1
|
Nappi F. Staphylococcus aureus Endocarditis Immunothrombosis. Metabolites 2025; 15:328. [PMID: 40422904 DOI: 10.3390/metabo15050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Infective endocarditis continues to represent a challenge for healthcare systems, requiring careful management and resources. Recent studies have indicated a shift in the predominant pathogens of concern, with Streptococcus sp. a being superseded by Staphylococcus sp. and Enterococcus sp. as the leading causes of concern. This shift is of concern as it is associated with Staphylococcus Aureus which has a high virulence rate and a tendency to form a biofilm, meaning that non-surgical therapy may not be effective. It is imperative to deliberate on the likelihood of platelet blood clot formation, which may be accompanied by bacterial infestation and the development of a biofilm. Methods: MEDLINE, Embase, and Pubmed were searched using terms relating to 'endocarditis' and 'Staphilococcus aureus', along with 'epidemiology', 'pathogenesis', 'coagulation', 'platelet', 'aggregation', and 'immunity'. The search focused on publications from the past 15 years, but excluded older, highly regarded articles. We also searched the reference lists of relevant articles. Recommended review articles are cited for more details. Results: An endocarditis lesion is believed to be a blood clot infected with bacteria that adheres to the heart valves. Infective endocarditis is a good example of immunothrombosis, where the coagulation system, innate immunity and the function of coagulation in isolating and eliminating pathogens interact. However, in the context of infective endocarditis, immunothrombosis unintentionally establishes an environment conducive to bacterial proliferation. The process of immunothrombosis impedes the immune system, enabling bacterial proliferation. The coagulation system plays a pivotal role in the progression of this condition. Conclusion: The coagulation system is key to how bacteria attach to the heart valves, how vegetations develop, and how complications like embolisation and valve dysfunction occur. Staphylococcus aureus, the main cause of infective endocarditis, can change blood clotting, growing well in the fibrin-rich environment of vegetation. The coagulation system is a good target for treating infective endocarditis because of its central role in the disease. But we must be careful, as using blood-thinning medicines in patients with endocarditis can often lead to an increased risk of bleeding.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
2
|
Holmes CL, Albin OR, Mobley HLT, Bachman MA. Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nat Rev Microbiol 2025; 23:210-224. [PMID: 39420097 DOI: 10.1038/s41579-024-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Owen R Albin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Evans DC, Khamas AB, Payne-Dwyer A, Wollman AJ, Rasmussen KS, Klitgaard JK, Kallipolitis B, Leake MC, Meyer RL. Cooperation between coagulase and von willebrand factor binding protein in Staphylococcus aureus fibrin pseudocapsule formation. Biofilm 2024; 8:100233. [PMID: 39555140 PMCID: PMC11564979 DOI: 10.1016/j.bioflm.2024.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
The major human pathogen Staphylococcus aureus forms biofilms comprising of a fibrin network that increases attachment to surfaces and shields bacteria from the immune system. It secretes two coagulases, Coagulase (Coa) and von Willebrand factor binding protein (vWbp), which hijack the host coagulation cascade and trigger the formation of this fibrin clot. However, it is unclear how Coa and vWbp contribute differently to the localisation and dynamics of clot assembly in growing biofilms. Here, we address this question using high-precision time-resolved confocal microscopy of fluorescent fibrin to establish the spatiotemporal dynamics of fibrin clot formation in functional biofilms. We also use fluorescent fusion proteins to visualise the locations of Coa and vWbp in biofilms using both confocal laser scanning and high resolution highly inclined and laminated optical sheet microscopy. We visualise and quantify the spatiotemporal dynamics of fibrin production during initiation of biofilms in plasma amended with fluorescently labelled fibrinogen. We find that human serum stimulates coagulase production, and that Coa and vWbp loosely associate to the bacterial cell surface. Coa localises to cell surfaces to produce a surface-attached fibrin pseudocapsule but can diffuse from cells to produce matrix-associated fibrin. vWbp produces matrix-associated fibrin in the absence of Coa, and furthermore accelerates pseudocapsule production when Coa is present. Finally, we observe that fibrin production varies across the biofilm. A sub-population of non-dividing cells does not produce any pseudocapsule but remains within the protective extended fibrin network, which could be important for the persistence of S. aureus biofilm infections as antibiotics are more effective against actively growing cells. Our findings indicate a more cooperative role between Coa and vWbp in building fibrin networks than previously thought, and a bet-hedging cell strategy where some cells produce biofilm matrix while others do not, but instead assume a dormant phenotype that could be associated with antibiotic tolerance.
Collapse
Affiliation(s)
- Dominique C.S. Evans
- School of Physics, Engineering and Technology, University of York, York, UK
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
| | - Amanda B. Khamas
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Adam J.M. Wollman
- School of Physics, Engineering and Technology, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Kristian S. Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Janne K. Klitgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Sun F, Deng X, Gao H, Ding L, Zhu W, Luo H, Ye X, Luo X, Chen Z, Qin C. Characterization of Kunitz-Domain Anticoagulation Peptides Derived from Acinetobacter baumannii Exotoxin Protein F6W77. Toxins (Basel) 2024; 16:450. [PMID: 39453226 PMCID: PMC11511053 DOI: 10.3390/toxins16100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have revealed that the coagulation system plays a role in mammalian innate defense by entrapping bacteria in clots and generating antibacterial peptides. So, it is very important for the survival of bacteria to defend against the host coagulation system, which suggests that bacterial exotoxins might be a new source of anticoagulants. In this study, we analyzed the genomic sequences of Acinetobacter baumannii and a new bacterial exotoxin protein, F6W77, with five Kunitz-domains, KABP1-5, was identified. Each Kunitz-type domain features a classical six-cysteine framework reticulated by three conserved disulfide bridges, which was obviously similar to animal Kunitz-domain peptides but different from plant Kunitz-domain peptides. Anticoagulation function evaluation showed that towards the intrinsic coagulation pathway, KABP1 and KABP5 had apparently inhibitory activity, KABP4 had weak inhibitory activity, and KBAP2 and KABP3 had no effect even at a high concentration of 20 μg/mL. All five Kunitz-domain peptides, KABP1-5, had no inhibitory activity towards the extrinsic coagulation pathway. Enzyme-inhibitor experiments showed that the high-activity anticoagulant peptide KABP1 had apparently inhibitory activity towards two key coagulation factors, Xa and XIa, which was further confirmed by pull-down experiments that showed that KABP1 can bind to coagulation factors Xa and XIa directly. Structure-function relationship analyses of five Kunitz-type domain peptides showed that the arginine of the P1 site of three new bacterial anticoagulants, KABP1, KABP4 and KABP5, might be the key residue for their anticoagulation activity. In conclusion, with bioinformatics analyses, peptide recombination, and functional evaluation, we firstly found bacterial-exotoxin-derived Kunitz-type serine protease inhibitors with selectively inhibiting activity towards intrinsic coagulation pathways, and highlighted a new interaction between pathogenic bacteria and the human coagulation system.
Collapse
Affiliation(s)
- Fang Sun
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaolin Deng
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huanhuan Gao
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Hongyi Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chenhu Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
5
|
Takigawa T, Miyahara S, Ishii H, Ogawa M, Fukuda K, Nishimura Y, Saito M. Fibrinolytic treatment using recombinant tissue-type plasminogen activator (rt-PA) for staphylococcal infective endocarditis. Microb Pathog 2024; 197:107013. [PMID: 39406301 DOI: 10.1016/j.micpath.2024.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Infective endocarditis (IE) is a severe illness characterized by vegetation of bacterial thrombosis. We hypothesized that adding recombinant tissue-type plasminogen activator (rt-PA) to antibiotics would contribute to good results in the treatment of IE. As an in vitro study, we injected labeled Staphylococcus aureus (S. aureus) and either rt-PA or PBS + plasminogen into a polydimethylsiloxane flow chamber with fibrin on a coverslip, and then performed immunofluorescent area assessment. As an in vivo experiment, IE model rats that had suffered mechanical damage in the aortic valve by catheter and revealed bacterial vegetation caused by S. aureus injection were treated with either a control, cefazolin (CEZ), rt-PA, or rt-PA + CEZ, for 7 days. Survival was assessed for 14 days after the appearance of vegetation, with daily monitoring of the vegetation by transthoracic echocardiography (TTE). The in vitro investigation showed that perfusion of rt-PA could detach S. aureus significantly more efficiently than PBS could. In the in vivo research, the rt-PA + CEZ group survived significantly longer than the other groups, and rt-PA + CEZ was more effective than CEZ in the dissolution of vegetation, as observed by TTE. In conclusion, adding rt-PA to antibiotic treatment could dissolve the vegetation component synergistically and improve the survival rate.
