria from the present study attributed to the production of organic acid, bacterial adhesion to hydrocarbons (BATH), salt aggregation, coaggregation with pathogens, and bacteriocin production. Some isolated bacteria from human milk displayed higher hydrophobicity in addition to intrinsic probiotic properties like Gram-positive classification, catalase-negative activity, resistance to gastric juice (pH 2), and bile salt (0.3%) concentration. CONCLUSION This study has added to the data of the antibiotic and antimicrobial activity of some probiotic bacteria from some samples of Pakistani women breast milk. Probiotic bacteria are usually considered to decrease gastrointestinal tract diseases by adhering to the gut epithelial and reducing population of pathogens and in the case of Streptococcus lactarius MB622 and Streptococcus salivarius MB620 in terms of hydrophobicity and exclusion of indicator pathogenic strains.
Collapse
Affiliation(s)
- Ayesha Saeed
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Hina Ali
- Quaid-e-Azam Medical College, Bahawalpur, Punjab, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Mehreen Baig
- Surgical Unit II, Foundation University, Islamabad, Pakistan
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Abeer Kazmi
- Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (UCAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Monaza Bibi
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sadam Hussain
- University of Health Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
12
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
13
|
Liu M, Uyanga VA, Cao X, Liu X, Lin H. Regulatory Effects of the Probiotic Clostridium butyricum on Gut Microbes, Intestinal Health, and Growth Performance of Chickens. J Poult Sci 2023; 60:2023011. [PMID: 37143616 PMCID: PMC10150032 DOI: 10.2141/jpsa.2023011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Clostridium butyricum is an important probiotic for chickens and exerts various biological activities, including altering the composition of the intestinal microbiota, competing with other microorganisms for nutrients, improving the integrity of the intestinal mucosal system, changing the intestinal barrier, and improving overall host health. Intestinal microbes also play vital roles in maintaining the intestinal barrier, regulating intestinal health, and promoting chicken growth. During chicken production, chickens are vulnerable to various stressors that have detrimental effects on the intestinal barrier with significant economic consequences. C. butyricum is a known probiotic that promotes intestinal health and produces the short-chain fatty acid butyric acid, which is beneficial for the growth performance of chickens. This review elucidates the development and utilization of C. butyricum to improve intestinal barrier function and growth performance in chickens through its probiotic properties and interactions with intestinal microbes.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Victoria Anthony Uyanga
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xinyu Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| |
Collapse
|
14
|
Favaro L, Campanaro S, Fugaban JII, Treu L, Jung ES, d'Ovidio L, de Oliveira DP, Liong MT, Ivanova IV, Todorov SD. Genomic, metabolomic, and functional characterisation of beneficial properties of Pediococcus pentosaceus ST58, isolated from human oral cavity. Benef Microbes 2023; 14:57-72. [PMID: 36815495 DOI: 10.3920/bm2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.
Collapse
Affiliation(s)
- L Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Italy
| | - S Campanaro
- Department of Biology, Università degli Studi di Padova, Via U. Bassi 58/b, 35121 Padova, Italy.,CRIBI Biotechnology Center, Università degli Studi di Padova, 35121 Padova, Italy
| | - J I I Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea.,National Food Institute, Technical University of Denmark, Building 202, Rm. 3.234, Kemitorvet, 2800 Kongens, Lyngby, Denmark
| | - L Treu
- Department of Biology, Università degli Studi di Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - E S Jung
- HEM Pharma Inc., Suwon, Gyeonggi 16229, Republic of Korea
| | - L d'Ovidio
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| | - D P de Oliveira
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| | - M-T Liong
- School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia
| | - I V Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea.,Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| |
Collapse
|
15
|
Li Z, Long L, Jin X, Li Y, Wu Q, Chen X, Geng Z, Zhang C. Effects of Clostridium butyricum on growth performance, meat quality, and intestinal health of broilers. Front Vet Sci 2023; 10:1107798. [PMID: 36761883 PMCID: PMC9902377 DOI: 10.3389/fvets.2023.1107798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
This study investigated the effects of Clostridium butyricum on the growth performance, meat quality and intestinal health of broilers. A total of 800 one-day-old male Arbor Acres broilers were randomly assigned to two groups with 16 replicates of 25 broilers per group and fed with a basal diet (CON) or a basal diet supplemented with 1.5 × 109 cfu/kg C. butyricum and 5 × 108 cfu/kg C. butyricum at 1-21 d and 22-42 d, respectively (CB). The results indicated that C. butyricum significantly increased the final body weight, average daily gain at 1-42 d in the growth performance of broilers (P < 0.05). Moreover, C. butyricum significantly increased a 24 h * value and pH24h value of breast meat but reduced the drip loss and shear force (P < 0.05). Regarding serum antioxidant indices, C. butyricum significantly increased the total superoxide dismutase (T-SOD) and total antioxidative capacity activities and reduced the malondialdehyde content (P < 0.05). Furthermore, the broilers in the CB demonstrated an increase in jejunal lipase and trypsin activities, villus height (VH) and VH-to-crypt depth ratio at 42 d compared with those in the CON (P < 0.05). C. butyricum also upregulated the intestinal mRNA levels of zonula occludens-1, nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and interleukin-10 in the jejunal mucosa (P < 0.05), but it downregulated the mRNA levels of nuclear factor kappa B (NF-κB) and tumor necrosis factor-α (P < 0.05). These results indicate that C. butyricum can improve the growth performance and meat quality of broilers. In particular, C. butyricum can improve the intestinal health of broilers, which is likely to be related to the activation of the Nrf2 signaling pathway and inhibition of the NF-κB signaling pathway.
Collapse
|
16
|
Evaluation of Liquid Organic Acids on the Performance, Chyme pH, Nutrient Utilization, and Gut Microbiota in Broilers under High Stocking Density. Animals (Basel) 2023; 13:ani13020257. [PMID: 36670796 PMCID: PMC9854823 DOI: 10.3390/ani13020257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
This study aimed to evaluate the efficacy of organic acids (OAs) in starter broilers and to investigate whether supplemental OAs could alleviate the high stocking density (HSD) stress condition in grower broilers. A total of 408 1-day-old Arbor Acres broilers were assigned into two groups without or with liquid OAs in the starter phase. In the grower phase, each group in the starter phase was divided into a normal stocking density and an HSD. The OA dose was 0.16% at the starter and grower phases. The results showed that at the starter phase, OAs decreased the chyme pH in gizzard and duodenum and increased the activities of chymotrypsin and α-amylase in the duodenal chyme (p < 0.05). In the grower phase, an HSD decreased the growth performance and the ether extract digestibility (p < 0.01). The supplementation of OAs decreased the chyme pH in the gizzard, proventriculus, and duodenum and increased the lipase and α-amylase activities (p < 0.05). The supplemental OAs increased the dry matter and total phosphorous digestibility and the contents of acetic acids, butyric acids, isovaleric acids, and valeric acids (p < 0.05). For cecal microbial compositions at the genus level, an HSD decreased the relative abundance of Blautia, Norank_f__norank_o__RF39, and Alistipes, while supplemental OAs increased the relative abundance of Norank_f__norank_o__RF39 (p < 0.05). In conclusion, although there were no interaction effects between OAs and stocking densities in the present study, it was clear that the supplementation of OAs has beneficial effects on the chyme pH, enzymes activities, and nutrient digestibility in broilers, while an HSD existed adverse effects on the growth performance, nutrient digestibility, and gut microbiota balance in grower broilers.
