1
|
Herzog RW, Kaczmarek R, High KA. Gene therapy for hemophilia - From basic science to first approvals of "one-and-done" therapies. Mol Ther 2025; 33:2015-2034. [PMID: 40156189 DOI: 10.1016/j.ymthe.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Realistic paths to gene therapy for the X-linked bleeding disorder hemophilia started to materialize in the mid 1990s, resulting in disease correction in small and large animal models. Out of a diversity of approaches, in vivo adeno-associated viral (AAV) gene transfer to hepatocytes emerged as the most promising strategy, eventually forming the basis for multiple advanced clinical trials and regulatory approval of two products for the treatment of hemophilia B (coagulation factor IX deficiency) and one for hemophilia A (factor VIII deficiency). Ideally, gene therapy is effective with a single administration, thus providing therapeutic factor levels over a period of years, without the need for frequent injections. Overcoming multiple obstacles, some not predicted by preclinical studies, sustained partial to complete correction of coagulation for several years to an entire decade has now been documented in patients, with observation ongoing. A hyperactive form of FIX improved efficacy in hemophilia B, and superior engineered variants of FVIII are emerging. Nonetheless, challenges remain, including pre-existing immunity to AAV capsids, toxicities, inter-patient variability in response to treatment, and difficulty in obtaining durable therapeutic expression of FVIII. In alternative approaches, in vivo gene editing and ex vivo gene therapies targeting hemopoietic cells are in development.
Collapse
Affiliation(s)
- Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katherine A High
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Sternberg AR, Martos-Rus C, Davidson RJ, Liu X, George LA. Pre-clinical evaluation of an enhanced-function factor VIII variant for durable hemophilia A gene therapy in male mice. Nat Commun 2024; 15:7193. [PMID: 39168991 PMCID: PMC11339367 DOI: 10.1038/s41467-024-51296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Durable factor VIII expression that normalizes hemostasis is an unrealized goal of hemophilia A adeno-associated virus-mediated gene therapy. Trials with initially normal factor VIII activity observed unexplained year-over-year declines in expression while others reported low-level, stable expression inadequate to restore normal hemostasis. Here we demonstrate that male mice recapitulate expression-level-dependent loss of factor VIII levels due to declines in vector copy number. We show that an enhanced function factor VIII variant (factor VIII-R336Q/R562Q), resistant to activated protein C-mediated inactivation, normalizes hemostasis at below-normal expression without evidence of prothrombotic risk in male hemophilia A mice. These data support that factor VIII-R336Q/R562Q may restore normal factor VIII function at low levels of expression to permit durability using low vector doses to minimize dose-dependent adeno-associated virus toxicities. This work informs the mechanism of factor VIII durability after gene transfer and supports that factor VIII-R336Q/R562Q may safely overcome current hemophilia A gene therapy limitations.
Collapse
Affiliation(s)
- Anna R Sternberg
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cristina Martos-Rus
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert J Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyuan Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lindsey A George
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Dhinoja S, De Maria A, Qaryoute AA, Jagadeeswaran P. Characterization of zebrafish coagulation cofactors Fviii and Fv mutants and modeling hemophilia A and factor V deficiency. Blood Coagul Fibrinolysis 2024; 35:238-247. [PMID: 38874909 PMCID: PMC11230853 DOI: 10.1097/mbc.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The aim of this study is to characterize zebrafish coagulation cofactors fviii and fv mutant fish and assess if they phenocopy classical hemophilia A and factor V deficiency in humans. The embryos from fviii and fv zebrafish heterozygote mutants generated by ENU mutagenesis were purchased from the ZIRC repository. They were reared to adulthood and genotyped. The heterozygote male and female were crossed to get homozygote, heterozygote, and wild-type fish. Functional kinetic coagulation assays and bleeding assays were performed on normal and mutant adult fish, and venous laser injury assays were performed on the larvae. The DNA from fviii and fv mutants were sequenced to confirm if they have a premature stop codon in exon 19, and in exon 2, respectively, and in both mutants, the amino acid glutamine is replaced with a stop codon. Homozygous and heterozygous 5 days post fertilization (dpf) larvae for fviii and fv deficient mutants exhibited prolonged time to occlusion after venous laser injury compared to wild-type controls. The homozygous and heterozygous fviii adult mutants showed modest bleeding and delayed fibrin formation in the kinetic partial thromboplastin time (kPTT) assay with their plasma. fv homozygous larvae had poor survival beyond 12 dpf. However, heterozygous fv mutants exhibited heavy bleeding and prolonged fibrin formation in the kPTT and kPT assay compared with wild-type siblings. Our characterization showed fviii and fv mutants from ZIRC phenocopied to a considerable extent classical hemophilia A and factor V deficiency in humans, respectively. These models should be useful in studying and developing novel drugs that reverse the phenotype and in generating suppressor mutations to identify novel factors that compensate for these deficiencies.
Collapse
Affiliation(s)
- Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | | | | | | |
Collapse
|
4
|
Luo S, Jiang H, Li Q, Qin Y, Yang S, Li J, Xu L, Gou Y, Zhang Y, Liu F, Ke X, Zheng Q, Sun X. An adeno-associated virus variant enabling efficient ocular-directed gene delivery across species. Nat Commun 2024; 15:3780. [PMID: 38710714 DOI: 10.1038/s41467-024-48221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.
Collapse
Affiliation(s)
- Shuang Luo
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Yingfei Qin
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Shiping Yang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Jing Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Lingli Xu
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yan Gou
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yafei Zhang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510005, China
| | - Xiao Ke
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Chengdu Kanghong Pharmaceuticals Group Co Ltd, Chengdu, 610036, China.
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Doshi BS, Samelson-Jones BJ, Nichols TC, Merricks EP, Siner JL, French RA, Lee BJ, Arruda VR, Callan MB. AAV gene therapy in companion dogs with severe hemophilia: Real-world long-term data on immunogenicity, efficacy, and quality of life. Mol Ther Methods Clin Dev 2024; 32:101205. [PMID: 38374963 PMCID: PMC10875295 DOI: 10.1016/j.omtm.2024.101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The hemophilias are the most common severe inherited bleeding disorders and are caused by deficiency of clotting factor (F) VIII (hemophilia A) or FIX (hemophilia B). The resultant bleeding predisposition significantly increases morbidity and mortality. The ability to improve the bleeding phenotype with modest increases in clotting factor levels has enabled the development and regulatory approval of adeno-associated viral (AAV) vector gene therapies for people with hemophilia A and B. The canine hemophilia model has proven to be one of the best predictors of therapeutic response in humans. Here, we report long-term follow-up of 12 companion dogs with severe hemophilia that were treated in a real-world setting with AAV gene therapy. Despite more baseline bleeding than in research dogs, companion dogs demonstrated a 94% decrease in bleeding rates and 61% improvement in quality of life over a median of 4.1 years (range 2.6-8.9). No new anti-transgene immune responses were detected; one dog with a pre-existing anti-FVIII inhibitor achieved immune tolerance with gene therapy. Two dogs expressing 1%-5% FVIII post gene therapy experienced fatal bleeding events. These data suggest AAV liver-directed gene therapy is efficacious in a real-world setting but should target expression >5% and closely monitor those with levels in the 1%-5% range.