Collapse
Affiliation(s)
- Tomoya Takigawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan; Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan.
| | - Satoshi Miyahara
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Hiromu Ishii
- Institute for Research on Next-generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi City, Aichi, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Yosuke Nishimura
- Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kita-Kyushu City, Fukuoka, Japan
| |
Collapse
|
6
|
Lichota A, Gwozdzinski K, Kowalczyk E, Kowalczyk M, Sienkiewicz M. Contribution of staphylococcal virulence factors in the pathogenesis of thrombosis. Microbiol Res 2024; 283:127703. [PMID: 38537329 DOI: 10.1016/j.micres.2024.127703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Staphylococci are responsible for many infections in humans, starting with skin and soft tissue infections and finishing with invasive diseases such as endocarditis, sepsis and pneumonia, which lead to high mortality. Patients with sepsis often demonstrate activated clotting pathways, decreased levels of anticoagulants, decreased fibrinolysis, activated endothelial surfaces and activated platelets. This results in disseminated intravascular coagulation and formation of a microthrombus, which can lead to a multiorgan failure. This review describes various staphylococcal virulence factors that contribute to vascular thrombosis, including deep vein thrombosis in infected patients. The article presents mechanisms of action of different factors released by bacteria in various host defense lines, which in turn can lead to formation of blood clots in the vessels.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland.
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | | | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Nicolai L, Pekayvaz K, Massberg S. Platelets: Orchestrators of immunity in host defense and beyond. Immunity 2024; 57:957-972. [PMID: 38749398 DOI: 10.1016/j.immuni.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Platelets prevent blood loss during vascular injury and contribute to thrombus formation in cardiovascular disease. Beyond these classical roles, platelets are critical for the host immune response. They guard the vasculature against pathogens via specialized receptors, intracellular signaling cascades, and effector functions. Platelets also skew inflammatory responses by instructing innate immune cells, support adaptive immunosurveillance, and influence antibody production and T cell polarization. Concomitantly, platelets contribute to tissue reconstitution and maintain vascular function after inflammatory challenges. However, dysregulated activation of these multitalented cells exacerbates immunopathology with ensuing microvascular clotting, excessive inflammation, and elevated risk of macrovascular thrombosis. This dichotomy underscores the critical importance of precisely defining and potentially modulating platelet function in immunity.
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
8
|
Nguyen TTT, Nguyen TTT, Nguyen HD, Nguyen TK, Pham PTV, Tran LTT, Pham HKT, Truong PCH, Tran LT, Tran MH. Anti- Staphylococcus aureus potential of compounds from Ganoderma sp.: A comprehensive molecular docking and simulation approaches. Heliyon 2024; 10:e28118. [PMID: 38596094 PMCID: PMC11002548 DOI: 10.1016/j.heliyon.2024.e28118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
In this study, a series of secondary metabolites from Ganoderma sp. were screened against Staphylococcus aureus protein targets, including as phosphotransacetylase, clumping factor A, and dihydrofolate reductase, using molecular docking simulations. The chemicals that showed the strongest binding energy with the targeted proteins were ganodermanontriol, lucidumol B, ganoderic acid J, ergosterol, ergosterol peroxide, 7-oxoganoderic acid Z, ganoderic acid AM1, ganosinoside A, ganoderic acid D, and 24R-ergosta-7,2E-diene-3β,5α,6β-triol. Interestingly, ganosinoside A showed the greatest affinity for the protein clumping factor A, a result validated by molecular dynamic simulation. Additionally, three natural Ganoderma sp. Strains as Ganoderma lingzhi VNKKK1903, Ganoderma lingzhi VNKK1905A2, and Amauroderma subresinosum VNKKK1904 were collected from Kon Ka Kinh National Park in central land of Vietnam and evaluated for their antibacterial activity against Staphylococcus aureus using an agar well diffusion technique. These results suggest that the fungal extracts and secondary metabolites may serve as valuable sources of antibiotics against Staphylococcus aureus. These findings provided an important scientific groundwork for further exploration of the antibacterial mechanisms of compounds derived from Ganoderma sp. in future research.
Collapse
Affiliation(s)
- Trang Thi Thu Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Trinh Thi Tuyet Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Hoang Duc Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, 33 Xo Viet Nghe Tinh, Hai Chau District, Da Nang City, 550000, Viet Nam
| | - Phu Tran Vinh Pham
- VN-UK Institute for Research and Executive Education, The University of Danang, 158A Le Loi, Hai Chau District, Danang City, 550000, Viet Nam
| | - Linh Thuy Thi Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue, 530000, Viet Nam
| | - Hong Khuyen Thi Pham
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| | - Phu Chi Hieu Truong
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| | - Linh Thuoc Tran
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Manh Hung Tran
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| |
Collapse
|
9
|
Nappi F. Current Knowledge of Enterococcal Endocarditis: A Disease Lurking in Plain Sight of Health Providers. Pathogens 2024; 13:235. [PMID: 38535578 PMCID: PMC10974565 DOI: 10.3390/pathogens13030235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 02/11/2025] Open
Abstract
Enterococcus faecalis is a bacterial pathogen that can cause opportunistic infections. Studies indicate that initial biofilm formation plays a crucial regulatory role in these infections, as well as in colonising and maintaining the gastrointestinal tract as a commensal member of the microbiome of most land animals. It has long been thought that vegetation of endocarditis resulting from bacterial attachment to the endocardial endothelium requires some pre-existing tissue damage, and in animal models of experimental endocarditis, mechanical valve damage is typically induced by cardiac catheterisation preceding infection. This section reviews historical and contemporary animal model studies that demonstrate the ability of E. faecalis to colonise the undamaged endovascular endothelial surface directly and produce robust microcolony biofilms encapsulated within a bacterially derived extracellular matrix. This report reviews both previous and current animal model studies demonstrating the resilient capacity of E. faecalis to colonise the undamaged endovascular endothelial surface directly and produce robust microcolony biofilms encapsulated in a bacterially derived extracellular matrix. The article also considers the morphological similarities when these biofilms develop on different host sites, such as when E. faecalis colonises the gastrointestinal epithelium as a commensal member of the common vertebrate microbiome, lurking in plain sight and transmitting systemic infection. These phenotypes may enable the organism to survive as an unrecognised infection in asymptomatic subjects, providing an infectious resource for subsequent clinical process of endocarditis.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
10
|
Gaudreau LI, Stewart EJ. Vasculature-on-a-chip technologies as platforms for advanced studies of bacterial infections. BIOMICROFLUIDICS 2024; 18:021503. [PMID: 38560344 PMCID: PMC10977040 DOI: 10.1063/5.0179281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host-bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.