Collapse
|
17
|
Dietary Use of Methionine Sources and Bacillus amyloliquefaciens CECT 5940 Influences Growth Performance, Hepatopancreatic Histology, Digestion, Immunity, and Digestive Microbiota of Litopenaeus vannamei Fed Reduced Fishmeal Diets. Animals (Basel) 2022; 13:ani13010043. [PMID: 36611655 PMCID: PMC9817784 DOI: 10.3390/ani13010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
An 8-week feeding trial investigated the effect of Fishmeal (FM) replacement by soybean meal (SBM) and poultry by-product meal (PBM) in diets supplemented with DL-Met, MET-MET (AQUAVI®), Bacillus amyloliquefaciens CECT 5940 (ECOBIOL®) and their combinations on growth performance and health of juvenile Litopenaeus vannamei. A total of six experimental diets were formulated according to L. vannamei nutritional requirements. A total of 480 shrimp (0.30 ± 0.04 g) were randomly distributed into 24 tanks (4 repetitions/each diet, 20 shrimp/tank). Shrimp were fed with control diet (CD; 200 g/Kg fishmeal) and five diets with 50% FM replacement supplemented with different methionine sources, probiotic (B. amyloliquefaciens CECT 5940) and their combinations: D1 (0.13% DL-MET), D2 (0.06% MET-MET), D3 (0.19% MET-MET), D4 (0.13% DL-MET plus 0.10% B. amyloliquefaciens CECT 5940 and D5 (0.06% MET-MET plus 0.10% B. amyloliquefaciens CECT 5940). Shrimp fed D3 and D5 had significantly higher final, weekly weight gain, and final biomass compared to shrimp fed CD (p < 0.05). Shrimp fed D2 to D5 increased the hepatopancreas epithelial cell height (p < 0.05). Digestive enzymatic activities were significantly increased in shrimp hepatopancreas’ fed D3 (p < 0.05). Meanwhile, shrimp fed D1 had significant downregulation of immune-related genes (p < 0.05). Moreover, shrimp fed D3 and D5 increased the abundance of beneficial prokaryotic microorganisms such as Pseudoalteromonas and Demequina related to carbohydrate metabolism and immune stimulation. Also, shrimp fed D3 and D5 increased the abundance of beneficial eukaryotic microorganism as Aurantiochytrium and Aplanochytrium were related to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production which plays a role in growth promoting or boosting the immunity of aquatic organisms. Therefore, fishmeal could be partially substituted up to 50% by SBM and PBM in diets supplemented with 0.19% MET-MET (AQUAVI®) or 0.06% MET-MET (AQUAVI®) plus 0.10% B. amyloliquefaciens CECT 5940 (ECOBIOL®) and improve the productive performance, health, and immunity of white shrimp. Further research is necessary to investigate synergistic effects of amino acids and probiotics in farmed shrimp diets, as well as to evaluate how SBM and PBM influence the fatty acid composition of reduced fishmeal diets and shrimp muscle quality. Nevertheless, this information could be interesting to develop low fishmeal feeds for aquaculture without affecting the growth and welfare of aquatic organisms.
Collapse
|
18
|
Abd El-Hack ME, Alagawany M, El-Shall NA, Shehata AM, Abdel-Moneim AME, Naiel MAE. Probiotics in Poultry Nutrition as a Natural Alternative for Antibiotics. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:137-159. [DOI: 10.2174/9789815049015122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Since the early 1950s, antibiotics have been used in poultry for improving
feed efficiency and growth performance. Nevertheless, various side effects have
appeared, such as antibiotic resistance, antibiotic residues in eggs and meat, and
imbalance of beneficial intestinal bacteria. Consequently, it is essential to find other
alternatives that include probiotics that improve poultry production. Probiotics are live
microorganisms administered in adequate doses and improve host health. Probiotics are
available to be used as feed additives, increasing the availability of the nutrients for
enhanced growth by digesting the feed properly. Immunity and meat and egg quality
can be improved by supplementation of probiotics in poultry feed. Furthermore, the
major reason for using probiotics as feed additives is that they can compete with
various infectious diseases causing pathogens in poultry's gastrointestinal tract. Hence,
this chapter focuses on the types and mechanisms of action of probiotics and their
benefits, by feed supplementation, for poultry health and production.
Collapse
Affiliation(s)
| | | | - Nahed A. El-Shall
- Alexandria University,Department of poultry and fish diseases,Elbehira,Egypt
| | | | | | | |
Collapse
|
19
|
Luo C, Wang L, Chen Y, Yuan J. Supplemental Enzyme and Probiotics on the Growth Performance and Nutrient Digestibility of Broilers Fed with a Newly Harvested Corn Diet. Animals (Basel) 2022; 12:ani12182381. [PMID: 36139241 PMCID: PMC9495001 DOI: 10.3390/ani12182381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
A new grain phenomenon happens in newly harvested corn because of its high content of anti-nutritional factors (ANFs), which can cause low nutrient digestibility and diarrhea in animals. Enzymes and probiotics have been shown to relieve the negative effect of ANFs for animals. The purpose of this study was to investigate the effect of enzymes and probiotics on the performance and nutrient digestibility of broilers, fed with newly harvested corn diets. A total of 624 Arbor Acres Plus male broiler chickens were randomly divided into eight treatment groups (A: normal corn diet, CT: newly harvested corn diet, DE: newly harvested corn diet + glucoamylase, PT: newly harvested corn diet + protease, XL: newly harvested corn diet + xylanase, BCC: newly harvested corn diet + Pediococcus acidilactici BCC-1, DE + PT: newly harvested corn diet + glucoamylase + protease, XL + BCC: newly harvested corn diet + xylanase + Pediococcus acidilactici BCC-1). Each group was divided into six replicates, with 13 birds each. On day 21, growth performance, nutrient digestibility, and digestive enzyme activity were measured. Compared with the normal corn diet (PC), the newly harvested corn diet (NC) produced shorter digesta emptying time (p = 0.015) and increased visual fecal water content (p = 0.002) of broilers, however, there was no effect on performance. Compared to the newly harvested corn diet (NC), supplemental enzyme of DE increased the activity of chymotrypsin (p = 0.016), however, no differences in the digestibility of three kinds of organic matter, digesta emptying time, visual fecal water content, or performance were found. Supplemental protease (PT) significantly increased digesta emptying time (p = 0.004) and decreased the activity of maltase (p = 0.007). However, it had no effect on the digestibility of three kinds of organic matter or the performance of broilers. Supplemental xylanase (XL) decreased the activity of amylase (p = 0.006) and maltase (p < 0.001); however, it had no effect on digesta emptying time, visual fecal water content, the digestibility of three kinds of organic matter, or performance of broilers. Supplemental DE, combined with PT (DE + PT), increased the digesta emptying time (p = 0.016) while decreasing the visual fecal water content (p = 0.011), and the activity of amylase (p = 0.011), lipase (p = 0.021), and maltase (p < 0.001), however, there was no effect on performance. Supplemental BCC individually decreased the activity of amylase (p = 0.024) and maltase (p < 0.001), however, it increased the activity of trypsin (p < 0.001) and tended to improve feed conversion ratio (FCR) (p = 0.081). Supplemental BCC-1, combined with XL (XL + BCC), increased the activity of trypsin (p = 0.001) but decreased the activity of amylase (p = 0.013), lipase (p = 0.019), and maltase (p < 0.001). Pediococcus acidilactici BCC-1 (109 cfu/kg), protease (800,000 U/g) individually, or protease (800,000 U/g) in combination with glucoamylase (800,000 U/g) were supplemented in newly harvested corn diets for growing broilers. Hence, this study mainly explores the alleviation effect of enzyme and probiotics on the negative phenomenon caused by the utilization of newly harvested corn in broilers and provides a better solution for the utilization of newly harvested corn in production practice.