Collapse
Affiliation(s)
- Bhavya S. Doshi
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timothy C. Nichols
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Joshua L. Siner
- Divisions of Hematology and Medical Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Robert A. French
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ben J. Lee
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Valder R. Arruda
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mary Beth Callan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Wichaiyo S, Koonyosying P, Morales NP. Functional Roles of Furin in Cardio-Cerebrovascular Diseases. ACS Pharmacol Transl Sci 2024; 7:570-585. [PMID: 38481703 PMCID: PMC10928904 DOI: 10.1021/acsptsci.3c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2025]
Abstract
Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines. Recent reports have demonstrated the association of furin and cardio-cerebrovascular diseases (CVDs) in humans. This review describes the possible pathogenic contribution of furin and its substrates in CVDs. Early-stage hypertension and diabetes mellitus show a negative correlation with furin. A reduction in furin might promote hypertension by decreasing maturation of B-type natriuretic peptide (BNP) or by decreasing shedding of membrane (pro)renin receptor (PRR), which facilitates activation of the renin-angiotensin-aldosterone system (RAAS). In diabetes, furin downregulation potentially leads to insulin resistance by reducing maturation of the insulin receptor. In contrast, the progression of other CVDs is associated with an increase in furin, including dyslipidemia, atherosclerosis, ischemic stroke, myocardial infarction (MI), and heart failure. Upregulation of furin might promote maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which cleaves low-density lipoprotein receptor (LDLR), contributing to dyslipidemia. In atherosclerosis, elevated levels of furin possibly enhance maturation of several substrates related to inflammation, cell proliferation, and extracellular matrix (ECM) deposition and degradation. Neuronal cell death following ischemic stroke has also been shown to involve furin substrates (e.g., MT1-MMP, hepcidin, and hemojuvelin). Moreover, furin and its substrates, including tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), and transforming growth factor-β1 (TGF-β1), are capable of mediating inflammation, hypertrophy, and fibrosis in MI and heart failure. Taken together, this evidence provides functional significance of furin in CVDs and might suggest a potential novel therapeutic modality for the management of CVDs.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pimpisid Koonyosying
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | | |
Collapse
|
7
|
Richter CE, Raghunath A, Griffin MS, Yaman M, Arruda VR, Samelson-Jones BJ, Shavit JA. Loss of factor VIII in zebrafish rebalances antithrombin deficiency but has a limited bleeding diathesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582609. [PMID: 39896458 PMCID: PMC11785011 DOI: 10.1101/2024.02.28.582609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Deficiencies in coagulation factor VIII (FVIII, F8) result in the bleeding disorder hemophilia A. An emerging novel therapeutic strategy for bleeding disorders is to enhance hemostasis by limiting natural anticoagulants, such as antithrombin (AT3). To study pro/anticoagulant hemostatic balance in an in vivo model, we used genome editing to create null alleles for f8 and von Willebrand factor (vwf) in zebrafish, a model organism with a high degree of homology to the mammalian hemostatic system and unique attributes, including external development and optical transparency. f8 homozygous mutant larvae surprisingly formed normal thrombi when subjected to laser-mediated endothelial injury, had no overt signs of hemorrhage, but had a modest increase in mortality. We have previously shown that at3 -/- larvae develop disseminated intravascular coagulation (DIC), with spontaneous thrombosis and fibrinogen consumption, resulting in bleeding phenotype marked by secondary lack of induced thrombus formation upon endothelial injury. We found that with loss of FVIII (f8 -/-;at3 -/-), larvae no longer developed spontaneous fibrin thrombi and did produce clots in response to endothelial injury. However, homozygous loss of zebrafish Vwf failed to rescue the at3 DIC phenotype. These studies demonstrate an altered balance of natural anticoagulants that mitigates FVIII deficiency in zebrafish, similar to human clinical pipeline products. The data also suggest that zebrafish FVIII might circulate independently of Vwf. Further study of this unique balance could provide new insights for management of hemophilia A and von Willebrand disease.
Collapse
Affiliation(s)
- Catherine E. Richter
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Azhwar Raghunath
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Megan S. Griffin
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Murat Yaman
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Valder R. Arruda
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Benjamin J. Samelson-Jones
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Zhao L, Fang S, Ma Y, Ren J, Hao L, Wang L, Yang J, Lu X, Yang L, Wang G. Targeted genome engineering based on CRISPR/Cas9 system to enhance FVIII expression in vitro. Gene 2024; 896:148038. [PMID: 38036077 DOI: 10.1016/j.gene.2023.148038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hemophilia A is caused by a deficiency of coagulation factor VIII in the body due to a defect in the F8 gene. The emergence of CRISPR/Cas9 gene editing technology will make it possible to alter the expression of the F8 gene in hemophiliacs, while achieving a potential cure for the disease. METHODS Initially, we identified high-activity variants of FVIII and constructed donor plasmids using enzymatic digestion and ligation techniques. Subsequently, the donor plasmids were co-transfected with sgRNA-Cas9 protein into mouse Neuro-2a cells, followed by flow cytometry-based cell sorting and puromycin selection. Finally, BDD-hF8 targeted to knock-in the mROSA26 genomic locus was identified and validated for FVIII expression. RESULTS We identified the p18T-BDD-F8-V3 variant with high FVIII activity and detected the strongest pX458-mROSA26-int1-sgRNA1 targeted cleavage ability and no cleavage events were found at potential off-target sites. Targeted knock-in of BDD-hF8 cDNA at the mROSA26 locus was achieved based on both HDR/NHEJ gene repair approaches, and high level and stable FVIII expression was obtained, successfully realizing gene editing in vitro. CONCLUSIONS Knock-in of exogenous genes based on the CRISPR/Cas9 system targeting genomic loci is promising for the research and treatment of a variety of single-gene diseases.
Collapse
Affiliation(s)
- Lidong Zhao
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Department of Hematology, Linfen Central Hospital, Linfen, Shanxi, China
| | - Shuai Fang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China; The Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Yanchun Ma
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Ren
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixia Hao
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Lu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Linhua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Gang Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Van Gorder L, Doshi BS, Willis E, Nichols TC, Cook E, Everett JK, Merricks EP, Arruda VR, Bushman FD, Callan MB, Samelson-Jones BJ. Analysis of vector genome integrations in multicentric lymphoma after AAV gene therapy in a severe hemophilia A dog. Mol Ther Methods Clin Dev 2023; 31:101159. [PMID: 38094200 PMCID: PMC10716008 DOI: 10.1016/j.omtm.2023.101159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/12/2023] [Indexed: 02/01/2024]
Abstract
Adeno-associated viral (AAV) vectors have traditionally been viewed as predominantly nonintegrating, with limited concerns for oncogenesis. However, accumulating preclinical data have shown that AAV vectors integrate more often than previously appreciated, with the potential for genotoxicity. To understand the consequences of AAV vector integration, vigilance for rare genotoxic events after vector administration is essential. Here, we investigate the development of multicentric lymphoma in a privately owned dog, PC9, with severe hemophilia A that was treated with an AAV8 vector encapsidating a B domain-deleted canine coagulation F8 gene. PC9 developed an aggressive B cell lineage multicentric lymphoma 3.5 years after AAV treatment. Postmortem analysis of the liver, spleen, and lymph nodes showed the expected biodistribution of the AAV genome. Integration events were found both in PC9 and a second privately owned hemophilia A dog treated similarly with canine F8 gene transfer, which died of a bleeding event without evidence of malignancy. However, we found no evidence of expanded clones harboring a single integration event, indicating that AAV genome integrations were unlikely to have contributed to PC9's cancer. These findings suggest AAV integrations occur but are mostly not genotoxic and support the safety profile of AAV gene therapy.
Collapse
Affiliation(s)
- Lucas Van Gorder
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bhavya S. Doshi
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elinor Willis
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy C. Nichols
- Department of Pathology and Laboratory Medicine and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Emma Cook
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K. Everett
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Valder R. Arruda
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Frederic D. Bushman
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Beth Callan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Chen Z, Herzog RW, Kaufman RJ. Cellular stress and coagulation factor production: when more is not necessarily better. J Thromb Haemost 2023; 21:3329-3341. [PMID: 37839613 PMCID: PMC10760459 DOI: 10.1016/j.jtha.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Remarkably, it has been 40 years since the isolation of the 2 genes involved in hemophilia A (HA) and hemophilia B (HB), encoding clotting factor (F) VIII (FVIII) and FIX, respectively. Over the years, these advances led to the development of purified recombinant protein factors that are free of contaminating viruses from human pooled plasma for hemophilia treatments, reducing the morbidity and mortality previously associated with human plasma-derived clotting factors. These discoveries also paved the way for modified factors that have increased plasma half-lives. Importantly, more recent advances have led to the development and Food and Drug Administration approval of a hepatocyte-targeted, adeno-associated viral vector-mediated gene transfer approach for HA and HB. However, major concerns regarding the durability and safety of HA gene therapy remain to be resolved. Compared with FIX, FVIII is a much larger protein that is prone to misfolding and aggregation in the endoplasmic reticulum and is poorly secreted by the mammalian cells. Due to the constraint of the packaging capacity of adeno-associated viral vector, B-domain deleted FVIII rather than the full-length protein is used for HA gene therapy. Like full-length FVIII, B-domain deleted FVIII misfolds and is inefficiently secreted. Its expression in hepatocytes activates the cellular unfolded protein response, which is deleterious for hepatocyte function and survival and has the potential to drive hepatocellular carcinoma. This review is focused on our current understanding of factors limiting FVIII secretion and the potential pathophysiological consequences upon expression in hepatocytes.