Collapse
Affiliation(s)
- Lily Isabelle Gaudreau
- Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | |
Collapse
|
11
|
Jin T. Exploring the role of bacterial virulence factors and host elements in septic arthritis: insights from animal models for innovative therapies. Front Microbiol 2024; 15:1356982. [PMID: 38410388 PMCID: PMC10895065 DOI: 10.3389/fmicb.2024.1356982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
Septic arthritis, characterized as one of the most aggressive joint diseases, is primarily attributed to Staphylococcus aureus (S. aureus) and often results from hematogenous dissemination. Even with prompt treatment, septic arthritis frequently inflicts irreversible joint damage, leading to sustained joint dysfunction in a significant proportion of patients. Despite the unsatisfactory outcomes, current therapeutic approaches for septic arthritis have remained stagnant for decades. In the clinical context, devising innovative strategies to mitigate joint damage necessitates a profound comprehension of the pivotal disease mechanisms. This entails unraveling how bacterial virulence factors interact with host elements to facilitate bacterial invasion into the joint and identifying the principal drivers of joint damage. Leveraging animal models of septic arthritis emerges as a potent tool to achieve these objectives. This review provides a comprehensive overview of the historical evolution and recent advancements in septic arthritis models. Additionally, we address practical considerations regarding experimental protocols. Furthermore, we delve into the utility of these animal models, such as their contribution to the discovery of novel bacterial virulence factors and host elements that play pivotal roles in the initiation and progression of septic arthritis. Finally, we summarize the latest developments in novel therapeutic strategies against septic arthritis, leveraging insights gained from these unique animal models.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev 2024; 48:fuae002. [PMID: 38337187 PMCID: PMC10873506 DOI: 10.1093/femsre/fuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, United States
| |
Collapse
|
13
|
Parveen S, Babbar R, Badavath VN, Nath SK, Kumar S, Rawat R, Chigurupati S, Karunakaran R, Wal P, Gulati M, Behl T. Recent insights into synthesis, biological activities, structure activity relationship and molecular interactions of thiazolidinone hybrids: A systematic review. SYNTHETIC COMMUN 2024; 54:1-21. [DOI: 10.1080/00397911.2023.2269582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 01/12/2025]
Affiliation(s)
- Sabnam Parveen
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- School of Medical Science, Adamas University, West Bengal, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Suman Kumar Nath
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sourabh Kumar
- City College of Pharmacy, Lucknow, Uttar Pradesh, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai, India
| | - Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Kedah, Malaysia
- Department of Computational Biology, Saveetha School of Engineering, Institute of Bioinformatics, Chennai, Tamil Nadu, India
| | - Pranay Wal
- Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, ARCCIM, University of Technology, Sydney, NSW, Australia Ultimo
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
14
|
Slavetinsky J, Lehmann E, Slavetinsky C, Gritsch L, van Dalen R, Kretschmer D, Bleul L, Wolz C, Weidenmaier C, Peschel A. Wall Teichoic Acid Mediates Staphylococcus aureus Binding to Endothelial Cells via the Scavenger Receptor LOX-1. ACS Infect Dis 2023; 9:2133-2140. [PMID: 37910786 DOI: 10.1021/acsinfecdis.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.
Collapse
Affiliation(s)
- Jessica Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen 72076, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| |
Collapse
|
15
|
Hou J, Jiang Y, Xu Y, Zhao C, Cao Y, Song W, Wang B. Inhibitory effect of bilobalide on Staphylococcus aureus von Willebrand factor-binding protein and its therapeutic effect in mice with pneumonia. J Appl Microbiol 2023; 134:lxad233. [PMID: 37833234 DOI: 10.1093/jambio/lxad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
AIMS Disabling bacterial virulence with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The von Willebrand factor-binding protein of Staphylococcus aureus was identified previously as a key virulence determinant. Our objective was to discover a von Willebrand-factor binding protein (vWbp) inhibitor distinct from the antibiotics used to prevent infections resulting from S. aureus. METHODS AND RESULTS Using coagulation assays, we found that the sesquiterpene trilactone bilobalide blocks coagulation mediated by vWbp, but has no impact on the growth of S. aureus at a concentration of 128 μg ml-1. Moreover, a mouse model of pneumonia caused by S. aureus indicated that bilobalide could attenuate S. aureus virulence in vivo. This effect is achieved not by interfering with the expression of vWbp but by binding to vWbp, as demonstrated by western blotting, thermal shift assays, and fluorescence quenching assays. Using molecular dynamic simulations and point mutagenesis analysis, we identified that the Q17A and R453A residues are key residues for the binding of bilobalide to vWbp. CONCLUSIONS Overall, we tested the ability of bilobalide to inhibit S. aureus infections by targeting vWbp and explored the potential mechanism of this activity.
Collapse
Affiliation(s)
- Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yijing Jiang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yangming Xu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Chunhui Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yali Cao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
- Changchun University of Traditional Chinese Medicine Second Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130052, China
| | - Wu Song
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| |
Collapse
|
16
|
Nappi F, Avtaar Singh SS. Host-Bacterium Interaction Mechanisms in Staphylococcus aureus Endocarditis: A Systematic Review. Int J Mol Sci 2023; 24:11068. [PMID: 37446247 PMCID: PMC10341754 DOI: 10.3390/ijms241311068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococci sp. are the most commonly associated pathogens in infective endocarditis, especially within high-income nations. This along with the increasing burden of healthcare, aging populations, and the protracted infection courses, contribute to a significant challenge for healthcare systems. A systematic review was conducted using relevant search criteria from PubMed, Ovid's version of MEDLINE, and EMBASE, and data were tabulated from randomized controlled trials (RCT), observational cohort studies, meta-analysis, and basic research articles. The review was registered with the OSF register of systematic reviews and followed the PRISMA reporting guidelines. Thirty-five studies met the inclusion criteria and were included in the final systematic review. The role of Staphylococcus aureus and its interaction with the protective shield and host protection functions was identified and highlighted in several studies. The interaction between infective endocarditis pathogens, vascular endothelium, and blood constituents was also explored, giving rise to the potential use of antiplatelets as preventative and/or curative agents. Several factors allow Staphylococcus aureus infections to proliferate within the host with numerous promoting and perpetuating agents. The complex interaction with the hosts' innate immunity also potentiates its virulence. The goal of this study is to attain a better understanding on the molecular pathways involved in infective endocarditis supported by S. aureus and whether therapeutic avenues for the prevention and treatment of IE can be obtained. The use of antibiotic-treated allogeneic tissues have marked antibacterial action, thereby becoming the ideal substitute in native and prosthetic valvular infections. However, the development of effective vaccines against S. aureus still requires in-depth studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
17
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
18
|
Wittekind MA, Briaud P, Smith JL, Tennant JR, Carroll RK. The Small Protein ScrA Influences Staphylococcus aureus Virulence-Related Processes via the SaeRS System. Microbiol Spectr 2023; 11:e0525522. [PMID: 37154710 PMCID: PMC10269730 DOI: 10.1128/spectrum.05255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive commensal and opportunistic pathogen able to cause diseases ranging from mild skin infections to life-threatening endocarditis and toxic shock syndrome. The ability to cause such an array of diseases is due to the complex S. aureus regulatory network controlling an assortment of virulence factors, including adhesins, hemolysins, proteases, and lipases. This regulatory network is controlled by both protein and RNA elements. We previously identified a novel regulatory protein called ScrA, which, when overexpressed, leads to the increased activity and expression of the SaeRS regulon. In this study, we further explore the role of ScrA and examine the consequences to the bacterial cell of scrA gene disruption. These results demonstrate that scrA is required for several virulence-related processes, and in many cases, the phenotypes of the scrA mutant are inverse to those observed in cells overexpressing ScrA. Interestingly, while the majority of ScrA-mediated phenotypes appear to rely on the SaeRS system, our results also indicate that ScrA may also act independently of SaeRS when regulating hemolytic activity. Finally, using a murine model of infection, we demonstrate that scrA is required for virulence, potentially in an organ-specific manner. IMPORTANCE Staphylococcus aureus is the cause of several potentially life-threatening infections. An assortment of toxins and virulence factors allows such a wide range of infections. However, an assortment of toxins or virulence factors requires complex regulation to control expression under all of the different conditions encountered by the bacterium. Understanding the intricate web of regulatory systems allows the development of novel approaches to combat S. aureus infections. Here, we have shown that the small protein ScrA, which was previously identified by our laboratory, influences several virulence-related functions through the SaeRS global regulatory system. These findings add ScrA to the growing list of virulence regulators in S. aureus.
Collapse
Affiliation(s)
| | - Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Jayanna L. Smith
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Julia R. Tennant
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| |
Collapse
|
19
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Risser F, López-Morales J, Nash MA. Adhesive Virulence Factors of Staphylococcus aureus Resist Digestion by Coagulation Proteases Thrombin and Plasmin. ACS BIO & MED CHEM AU 2022; 2:586-599. [PMID: 36573096 PMCID: PMC9782320 DOI: 10.1021/acsbiomedchemau.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is an invasive and life-threatening pathogen that has undergone extensive coevolution with its mammalian hosts. Its molecular adaptations include elaborate mechanisms for immune escape and hijacking of the coagulation and fibrinolytic pathways. These capabilities are enacted by virulence factors including microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the plasminogen-activating enzyme staphylokinase (SAK). Despite the ability of S. aureus to modulate coagulation, until now the sensitivity of S. aureus virulence factors to digestion by proteases of the coagulation system was unknown. Here, we used protein engineering, biophysical assays, and mass spectrometry to study the susceptibility of S. aureus MSCRAMMs to proteolytic digestion by human thrombin, plasmin, and plasmin/SAK complexes. We found that MSCRAMMs were highly resistant to proteolysis, and that SAK binding to plasmin enhanced this resistance. We mapped thrombin, plasmin, and plasmin/SAK cleavage sites of nine MSCRAMMs and performed biophysical, bioinformatic, and stability analysis to understand structural and sequence features common to protease-susceptible sites. Overall, our study offers comprehensive digestion patterns of S. aureus MSCRAMMs by thrombin, plasmin, and plasmin/SAK complexes and paves the way for new studies into this resistance and virulence mechanism.