Collapse
|
20
|
Choi J, Singh AK, Chen X, Lv J, Kim WK. Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals (Basel) 2022; 12:ani12172178. [PMID: 36077897 PMCID: PMC9454433 DOI: 10.3390/ani12172178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to evaluate the effects of OAs and EOs on growth performance, serum biochemistry, antioxidant enzyme activities, intestinal morphology, and digestive enzyme activities to replace AGP in broilers. Six hundred one-day-old broilers were allotted to five treatments with six replicates: (1) negative control (NC; basal diet); (2) positive control (PC; NC + 50 mg/kg bacitracin methylene disalicylate); (3) organic acids (OA; NC + 2000 mg/kg OA); (4) essential oils (EO; NC + 300 mg/kg EO); and (5) OA + EO (NC + 2000 mg/kg OA + 300 mg/kg EO). In the starter phase, the PC, EO, and OA + EO groups had a significantly lower feed conversion ratio (FCR) compared to the NC group. While the final body weight (BW) of broilers fed OAs was similar compared to broilers fed PC (p > 0.1), the FCR of the OA group tended to be lower than the PC group on D 42 (p = 0.074). The OA group had the higher serum GLOB:ALB (albumin) and ileal villus height and crypt depth (VH:CD) ratios compared to the EO group. Thus, the supplementation of EOs and OAs could substitute AGP in the starter and finisher phase, respectively.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Xi Chen
- Nutribins, Walnut, CA 91789, USA
| | - Jirong Lv
- DadHank (Chengdu) Biotech Corp, Chengdu 611130, China
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
21
|
Selim S, Abdel-Megeid NS, Khalifa HK, Fakiha KG, Majrashi KA, Hussein E. Efficacy of Various Feed Additives on Performance, Nutrient Digestibility, Bone Quality, Blood Constituents, and Phosphorus Absorption and Utilization of Broiler Chickens Fed Low Phosphorus Diet. Animals (Basel) 2022; 12:ani12141742. [PMID: 35883289 PMCID: PMC9312087 DOI: 10.3390/ani12141742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present trial was designed to assess the effect of phytase, multi-strain probiotic, Saccharomyces cerevisiae, and fumaric acid on performance, nutrient digestibility, bone physical parameters and mineralization, blood constituents, bone and gut histomorphology, and duodenal phosphorus transporter genes of broiler chickens fed a decreased non-phytate phosphorus (nPP) diet for 5 weeks. A total of 480 broiler chickens were allotted to six dietary groups and eight replicates each: (1) positive control diet with recommended levels of nPP (PC; 0.48, 0.44, and 0.41% in the three feeding phases); (2) negative control diet with a decreased dietary nPP (NC; 0.28, 0.24, and 0.21% in the three feeding phases); (3) NC + 600 FTU/kg phytase (PHY); (4) NC + 0.05% multi-strain probiotic (PRO); (5) NC + 0.2% Saccharomyces cerevisiae (SC); and (6) NC + 0.2% fumaric acid. Growth performance data were recorded weekly, and blood sampling was performed at days 21 and 35 of age. Bone quality traits, gut and tibia histology, nutrient digestibility, and intestinal gene expression analyses were conducted at the end of the trial (35 days of age). Final body weight and total gain at day 35 of age of the broiler chickens fed with the PHY, PRO, and SC diets were greater (p < 0.01) than in NC, where broilers fed with the PRO and PHY diets had higher values and were similar to that of PC. There was a non-significant variation in the cumulative feed intake among the treatment groups. The PHY and PRO groups had better FCR than the PC group (p < 0.05), and FA and SC had an FCR equivalent to that of PC. The PHY and PRO broilers had greater dressing % than the NC group (p < 0.05) and even better than PC. The PHY, PRO, SC, and FA broilers had higher relative weights of spleen and bursa of Fabricius (p < 0.01) than NC. In comparison to NC, the PHY, PRO, and SC groups improved (p < 0.05) CP, CF, Ca, and P digestibility. Greater tibia breaking strength of the low nPP-supplemented groups was shown to be associated with higher tibia ash, Ca, and P concentrations (p < 0.01) and increased (p < 0.001) tibia cortical area thickness. At days 21 and 35 of age, the dietary supplements to low nPP diets reduced (p < 0.05) serum total cholesterol, triglyceride, triiodothyronine, thyroxine, glucose, and alkaline phosphatase levels, while serum Ca and P concentrations were improved (p < 0.05) compared to NC. All supplements led to enhancement (p < 0.01) in villi height and width and villi absorptive surface area when compared with NC and were even comparable to that of PC. The mRNA expression of NaP-IIb was up-regulated (p < 0.001) in the duodenum of PRO and FA broilers at day 35 of age compared with NC, and their expression levels were similar to that of PC, indicating greater P availability. It is concluded that dietary supplementation of PHY, PRO, SC, and FA to a low nPP diet was advantageous and mitigated the negative impacts of P reduction on the growth performance, health, nutrient digestibility, and bone quality of broilers.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Menoufia, Shibin El-Kom 32514, Egypt
- Correspondence:
| | - Nazema S. Abdel-Megeid
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Hanem K. Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Khloud G. Fakiha
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia;
| | - Kamlah A. Majrashi
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, University of Menoufia, Shibin El-Kom 32514, Egypt;
| |
Collapse
|
22
|
Gurram S, Chinni Preetam V, Vijaya Lakshmi K, Raju MVLN, Venkateswarlu M, Bora S. Synergistic effect of probiotic, chicory root powder and coriander seed powder on growth performance, antioxidant activity and gut health of broiler chickens. PLoS One 2022; 17:e0270231. [PMID: 35759473 PMCID: PMC9236266 DOI: 10.1371/journal.pone.0270231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Gut health plays an important role on production and performance of broilers. This trial was undertaken with an aim to evaluate the synergistic effect of probiotic, chicory root powder and coriander seed powder on the performance and gut health of broiler chicken. For this purpose, a total of 240 day-old broiler chicks were randomly allotted to six dietary treatments with 8 replicates of 5 birds in each. Treatment groups included T1 as control i.e., basal diet (BD) without any growth promoter and T2-BD + antibiotic (BMD 0.05%). In the remaining experimental diets, T3-probiotic (@ 0.01%) + chicory root powder (@ 1.0%), T4-probiotic (@ 0.01%) + coriander seed powder (@ 1.5%), T5-chicory root powder (@ 1.0%) + coriander seed powder (@ 1.5%) and T6-probiotic (@ 0.01%) + chicory root powder (@ 1.0%) + coriander seed powder (@ 1.5%). The results indicated that supplementation of probiotic + chicory (T3), probiotic + coriander (T4), chicory + coriander (T5) and probiotic + chicory + coriander (T6) in combination resulted in significantly (P<0.05) higher weight gain and better FCR compared to control and antibiotic groups at 42 d of age. Supplementation of different dietary groups did not show any significant (P>0.05) effect on feed intake of broilers. Supplementation of all the test diets (T3 to T6) significantly (P<0.05) increased the glutathione peroxidase (GSHPx), glutathione reductase (GSHRx) and superoxide dismutase (SOD) enzyme activity when compared to control and antibiotic groups at 42 d of age. Supplementation of all the test diets (T3 to T6) significantly (P<0.05) lowered the pH in the gut, increased Lactobacillus counts, and reduced E. coli and Salmonella counts in the ileum compared to control and antibiotic groups. Supplementation of all the test diets (T3 to T6) significantly (P<0.05) increased the villus height (VH), crypt depth (CD), VH:CD ratio and villus width (VW) in the duodenum and only VH and CD in the ileum compared to control and antibiotic groups. Significantly (P<0.05) higher jejunal VH and VW and increased the goblet cell number in duodenum, jejunum and ileum was recorded in all test diets (T3 to T6) compared to control and antibiotic groups. Therefore, combinations of probiotic (0.01%), chicory root powder (1.0%) and coriander seed powder (1.5%) can be used as feed additive for improving performance and gut health of broiler chicken.
Collapse
Affiliation(s)
- Srinivas Gurram
- Poultry Research Station, PV Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad
| | - V. Chinni Preetam
- Department of Poultry Science, College of Veterinary Science, PV Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad
| | - K. Vijaya Lakshmi
- Department of Livestock Farm Complex, PV Narsimha Rao Telangana Veterinary University, College of Veterinary Science, Mamnoor, Warangal
| | - M. V. L. N. Raju
- Poultry Nutrition, ICAR, Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - M. Venkateswarlu
- Department of Animal Nutrition, College of Veterinary Science, PV Narsimha Rao Telangana (_((((xxxVeterinary University, Rajendranagar, Hyderabad
| | - Swathi Bora
- Department of Veterinary Pathology, College of Veterinary science, PV Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad
| |
Collapse
|
23
|
Zhang L, Wang Y, Zhang R, Jia H, Liu X, Zhu Z. Effects of three probiotics and their interactions on the growth performance of and nutrient absorption in broilers. PeerJ 2022; 10:e13308. [PMID: 35602903 PMCID: PMC9121878 DOI: 10.7717/peerj.13308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to investigate the effects of three probiotics and their interactions on growth performance, intestinal digestion and absorption, and nutrient transporters in broilers. A total of 350 one-day-old male Arbor Acres broilers were randomly divided into seven groups: the control group (broilers receiving normal drinking water), groups P1, P2 and P3 (broilers receiving drinking water with 1% Lactobacillus casei, Lactobacillus acidophilus and Bifidobacterium lactis , respectively) and groups CP1, CP2 and CP3 (broilers receiving drinking water with a 1% compound probiotic mixture in 2:1:1, 1:2:1, 1:1:2 ratios, respectively). The feeding period was divided into two experimental periods: 1∼21 days and 22∼42 days. Compared to those in the control group, the broiler slaughter indexes and average daily feed intakes in the probiotics groups were not significantly different (P > 0.05), but the villus height in the small intestine increased significantly, and the crypt depth decreased significantly (P < 0.05). In the 1- to 21-day, experimental period, the broiler average daily gains in groups CP2 and CP3 were significantly greater than that in the control group. Amylase, lipase, and trypsin activities in the jejunum in groups CP and P3 increased significantly. GLUT2 mRNA expression in the probiotics group was significantly incresaed compared with that in the control group (P < 0.05). In the 22- to 42-day period, the average daily gain in the CP group was significantly greater than that in the control group. Amylase activity in the CP2 group, and lipase and trypsin activities in the CP, P1 and P3 groups increased significantly. The GLUT2 mRNA expression in the CP group increased significantly (P < 0.05). In summary, three probiotics and their interactions improved the digestibility and absorption of nutrients by increasing the activities of digestive enzymes, improving the morphology of the digestive tract, and upregulating the expression of GLUT2 mRNA in the intestinalcell membrane to improve the production performance in broilers.