Collapse
Affiliation(s)
- Zhouji Chen
- Degenerative Diseases Program, Center for Genetic Diseases and Aging Research, SBP Medical Discovery Institute, California, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Diseases and Aging Research, SBP Medical Discovery Institute, California, USA.
| |
Collapse
|
11
|
Nguyen GN, Lindgren JR, Seleme MC, Kafle S, Zander CB, Zheng XL, Sabatino DE. Altered cleavage of human factor VIII at the B-domain and acidic region 3 interface enhances expression after gene therapy in hemophilia A mice. J Thromb Haemost 2023; 21:2101-2113. [PMID: 37080538 PMCID: PMC11157168 DOI: 10.1016/j.jtha.2023.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Variants of human factor VIII (hFVIII) have been developed to further understand the structure and function of hFVIII and improve gene-based therapeutics. We have previously characterized several hFVIII variants of the furin cleavage site (1645-1648) with improved secretion. We have also identified a second cleavage site in the acidic region 3 (a3) (1657-1658) that becomes the primary hFVIII intracellular cleavage position in the absence of the furin site. We tested a hypothesis that modification of this site may confer additional functional advantages to hFVIII. OBJECTIVES The aim of this study was to conduct the biochemical and functional characterization of hFVIII variants of the furin cleavage site, the a3 cleavage site, or in combination, both in vitro and in vivo after AAV mediated gene therapy. METHODS Recombinant hFVIII variants of the furin cleavage site (hFVIII-Δ3), the a3 cleavage site (hFVIII-S1657P/D1658E [SP/DE]), or in combination (hFVIII-Δ3-SP/DE) were purified and characterized in vitro and in vivo. RESULTS Recombinant hFVIII-Δ3, hFVIII-SP/DE, and hFVIII-Δ3-SP/DE variants all had comparable specific activity to B-domain deleted (BDD) hFVIII. Hemophilia A mice tolerant to hFVIII did not develop immune responses to hFVIII after protein challenge with these variants or after adeno-associated virus (AAV) delivery. Following AAV delivery, hFVIII-Δ3-SP/DE resulted in expression levels that were 2- to 5-fold higher than those with hFVIII-BDD in hemophilia A mice. CONCLUSION The novel hFVIII-Δ3-SP/DE variant of the furin and a3 cleavage sites significantly improved secretion compared with hFVIII-BDD. This key feature of the Δ3-SP/DE variant provides a unique strategy that can be combined with other approaches to further improve factor VIII expression to achieve superior efficacy in AAV-based gene therapy for hemophilia A.
Collapse
Affiliation(s)
- Giang N Nguyen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan R Lindgren
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maria C Seleme
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samita Kafle
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Catherine B Zander
- Department of Pathology, University of Alabama at Birmingham School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA; Institute of Reproductive Medicine and Developmental Science, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Abstract
INTRODUCTION Hemophilia A (HA) or B (HB) is an X-linked recessive disorder caused by a defect in the factor VIII (FVIII) or factor IX (FIX) gene which leads to the dysfunction of blood coagulation. Protein replacement therapy (PRT) uses recombinant proteins and plasma-derived products, which incurs high cost and inconvenience requiring routine intravenous infusions and life-time treatment. Understanding of detailed molecular mechanisms on FVIII gene function could provide innovative solutions to amend this disorder. In recent decades, gene therapeutics have advanced rapidly and a one-time cure solution has been proposed. AREAS COVERED This review summarizes current understanding of molecular pathways involved in blood coagulation, with emphasis on FVIII's functional role. The existing knowledge and challenges on FVIII gene expression, from transcription, translation, post-translational modification including glycosylation to protein processing and secretion, and co-factor interactions are deciphered and potential molecular interventions discussed. EXPERT OPINION This article reviews the potential treatment targets for HA and HB, including antibodies, small molecules and gene therapeutics, based on molecular mechanisms of FVIII biosynthesis, and further, assessing the pros and cons of these various treatment strategies. Understanding detailed FVIII protein synthesis and secretory pathways could provide exciting opportunities in identifying novel therapeutics to ameliorate hemophilia state.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Hao-Lin Wang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.,Geno-Immune Medical Institute, Shenzhen, China
| |
Collapse
|
13
|
Lundgren TS, Denning G, Stowell SR, Spencer HT, Doering CB. Pharmacokinetic analysis identifies a factor VIII immunogenicity threshold after AAV gene therapy in hemophilia A mice. Blood Adv 2022; 6:2628-2645. [PMID: 35286375 PMCID: PMC9043920 DOI: 10.1182/bloodadvances.2021006359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Advances in the development of novel treatment options for hemophilia A are prevalent. However, the anti-factor VIII (FVIII) neutralizing antibody (inhibitor) response to existing FVIII products remains a major treatment challenge. Although some novel products are designed to function in the presence of inhibitors, they do not specific address the immunogenicity risk or mechanistic causes of inhibitor development, which remain unclear. Furthermore, most preclinical studies supporting clinical gene therapy programs have reported immunogenicity signals in animal models, especially at higher vector doses and sometimes using multiple vector designs. In these settings, immunogenicity risk factor determination, comparative immunogenicity of competing vector designs, and the potential for obtaining meaningful prognostic data remain relatively unexplored. Additionally, there remains the opportunity to investigate clinical gene therapy as an alternative to standard immune tolerance induction therapy. The current study was designed to address these issues through longitudinal dose-response evaluation of 4 adeno-associated viral (AAV) vector candidates encoding 2 different FVIII transgenes in a murine model of hemophilia A. Plasma FVIII activity and anti-FVIII antibody data were used to generate a pharmacokinetic model that (1) identifies initial AAV-FVIII product expression kinetics as the dominant risk factor for inhibitor development, (2) predicts a therapeutic window where immune tolerance is achieved, and (3) demonstrates evidence of gene therapy-based immune tolerance induction. Although there are known limitations to the predictive value of preclinical immunogenicity testing, these studies can uncover or support the development of design principles that can guide the development of safe and effective genetic medicines.
Collapse
Affiliation(s)
- Taran S. Lundgren
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - H. Trent Spencer
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Christopher B. Doering
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
14
|
Elkouby L, Armour SM, Toso R, DiPietro M, Davidson RJ, Nguyen GN, Willet M, Kutza S, Silverberg J, Frick J, Crosariol M, Wang Y, Wang C, High KA, Sabatino DE, Anguela XM. Preclinical assessment of an optimized AAV-FVIII vector in mice and non-human primates for the treatment of hemophilia A. Mol Ther Methods Clin Dev 2022; 24:20-29. [PMID: 34977269 PMCID: PMC8666598 DOI: 10.1016/j.omtm.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Extensive clinical data from liver-mediated gene therapy trials have shown that dose-dependent immune responses against the vector capsid may impair or even preclude transgene expression if not managed successfully with prompt immune suppression. The goal of this preclinical study was to generate an adeno-associated viral (AAV) vector capable of expressing therapeutic levels of B-domain deleted factor VIII (FVIII) at the lowest possible vector dose to minimize the potential Risk of a capsid-mediated immune response in the clinical setting. Here, we describe the studies that identified the investigational agent SPK-8011, currently being evaluated in a phase 1/2 study (NCT03003533) in individuals with hemophilia A. In particular, the potency of our second-generation expression cassettes was evaluated in mice and in non-human primates using two different bioengineered capsids (AAV-Spark100 and AAV-Spark200). At 2 weeks after gene transfer, primates transduced with 2 × 1012 vg/kg AAV-Spark100-FVIII or AAV-Spark200-FVIII expressed FVIII antigen levels of 13% ± 2% and 22% ± 6% of normal, respectively. Collectively, these preclinical results validate the feasibility of lowering the AAV capsid dose for a gene-based therapeutic approach for hemophilia A to a dose level orders of magnitude lower than the first-generation vectors in the clinic.