Collapse
Affiliation(s)
- Fanny Risser
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Joanan López-Morales
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland,E-mail:
| |
Collapse
|
21
|
Szafraniec GM, Szeleszczuk P, Dolka B. Review on skeletal disorders caused by Staphylococcus spp. in poultry. Vet Q 2022; 42:21-40. [PMID: 35076352 PMCID: PMC8843168 DOI: 10.1080/01652176.2022.2033880] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Lameness or leg weakness is the main cause of poor poultry welfare and serious economic losses in meat-type poultry production worldwide. Disorders related to the legs are often associated with multifactorial aetiology which makes diagnosis and proper treatment difficult. Among the infectious agents, bacteria of genus Staphylococcus are one of the most common causes of bone infections in poultry and are some of the oldest bacterial infections described in poultry. Staphylococci readily infect bones and joints and are associated with bacterial chondronecrosis with osteomyelitis (BCO), spondylitis, arthritis, tendinitis, tenosynovitis, osteomyelitis, turkey osteomyelitis complex (TOC), bumblefoot, dyschondroplasia with osteomyelitis and amyloid arthropathy. Overall, 61 staphylococcal species have been described so far, and 56% of them (34/61) have been isolated from clinical cases in poultry. Although Staphylococcus aureus is the principal cause of poultry staphylococcosis, other Staphylococcus species, such as S. agnetis, S. cohnii, S. epidermidis, S. hyicus, S. simulans, have also been isolated from skeletal lesions. Antimicrobial treatment of staphylococcosis is usually ineffective due to the location and type of lesion, as well as the possible occurrence of multidrug-resistant strains. Increasing demand for antibiotic-free farming has contributed to the use of alternatives to antibiotics. Other prevention methods, such as better management strategies, early feed restriction or use of slow growing broilers should be implemented to avoid rapid growth rate, which is associated with locomotor problems. This review aims to summarise and address current knowledge on skeletal disorders associated with Staphylococcus spp. infection in poultry.
Collapse
Affiliation(s)
- Gustaw M. Szafraniec
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
22
|
Kloss M, Moerke C, Woitschach F, Wulf K, Illner S, Schulz S, Pauker VI, Riedel K, Grabow N, Ince H, Reisinger EC, Sombetzki M. Novel dalbavancin-PLLA implant coating prevents hematogenous Staphylococcus aureus infection in a minimally invasive mouse tail vein model. Front Bioeng Biotechnol 2022; 10:1021827. [DOI: 10.3389/fbioe.2022.1021827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Infective/bacterial endocarditis is a rare but life-threatening disease with a hospital mortality rate of 22.7% and a 1-year mortality rate of 40%. Therefore, continued research efforts to develop efficient anti-infective implant materials are of the utmost importance. Equally important is the development of test systems that allow the performance of new materials to be comprehensively evaluated. In this study, a novel antibacterial coating based on dalbavancin was tested in comparison to rifampicin/minocycline, and the suitability of a recently developed mouse tail vein model for testing the implant coatings was validated. Small polymeric stent grafts coated with a poly-L-lactic acid (PLLA) layer and incorporated antibiotics were colonized with Staphylococcus (S.) aureus before implantation into the tail vein of mice. The main assessment criteria were the hematogenous spread of the bacteria and the local tissue reaction to the contaminated implant. For this purpose, colony-forming units (CFU) in the blood, spleen and kidneys were determined. Tail cross sections were prepared for histological analysis, and plasma cytokine levels and expression values of inflammation-associated genes were examined. Both antibiotic coatings performed excellently, preventing the onset of infection. The present study expands the range of available methods for testing the anti-infectivity of cardiovascular implants, and the spectrum of agents for effective surface coating.
Collapse
|
23
|
Nappi F, Martuscelli G, Bellomo F, Avtaar Singh SS, Moon MR. Infective Endocarditis in High-Income Countries. Metabolites 2022; 12:682. [PMID: 35893249 PMCID: PMC9329978 DOI: 10.3390/metabo12080682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Infective endocarditis remains an illness that carries a significant burden to healthcare resources. In recent times, there has been a shift from Streptococcus sp. to Staphylococcus sp. as the primary organism of interest. This has significant consequences, given the virulence of Staphylococcus and its propensity to form a biofilm, rendering non-surgical therapy ineffective. In addition, antibiotic resistance has affected treatment of this organism. The cohorts at most risk for Staphylococcal endocarditis are elderly patients with multiple comorbidities. The innovation of transcatheter technologies alongside other cardiac interventions such as implantable devices has contributed to the increased risk attributable to this cohort. We examined the pathophysiology of infective endocarditis carefully. Inter alia, the determinants of Staphylococcus aureus virulence, interaction with host immunity, as well as the discovery and emergence of a potential vaccine, were investigated. Furthermore, the potential role of prophylactic antibiotics during dental procedures was also evaluated. As rates of transcatheter device implantation increase, endocarditis is expected to increase, especially in this high-risk group. A high level of suspicion is needed alongside early initiation of therapy and referral to the heart team to improve outcomes.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Giorgia Martuscelli
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 81100 Naples, Italy;
| | - Francesca Bellomo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | | | - Marc R. Moon
- Department of Cardiac Thoracic Surgery, Baylor College of Medicine, Texas Heart Institute, Houston, TX 77030, USA;
| |
Collapse
|
24
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
25
|
Mechanisms and Implications of Bacterial Invasion across the Human Skin Barrier. Microbiol Spectr 2022; 10:e0274421. [PMID: 35532353 PMCID: PMC9241919 DOI: 10.1128/spectrum.02744-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus. However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions.
Collapse
|
26
|
Wittekind MA, Frey A, Bonsall AE, Briaud P, Keogh RA, Wiemels RE, Shaw LN, Carroll RK. The novel protein ScrA acts through the SaeRS two-component system to regulate virulence gene expression in Staphylococcus aureus. Mol Microbiol 2022; 117:1196-1212. [PMID: 35366366 PMCID: PMC9324805 DOI: 10.1111/mmi.14901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a Gram-positive commensal that can also cause a variety of infections in humans. S. aureus virulence factor gene expression is under tight control by a complex regulatory network, which includes, sigma factors, sRNAs, and two-component systems (TCS). Previous work in our laboratory demonstrated that overexpression of the sRNA tsr37 leads to an increase in bacterial aggregation. Here, we demonstrate that the clumping phenotype is dependent on a previously unannotated 88 amino acid protein encoded within the tsr37 sRNA transcript (which we named ScrA for S. aureus clumping regulator A). To investigate the mechanism of action of ScrA we performed proteomics and transcriptomics in a ScrA overexpressing strain and show that a number of surface adhesins are upregulated, while secreted proteases are downregulated. Results also showed upregulation of the SaeRS TCS, suggesting that ScrA is influencing SaeRS activity. Overexpression of ScrA in a saeR mutant abrogates the clumping phenotype confirming that ScrA functions via the Sae system. Finally, we identified the ArlRS TCS as a positive regulator of scrA expression. Collectively, our results show that ScrA is an activator of the SaeRS system and suggests that ScrA may act as an intermediary between the ArlRS and SaeRS systems.