Collapse
Affiliation(s)
| | - Yanfei Wang
- Shanxi Agricultural University, Jinzhong, China
| | | | - Hao Jia
- Shanxi Agricultural University, Jinzhong, China
| | - Xuan Liu
- Shanxi Agricultural University, Jinzhong, China
| | - Zhiwei Zhu
- Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
24
|
Mahdavi Sadati M, Rezaeipour V, Abdullahpour R. Efficacy of whole wheat grain in combination with acidified drinking water on growth performance, gizzard development, intestinal morphology, and microbial population of broiler chickens. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Khan RU, Naz S, Raziq F, Qudratullah Q, Khan NA, Laudadio V, Tufarelli V, Ragni M. Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32594-32604. [PMID: 35195862 PMCID: PMC9072444 DOI: 10.1007/s11356-022-19241-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Genetically, modern broilers are fast-growing birds which attain the market age at the age of 5 weeks. To maintain optimum production, antibiotics have been commonly included in the diets as growth promoters. However, due to the increase in antimicrobial resistance, their uses have been banned worldwide. To keep the optimum level of production and health in broiler industry, the use of alternative growth promoters such as probiotics, prebiotics, enzymes, and organic acids has been proposed. Chemically, organic acids are weak acids and only partially dissociate. They are considered safe and have been used for preservation of food for centuries. Nowadays, organic acids have been reported for antibacterial, immune potentiating, and growth promoters in broilers. In this review, the effects of dietary inclusion of organic acids on growth, nutrient digestibility, intestinal integrity, immune system, and antibacterial activity in broilers are discussed.
Collapse
Affiliation(s)
- Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Fazal Raziq
- Livestock and Dairy Development, Peshawar, Pakistan
| | - Qudratullah Qudratullah
- Department of Surgery and Pet Centre, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Vito Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy.
| | - Marco Ragni
- Department of Agro-Environmental and Territorial Science, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
26
|
Song D, Li A, Wang Y, Song G, Cheng J, Wang L, Liu K, Min Y, Wang W. Effects of synbiotic on growth, digestibility, immune and antioxidant performance in broilers. Animal 2022; 16:100497. [PMID: 35338905 DOI: 10.1016/j.animal.2022.100497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The overuse of in-feed antibiotics has been associated with serious issues, including the developing of antibiotic-resistant pathogens and causing drug residues in poultry products. To date, many countries have restricted the use of growth-promoting antibiotics in food animals, resulting in the increased need for effective alternatives to in-feed antibiotic. Synbiotics, which are composed of probiotics and prebiotics, have been shown to act synergistically when applied simultaneously. Thus, this study investigated the effects of a synbiotic, composed of microencapsulated Lactobacillus plantarum (MLP) and fructooligosaccharide (FOS), on growth, immune and antioxidant parameters, and digestibility of calcium and phosphorus in broilers. A total of 168 newly hatched male broilers were randomly allotted to three dietary groups (n = 7): (1) a corn-soybean meal basal diet (CON); (2) basal diet + synbiotic (SYN); and (3) basal diet + aureomycin (ANT). Compared with the CON, chickens had greater average daily gain and digestibility of calcium and phosphorus in the SYN group (P < 0.05). In the SYN and ANT group, serum IgA, IgG, and IL-10 levels were higher, while the serum TNF-α, IL-2, and IL-6 levels were reduced (P < 0.05) compared to CON. Compared with CON, the level of serum malondialdehyde was lower (P < 0.05) and SOD level was higher (P < 0.05) in either SYN or ANT group. No significant differences in populations of Escherichia coli were seen in chickens among the three groups, whereas, the populations of Lactobacillus were higher (P < 0.05) in chickens in the SYN group compared with those in CON and ANT groups. Taken together, the addition of SYN, consisting of MLP and FOS, had benefits on growth, immune and antioxidant parameters, and digestibility of calcium and phosphorus, indicating its potential to serve as a substitute for antibiotics in broiler feeding.
Collapse
Affiliation(s)
- Dan Song
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Yongwei Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Junlin Cheng
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Li Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Kuanbo Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Weiwei Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China.
| |
Collapse
|
27
|
Melara EG, Avellaneda MC, Valdivié M, García-Hernández Y, Aroche R, Martínez Y. Probiotics: Symbiotic Relationship with the Animal Host. Animals (Basel) 2022; 12:719. [PMID: 35327116 PMCID: PMC8944810 DOI: 10.3390/ani12060719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic growth-promoters in animal feeding are known to generate bacterial resistance on commercial farms and have proven deleterious effects on human health. This review addresses the effects of probiotics and their symbiotic relationship with the animal host as a viable alternative for producing healthy meat, eggs, and milk at present and in the future. Probiotics can tolerate the conditions of the gastrointestinal tract, such as the gastric acid, pH and bile salts, to exert beneficial effects on the host. They (probiotics) may also have a beneficial effect on productivity, health and wellbeing in different parameters of animal performance. Probiotics stimulate the native microbiota (microbes that are present in their place of origin) and production of short-chain fatty acids, with proven effects such as antimicrobial, hypocholesterolemic and immunomodulatory effects, resulting in better intestinal health, nutrient absorption capacity and productive responses in ruminant and non-ruminant animals. These beneficial effects of probiotics are specific to each microbial strain; therefore, the isolation and identification of beneficial microorganisms, as well as in vitro and in vivo testing in different categories of farm animals, will guarantee their efficacy, replicability and sustainability in the current production systems.
Collapse
Affiliation(s)
- Elvia Guadalupe Melara
- Master Program in Sustainable Tropical Agriculture, Graduate Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente 11101, Honduras;
| | - Mavir Carolina Avellaneda
- Plant Pathology, Diagnosis and Molecular Research Lab, Agricultural Sciences and Production Department, Zamorano University, P.O. Box 93, San Antonio de Oriente 11101, Honduras;
| | - Manuel Valdivié
- National Center for Laboratory Animal Production, P.O. Box 6240, Santiago de las Vegas, Rancho Boyeros, Havana 10900, Cuba;
| | - Yaneisy García-Hernández
- Departamento de Animales Monogástricos, Instituto de Ciencia Animal, Carretera Central km 47 ½, San José de las Lajas 32700, Cuba;
| | - Roisbel Aroche
- Department of Animal Husbandry, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba;
| | - Yordan Martínez
- Poultry Research and Teaching Center, Agricultural Science and Production Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente 11101, Honduras
| |
Collapse
|
28
|
Valledor SJD, Dioso CM, Bucheli JEV, Park YJ, Suh DH, Jung ES, Kim B, Holzapfel WH, Todorov SD. Characterization and safety evaluation of two beneficial, enterocin-producing Enterococcus faecium strains isolated from kimchi, a Korean fermented cabbage. Food Microbiol 2021; 102:103886. [PMID: 34809929 DOI: 10.1016/j.fm.2021.103886] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Enterococcus faecium ST20Kc and ST41Kc were isolated from kimchi, a traditional Korean fermented cabbage. Bacteriocins produced by both strains exhibited strong activity against Listeria monocytogenes and various Enterococcus spp., including 30 vancomycin-resistant enterococcal strains, but not against other lactic acid bacteria (LAB) on the evaluated test panel. The antimicrobials produced by the strains were found to be proteinaceous and stable even after exposure to varying pH, temperature, and chemicals used in the industry and laboratory processes. Antimicrobial activity of both strains was evaluated as bactericidal against exponentially growing cultures of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A. Based on tricine-SDS-PAGE, the molecular weights of the bacteriocins produced by the strains were between 4 and 6 kDa. Additionally, both strains were susceptible to antibiotics, including vancomycin, kanamycin, gentamycin, ampicillin, streptomycin, tylosin, chloramphenicol, clindamycin, and tetracycline. Adhesion genes, map, mub, and EF-Tu, were also detected in the genomes of both strains. With gastrointestinal stress induction, both strains showed high individual survival rates, and capability to reduce viable counts of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A in mixed cultures. Based on the metabolomics analysis, both strains were found to produce additional antimicrobial compounds, particularly, lactic acid, phenyllactic acid, and phenethylamine, which can be potentially involved in the antimicrobial interaction with pathogenic microorganisms.