Collapse
Affiliation(s)
- Liron Elkouby
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Colket Translational Research Building, Rm 5020, Philadelphia, PA 19104, USA
- Spark Therapeutics, Inc., Philadelphia, PA, USA
| | | | | | | | - Robert J. Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Colket Translational Research Building, Rm 5020, Philadelphia, PA 19104, USA
| | - Giang N. Nguyen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Colket Translational Research Building, Rm 5020, Philadelphia, PA 19104, USA
| | | | | | | | | | | | - Yuhuan Wang
- Spark Therapeutics, Inc., Philadelphia, PA, USA
| | | | | | - Denise E. Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Colket Translational Research Building, Rm 5020, Philadelphia, PA 19104, USA
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
15
|
Mao J, Wang Y, Zhang W, Shen Y, Zhang G, Xi W, Wang Q, Ruan Z, Wang J, Xi X. Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain. Front Med 2022; 16:584-595. [PMID: 35038106 DOI: 10.1007/s11684-021-0844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/01/2022]
Abstract
Conventional therapies for hemophilia A (HA) are prophylactic or on-demand intravenous FVIII infusions. However, they are expensive and inconvenient to perform. Thus, better strategies for HA treatment must be developed. In this study, a recombinant FVIII cDNA encoding a human/rat hybrid FVIII with an enhanced procoagulant potential for adeno-associated virus (AAV)-delivered gene therapy was developed. Plasmids containing human FVIII heavy chain (hHC), human light chain (hLC), and rat light chain (rLC) were transfected into cells and hydrodynamically injected into HA mice. Purified AAV viruses were intravenously injected into HA mice at two doses. Results showed that the hHC + rLC protein had a higher activity than the hHC + hLC protein at comparable expression levels. The specific activity of hHC + rLC was about 4- to 8-fold higher than that of their counterparts. Hydrodynamic injection experiments obtained consistent results. Notably, the HA mice undergoing the AAV-delivered hHC + rLC treatment exhibited a visibly higher activity than those treated with hHC + hLC, and the therapeutic effects lasted for up to 40 weeks. In conclusion, the application of the hybrid FVIII (hHC + rLC) via an AAV-delivered gene therapy substantially improved the hemorrhagic diathesis of the HA mice. These data might be of help to the development of optimized FVIII expression cassette for HA gene therapy.
Collapse
Affiliation(s)
- Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guowei Zhang
- The School of Medicine, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wenda Xi
- Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Identification of coagulation factor IX variants with enhanced activity through ancestral sequence reconstruction. Blood Adv 2021; 5:3333-3343. [PMID: 34477814 DOI: 10.1182/bloodadvances.2021004742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
Abstract
Orthologous proteins contain sequence disparity guided by natural selection. In certain cases, species-specific protein functionality predicts pharmacological enhancement, such as greater specific activity or stability. However, immunological barriers generally preclude use of nonhuman proteins as therapeutics, and difficulty exists in the identification of individual sequence determinants among the overall sequence disparity. Ancestral sequence reconstruction (ASR) represents a platform for the prediction and resurrection of ancient gene and protein sequences. Recently, we demonstrated that ASR can be used as a platform to facilitate the identification of therapeutic protein variants with enhanced properties. Specifically, we identified coagulation factor VIII (FVIII) variants with improved specific activity, biosynthesis, stability, and resistance to anti-human FVIII antibody-based inhibition. In the current study, we resurrected a panel of ancient mammalian coagulation factor IX (FIX) variants with the goal of identifying improved pharmaceutical candidates. One variant (An96) demonstrated 12-fold greater FIX activity production than human FIX. Addition of the R338L Padua substitution further increased An96 activity, suggesting independent but additive mechanisms. after adeno-associated virus 2 (AAV2)/8-FIX gene therapy, 10-fold greater plasma FIX activity was observed in hemophilia B mice administered AAV2/8-An96-Padua as compared with AAV2/8-human FIX-Padua. Furthermore, phenotypic correction conferred by the ancestral variant was confirmed using a saphenous vein bleeding challenge and thromboelastography. Collectively, these findings validate the ASR drug discovery platform as well as identify an ancient FIX candidate for pharmaceutical development.
Collapse
|
17
|
Molecular coevolution of coagulation factor VIII and von Willebrand factor. Blood Adv 2021; 5:812-822. [PMID: 33560395 DOI: 10.1182/bloodadvances.2020002971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ancestral sequence reconstruction provides a unique platform for investigating the molecular evolution of single gene products and recently has shown success in engineering advanced biological therapeutics. To date, the coevolution of proteins within complexes and protein-protein interactions is mostly investigated in silico via proteomics and/or within single-celled systems. Herein, ancestral sequence reconstruction is used to investigate the molecular evolution of 2 proteins linked not only by stabilizing association in circulation but also by their independent roles within the primary and secondary hemostatic systems of mammals. Using sequence analysis and biochemical characterization of recombinant ancestral von Willebrand factor (VWF) and coagulation factor VIII (FVIII), we investigated the evolution of the essential macromolecular FVIII/VWF complex. Our data support the hypothesis that these coagulation proteins coevolved throughout mammalian diversification, maintaining strong binding affinities while modulating independent and distinct hemostatic activities in diverse lineages.
Collapse
|
18
|
Activated protein C has a regulatory role in factor VIII function. Blood 2021; 137:2532-2543. [PMID: 33512448 DOI: 10.1182/blood.2020007562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Mechanisms thought to regulate activated factor VIII (FVIIIa) cofactor function include A2-domain dissociation and activated protein C (APC) cleavage. Unlike A2-domain dissociation, there is no known phenotype associated with altered APC cleavage of FVIII, and biochemical studies have suggested APC plays a marginal role in FVIIIa regulation. However, the in vivo contribution of FVIIIa inactivation by APC is unexplored. Here we compared wild-type B-domainless FVIII (FVIII-WT) recombinant protein with an APC-resistant FVIII variant (FVIII-R336Q/R562Q; FVIII-QQ). FVIII-QQ demonstrated expected APC resistance without other changes in procoagulant function or A2-domain dissociation. In plasma-based studies, FVIII-WT/FVIIIa-WT demonstrated dose-dependent sensitivity to APC with or without protein S, whereas FVIII-QQ/FVIIIa-QQ did not. Importantly, FVIII-QQ demonstrated approximately fivefold increased procoagulant function relative to FVIII-WT in the tail clip and ferric chloride injury models in hemophilia A (HA) mice. To minimize the contribution of FV inactivation by APC in vivo, a tail clip assay was performed in homozygous HA/FV Leiden (FVL) mice infused with FVIII-QQ or FVIII-WT in the presence or absence of monoclonal antibody 1609, an antibody that blocks murine PC/APC hemostatic function. FVIII-QQ again demonstrated enhanced hemostatic function in HA/FVL mice; however, FVIII-QQ and FVIII-WT performed analogously in the presence of the PC/APC inhibitory antibody, indicating the increased hemostatic effect of FVIII-QQ was APC specific. Our data demonstrate APC contributes to the in vivo regulation of FVIIIa, which has the potential to be exploited to develop novel HA therapeutics.