Collapse
Affiliation(s)
| | - Andrew Frey
- Department of Cell Biology, Microbiology & Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | | | - Paul Briaud
- Department of Biological SciencesOhio UniversityAthensOhioUSA
| | - Rebecca A. Keogh
- Department of Biological SciencesOhio UniversityAthensOhioUSA
- Present address:
Department of Immunology & MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology & Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Ronan K. Carroll
- Department of Biological SciencesOhio UniversityAthensOhioUSA
- Infectious and Tropical Disease InstituteOhio UniversityAthensOhioUSA
| |
Collapse
|
27
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
28
|
Lerche CJ, Schwartz F, Pries-Heje MM, Fosbøl EL, Iversen K, Jensen PØ, Høiby N, Hyldegaard O, Bundgaard H, Moser C. Potential Advances of Adjunctive Hyperbaric Oxygen Therapy in Infective Endocarditis. Front Cell Infect Microbiol 2022; 12:805964. [PMID: 35186793 PMCID: PMC8851036 DOI: 10.3389/fcimb.2022.805964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Patients with infective endocarditis (IE) form a heterogeneous group by age, co-morbidities and severity ranging from stable patients to patients with life-threatening complications with need for intensive care. A large proportion need surgical intervention. In-hospital mortality is 15-20%. The concept of using hyperbaric oxygen therapy (HBOT) in other severe bacterial infections has been used for many decades supported by various preclinical and clinical studies. However, the availability and capacity of HBOT may be limited for clinical practice and we still lack well-designed studies documenting clinical efficacy. In the present review we highlight the potential beneficial aspects of adjunctive HBOT in patients with IE. Based on the pathogenesis and pathophysiological conditions of IE, we here summarize some of the important mechanisms and effects by HBOT in relation to infection and inflammation in general. In details, we elaborate on the aspects and impact of HBOT in relation to the host response, tissue hypoxia, biofilm, antibiotics and pathogens. Two preclinical (animal) studies have shown beneficial effect of HBOT in IE, but so far, no clinical study has evaluated the feasibility of HBOT in IE. New therapeutic options in IE are much needed and adjunctive HBOT might be a therapeutic option in certain IE patients to decrease morbidity and mortality and improve the long-term outcome of this severe disease.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Virus and Microbiology Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Christian Johann Lerche,
| | - Franziska Schwartz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Leeten K, Jacques N, Lancellotti P, Oury C. Aspirin or Ticagrelor in Staphylococcus aureus Infective Endocarditis: Where Do We Stand? Front Cell Dev Biol 2021; 9:716302. [PMID: 34692677 PMCID: PMC8529053 DOI: 10.3389/fcell.2021.716302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Infective endocarditis is a challenging disease with a high mortality and morbidity rate. Antibiotic prophylaxis is currently recommended in high-risk infective endocarditis patients. However, the use of antibiotics faces the challenge of a low efficacy and contributes further to the emerging infection rate by antibiotic-resistant strains, emphasizing the need for new therapeutic strategies. Platelets are essential in the initial phase of infective endocarditis, acting as first-line immune responders. During the first phase of disease, bacteria can interact with platelets and counteract platelet antimicrobial activities. Mechanistic in vitro and animal studies on the effect of aspirin on bacteria-platelet interactions and the prevention of vegetation development showed promising results. However, data from clinical studies on the outcome of infective endocarditis patients who were receiving medically indicated aspirin therapy remain controversial. Therefore, the benefit of antiplatelet agents in infective endocarditis prevention has been questioned. Besides aspirin, it has been discovered that the platelet P2Y12 receptor antagonist ticagrelor has antibacterial properties in addition to its potent antiplatelet activity. Furthermore, a recent study in mice and a case report remarkably indicated the ability of this drug to eradicate Staphylococcus aureus bacteremia. This review will focus on current knowledge on antibacterial activity of ticagrelor, compared to aspirin, pointing out main unanswered questions. The goal is to provide food for thought as to whether a prior ticagrelor therapy might be beneficial for the prevention of infective endocarditis.
Collapse
Affiliation(s)
- Kirsten Leeten
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Nicolas Jacques
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Cécile Oury
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| |
Collapse
|
30
|
Chantraine C, Mathelié-Guinlet M, Pietrocola G, Speziale P, Dufrêne YF. AFM Identifies a Protein Complex Involved in Pathogen Adhesion Which Ruptures at Three Nanonewtons. NANO LETTERS 2021; 21:7595-7601. [PMID: 34469164 DOI: 10.1021/acs.nanolett.1c02105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococci bind to the blood protein von Willebrand Factor (vWF), thereby causing endovascular infections. Whether and how this interaction occurs with the medically important pathogen Staphylococcus epidermidis is unknown. Using single-molecule experiments, we demonstrate that the S. epidermidis protein Aap binds vWF via an ultrastrong force, ∼3 nN, the strongest noncovalent biological bond ever reported, and we show that this interaction is activated by tensile loading, suggesting a catch-bond behavior. Aap-vWF binding involves exclusively the A1 domain of vWF but requires both the A and B domains of Aap, as revealed by inhibition assays using specific monoclonal antibodies. Collectively, our results point to a mechanism where force-induced unfolding of the B repeats activates the A domain of Aap, shifting it from a weak- to a strong-binding state, which then engages into an ultrastrong interaction with vWF A1. This shear-dependent function of Aap offers promise for innovative antistaphylococcal therapies.
Collapse
Affiliation(s)
- Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
31
|
Thomas S, Arora S, Liu W, Churion K, Wu Y, Höök M. vhp Is a Fibrinogen-Binding Protein Related to vWbp in Staphylococcus aureus. mBio 2021; 12:e0116721. [PMID: 34340548 PMCID: PMC8406236 DOI: 10.1128/mbio.01167-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus can target a variety of tissues, causing life-threatening infections. The basis for this diversity stems from the microorganism's ability to spread in the vascular system throughout the body. To survive in blood, S. aureus coats itself with a fibrinogen (Fg)/fibrin shield. The protective shield is assembled by the coordinated actions of a number of Fg-binding bacterial proteins that manipulate the host's blood coagulation system. Several of the Fg binders appear redundant, sharing similar functional motifs. This observation led us to screen for the presence of novel proteins with significant amino acid identities to von Willebrand factor-binding protein (vWbp), a key component in the shield assembly machinery. One identified protein showed significant sequence identity with the C-terminal region of vWbp, and we consequently named it vWbp homologous protein (vhp). The vhp gene lies within a cluster of genes that encode other virulence factors in S. aureus. Although each isolate only contains one copy of the vhp gene, S. aureus has at least three distinct alleles, vhpA, B, and C, that are present in the core genome. All three vhp isoforms bind Fg with high affinity, targeting a site located in the D fragment of Fg. We further identified an ∼79 amino acid-long, conserved segment within the C-terminal region of vWbp that shares high sequence identities (54 to 67%) with the vhps and binds soluble Fg with high affinity. Further analysis of this conserved motif and the intact vhps revealed intriguing differences in the Fg binding behavior, perhaps suggesting that these proteins have similar but discrete functions in the shield assembly. IMPORTANCE The life-threatening diseases caused by multidrug-resistant Staphylococcus aureus strains are a worldwide medical problem due to treatment limitations and the lack of an effective vaccine. The ability of S. aureus to coat itself with a protective fibrinogen (Fg)/fibrin shield allows the organism to survive in blood and to disseminate and cause invasive diseases. This process represents a promising target for novel antistaphylococcal treatment strategies but is incompletely understood. S. aureus expresses a number of Fg-binding proteins. Some of these proteins have apparently redundant functions. Proteins with similar functions often share a structural or functional motif with each other. In this study, we identified a protein homologous to the C-terminal of von Willebrand factor-binding protein (vWbp), a key contributor in the Fg shield assembly that also binds Fg. Further analysis allowed us to identify a common Fg-binding motif.
Collapse
Affiliation(s)
- Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Kelly Churion
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - You Wu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| |
Collapse
|
32
|
Staphylococcus aureus vWF-binding protein triggers a strong interaction between clumping factor A and host vWF. Commun Biol 2021; 4:453. [PMID: 33846500 PMCID: PMC8041789 DOI: 10.1038/s42003-021-01986-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
The Staphylococcus aureus cell wall-anchored adhesin ClfA binds to the very large blood circulating protein, von Willebrand factor (vWF) via vWF-binding protein (vWbp), a secreted protein that does not bind the cell wall covalently. Here we perform force spectroscopy studies on living bacteria to unravel the molecular mechanism of this interaction. We discover that the presence of all three binding partners leads to very high binding forces (2000 pN), largely outperforming other known ternary complexes involving adhesins. Strikingly, our experiments indicate that a direct interaction involving features of the dock, lock and latch mechanism must occur between ClfA and vWF to sustain the extreme tensile strength of the ternary complex. Our results support a previously undescribed mechanism whereby vWbp activates a direct, ultra-strong interaction between ClfA and vWF. This intriguing interaction represents a potential target for therapeutic interventions, including synthetic peptides inhibiting the ultra-strong interactions between ClfA and its ligands. Through force spectroscopy studies on living bacteria, Viljoen et al. characterise the binding of S. aureus to host von Willebrand factor (vWF). They propose that S. aureus vWF-binding protein triggers an ultra-strong interaction between the adhesin clumping factor A and vWF.