Collapse
Affiliation(s)
- Samantha Joy D Valledor
- ProBacLab, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | | | | | - Yu Jin Park
- HEM Pharma Inc., Suwon, Gyeonggi, 16229, Republic of Korea
| | - Dong Ho Suh
- HEM Pharma Inc., Suwon, Gyeonggi, 16229, Republic of Korea
| | - Eun Sung Jung
- HEM Pharma Inc., Suwon, Gyeonggi, 16229, Republic of Korea
| | - Bobae Kim
- HEM Pharma Inc., Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
29
|
Effects of Bacillus amyloliquefaciens LFB112 on Growth Performance, Carcass Traits, Immune, and Serum Biochemical Response in Broiler Chickens. Antibiotics (Basel) 2021; 10:antibiotics10111427. [PMID: 34827365 PMCID: PMC8614806 DOI: 10.3390/antibiotics10111427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effects of Bacillus amyloliquefaciens LFB112 on the growth performance, carcass traits, immune response, and serum biochemical parameters of broiler chickens. A total of 396 1 day old, mixed-sex commercial Ross 308 broilers with similar body weights were allotted into six treatment groups. The assigned groups were the CON group (basal diet with no supplement), AB (antibiotics) group (basal diet + 150 mg of aureomycin/kg), C+M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 powder with vegetative cells + metabolites), C group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 vegetative cell powder with removed metabolites), M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 metabolite powder with removed vegetative cells), and CICC group (basal diet + 5 × 108 CFU/kg Bacillus subtilis CICC 20179). Results indicated that chickens in the C+M, C, and M groups had higher body weight (BW) and average daily gain (ADG) (p < 0.05) and lower feed conversion ratio (FCR) (p = 0.02) compared to the CON group. The C+M group showed the lowest abdominal fat rate compared to those in the CON, AB, and CICC groups (p < 0.05). Compared to the CON group, serum IgA and IgG levels in the C+M, C, and M groups significantly increased while declining in the AB group (p < 0.05). B. amyloliquefaciens LFB112 supplementation significantly reduced the serum triglyceride, cholesterol, urea, and creatinine levels, while increasing the serum glucose and total protein (p < 0.05). In conclusion, B. amyloliquefaciens LFB112 significantly improved the growth performance, carcass traits, immunity, and blood chemical indices of broiler chickens and may be used as an efficient broiler feed supplement.
Collapse
|
30
|
Nour MA, El-Hindawy MM, Abou-Kassem DE, Ashour EA, Abd El-Hack ME, Mahgoub S, Aboelenin SM, Soliman MM, El-Tarabily KA, Abdel-Moneim AME. Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J Biol Sci 2021; 28:6544-6555. [PMID: 34764770 PMCID: PMC8568992 DOI: 10.1016/j.sjbs.2021.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/23/2023] Open
Abstract
This study investigated two kinds of probiotic bacteria (Bacillus toyonensis, B1 and Bifidobacterium bifidum, B2) on laying Japanese quail’s performance, egg quality, fertility and hatchability, blood biochemical characteristics and microbiological parameters. A total of 270 mature quails (180 females and 90 males) were distributed into ten groups in a completely randomized design at eight weeks of age. The experimental groups were as follows: T1: basal diet only (control); T2-T5, basal diet plus 0.05, 0.075, 0.10 and 0.125% B1, respectively; T6: basal diet plus 0.10% B2; T7-T10: basal diet plus 0.05, 0.075, 0.10 and 0.125% B1 plus 0.05% B2, respectively. Results revealed that egg number (EN) and egg weight (EW) were gradually increased (P < 0.01) as the levels of both probiotic types increased. The feed conversion ratio (FCR) was significantly (P < 0.05) better within the total experimental period (8–20 weeks) due to B1 alone or/with B2 supplementation. Values of yolk percentage (Y%) were statistically (P < 0.01) higher only at 8–20 weeks of age and T10 recorded the highest value. By increasing the level of probiotics, fertility and hatchability percentages (F% and H%) were gradually increased (P < 0.01 and P < 0.05). Creatinine (CR) level was statistically reduced in birds fed T4 diet. Also, urea-N and aspartate aminotransferase (AST) levels were reduced in treated birds. The opposite was found regarding alkaline phosphatase (ALP). Conclusively, using B1 and B2 enhanced the productive performance, some egg quality traits, fertility and hatchability, digestive enzyme activities, and reduced the harmful bacteria in the gut of laying Japanese quail. Our findings could recommend to apply T4 (basal diet + 0.10 % B1), T6 (basal diet + 0.10% B2) and T9 (basal diet + 0.10% B1 + 0.05% B2) levels for the best results.
Collapse
Affiliation(s)
- Mohamed A Nour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M El-Hindawy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Diaa E Abou-Kassem
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44511, Egypt
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samir Mahgoub
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig 44111, Egypt
| | - Salama M Aboelenin
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates.,Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Abdel-Moneim E Abdel-Moneim
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abou-Zabael 13759, Egypt
| |
Collapse
|
31
|
Meng Y, Huo H, Zhang Y, Bai S, Wang R, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Xuan Y. Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals (Basel) 2021; 11:ani11102909. [PMID: 34679930 PMCID: PMC8532941 DOI: 10.3390/ani11102909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glucose oxidase was used as a potential additive to improve intestinal health in livestock and poultry industry. This study aimed to investigate the effects of glucose oxidase supplementation on performance, ileal microbiota, ileal short-chain fatty acids profile, and apparent ileal digestibility in grower broilers. Our findings will provide a valuable insight into the possibility of glucose oxidase as an alternative of antibiotic growth promoters in broiler diets. Abstract This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22–42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22–42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition.