Collapse
|
19
|
Wang X, Fu RY, Li C, Chen CY, Firrman J, Konkle BA, Zhang J, Li L, Xiao W, Poncz M, Miao CH. Enhancing therapeutic efficacy of in vivo platelet-targeted gene therapy in hemophilia A mice. Blood Adv 2020; 4:5722-5734. [PMID: 33216891 PMCID: PMC7686911 DOI: 10.1182/bloodadvances.2020002479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Our previous studies demonstrated that intraosseous (IO) infusion of lentiviral vectors (LVs) carrying a modified B domain-deleted factor VIII (FVIII) transgene driven by a megakaryocyte-specific promoter (GP1Bα promoter; G-F8/N6-LV) successfully transduced hematopoietic stem cells (HSCs) to produce FVIII stored in the platelet α-granules. Platelet FVIII corrected the bleeding phenotype with limited efficacy in hemophilia A (HemA) mice with and without preexisting anti-FVIII inhibitors. The present study sought to further enhance the therapeutic efficacy of this treatment protocol by increasing both the efficiency of LV transduction and the functional activity of platelet FVIII. A combined drug regimen of dexamethasone and anti-CD8α monoclonal antibody enhanced the percentage of transduced bone marrow and HSCs over time. In G-F8/N6-LV-treated HemA mice, significant improvement in phenotypic correction was observed on day 84. To improve platelet FVIII functionality, genes encoding FVIII variant F8X10K12 with increased expression or F8N6K12RH with increased functional activity compared with F8/N6 were incorporated into LVs. Treatment with G-F8X10K12-LV in HemA mice produced a higher level of platelet FVIII but induced anti-FVIII inhibitors. After treatment with combined drugs and IO infusion of G-F8/N6K12RH-LV, HemA mice showed significant phenotypic correction without anti-FVIII inhibitor formation. These results indicate that new human FVIII variant F8/N6K12RH combined with immune suppression could significantly enhance the therapeutic efficacy of in vivo platelet-targeted gene therapy for murine HemA via IO delivery. This protocol provides a safe and effective treatment for hemophilia that may be translatable to and particularly beneficial for patients with preexisting inhibitory antibodies to FVIII.
Collapse
Affiliation(s)
- Xuefeng Wang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Richard Y Fu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Chong Li
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Chun-Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Jenni Firrman
- Department of Pediatrics, Indiana University, Indianapolis, IN
| | | | - Junping Zhang
- Department of Pediatrics, Indiana University, Indianapolis, IN
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA; and
| | - Weidong Xiao
- Department of Pediatrics, Indiana University, Indianapolis, IN
| | - Mortimer Poncz
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| |
Collapse
|
20
|
Cao W, Cao W, Zhang W, Zheng XL, Zhang XF. Factor VIII binding affects the mechanical unraveling of the A2 domain of von Willebrand factor. J Thromb Haemost 2020; 18:2169-2176. [PMID: 32544272 PMCID: PMC7789802 DOI: 10.1111/jth.14962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/05/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Proteolytic cleavage of von Willebrand factor (VWF) by ADAMTS13 is crucial for normal hemostasis. Our previous studies demonstrate that binding of coagulation factor VIII (or FVIII) to VWF enhances the proteolytic cleavage of VWF by ADAMTS13 under shear. OBJECTIVES Present study aims to determine the mechanism underlying FVIII-mediated enhancing effect on VWF proteolysis by ADAMTS13 under force. METHODS Single molecular force spectroscopy, atomic force microscopy, and surface plasmon resonance are all used. RESULTS Using single molecule force spectroscopy, we show that an addition of FVIII (~5 nmol/L) to D'D3 or D'D3A1 does not significantly alter force-induced unfolding of these fragments; however, an addition of FVIII at the same concentration to D'D3A1A2 eliminates its long unfolding event at ~40 nm, suggesting that binding of FVIII to D'D3 and/or A2 may result in force-induced conformational changes in A2 domain. Atomic force spectroscopy further demonstrates the direct binding between FVIII and D'D3 (or A2) with an intrinsic 2-dimensional off-rate (k0 ) of 0.02 ± 0.01/s (or 0.3 ± 0.1/s). The direct binding interaction between FVIII and A2 is further confirmed with the surface plasmon resonance assay, with a dissociation constant of ~0.2 μmol/L; no binding is detected between FVIII and A1 under the same conditions. CONCLUSIONS Our results suggest that binding of FVIII to D'D3 and/or A2 may alter the mechanical property in the central A2 domain. The findings provide novel insight into the molecular mechanism underlying FVIII-dependent regulation of VWF proteolysis by ADAMTS13 under mechanical force.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Bioengineering, and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - Wenjing Cao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wei Zhang
- Department of Bioengineering, and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - X. Frank Zhang
- Department of Bioengineering, and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| |
Collapse
|
21
|
Zhou M, Hu Z, Zhang C, Wu L, Li Z, Liang D. Gene Therapy for Hemophilia A: Where We Stand. Curr Gene Ther 2020; 20:142-151. [PMID: 32767930 DOI: 10.2174/1566523220666200806110849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) is a hereditary hemorrhagic disease caused by a deficiency of coagulation factor VIII (FVIII) in blood plasma. Patients with HA usually suffer from spontaneous and recurrent bleeding in joints and muscles, or even intracerebral hemorrhage, which might lead to disability or death. Although the disease is currently manageable via delivery of plasma-derived or recombinant FVIII, this approach is costly, and neutralizing antibodies may be generated in a large portion of patients, which render the regimens ineffective and inaccessible. Given the monogenic nature of HA and that a slight increase in FVIII can remarkably alleviate the phenotypes, HA has been considered to be a suitable target disease for gene therapy. Consequently, the introduction of a functional F8 gene copy into the appropriate target cells via viral or nonviral delivery vectors, including gene correction through genome editing approaches, could ultimately provide an effective therapeutic method for HA patients. In this review, we discuss the recent progress of gene therapy for HA with viral and nonviral delivery vectors, including piggyBac, lentiviral and adeno-associated viral vectors, as well as new raising issues involving liver toxicity, pre-existing neutralizing antibodies of viral approach, and the selection of the target cell type for nonviral delivery.
Collapse
Affiliation(s)
- Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhiqing Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Chunhua Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
22
|
Zhang X, Zhao W, Nguyen GN, Zhang C, Zeng C, Yan J, Du S, Hou X, Li W, Jiang J, Deng B, McComb DW, Dorkin R, Shah A, Barrera L, Gregoire F, Singh M, Chen D, Sabatino DE, Dong Y. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. SCIENCE ADVANCES 2020; 6:6/34/eabc2315. [PMID: 32937374 PMCID: PMC7442477 DOI: 10.1126/sciadv.abc2315] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 05/09/2023]
Abstract
Messenger RNA (mRNA) therapeutics have been explored to treat various genetic disorders. Lipid-derived nanomaterials are currently one of the most promising biomaterials that mediate effective mRNA delivery. However, efficiency and safety of this nanomaterial-based mRNA delivery remains a challenge for clinical applications. Here, we constructed a series of lipid-like nanomaterials (LLNs), named functionalized TT derivatives (FTT), for mRNA-based therapeutic applications in vivo. After screenings on the materials, we identified FTT5 as a lead material for efficient delivery of long mRNAs, such as human factor VIII (hFVIII) mRNA (~4.5 kb) for expression of hFVIII protein in hemophilia A mice. Moreover, FTT5 LLNs demonstrated high percentage of base editing on PCSK9 in vivo at a low dose of base editor mRNA (~5.5 kb) and single guide RNA. Consequently, FTT nanomaterials merit further development for mRNA-based therapy.
Collapse
Affiliation(s)
- Xinfu Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Weiyu Zhao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Giang N Nguyen
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chunxi Zeng
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jingyue Yan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Xucheng Hou
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Wenqing Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Justin Jiang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | - Aalok Shah
- Beam Therapeutics, Cambridge, MA 02139, USA
| | | | | | | | - Delai Chen
- Beam Therapeutics, Cambridge, MA 02139, USA.
| | - Denise E Sabatino
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Firrman J, Wang Q, Wu W, Dong B, Cao W, Moore AR, Roberts S, Konkle BA, Miao C, Liu L, Li D, Xiao W. Identification of Key Coagulation Activity Determining Elements in Canine Factor VIII. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:328-336. [PMID: 32071925 PMCID: PMC7013134 DOI: 10.1016/j.omtm.2019.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022]
Abstract
It is well known that canine factor VIII (cFVIII) has a higher specific activity than does human FVIII (hFVIII), and it has been previously demonstrated that cFVIII light chain is able to enhance hFVIII activity. The goal of this study was to first determine which amino acids in cFVIII light chain were responsible for enhancing hFVIII activity, and second to use these amino acids to develop a hFVIII variant with enhanced functional activity. We systemically screened segments of cFVIII light chain by testing an array of human-canine light chain hybrids and found that canine amino acids 1857-2147 were key to this enhancement. Each canine amino acid within this span was screened individually using a negative selection method, which led to the identification of 12 aa (JF12) in the FVIII light chain that could enhance activity. Substitution of the corresponding 12 aa into hFVIII (hFVIIIJF12BDD) elevated the specific activity profile in vitro. Furthermore, hFVIIIJF12BDD expressed an in vivo-displayed increased coagulation activity compared to wild-type, while maintaining normal secretion efficiency. In conclusion, we identified the amino acids in cFVIII that are the key determinants for higher specific activity and may be the basis for future development of therapeutic treatments for hemophilia A.