Collapse
|
33
|
Wójcik-Bojek U, Rywaniak J, Bernat P, Podsędek A, Kajszczak D, Sadowska B. An In Vitro Study of the Effect of Viburnum opulus Extracts on Key Processes in the Development of Staphylococcal Infections. Molecules 2021; 26:1758. [PMID: 33801012 PMCID: PMC8003844 DOI: 10.3390/molecules26061758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is still one of the leading causes of both hospital- and community-acquired infections. Due to the very high percentage of drug-resistant strains, the participation of drug-tolerant biofilms in pathological changes, and thus the limited number of effective antibiotics, there is an urgent need to search for alternative methods of prevention or treatment for S. aureus infections. In the present study, biochemically characterized (HPLC/UPLC-QTOF-MS) acetonic, ethanolic, and water extracts from fruits and bark of Viburnum opulus L. were tested in vitro as diet additives that potentially prevent staphylococcal infections. The impacts of V. opulus extracts on sortase A (SrtA) activity (Fluorimetric Assay), staphylococcal protein A (SpA) expression (FITC-labelled specific antibodies), the lipid composition of bacterial cell membranes (LC-MS/MS, GC/MS), and biofilm formation (LIVE/DEAD BacLight) were assessed. The cytotoxicity of V. opulus extracts to the human fibroblast line HFF-1 was also tested (MTT reduction). V. opulus extracts strongly inhibited SrtA activity and SpA expression, caused modifications of S. aureus cell membrane, limited biofilm formation by staphylococci, and were non-cytotoxic. Therefore, they have pro-health potential. Nevertheless, their usefulness as diet supplements that are beneficial for the prevention of staphylococcal infections should be confirmed in animal models in the future.
Collapse
Affiliation(s)
- Urszula Wójcik-Bojek
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (U.W.-B.); (J.R.)
| | - Joanna Rywaniak
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (U.W.-B.); (J.R.)
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Anna Podsędek
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.P.); (D.K.)
| | - Dominika Kajszczak
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.P.); (D.K.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (U.W.-B.); (J.R.)
| |
Collapse
|
34
|
Jin T, Mohammad M, Pullerits R, Ali A. Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021; 10:158. [PMID: 33546401 PMCID: PMC7913561 DOI: 10.3390/pathogens10020158] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a major healthcare challenge and new treatment alternatives are needed. S. aureus septic arthritis, a debilitating joint disease, causes permanent joint dysfunction in almost 50% of the patients. S. aureus bacteremia is associated with higher mortalities than bacteremia caused by most other microbes and can develop to severe sepsis and death. The key to new therapies is understanding the interplay between bacterial virulence factors and host immune response, which decides the disease outcome. S. aureus produces numerous virulence factors that facilitate bacterial dissemination, invasion into joint cavity, and cause septic arthritis. Monocytes, activated by several components of S. aureus such as lipoproteins, are responsible for bone destructions. In S. aureus sepsis, cytokine storm induced by S. aureus components leads to the hyperinflammatory status, DIC, multiple organ failure, and later death. The immune suppressive therapies at the very early time point might be protective. However, the timing of treatment is crucial, as late treatment may aggravate the immune paralysis and lead to uncontrolled infection and death.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
- Department of Rheumatology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
- Department of Rheumatology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
| |
Collapse
|
35
|
Human blood plasma factors affect the adhesion kinetics of Staphylococcus aureus to central venous catheters. Sci Rep 2020; 10:20992. [PMID: 33268809 PMCID: PMC7710740 DOI: 10.1038/s41598-020-77168-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/27/2020] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus is a common cause of catheter-related blood stream infections (CRBSI). The bacterium has the ability to form multilayered biofilms on implanted material, which usually requires the removal of the implanted medical device. A first major step of this biofilm formation is the initial adhesion of the bacterium to the artificial surface. Here, we used single-cell force spectroscopy (SCFS) to study the initial adhesion of S. aureus to central venous catheters (CVCs). SCFS performed with S. aureus on the surfaces of naïve CVCs produced comparable maximum adhesion forces on three types of CVCs in the low nN range (~ 2–7 nN). These values were drastically reduced, when CVC surfaces were preincubated with human blood plasma or human serum albumin, and similar reductions were observed when S. aureus cells were probed with freshly explanted CVCs withdrawn from patients without CRBSI. These findings indicate that the initial adhesion capacity of S. aureus to CVC tubing is markedly reduced, once the CVC is inserted into the vein, and that the risk of contamination of the CVC tubing by S. aureus during the insertion process might be reduced by a preconditioning of the CVC surface with blood plasma or serum albumin.
Collapse
|
36
|
Nader D, Curley GF, Kerrigan SW. A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets? Drug Discov Today 2020; 25:2317-2325. [PMID: 33035665 PMCID: PMC7537604 DOI: 10.1016/j.drudis.2020.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Sepsis is a life-threatening condition caused by the response of the body to an infection, and has recently been regarded as a global health priority because of the lack of effective treatments available. Vascular endothelial cells have a crucial role in sepsis and are believed to be a major target of pathogens during the early stages of infection. Accumulating evidence suggests that common sepsis pathogens, including bacteria, fungi, and viruses, all contain a critical integrin recognition motif, Arg-Gly-Asp (RGD), in their major cell wall-exposed proteins that might act as ligands to crosslink to vascular endothelial cells, triggering systemic dysregulation resulting in sepsis. In this review, we discuss the potential of anti-integrin therapy in the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
37
|
Na M, Hu Z, Mohammad M, Stroparo MDN, Ali A, Fei Y, Jarneborn A, Verhamme P, Schneewind O, Missiakas D, Jin T. The Expression of von Willebrand Factor-Binding Protein Determines Joint-Invading Capacity of Staphylococcus aureus, a Core Mechanism of Septic Arthritis. mBio 2020; 11:e02472-20. [PMID: 33203754 PMCID: PMC7683397 DOI: 10.1128/mbio.02472-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Septic arthritis, one of the most dangerous joint diseases, is predominantly caused by Staphylococcus aureus In contrast, coagulase-negative staphylococci are rarely found in septic arthritis. We hypothesize that coagulases released by S. aureus, including coagulase (Coa) and von Willebrand factor-binding protein (vWbp), play potent roles in the induction of septic arthritis. Four isogenic S. aureus strains differing in expression of coagulases (wild-type [WT] Newman, Δcoa, Δvwb, and Δcoa Δvwb) were used to induce septic arthritis in both wild-type and von Willebrand factor (vWF)-deficient mice. Septic arthritis severity was greatly reduced when wild-type mice were infected with the Δcoa Δvwb and Δvwb variants compared to WT or Δcoa strains, suggesting that vWbp rather than Coa is a major virulence factor in S. aureus septic arthritis. vWF-deficient mice were more susceptible to bone damage in septic arthritis, especially when the Δvwb strain was used. Importantly, no difference in arthritis severity between the Δvwb and WT strains was observed in vWF-deficient mice. Collectively, we conclude that vWbp production by S. aureus enhances staphylococcal septic arthritis.IMPORTANCE Septic arthritis remains one of the most dangerous joint diseases with a rapidly progressive disease character. Despite advances in the use of antibiotics, permanent reductions in joint function due to joint deformation and deleterious contractures occur in up to 50% of patients with septic arthritis. So far, it is still largely unknown how S. aureus initiates and establishes joint infection. Here, we demonstrate that von Willebrand factor-binding protein expressed by S. aureus facilitates the initiation of septic arthritis. Such effect might be mediated through its interaction with a host factor (von Willebrand factor). Our finding contributes significantly to the full understanding of septic arthritis etiology and will pave the way for new therapeutic modalities for this devastating disease.