Collapse
Affiliation(s)
- Yong Meng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Haonan Huo
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yang Zhang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Shiping Bai
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Correspondence: ; Tel.: +86-28-86290922
| | - Ruisheng Wang
- Chongqing Academy of Animal Science, Chongqiang 402460, China;
| | - Keying Zhang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Xuemei Ding
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Jianping Wang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Qiufeng Zeng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Huanwei Peng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yue Xuan
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| |
Collapse
|
32
|
Wang Y, Xu Y, Xu S, Yang J, Wang K, Zhan X. Bacillus subtilis DSM29784 Alleviates Negative Effects on Growth Performance in Broilers by Improving the Intestinal Health Under Necrotic Enteritis Challenge. Front Microbiol 2021; 12:723187. [PMID: 34603247 PMCID: PMC8481782 DOI: 10.3389/fmicb.2021.723187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Along with banning antibiotics, necrotic enteritis (NE), especially subclinical enteritis (SNE), poses a significant threat to the chicken industry; however, probiotics are a potentially promising intervention. We aimed to investigate the beneficial effects of Bacillus subtilis DSM29784 (BS) on the treatment of Clostridium perfringens (CP)-induced SNE in broilers. A total of 360 1-day-old broiler chicks were divided into three treatment groups, namely control (Ctr), SNE, and BS treatment (BST) groups, all of which were fed with a basal died for 21days, and then from day 22 onward, only the BST group had a BS supplemented diet (1×109 colony-forming units BS/kg). On day 15, all chicks, except the Ctr group, were challenged with a 20-fold dose coccidiosis vaccine and 1ml CP (2×108) on days 18–21 for SNE induction. Beneficial effects were observed on growth performance in BST compared to SNE broilers. BST treatment alleviated intestinal lesions and increased the villus height/crypt depth ratio. Further, BST broilers showed increased maltase activity in the duodenum compared with SNE chicks, and a significantly decreased caspase-3 protein expression in the jejunum mucosa. Moreover, an increased abundance of Ruminococcaceae and Bifidobacterium beneficial gut bacteria and an altered gut metabolome were observed. Taken together, we demonstrate that the manipulation of microbial gut composition using probiotics may be a promising prevention strategy for SNE by improving the composition and metabolism of the intestinal microbiota, intestinal structure, and reducing inflammation and apoptosis. Hence, BS potentially has active ingredients that may be used as antibiotic substitutes and effectively reduces the economic losses caused by SNE. The findings of this study provide a scientific foundation for BS application in broiler feed in the future.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shengliang Xu
- Haiyan Animal Husbandry and Veterinary Bureau, Haiyan, China
| | - Jinyong Yang
- Zhejiang Animal Husbandry Technology Extension and Livestock and Poultry Monitoring Station, Hangzhou, China
| | - Kaiying Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiuan Zhan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
34
|
Rodjan P, Wattanasit S, Thongprajukaew K, Faroongsarng D. Effect of dietary coated granules containing garlic oil diallyl disulphide and diallyl trisulphide on performance, in vitro digestibility and gastrointestinal functionality in laying hens. J Anim Physiol Anim Nutr (Berl) 2021; 106:118-131. [PMID: 33904625 DOI: 10.1111/jpn.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
This experiment was conducted to investigate the effects of dietary supplementation with coated granules (CG) on performance, in vitro digestibility and the gastrointestinal functionality in laying hens. A total of 40 Hisex Brown laying hens (36 weeks of age) were randomly divided into five equal groups; one served as a control and the other four were actual experimental groups supplemented with 0.75, 1.5, 3 or 6 g CG per day. All the hens were fed restrictively with target feed intake of 100 g basal diet/hen per day. There were no differences in egg production or egg weight among the groups, but feed conversion ratio was significantly improved (linearly, p < 0.05) with the dose level of CG in diet. Dietary CG increased the jejunal weight (linear and quadratic terms, p < 0.05) but decreased the ileal weight (linearly, p < 0.05). There was mostly statistical interaction between dietary CG and specific activity of intestinal digestive enzymes with similar patterns for dietary CG treatments (p < 0.05). A positive linear correlation was observed with in vitro protein digestibility by using the crude enzyme extract from dietary CG supplementation. Dietary CG decreased the caecal Escherichia coli population while the Lactobacillus spp.: E. coli ratio increased (quadratic fit, p < 0.05). CG supplementation, on the other hand, significantly altered intestinal morphology by increasing the height of duodenal and ileal villi (linearly, p < 0.05). Also, duodenal antioxidant capacity observed via remaining reducing power improved linearly (p < 0.05). This suggests that CG, unlike garlic oils without encapsulation, may be a good candidate for feed supplementation in commercial egg production. It could be included up to 6 g CG per day without any adverse effects on performance, which may relate to improving nutrient digestibility and better utilization of limited feed intake when using a low amount of diet or other observations in this study.
Collapse
Affiliation(s)
- Prawit Rodjan
- Program in Tropical Agricultural Resource Management, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center of Excellence in Agricultural and Natural Research Biotechnology Phase 3, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sutha Wattanasit
- Center of Excellence in Agricultural and Natural Research Biotechnology Phase 3, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Department of Animal Science, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Karun Thongprajukaew
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Damrongsak Faroongsarng
- Drug Delivery System Excellent Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
35
|
Effect of graded levels of dietary Bacillus toyonensis and Bifidobacterium bifidum supplementation on growth, carcass traits and ileal histomorphometry and microbiota of growing quails. Saudi J Biol Sci 2021; 28:4532-4541. [PMID: 34354439 PMCID: PMC8325023 DOI: 10.1016/j.sjbs.2021.04.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022] Open
Abstract
This experiment investigated the role of graded dietary levels of two probiotic strains (Bacillus toyonensis; BT and Bifidobacterium bifidum; BB) on the growth rate, carcass traits, physiological and histological aspects of growing Japanese quail. One thousand and three hundred sixty one-day-old un-sexed Japanese quail chicks were distributed randomly into ten groups. The 1st group served as a control and fed the basal diet without supplement while the 2nd, 3rd, 4th and 5th groups received the control diet supplemented with 0.05, 0.075, 0.10 and 0.125% BT, respectively. The 6th group fed the control diet plus 0.10% BB while the remaining groups (7th to 10th) received the basal diet incorporated with the previous levels of BT rich with 0.05% BB. Dietary supplementation of BT and/or BB increased body weight and gain; however, feed intake and feed conversion were not affected. Amylase activity was significantly elevated in 5th, 7th and 9th groups, while lipase activity was improved in all treatment groups except 3rd and 6th groups. Results obtained concluded that dietary supplementation of BT with or without BB is useful for performance, digestive enzyme activities, blood cholesterols, antioxidant status and ileal histomorphometry and microbiota of growing Japanese quail.
Collapse
|
36
|
Abdel-Moneim AME, Shehata AM, Khidr RE, Paswan VK, Ibrahim NS, El-Ghoul AA, Aldhumri SA, Gabr SA, Mesalam NM, Elbaz AM, Elsayed MA, Wakwak MM, Ebeid TA. Nutritional manipulation to combat heat stress in poultry - A comprehensive review. J Therm Biol 2021; 98:102915. [PMID: 34016342 DOI: 10.1016/j.jtherbio.2021.102915] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Global warming and climate change adversely affect livestock and poultry production sectors under tropical and subtropical conditions. Heat stress is amongst the most significant stressors influencing poultry productivity in hot climate regions, causing substantial economic losses in poultry industry. These economic losses are speculated to increase in the coming years with the rise of global temperature. Moreover, modern poultry strains are more susceptible to high ambient temperature. Heat stress has negative effects on physiological response, growth performance and laying performance, which appeared in the form of reducing feed consumption, body weight gain, egg production, feed efficiency, meat quality, egg quality and immune response. Numerous practical procedures were used to ameliorate the negative impacts of increased temperature; among them the dietary manipulation, which gains a great concern in different regions around the world. These nutritional manipulations are feed additives (natural antioxidants, minerals, electrolytes, phytobiotics, probiotics, fat, and protein), feed restriction, feed form, drinking cold water and others. However, in the large scale of poultry industry, only a few of these strategies are commonly used. The current review article deliberates the different practical applications of useful nutritional manipulations to mitigate the heat load in poultry. The documented information will be useful to poultry producers to improve the general health status and productivity of heat-stressed birds via enhancing stress tolerance, oxidative status and immune response, and thereby provide recommendations to minimize production losses due to heat stress in particular under the growing global warming crisis.
Collapse
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt; Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Vinod K Paswan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nashaat S Ibrahim
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Abdelkawy A El-Ghoul
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Sami Ali Aldhumri
- Department of Biology, Khurmah University College, Taif University, Saudi Arabia
| | - Salah A Gabr
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt; Department of Biology, Khurmah University College, Taif University, Saudi Arabia
| | - Noura M Mesalam
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | | | - Mohamed A Elsayed
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Magda M Wakwak
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Tarek A Ebeid
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
37
|
Jeni RE, Dittoe DK, Olson EG, Lourenco J, Corcionivoschi N, Ricke SC, Callaway TR. Probiotics and potential applications for alternative poultry production systems. Poult Sci 2021; 100:101156. [PMID: 34077849 PMCID: PMC8181177 DOI: 10.1016/j.psj.2021.101156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Concerns over animal welfare continue to be a critical component of law and policies associated with commercial food animal production. Social and market pressures are the driving forces behind the legislation and result in the change of poultry production management systems. As a result, the movement toward cage-free and aviary-based egg production systems has become standard practices. Cage-based systems being replaced by alternative methods that offer a suitable housing environment to meet or exceed poultry welfare needs and require different management, including the ban of antibiotics in poultry diets. For broiler production, pasture- raised and free-range management systems have become more popular. However, challenges remain from exposure to disease-causing organisms and foodborne pathogens in these environments. Consequently, probiotics can be supplemented in poultry diets as commercial feed additives. The present review discusses the impacts of these probiotics on the performance of alternative poultry production systems for improving food safety and poultry health by mitigating pathogenic organisms and improving egg and meat quality and production.