Collapse
Affiliation(s)
- Jenni Firrman
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA.,Dairy and Functional Foods Research Unit, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Qizhao Wang
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenman Wu
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Biao Dong
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenjing Cao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Andrea Rossi Moore
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Sean Roberts
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Barbara A Konkle
- Bloodworks Northwest, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carol Miao
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Dong Li
- Shanghai Tongji Hospital, Tongji University, Shanghai, P.R. China
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA.,Dairy and Functional Foods Research Unit, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Jun Z, Ming-Ming L, Qian-Qing Z, Yun-Hong W, Chong-Yang Z, Xin L. Functional identification of factor VIII B domain regions in hepatocyte cells. Biochem Biophys Res Commun 2020; 526:633-640. [PMID: 32248973 DOI: 10.1016/j.bbrc.2020.03.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 11/15/2022]
Abstract
Factor VIII (FVIII) functions as a cofactor within the intrinsic pathway of blood coagulation in process of FX activation by FIXa, for which deficiency results in the bleeding disorder hemophilia A. The gene of FVIII contains 26 exons that code for a 19 amino acid signal peptide and a 2332 amino acid polypeptide with a domain structure designated A1-A2-B-A3-C1-C2, of which the A domains are homologous with each other, as are the C domains. It has been well-documented that both the domains are the necessary elements for FVIII activities. The B domain is highly glycosylated and has a variable sequence, even among FVIIIs from different species. The B domain plays versatile roles in FVIII lifespan except for coagulation activity, but the functional characteristics of its specific regions remain still obscure. A series of recombinant FVIIIs (rFVIIIs) with B domain truncated were constructed and transiently expressed in hepatocyte cells. Media and cell lysates were collected after 72 h for the analyses of FVIII biosynthesis, secretion, activity and stability in ex vivo plasma relative to the full length wild-type FVIII. Unexpectedly, various regions in B domain exhibited different contribution to these functionalities. The discovery might facilitate the bioengineered rFVIIIs and gene therapeutics.
Collapse
Affiliation(s)
- Zhang Jun
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China.
| | - Lin Ming-Ming
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhang Qian-Qing
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Wang Yun-Hong
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhu Chong-Yang
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Li Xin
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
25
|
Platelet-inspired therapeutics: current status, limitations, clinical implications, and future potential. Drug Deliv Transl Res 2020; 11:24-48. [PMID: 32323161 DOI: 10.1007/s13346-020-00751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent research has been successful in demonstrating the importance of the addition of platelets to the field of cell-mediated therapeutics, by making use of different platelet forms to design modalities able to positively impact a wide range of diseases. A key obstacle hindering the success of conventional therapeutic interventions is their inability to produce targeted treatment, resulting in a number of systemic side effects and a longer duration for the onset of action to occur. An additional challenge facing current popular therapeutic interventions is biocompatibility of the system, resulting in the decline of patient compliance to treatment. In an attempt to address these challenges, the past few decades have been witness to the discovery and innovation of precision therapy, in order to achieve targeted treatment for an array of conditions, thereby superseding alternative mechanisms of treatment. Platelet-mediated therapeutics, as well as employing platelets as drug delivery vehicles, are key components in advancing precision therapy within research and in clinical settings. This novel approach is designed with the objective that the platelets retain their original structure and functions within the body, thereby mitigating biocompatibility challenges. In this article, we review the current significant impact that the addition of platelet-inspired systems has made on the field of therapeutics; explore certain limitations of each system, together with ideas on how to overcome them; and discuss the clinical implications and future potential of platelet-inspired therapeutics. Graphical abstract.
Collapse
|
26
|
Chen CY, Tran DM, Cavedon A, Cai X, Rajendran R, Lyle MJ, Martini PGV, Miao CH. Treatment of Hemophilia A Using Factor VIII Messenger RNA Lipid Nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:534-544. [PMID: 32330871 PMCID: PMC7178004 DOI: 10.1016/j.omtn.2020.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Hemophilia A (HemA) patients are currently treated with costly and inconvenient replacement therapy of short-lived factor VIII (FVIII) protein. Development of lipid nanoparticle (LNP)-encapsulated mRNA encoding FVIII can change this paradigm. LNP technology constitutes a biocompatible and scalable system to efficiently package and deliver mRNA to the target site. Mice intravenously infused with the luciferase mRNA LNPs showed luminescence signals predominantly in the liver 4 h after injection. Repeated injections of LNPs did not induce elevation of liver transaminases. We next injected LNPs carrying mRNAs encoding different variants of human FVIII (F8 LNPs) into HemA mice. A single injection of B domain-deleted F8 LNPs using different dosing regimens achieved a wide range of therapeutic activities rapidly, which can be beneficial for various usages in hemophilia treatment. The expression slowly declined yet remained above therapeutic levels up to 5–7 days post-injection. Furthermore, routine repeated injections of F8 LNPs in immunodeficient mice produced consistent expression of FVIII over time. In conclusion, F8 LNP treatment produced rapid and prolonged duration of FVIII expression that could be applied to prophylactic treatment and potentially various other treatment options. Our study showed potential for a safe and effective platform of new mRNA therapies for HemA.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Xiaohe Cai
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Meghan J Lyle
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Carol H Miao
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Russick J, Delignat S, Milanov P, Christophe O, Boros G, Denis CV, Lenting PJ, Kaveri SV, Lacroix-Demazes S. Correction of bleeding in experimental severe hemophilia A by systemic delivery of factor VIII-encoding mRNA. Haematologica 2019; 105:1129-1137. [PMID: 31289204 PMCID: PMC7109737 DOI: 10.3324/haematol.2018.210583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
The treatment or prevention of bleeding in patients with hemophilia A relies on replacement therapy with different factor VIII (FVIII)-containing products or on the use of by-passing agents, i.e., activated prothrombin complex concentrates or recombinant activated factor VII. Emerging approaches include the use of bispecific anti-factor IXa/factor X antibodies, anti-tissue factor pathway inhibitor antibodies, interfering RNA to antithrombin, and activated protein C-specific serpins or gene therapy. The latter strategies are, however, hampered by the short clinical experience and potential adverse effects including the absence of tight temporal and spatial control of coagulation and the risk of uncontrolled insertional mutagenesis. Systemic delivery of mRNA allows endogenous production of the corresponding encoded protein. Thus, injection of erythropoietin-encoding mRNA in a lipid nanoparticle formulation resulted in increased erythropoiesis in mice and macaques. Here, we demonstrate that a single injection of in vitro transcribed B domain-deleted FVIII-encoding mRNA to FVIII-deficient mice enables endogenous production of pro-coagulant FVIII. Circulating FVIII:C levels above 5% of normal levels were maintained for up to 72 h, with an estimated half-life of FVIII production of 17.9 h, and corrected the bleeding phenotype in a tail clipping assay. The endogenously produced FVIII did however exhibit low specific activity and induced a potent neutralizing IgG response upon repeated administration of the mRNA. Our results suggest that the administration of mRNA is a plausible strategy for the endogenous production of proteins characterized by poor translational efficacy. The use of alternative mRNA delivery systems and improved FVIII-encoding mRNA should foster the production of functional molecules and reduce their immunogenicity.