Collapse
Affiliation(s)
- Manli Na
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Zhicheng Hu
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mariana do Nascimento Stroparo
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ying Fei
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Anders Jarneborn
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
38
|
Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen. Nat Commun 2020; 11:5431. [PMID: 33110079 PMCID: PMC7591895 DOI: 10.1038/s41467-020-19216-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 01/17/2023] Open
Abstract
Physical forces have profound effects on cellular behavior, physiology, and disease. Perhaps the most intruiguing and fascinating example is the formation of catch-bonds that strengthen cellular adhesion under shear stresses. Today mannose-binding by the Escherichia coli FimH adhesin remains one of the rare microbial catch-bond thoroughly characterized at the molecular level. Here we provide a quantitative demonstration of a catch-bond in living Gram-positive pathogens using force-clamp spectroscopy. We show that the dock, lock, and latch interaction between staphylococcal surface protein SpsD and fibrinogen is strong, and exhibits an unusual catch-slip transition. The bond lifetime first grows with force, but ultimately decreases to behave as a slip bond beyond a critical force (~1 nN) that is orders of magnitude higher than for previously investigated complexes. This catch-bond, never reported for a staphylococcal adhesin, provides the pathogen with a mechanism to tightly control its adhesive function during colonization and infection.
Collapse
|
39
|
Steinert M, Ramming I, Bergmann S. Impact of Von Willebrand Factor on Bacterial Pathogenesis. Front Med (Lausanne) 2020; 7:543. [PMID: 33015097 PMCID: PMC7494747 DOI: 10.3389/fmed.2020.00543] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Von Willebrand factor (VWF) is a mechano-sensitive protein with crucial functions in normal hemostasis, which are strongly dependant on the shear-stress mediated defolding and multimerization of VWF in the blood stream. Apart from bleeding disorders, higher plasma levels of VWF are often associated with a higher risk of cardiovascular diseases. Herein, the disease symptoms are attributed to the inflammatory response of the activated endothelium and share high similarities to the reaction of the host vasculature to systemic infections caused by pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae. The bacteria recruit circulating VWF, and by binding to immobilized VWF on activated endothelial cells in blood flow, they interfere with the physiological functions of VWF, including platelet recruitment and coagulation. Several bacterial VWF binding proteins have been identified and further characterized by biochemical analyses. Moreover, the development of a combination of sophisticated cell culture systems simulating shear stress levels of the blood flow with microscopic visualization also provided valuable insights into the interaction mechanism between bacteria and VWF-strings. In vivo studies using mouse models of bacterial infection and zebrafish larvae provided evidence that the interaction between bacteria and VWF promotes bacterial attachment, coagulation, and thrombus formation, and thereby contributes to the pathophysiology of severe infectious diseases such as infective endocarditis and bacterial sepsis. This mini-review summarizes the current knowledge of the interaction between bacteria and the mechano-responsive VWF, and corresponding pathophysiological disease symptoms.
Collapse
Affiliation(s)
- Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Infection Biology, Helmholtz Center for Infection Diseases, Braunschweig, Germany
| | - Isabell Ramming
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Simone Bergmann
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
40
|
Schwarz C, Hoerr V, Töre Y, Hösker V, Hansen U, Van de Vyver H, Niemann S, Kuhlmann MT, Jeibmann A, Wildgruber M, Faber C. Isolating Crucial Steps in Induction of Infective Endocarditis With Preclinical Modeling of Host Pathogen Interaction. Front Microbiol 2020; 11:1325. [PMID: 32625192 PMCID: PMC7314968 DOI: 10.3389/fmicb.2020.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Animal models of Staphylococcus aureus infective endocarditis (IE), especially in rodents, are commonly used to investigate the underlying pathogenesis, disease progression, potential diagnostic approaches, and therapeutic treatment. All these models are based on surgical interventions, and imply valve trauma by placing a polyurethane catheter at the aortic root. While the influence of endothelial damage and inflammation on the induction of IE has been studied intensively, the role of the catheter, as permanent source of bacteremia, and the interplay with bacterial virulence factors during the formation of IE is poorly understood. In our study, we aimed at identifying which set of preconditions is required for induction and formation of IE: (1) tissue injury, (2) permanent presence of bacteria, and (3) presence of the full bacterial repertoire of adhesion proteins. We investigated the manifestation of the disease in different modifications of the animal model, considering different degrees of endothelial damage and the presence or absence of the catheter. In four infection models the induction of IE was assessed by using two bacterial strains with different expression patterns of virulence factors – S. aureus 6850 and Newman. In vivo magnetic resonance imaging showed conspicuous morphological structures on the aortic valves, when an endothelial damage and a continuous bacterial source were present simultaneously. Cellular and inflammatory pathophysiology were characterized additionally by histology, real-time quantitative polymerase chain reaction analysis, and bacterial counts, revealing strain-specific pathogenesis and manifestation of IE, crucially influenced by bacterial adherence and toxicity. The severity of IE was dependent on the degree of endothelial irritation. However, even severe endothelial damage in the absence of a permanent bacterial source resulted in reduced valve infection. The spread of bacteria to other organs was also dependent on the pathogenic profile of the infectious agent.
Collapse
Affiliation(s)
- Christian Schwarz
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany.,Institute of Medical Microbiology, University Hospital Jena, Jena, Germany
| | - Yasemin Töre
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Vanessa Hösker
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Hélène Van de Vyver
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Astrid Jeibmann
- Institute for Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Moritz Wildgruber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany.,Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
41
|
Watkins KE, Unnikrishnan M. Evasion of host defenses by intracellular Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:105-141. [PMID: 32762866 DOI: 10.1016/bs.aambs.2020.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.
Collapse
|
42
|
Karer M, Kussmann M, Ratzinger F, Obermueller M, Reischer V, Winkler H, Kriz R, Burgmann H, Jilma B, Lagler H. Different Types of Coagulase Are Associated With 28-Day Mortality in Patients With Staphylococcus aureus Bloodstream Infections. Front Cell Infect Microbiol 2020; 10:236. [PMID: 32509602 PMCID: PMC7248564 DOI: 10.3389/fcimb.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background:Staphylococcus aureus (S. aureus), a leading cause of bacteremia and infective endocarditis, exploits the human coagulation system by using a wide range of specific virulence factors. However, the impact of these host-pathogen interactions on the outcome of patients with Staphylococcus aureus bacteremia (SAB) remains unclear. Methods: A total of 178 patients with S. aureus bacteremia were included and analyzed regarding bacterial factors (coa gene size, vWbp, clfA, clfB, fnbA, fnbB, fib) and clinical parameters. A stepwise multivariate Cox regression model and a Partitioning Around Medoids (PAM) cluster algorithm were used for statistical analysis. Results: Patients' risk factors for 28-day mortality were creatinine (OR 1.49, p < 0.001), age (OR 1.9, p < 0.002), fibrinogen (OR 0.44, p < 0.004), albumin (OR 0.63, p < 0.02), hemoglobin (OR 0.59, p < 0.03), and CRP (OR 1.72, p < 0.04). Five distinct bacterial clusters with different mortality rates were unveiled, whereof two showed a 2-fold increased mortality and an accumulation of specific coagulase gene sizes, 547-base pairs and 660-base pairs. Conclusions: Based on the data obtained in the present study an association of coagulase gene size and fib regarding 28-day mortality was observed in patients with S. aureus bloodstream infections. Further animal and prospective clinical studies are needed to confirm our preliminary findings.
Collapse
Affiliation(s)
- Matthias Karer
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Kussmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- Division of Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Ihr Labor, Medical Diagnostics Laboratories, Vienna, Austria
| | - Markus Obermueller
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Veronika Reischer
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Winkler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard Kriz
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Kwiecinski JM, Horswill AR. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol 2020; 53:51-60. [PMID: 32172183 DOI: 10.1016/j.mib.2020.02.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen that normally colonizes the human anterior nares. At the same time, this pathogen is one of the leading causes of life-threatening bloodstream infections, such as sepsis and endocarditis. In this review we will present the current understanding of the pathogenesis of these invasive infections, focusing on the mechanisms of S. aureus clearance from the bloodstream by the immune system, and how this pathogen hijacks the host defense and coagulation systems and further interacts with the blood vessel endothelium. Additionally, we will delve into the regulatory mechanisms S. aureus employs during an invasive infection. These new insights into host-pathogen interactions show promising avenues for the development of novel therapies for treating bloodstream infections.
Collapse
Affiliation(s)
- Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA; Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, USA.
| |
Collapse
|
44
|
Tan CAZ, Antypas H, Kline KA. Overcoming the challenge of establishing biofilms in vivo: a roadmap for Enterococci. Curr Opin Microbiol 2020; 53:9-18. [PMID: 32062025 DOI: 10.1016/j.mib.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/28/2022]
Abstract
Enterococcus faecalis forms single and mixed-species biofilms on both tissue and medical devices in the host, often under exposure to fluid flow, giving rise to infections that are recalcitrant to treatment. The factors that drive enterococcal biofilm formation in the host, however, remain unclear. Recent reports in other pathogens show how surface sensing by bacteria can trigger the transition from planktonic to sessile lifestyle. Fluid flow can enhance initial adhesion, but also influence quorum sensing. Biofilm-specific factors, as well as biofilm size and extracellular polymeric substances, can compromise opsonization and phagocytosis. Bacterial interspecies synergy can create favorable conditions in the host for biofilm formation. Through these concepts, we define the knowledge gaps in understanding host-associated E. faecalis biofilm formation and propose a roadmap for future investigations.