Collapse
Affiliation(s)
- Rim El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Elena G Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Jeferson Lourenco
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom; Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Todd R Callaway
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania.
| |
Collapse
|
38
|
Ding S, Yan W, Ma Y, Fang J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:24-30. [PMID: 33997328 PMCID: PMC8110871 DOI: 10.1016/j.aninu.2020.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022]
Abstract
The intestinal immune system is affected by various factors during its development, such as maternal antibodies, host genes, intestinal microbial composition and activity, and various stresses (such as weaning stress). Intestinal microbes may have an important impact on the development of the host immune system. Appropriate interventions such as probiotics may have a positive effect on intestinal immunity by regulating the composition and activity of intestinal microbes. Moreover, probiotics participate in the regulation of host health in many ways; for instance, by improving digestion and the absorption of nutrients, immune response, increasing the content of intestinal-beneficial microorganisms, and inhibiting intestinal-pathogenic bacteria, and they participate in regulating intestinal diseases in various ways. Probiotics are widely used as additives in livestock and the poultry industry and bring health benefits to hosts by improving intestinal microbes and growth performance, which provides more choices for promoting strong and efficient productivity.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Wenxin Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
39
|
Emanuel Manggotu Nahak T, Endang Tri Hastuti Wahyuni A, Yanuartono, Rangga Tabbu C. Probiotics and Herbs Combination in Commercial Feed Additives as Growth Promoter in Broiler Chicken. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213304008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prohibition on the use of Antibiotic Growth Promoter (AGP) causes the use of probiotics, herbs, enzymes and organic acids as an alternatives to AGP. This study aimed to determine the role of combination of probiotic and herbs in commercial feed additives on broiler performance. Sixty day-old male broiler were divided into 3 groups where each group consisted of 20 chickens with 4 replication each group. Group I was given commercial feed, group II was given commercial feed + AGP and group III was given commercial feed + combination of probiotics, herbs, enzymes and organic acids. All chickens were kept for 5 weeks. Body weight gain (BWG), body weight (BW) and Feed Convertion Ratio (FCR) were calculated every week. Carcass percentage was calculated at week 5. The results obtained from BWG and BW on group III at weeks 4 and 5 weeks were higher and significant difference (P<0.05) compared to groups I and II. The percentage of carcasses between groups did not have a significant difference (P>0.05). FCR values in group III from week 1 to weeks 5 were lower than groups I and II. The use of combination of probiotics, herbs, enzymes and organic acids has proven to have a good role on broiler performance so that it can replace AGP as a feed additive on broiler.
Collapse
|
40
|
Elhassan MMO, Ali AM, Kehlet AB, Ali OHA, Harrington D. The Response of Broiler Chicks to Dietary Supplementation with a Probiotic, Acidifiers Blend, and Their Combination. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2021-1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - AM Ali
- King Faisal University, Saudi Arabia
| | | | - OHA Ali
- University of Khartoum, Sudan
| | | |
Collapse
|
41
|
Joya M, Ashayerizadeh O, Dastar B. Effects of Spirulina (Arthrospira) platensis and Bacillus subtilis PB6 on growth performance, intestinal microbiota and morphology, and serum parameters in broiler chickens. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Context
The use of microalgae as prebiotics in poultry diets may improve production efficiency by modifying the gastrointestinal ecosystem. Prebiotic properties of the cyanobacterium Spirulina (Arthrospira) platensis have been confirmed, but effects of its combination with probiotics on broiler chicken performance are unclear.
Aims
This experiment was designed to study the effects of different levels of a microalga (Spirulina platensis) and a probiotic (Bacillus subtilis PB6, BSPB) on performance, intestinal microbiota and morphology, and blood parameters in broiler chickens.
Methods
One-day-old Ross 308 broiler chickens (300 in total) were allocated to six treatments in a completely randomised design with 3 × 2 factorial arrangement including three levels of Spirulina (0%, 0.05% or 0.1% of diet) and two levels of BSPB (0% or 0.05% of diet) and were reared for 42 days.
Key results
Individual use of Spirulina and BSPB improved bodyweight gain and feed conversion ratio of broiler chickens. The relative weight of the breast cut was greater in broilers treated with 0.05% Spirulina than in those receiving Spirulina-free treatments. The count of lactic acid bacteria was higher in the ileum of birds receiving only BSPB than in those receiving diets without BSPB. The use of 0.1% Spirulina in the diet decreased the pH and coliform population in the ileum compared with 0% Spirulina. There was an interaction between Spirulina and BSPB on villus height (VH) and the VH:crypt depth ratio in the small intestine. Co-supplementation with 0.1% Spirulina and BSPB increased VH and the VH:crypt depth ratio in the duodenum compared with diets supplemented, respectively, with 0.1% Spirulina and BSPB alone. Broiler chickens fed diets with BSPB had higher activities of superoxide dismutase and glutathione peroxidase and lower concentrations of cholesterol and triglyceride in serum.
Conclusions
The results show that supplementation with Spirulina and BSPB had a positive effect on performance and carcass quality of broiler chickens. The synergistic interaction between these supplements leads to enhancement of epithelial morphology in the small intestine.
Implications
Because of the potential of Spirulina and BSPB to create beneficial changes in the intestinal ecosystem and serum parameters, these dietary additives could be recommended for improving the quantity and quality of meat products and health status in broiler chickens.
Collapse
|
42
|
Faryadi S, Sheikhahmadi A, Farhadi A, Nourbakhsh H. Effects of silymarin and nano-silymarin on performance, egg quality, nutrient digestibility, and intestinal morphology of laying hens during storage. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1975503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Samira Faryadi
- Department of Animal Science, Faculty of Agricultural, University of Kurdistan, Sanandaj, Iran
| | - Ardashir Sheikhahmadi
- Department of Animal Science, Faculty of Agricultural, University of Kurdistan, Sanandaj, Iran
| | - Ayoub Farhadi
- Department of Animal Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Himan Nourbakhsh
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
43
|
Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br J Nutr 2020; 125:494-507. [PMID: 32693847 PMCID: PMC7885174 DOI: 10.1017/s0007114520002755] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.
Collapse
|
44
|
The Evaluation of the Antioxidant and Intestinal Protective Effects of Baicalin-Copper in Deoxynivalenol-Challenged Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5363546. [PMID: 32064026 PMCID: PMC6996692 DOI: 10.1155/2020/5363546] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
The present study was performed to evaluate the antioxidant and intestinal protective effects of baicalin-copper on deoxynivalenol-challenged piglets. Forty weaned piglets were randomly divided into four groups and assigned to different diets: (1) basal diet (Con), (2) 4 mg/kg deoxynivalenol of basal diet (DON), (3) 5 g/kg baicalin-copper of basal diet (BCU); and (4) 4 mg/kg deoxynivalenol + 5 g/kg baicalin‐copper of basal diet (DBCU). The results showed that the ADFI and ADG of piglets in the DON group were markedly lower than those in the Con group, but the ADFI and ADG of the DBCU group were not significantly different from those of the Con group. In piglets fed a DON-contaminated diet, dietary supplementation with BCU significantly decreased the mRNA levels of P70S6K, 4E-BP1, and HSP70 in the liver, the protein expression of HO-1 in the jejunum, and the expression of p-Nrf2 and p-NF-κB in the ileum but increased Mn-SOD activity in serum. Dietary supplementation with BCU increased jejunal maltase, ZIP4 and MT mRNA levels, and serum concentrations of Arg, Val, Ile, Leu, Lys, and Tyr in DON-contaminated piglets. In summary, BCU can alleviate the growth impairment induced by DON and enhance antioxidant capacity and nutrition absorption in piglets fed DON-contaminated diets.