Collapse
Affiliation(s)
- Jules Russick
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sandrine Delignat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Peter Milanov
- DRK-Blutspendedienst, Institut für Transfusionsmedizin und Immunhämatologie, Frankfurt am Main, Germany
| | - Olivier Christophe
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Gábor Boros
- BioNTech RNA Pharmaceuticals, Mainz, Germany
| | - Cécile V Denis
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Srinivas V Kaveri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | |
Collapse
|
29
|
Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:184-201. [PMID: 30705923 PMCID: PMC6349562 DOI: 10.1016/j.omtm.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) and hemophilia B (HB) are X-linked bleeding disorders due to inheritable deficiencies in either coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Recently, gene therapy clinical trials with adeno-associated virus (AAV) vectors and protein-engineered transgenes, B-domain deleted (BDD) FVIII and FIX-Padua, have reported near-phenotypic cures in subjects with HA and HB, respectively. Here, we review the biology and the clinical development of FVIII-BDD and FIX-Padua as transgenes. We also examine alternative bioengineering strategies for FVIII and FIX, as well as the immunological challenges of these approaches. Other engineered proteins and their potential use in gene therapy for hemophilia with inhibitors are also discussed. Continued advancement of gene therapy for HA and HB using protein-engineered transgenes has the potential to alleviate the substantial medical and psychosocial burdens of the disease.
Collapse
|
30
|
Update on clinical gene therapy for hemophilia. Blood 2018; 133:407-414. [PMID: 30559260 DOI: 10.1182/blood-2018-07-820720] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
In contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.
Collapse
|
31
|
Pipe SW. Bioengineered molecules for the management of haemophilia: Promise and remaining challenges. Haemophilia 2018; 24 Suppl 6:68-75. [PMID: 29878662 DOI: 10.1111/hae.13507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/14/2022]
Abstract
Recombinant DNA technology has led to accelerating introduction of novel therapeutics for the treatment of haemophilia. This technology has driven the development of recombinant clotting factors, extended half-life clotting factors, alternative biologics to promote haemostasis and enabled the launch of the gene therapy era for haemophilia. At the core of this technology is the ability to study the structure and function of the native molecules and to apply rational bioengineering to overcome limitations to the existing therapies. Through the study of haemophilia-causing mutations, site-directed mutagenesis, detailed structural models and a wide repertoire of animal models, new bioengineering strategies are helping overcome some of the remaining limitations and challenges of traditional clotting factor concentrates. Some of these bioengineering strategies are now being partnered with improvements in vectorology leading to the first wave of successful gene therapy approaches. This study will review past and present bioengineered molecules that are advancing care for haemophilia as well as novel approaches that promise to continue to improve care and outcomes for patients with haemophilia.
Collapse
Affiliation(s)
- S W Pipe
- University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Zhang W, Mao J, Shen Y, Zhang G, Shao Y, Ruan Z, Wang Y, Wu W, Wang X, Zhu J, Chen S, Xiao W, Xi X. Evaluation of the activity levels of rat FVIII and human FVIII delivered by adeno-associated viral vectors both in vitro and in vivo. Blood Cells Mol Dis 2018; 73:47-54. [PMID: 30249384 DOI: 10.1016/j.bcmd.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
The development of a novel coagulation factor VIII (FVIII) expression cassette with an enhanced activity for gene therapy of hemophilia A (HA) is essential. The biological properties of several non-human FVIII sequences, such as porcine and canine, have been evaluated. Here, we compared the activity level of rat FVIII (rFVIII) and human FVIII (hFVIII) by using single-chain and dual-chain strategies in 293 T cells and the HA mice. In both in vitro and hydrodynamic injection studies, the activity of rFVIII detected by the activated partial thromboplastin time assay was higher than that of hFVIII both by single-chain (~2.96-fold and ~1.72-fold, respectively) and dual-chain (~7.69-fold and ~2.35-fold, respectively). Moreover, the dual chain exerted a potentially higher delivery efficacy compared with the single chain (~4.96-fold and ~2.99-fold, respectively). The blood loss of HA mice administrated with rFVIII was less than those with hFVIII. AAV-delivered rFVIII and hFVIII also exerted long-term therapeutic effects on HA mice and caused a transient ALT elevation. These data might help to the development of novel, optimized FVIII expression cassettes based on the amino acid difference between rFVIII and hFVIII. These data indicate that the dual-chain strategy would likely enhance the delivery efficiency of the AAV-mediated FVIII gene therapy.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China.
| | - Yan Shen
- Research center for experimental medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guowei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; The School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yanyan Shao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenman Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weidong Xiao
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China.
| |
Collapse
|
33
|
Ito M, Ohno K. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations. Matrix Biol 2018; 68-69:628-636. [PMID: 29475025 DOI: 10.1016/j.matbio.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors.
Collapse
Affiliation(s)
- Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
34
|
Greig JA, Nordin JML, White JW, Wang Q, Bote E, Goode T, Calcedo R, Wadsworth S, Wang L, Wilson JM. Optimized Adeno-Associated Viral-Mediated Human Factor VIII Gene Therapy in Cynomolgus Macaques. Hum Gene Ther 2018; 29:1364-1375. [PMID: 29890905 DOI: 10.1089/hum.2018.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hemophilia A is a common hereditary bleeding disorder that is characterized by a deficiency of human blood coagulation factor VIII (hFVIII). Previous studies with adeno-associated viral (AAV) vectors identified two liver-specific promoter and enhancer combinations (E03.TTR and E12.A1AT) that drove high level expression of a codon-optimized, B-domain-deleted hFVIII transgene in a mouse model of the disease. This study further evaluated these enhancer/promoter combinations in cynomolgus macaques using two different AAV capsids (AAVrh10 and AAVhu37). Each of the four vector combinations was administered intravenously at a dose of 1.2 × 1013 genome copy/kg into five macaques per group. Delivery of the hFVIII transgene via the AAVhu37 capsid resulted in a substantial increase in hFVIII expression compared to animals administered with AAVrh10 vectors. Two weeks after administration of E03.TTR packaged within the AAVhu37 capsid, average hFVIII expression was 20.2 ± 5.0% of normal, with one animal exhibiting peak expression of 37.1% of normal hFVIII levels. The majority of animals generated an anti-hFVIII antibody response by week 8-10 post vector delivery. However, two of the five macaques administered with AAVhu37.E03.TTR were free of a detectable antibody response for 30 weeks post vector administration. Overall, the study supports the continued development of AAV-based gene therapeutics for hemophilia A using the AAVhu37 capsid.
Collapse
Affiliation(s)
- Jenny A Greig
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Jayme M L Nordin
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - John W White
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Qiang Wang
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Erin Bote
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Tamara Goode
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Roberto Calcedo
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Lili Wang
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - James M Wilson
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Evens H, Chuah MK, VandenDriessche T. Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia 2018; 24 Suppl 6:50-59. [DOI: 10.1111/hae.13494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022]
Affiliation(s)
- H. Evens
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - M. K. Chuah
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| | - T. VandenDriessche
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| |
Collapse
|
36
|
Stephens CJ, Kashentseva E, Everett W, Kaliberova L, Curiel DT. Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther 2018; 25:139-156. [PMID: 29588497 PMCID: PMC5919923 DOI: 10.1038/s41434-018-0003-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
Serum deficiency diseases such as alpha-1-antitrypsin deficiency are characterized by reduced function of serum proteins, caused by deleterious genetic mutations. These diseases are promising targets for genetic interventions. Gene therapies using viral vectors have been used to introduce correct copies of the disease-causing gene in preclinical and clinical studies. However, these studies highlighted that disease-alleviating gene expression is lost over time. Integration into a specific chromosomal site could provide lasting therapeutic expression to overcome this major limitation. Additionally, targeted integration could avoid detrimental mutagenesis associated with integrative vectors, such as tumorigenesis or functional gene perturbation. To test if adenoviral vectors can facilitate long-term gene expression through targeted integration, we somatically incorporated the human alpha-1-antitrypsin gene into the ROSA26 "safe harbor" locus in murine livers, using CRISPR/Cas9. We found adenoviral-mediated delivery of CRISPR/Cas9 achieved gene editing outcomes persisting over 200 days. Furthermore, gene knock-in maintained greater levels of the serum protein than provided by episomal expression. Importantly, our "knock-in" approach is generalizable to other serum proteins and supports in vivo cDNA replacement therapy to achieve stable gene expression.