Collapse
Affiliation(s)
- Casandra Ai Zhu Tan
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Haris Antypas
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
45
|
Antiplatelet therapy abrogates platelet-assisted Staphylococcus aureus infectivity of biological heart valve conduits. J Thorac Cardiovasc Surg 2020; 161:e457-e472. [PMID: 31926702 DOI: 10.1016/j.jtcvs.2019.10.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Although recent advances in pulmonary valve replacement have enabled excellent hemodynamics, infective endocarditis remains a serious complication, particularly for implanted bovine jugular vein (BJV) conduits. METHODS We investigated contributions by platelets and plasma fibrinogen to endocarditis initiation on various grafts used for valve replacement. Thus, adherence of Staphylococcus aureus and platelets to 5 graft tissues was studied quantitatively in perfusion chambers, assisted by microscopic analysis. We also evaluated standard antiplatelet therapy to prevent onset of S aureus endocarditis. RESULTS Of all tissues, bovine pericardium (BP) showed the greatest fibrinogen binding. Perfusion of all plasma-precoated tissues identified BP and BJVwall with the greatest affinity for S aureus. Perfusions of anticoagulated human blood over all tissues also triggered more platelet adhesion to BP and BJVwall as single platelets. Several controls confirmed that both S aureus and platelets were recruited on immobilized fibrinogen. In addition, perfusions (and controls) over plasma-coated tissues with whole blood, spiked with S aureus, revealed that bacteria exclusively bound to adhered platelets. Both the platelet adhesion and platelet-mediated S aureus recruitment required platelet αIIbβ3 and coated or soluble fibrinogen, respectively, interactions abrogated by the αIIbβ3-antagonist eptifibatide. Also, standard antiplatelet therapy (aspirin/ticagrelor) reduced the adherence of S aureus in blood to BJV 3-fold. CONCLUSIONS Binding of plasma fibrinogen to especially BJV grafts enables adhesion of single platelets via αIIbβ3. S aureus then attaches from blood to (activated) bound platelet αIIbβ3 via plasma fibrinogen. Dual antiplatelet therapy appears a realistic approach to prevent endocarditis and its associated mortality.
Collapse
|
46
|
Efthimiou G, Tsiamis G, Typas MA, Pappas KM. Transcriptomic Adjustments of Staphylococcus aureus COL (MRSA) Forming Biofilms Under Acidic and Alkaline Conditions. Front Microbiol 2019; 10:2393. [PMID: 31681245 PMCID: PMC6813237 DOI: 10.3389/fmicb.2019.02393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are important human pathogens and a significant health hazard for hospitals and the food industry. They are resistant to β-lactam antibiotics including methicillin and extremely difficult to treat. In this study, we show that the Staphylococcus aureus COL (MRSA) strain, with a known complete genome, can easily survive and grow under acidic and alkaline conditions (pH5 and pH9, respectively), both planktonically and as a biofilm. A microarray-based analysis of both planktonic and biofilm cells was performed under acidic and alkaline conditions showing that several genes are up- or down-regulated under different environmental conditions and growth modes. These genes were coding for transcription regulators, ion transporters, cell wall biosynthetic enzymes, autolytic enzymes, adhesion proteins and antibiotic resistance factors, most of which are associated with biofilm formation. These results will facilitate a better understanding of the physiological adjustments occurring in biofilm-associated S. aureus COL cells growing in acidic or alkaline environments, which will enable the development of new efficient treatment or disinfection strategies.
Collapse
Affiliation(s)
- Georgios Efthimiou
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katherine M Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
47
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
48
|
Tribelli PM, Luqman A, Nguyen MT, Madlung J, Fan SH, Macek B, Sass P, Bitschar K, Schittek B, Kretschmer D, Götz F. Staphylococcus aureus Lpl protein triggers human host cell invasion via activation of Hsp90 receptor. Cell Microbiol 2019; 22:e13111. [PMID: 31515903 DOI: 10.1111/cmi.13111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is a facultative intracellular pathogen. Recently, it has been shown that the protein part of the lipoprotein-like lipoproteins (Lpls), encoded by the lpl cluster comprising of 10 lpls paralogue genes, increases pathogenicity, delays the G2/M phase transition, and also triggers host cell invasion. Here, we show that a recombinant Lpl1 protein without the lipid moiety binds directly to the isoforms of the human heat shock proteins Hsp90α and Hsp90ß. Synthetic peptides covering the Lpl1 sequence caused a twofold to fivefold increase of S. aureus invasion in HaCaT cells. Antibodies against Hsp90 decrease S. aureus invasion in HaCaT cells and in primary human keratinocytes. Additionally, inhibition of ATPase function of Hsp90 or silencing Hsp90α expression by siRNA also decreased the S. aureus invasion in HaCaT cells. Although the Hsp90ß is constitutively expressed, the Hsp90α isoform is heat-inducible and appears to play a major role in Lpl1 interaction. Pre-incubation of HaCaT cells at 39°C increased both the Hsp90α expression and S. aureus invasion. Lpl1-Hsp90 interaction induces F-actin formation, thus, triggering an endocytosis-like internalisation. Here, we uncovered a new host cell invasion principle on the basis of Lpl-Hsp90 interaction.
Collapse
Affiliation(s)
- Paula M Tribelli
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Arif Luqman
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Institut Teknologi Sepuluh Nopember, Biology Department, Surabaya, Indonesia
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Division of Microbiology, Paul-Ehrlich Institute, Langen, Germany
| | - Johannes Madlung
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Sook-Ha Fan
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | | | - Birgit Schittek
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Molecular Mechanisms of Leonurus Cardiaca L. Extract Activity in Prevention of Staphylococcal Endocarditis-Study on in Vitro and ex Vivo Models. Molecules 2019; 24:molecules24183318. [PMID: 31547303 PMCID: PMC6767068 DOI: 10.3390/molecules24183318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Better understanding the mechanisms of Leonurus cardiaca L. extract (LCE) activity is necessary to prepare recommendations for the use of LCE-based herbal products for preventive/supportive purposes in case of infective endocarditis (IE) and other staphylococcal invasive infections. The aim of the study was to analyze molecular mechanisms of LCE effect on Staphylococcus aureus and blood platelets in the context of their interactions playing a pivotal role in such disorders. Using atomic force microscopy, we demonstrated that adhesion forces of S. aureus were markedly reduced after exposure to LCE at subinhibitory concentrations. The effect resulted from the impact of LCE on S. aureus cell morphology and the composition of phospholipids and fatty acids in bacterial membranes (assessed by HPLC), which modulated their stabilization, hydrophobicity, and charge. Moreover, using FACS we showed also that LCE significantly reduced GP IIb/IIIa expression on blood platelets, thus the disruption of platelet-fibrinogen interactions seems to explain antiplatelet effect of LCE. The obtained results prove the usefulness of LCE in the prevention of S. aureus adhesion, platelet activation, and vegetations development, however, also pointed out the necessity of excluding the cationic antibiotics from the treatment of S. aureus-associated IE and other invasive diseases, when motherwort herb is used simultaneously as an addition to the daily diet.
Collapse
|
50
|
The MSCRAMM Family of Cell-Wall-Anchored Surface Proteins of Gram-Positive Cocci. Trends Microbiol 2019; 27:927-941. [PMID: 31375310 DOI: 10.1016/j.tim.2019.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
The microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are a family of proteins that are defined by the presence of two adjacent IgG-like folded subdomains. These promote binding to ligands by mechanisms that involve major conformational changes exemplified by the binding to fibrinogen by the 'dock-lock-latch' mechanism or to collagen by the 'collagen hug'. Clumping factors A and B are two such MSCRAMMs that have several important roles in the pathogenesis of Staphylococcus aureus infections. MSCRAMM architecture, ligand binding, and roles in infection and colonization are examined with a focus on recent developments with clumping factors.
Collapse
|