Collapse
|
45
|
Hu Y, Wang L, Shao D, Wang Q, Wu Y, Han Y, Shi S. Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth. Front Microbiol 2020; 10:2948. [PMID: 31993028 PMCID: PMC6971172 DOI: 10.3389/fmicb.2019.02948] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023] Open
Abstract
Understanding the differences in microbial communities shaped by different food selective forces, especially during early post-hatch period, is critical to gain insight into how to select, evaluate, and improve antibiotic growth promoters (AGPs) alternatives in food animals. As a model system, commercial diet-administered OAs (DOAs) and water-administered OAs (WOAs) were used separately or in combination as Virginiamycin alternatives for broiler feeding during two growth phases: 1–21 days and 22–42 days. Among these three OA-treated groups, the DOA group was most similar to the AGP group in the composition and the proportion of these dominant bacterial communities at the level of phylum, family, and genus in cecal chyme of broilers. Sub-therapeutic Virginiamycin decreased the richness, homogenization, and species diversity of gut microbiota, especially in the early growth stage from days 1 to 21. Among these three OA supplementation schemes, it was clear that DOA supplementation was more likely to increase or maintain the richness, homogenization, species diversity, and predicted gene functions of cecal microbiota in treated broilers than either no supplementation or AGP supplementation during two experimental stages. The interference of DOA treatment with early colonization of probiotics and pathogens in broiler cecum was the most similar to AGP treatment, and OAs did not cause the occurrence of Virginiamycin-resistant strains of Enterococcus at the end of this trial. In terms of the predicted gene functions of the microbiota, AGP and DOA treatments provided a similar selective force for microbial metabolism functions in the cecum of broiler chickens, especially in the early growth stage. Noticeably, the relative abundance of some microbiome that was modified by Virginiamycin or DOA supplementation was significantly correlated with body weight gain and KEGG pathway analysis-annotated gene functions such as replication and repair, translation, nucleotide metabolism, and so on. With the comprehensive analysis of these results and practical application, shortened DOA supplementation, after optimization of the amount of addition, would be a suitable alternative to sub-therapeutic Virginiamycin. It was suggested that the programed intestinal microecology under such early selection forces and the effective addition time may be the key elements to focus on the designed alternate strategies of AGPs in food animals.
Collapse
Affiliation(s)
- Yan Hu
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Laidi Wang
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Yuanyuan Wu
- Trouw Nutrition R&D, Amersfoort, Netherlands
| | - Yanming Han
- Trouw Nutrition R&D, Amersfoort, Netherlands
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
46
|
Wu Y, Wang B, Zeng Z, Liu R, Tang L, Gong L, Li W. Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult Sci 2019; 98:5028-5039. [PMID: 31064013 DOI: 10.3382/ps/pez226] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the effects of Lactobacillus plantarum 16 (Lac16) and Paenibacillus polymyxa 10 (BSC10) on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. A total of 540 one-day-old broiler chicks (Cobb500) were randomly allocated to three groups of 180 birds, and fed either a basal diet or a basal diet supplemented with 108 colony-forming units Lac16 or BSC10 per kilogram feed for 21 D. The results revealed that both Lac16 and BSC10 maintained ileal mucosal morphology, and BSC10 regulated the expression of barrier function-related genes. Birds fed with probiotics decreased malondialdehyde level in jejunal mucosa and serum, and the increased activities of hepatic GSH-Px and jejunal CAT were observed in BSC10 group (P < 0.05). Immunohistochemistry of Bax, Bcl-2 and proliferating cell nuclear antigen and TUNEL-immunofluorescence assay demonstrated that Lac16 and BSC10 exerted beneficial effects on cell apoptosis and proliferation, as indicated by the gene expression of down-regulated Bax and p53 as well as a significant upregulation of Bcl-2 (P < 0.05). In addition, Lac16 and BSC10 significantly increased NO production and iNOS activity in liver and jejunal mucosa, and gene expression of IFN-γ (P < 0.01), IL-6 (P < 0.05), and IL-10 (P < 0.05 and P < 0.01, respectively) in ileum mucosa, whereas markedly decreased the expression of Cox2 (P < 0.05). Furthermore, it was found that Lac16 and BSC10 significantly reduced levels of alkaline phosphatase (P < 0.05 and P < 0.01, respectively) and creatine kinase (P < 0.05). Moreover, BSC10 significantly reduced uric acid (P < 0.05) and low-density lipoprotein levels (P < 0.01). Taken together, Lac16 and BSC10 could improve intestinal and body health status of broilers by increasing intestinal barrier function, anti-oxidative capacity and immunity, and decreasing cell apoptosis with strain-specificity.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Zhonghua Zeng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
47
|
Abdel-Moneim AME, Selim DA, Basuony HA, Sabic EM, Saleh AA, Ebeid TA. Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Trop Anim Health Prod 2019; 52:671-680. [PMID: 31485898 DOI: 10.1007/s11250-019-02055-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
The present trial investigated the feeding effect of B. subtilis spores on growth performance, blood metabolites, antioxidative status, and digestive enzyme activities in growing quails. A total of 750 1-day-old Japanese quail chicks were randomly allotted equally into five experimental groups: control (BS0) fed a maize-soybean basal diet with no additives, the others were supplemented with: B. subtilis spores with the levels of 1 × 103 (BS3), 1 × 105 (BS5), 1 × 107 (BS7), and 1 × 109 (BS9)/kg diet. Quails fed on B. subtilis diets exhibited linearly increasing live body weight and body weight gain and decreased feed-to-gain ratio compared with the control group. Daily feed intake was not significantly altered. Increasing levels of B. subtilis led to a linear increase in serum total protein and albumin levels, and a linear decrease in concentrations of glucose, creatinine, urea-N, aspartate aminotransferase, and alanine aminotransferase. Hypolipidemic impact of feeding B. subtilis spores was greatly observed and enhanced by increasing its dietary inclusion level. Triiodothyronine and thyroxine activities were significantly elevated in treated groups. Glutathione content and catalase activities were linearly increased in groups BS7, BS9, and BS5, while lipid peroxidation was decreased in all treatment groups. Duodenal proteolytic, lipolytic, and amylolytic activities as well as nutrient digestibility were linearly increased in treated groups. In conclusion, dietary supplementation of B. subtilis spores almost at all studied levels was able to promote the antioxidative status and digestive enzymes activities, while only the high concentrations (BS7 and BS9) could improve the nutrient digestion and growth performance of growing Japanese quail.
Collapse
Affiliation(s)
| | - Dina A Selim
- Poultry and Fish Production Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Hamdy A Basuony
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abou-Zabael, 13759, Egypt
| | - Essam M Sabic
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abou-Zabael, 13759, Egypt
| | - Ahmed A Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Tarek A Ebeid
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt.,Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
48
|
Yang X, Liu Y, Yan F, Yang C, Yang X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult Sci 2019; 98:2858-2865. [PMID: 30715522 DOI: 10.3382/ps/pez031] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/26/2019] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate a combination diet of organic acids and essential oils on epithelial restitution, intestinal microflora, and volatile fatty acids in broiler chickens. A total of 144 1-day-old male chicks (Cobb 500) were allotted to 3 treatment groups consisting of 6 replicates with 8 birds per replicate. The dietary treatments were as follows: control group (CON, basal diet), antibiotics group (ANT, control + 0.15 g/kg enramycin), and addition group (EOA, control + 0.30 g/kg encapsulated organic acids and essential oils). Compared to the CON group, the EOA group showed a higher feed conversion ratio (FCR) (P < 0.05) at day 42. The ANT group showed the lowest count of Lactobacillus spp. (P < 0.05) and the highest count of Escherichia coli (P < 0.05) in the ileal digesta. Birds that were fed the EOA-supplemented diet had decreased populations of E. coli (P < 0.05). Compared with the ANT group, supplementation with EOA tended to reduce the pH of jejunal digesta (P = 0.079) and ileal digesta (P = 0.078) but significantly increased the concentration of butyric acid (P < 0.05) and tended to increase the concentrations of acetic acid (P = 0.087) and total short-chain fatty acids (SCFA; P = 0.098) in the ileal digesta. The EOA group showed higher sucrase and maltase activities of jejunal mucosa (P < 0.05) than those in the other groups. The EOA supplementation increased (P < 0.05) claudin-1 mRNA expression in the jejunum. Compared with the other groups, enramycin supplementation significantly reduced jejunal mucosa sIgA (P < 0.05) and down-regulated Mucin-2 and TLR2 mRNA relative expression (P < 0.05) in the jejunal mucosa of broiler chickens. Both EOA and enramycin contribute beneficially to FCR because of their antimicrobial action. EOA may reduce harmful bacteria and promote digestive enzyme activity and higher concentrations of SCFA. In contrast, enramycin may inhibit the growth of beneficial bacteria and reduce the need for intestinal mucosal barrier function.
Collapse
Affiliation(s)
- Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chengbo Yang
- Jefo Nutrition Inc., Saint-Hyacinthe, Quebec J2S 7B6, Canada
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|