Collapse
Affiliation(s)
- Calvin J Stephens
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
- Molecular Genetics and Genomics Program, Division of Biology and Biomedical Sciences, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8226, St. Louis, MO, 63110, USA
| | - Elena Kashentseva
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - William Everett
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Lyudmila Kaliberova
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - David T Curiel
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
- Department of Radiation Oncology, Biologic Therapeutics Center, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Abstract
Gene therapy is an attractive approach for disease treatment. Since platelets are abundant cells circulating in blood with the distinctive abilities of storage and delivery and fundamental roles in hemostasis and immunity, they could be a unique target for gene therapy of diseases. Recent studies have demonstrated that ectopic expression of factor VIII (FVIII) in platelets under control of the platelet-specific promoter results in FVIII storage together with its carrier protein von Willebrand factor (VWF) in α-granules and the phenotypic correction of hemophilia A. Importantly, the storage and sequestration of FVIII in platelets appears to effectively restore hemostasis even in the presence of functional-blocking inhibitory antibodies. This review summarizes studies on platelet-specific gene therapy of hemophilia A as well as hemophilia B.
Collapse
|
38
|
Gene Therapy with BMN 270 Results in Therapeutic Levels of FVIII in Mice and Primates and Normalization of Bleeding in Hemophilic Mice. Mol Ther 2017; 26:496-509. [PMID: 29292164 PMCID: PMC5835117 DOI: 10.1016/j.ymthe.2017.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/28/2017] [Accepted: 12/09/2017] [Indexed: 01/22/2023] Open
Abstract
Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.
Collapse
|
39
|
Ragni MV. Novel alternate hemostatic agents for patients with inhibitors: beyond bypass therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:605-609. [PMID: 29222310 PMCID: PMC6142579 DOI: 10.1182/asheducation-2017.1.605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inhibitor formation is among the most severe complications of hemophilia treatment. With a cumulative incidence of ∼30% in those with severe hemophilia A and ∼3% in those with severe hemophilia B, inhibitors are caused by a T-cell response directed against infused coagulation factor; these inhibitors neutralize factor VIII or IX activity and disrupt normal hemostasis. Inhibitor patients become unresponsive to standard factor treatment and, as an alternative, use bypass treatment (eg, recombinant factor VIIa or factor VIII inhibitor bypass activity). However, response to bypass agents is poorer and the burden of disease is higher, with greater morbidity, hospitalization, cost, and mortality, than in noninhibitor patients. Furthermore, inhibitor formation interferes with prophylaxis to prevent bleeding episodes and is a contraindication to gene therapy. Thus, more effective therapies for inhibitor patients are greatly needed. In the last several years, there has been an explosion of novel alternative hemostatic agents for hemophilia patients with and without inhibitors. These agents take advantage of technologic manipulation of coagulation factors and natural anticoagulants to promote hemostasis. The approaches include the following: (1) mutants or mimics of coagulation factors, rendering them resistant to natural anticoagulants; or (2) knock-down or disruption of natural anticoagulants, preventing degradation of coagulation factors. The purpose of this article was to review these novel alternative hemostatic agents and their mechanisms of action, as well as the preliminary pharmacokinetic, safety, and efficacy data available from early-phase clinical trials.
Collapse
Affiliation(s)
- Margaret V Ragni
- Department of Medicine, Division Hematology/Oncology, University of Pittsburgh, and Hemophilia Center of Western Pennsylvania, Pittsburgh, PA
| |
Collapse
|
40
|
VandenDriessche T, Chuah MK. Hemophilia Gene Therapy: Ready for Prime Time? Hum Gene Ther 2017; 28:1013-1023. [DOI: 10.1089/hum.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Martin-Higueras C, Torres A, Salido E. Molecular therapy of primary hyperoxaluria. J Inherit Metab Dis 2017; 40:481-489. [PMID: 28425073 DOI: 10.1007/s10545-017-0045-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
Abstract
During the last few decades, the molecular understanding of the mechanisms involved in primary hyperoxalurias (PHs) has set the stage for novel therapeutic approaches. The availability of PH mouse models has facilitated preclinical studies testing innovative treatments. PHs are autosomal recessive diseases where the enzymatic deficit plays a central pathogenic role. Thus, molecular therapies aimed at restoring such deficit or limiting the consequences of the metabolic derangement could be envisioned, keeping in mind the specific challenges posed by the cell-autonomous nature of the deficiency. Various molecular approaches like enzyme replacement, substrate reduction, pharmacologic chaperones, and gene and cell therapies have been explored in cells and mouse models of disease. Some of these proof-of-concept studies have paved the way to current clinical trials on PH type 1, raising hopes that much needed treatments will become available for this severe inborn error of metabolism.
Collapse
Affiliation(s)
- Cristina Martin-Higueras
- Department of Pathology & Nephrology, Centre for Biomedical Research on Rare Diseases (CIBERER) Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Armando Torres
- Department of Pathology & Nephrology, Centre for Biomedical Research on Rare Diseases (CIBERER) Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Eduardo Salido
- Department of Pathology & Nephrology, Centre for Biomedical Research on Rare Diseases (CIBERER) Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain.
- Department of Pathology, ULL School Medicine, 38320, Tenerife, Spain.
| |
Collapse
|
42
|
Nguyen GN, George LA, Siner JI, Davidson RJ, Zander CB, Zheng XL, Arruda VR, Camire RM, Sabatino DE. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A. J Thromb Haemost 2017; 15:110-121. [PMID: 27749002 PMCID: PMC5280213 DOI: 10.1111/jth.13543] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 12/26/2022]
Abstract
Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy. SUMMARY Background The major challenge for developing gene-based therapies for hemophilia A is that human factor VIII (hFVIII) has intrinsic properties that result in inefficient biosynthesis. During intracellular processing, hFVIII is predominantly cleaved at a paired basic amino acid cleaving enzyme (PACE) or furin cleavage site to yield a heterodimer that is the major form of secreted protein. Previous studies with B-domain-deleted (BDD) canine FVIII and hFVIII-R1645H, both differing from hFVIII by a single amino acid at this site, suggested that these proteins are secreted mainly in a single polypeptide chain (SC) form and exhibit enhanced function. Objective We hypothesized that deletion(s) of the furin site modulates FVIII biology and may enhance its function. Methods A series of recombinant hFVIII-furin deletion variants were introduced into hFVIII-BDD [Δ1645, 1645-46(Δ2), 1645-47(Δ3), 1645-48(Δ4), or Δ1648] and characterized. Results In vitro, recombinant purified Δ3 and Δ4 were primarily SC and, interestingly, had 2-fold higher procoagulant activity compared with FVIII-BDD. In vivo, the variants also have improved hemostatic function. After adeno-associated viral (AAV) vector delivery, the expression of these variants is 2-4-fold higher than hFVIII-BDD. Protein challenges of each variant in mice tolerant to hFVIII-BDD showed no anti-FVIII immune response. Conclusions These data suggest that the furin deletion hFVIII variants are superior to hFVIII-BDD without increased immunogenicity. In the setting of gene-based therapeutics, these novel variants provide a unique strategy to increase FVIII expression, thus lowering the vector dose, a critical factor for hemophilia A gene therapy.
Collapse
Affiliation(s)
- G. N. Nguyen
- The Raymond G. Perelman Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - L. A. George
- The Raymond G. Perelman Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsDivision of HematologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - J. I. Siner
- The Raymond G. Perelman Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - R. J. Davidson
- The Raymond G. Perelman Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - C. B. Zander
- Division of Laboratory MedicineDepartment of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - X. L. Zheng
- Division of Laboratory MedicineDepartment of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - V. R. Arruda
- The Raymond G. Perelman Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsDivision of HematologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - R. M. Camire
- The Raymond G. Perelman Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsDivision of HematologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - D. E. Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsDivision of HematologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|