1
|
Alja'fari J, Sharvelle S, Branch A, Pecson B, Jahne M, Olivieri A, Arabi M, Garland JL, Gonzalez R. Assessing human-source microbial contamination of stormwater in the U.S. WATER RESEARCH 2025; 268:122640. [PMID: 39471764 PMCID: PMC11783576 DOI: 10.1016/j.watres.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Stormwater capture and use (SCU) projects have the potential to provide a significant portion of municipal water demand. However, uncertainty about the degree of microbial contamination in stormwater and the required treatment is a barrier for implementation of SCU projects. Stormwater runoff could become contaminated with human fecal matter in areas with deteriorating infrastructure where raw wastewater exfiltrates from sewer networks to stormwater collection networks, homeless encampments exist, or sanitary sewer overflows (SSOs) occur. Estimation of human fecal contamination can inform selection of stormwater treatment targets. This study investigates stormwater microbial contamination originating from human fecal matter using observed detections and concentrations of human microbial source tracking (MST) markers and potentially human-infectious pathogens (PHIPs). First, a systematic review complied measurements of human MST markers in wet and dry weather stormwater flows and influent wastewater. In addition, measurements of viral pathogens (e.g., adenoviruses, norovirus GI+GII, and enteroviruses) and protozoan pathogens (e.g., Giardia lamblia and Cryptosporidium parvum) in wet weather flows and influent wastewater were assessed. Human MST marker and PHIP data were statistically analyzed and applied to estimate a human fecal contamination analog (HFCA) which is an estimate of the amount of human fecal matter based on relative concentrations of microbial contaminants in stormwater compared to municipal wastewater. Human MST-based HFCAs in wet and dry weather flows ranged from <10-7.0 to 10-1.5 (median = 10-4.5) and 10-12 to 10-2.6 (median = 10-7.0), respectively. PHIP-based HFCAs in wet weather flows ranged from ∼10-8 to 10-0.14. Estimates of human MST-based HFCAs are more reliable than PHIP-based HFCAs because the current PHIP datasets are generally limited by the number of data points, percent detection, variability observed within the statistical distributions, and the geographical span of sampling locations. The use of human MST-based HFCAs is recommended to guide the selection of stormwater treatment process trains that are protective of public health based on the intended end use. Application of HFCA 10-1 (i.e., sewage dilution 10-1) remains a reasonable conservative estimate of human fecal contamination in stormwater to inform selection of pathogen log reduction targets based on the data presently available.
Collapse
Affiliation(s)
- Jumana Alja'fari
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA.
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA
| | - Amos Branch
- Carollo Engineers, Inc., 2795 Mitchell Dr, Walnut Creek, CA 94598, USA
| | - Brian Pecson
- Trussell Technologies, 1939 Harrison Street, Oakland, CA 94612, USA
| | - Michael Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Adam Olivieri
- Environmental and Public Health Engineering, Inc., 1410 Jackson Street, Oakland, CA 94612, USA
| | - Mazdak Arabi
- Department of Civil and Environmental Engineering, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521, USA
| | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Raul Gonzalez
- H(2)O Molecular, 6746 Edinburgh Court, San Diego, CA 92120, USA
| |
Collapse
|
2
|
Ahmed W, Korajkic A, Smith WJ, Payyappat S, Cassidy M, Harrison N, Besley C. Comparing the decay of human wastewater-associated markers and enteric viruses in laboratory microcosms simulating estuarine waters in a temperate climatic zone using qPCR/RT-qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167845. [PMID: 37879463 PMCID: PMC11070876 DOI: 10.1016/j.scitotenv.2023.167845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study investigated the decay rates of wastewater-associated markers and enteric viruses in laboratory microcosms mimicking estuarine water environments in temperate Sydney, NSW, Australia using qPCR and RT-qPCR assays. The results demonstrated the reduction in concentrations of Bacteroides HF183, Lachnospiraceae Lachno3, cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), human adenovirus (HAdV 40/41), and enterovirus (EV) over a span of 42 days under spring/summer temperatures, presence/absence of microbiota, and different light conditions. The study found that HF183, Lachno3, crAssphage, PMMoV, HAdV 40/41, and EV exhibited varying decay rates depending on the experimental conditions. The average T90 values ranged from a few days to several months, indicating the rapid decay or prolonged persistence of these markers and enteric viruses in the estuarine environment. Furthermore, the study examined the effects of indigenous microbiota and spring/summer temperatures on wastewater-associated markers and enteric viruses decay rates. It was found that the presence of microbiota and temperature significantly influenced the decay rates of HF183 and PMMoV. Additionally, the study compared the effects of artificial sunlight and spring/summer temperatures on marker decay rates. Bacterial markers decayed faster than viral markers, although among viral markers crAssphage decay rates were relatively faster when compared to PMMoV. The exposure to artificial sunlight significantly accelerated the decay rates of bacterial markers, viral markers, and enteric viruses. Temperature also had an impact on the decay rates of Lachno3, crAssphage, and HAdV 40/41. In conclusion, this study provides valuable insights into the decay rates of wastewater-associated markers and enteric viruses under different experimental conditions that mimicked temperate environmental conditions. The findings contribute to our understanding of the fate and persistence of these markers in the environment which is crucial for assessing and managing risks from contamination by untreated human wastewater.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, United States
| | - Wendy J Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
3
|
Ren W, Feng Y. Persistence of human- and cattle-associated Bacteroidales and mitochondrial DNA markers in freshwater mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165742. [PMID: 37487899 DOI: 10.1016/j.scitotenv.2023.165742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Accurate identification of the origins of non-point source pollution is essential for the effective control of fecal pollution. Host-associated Bacteroidales and mitochondrial DNA (mtDNA) markers have been developed to identify the sources of human and cattle fecal pollution. However, the differences in persistence between these two types of markers under different environmental conditions are still poorly understood. Here, we conducted mesocosm experiments to investigate the influence of indigenous microbiota and nutrients on the decay of Bacteroidales and mtDNA markers associated with humans and cattle. Raw sewage or cattle feces were inoculated into mesocosms containing natural eutrophic water, sterile eutrophic water or artificial freshwater. The Bacteroidales markers HF183 (human) and CowM3 (cattle) and mtDNA markers HcytB (human) and QMIBo (cattle) were quantified using the quantitative polymerase chain reaction (qPCR) assays. All markers but HF183 decreased the fastest in the presence of indigenous microbiota. Nutrients caused a decrease in the persistence of HF183; however, no significant nutrient effects were observed for HcytB, CowM3, and QMIBo. The time to reach one log reduction (T90) for HF183 and HcytB was similar; CowM3 reached T90 earlier than QMIBo in all the treatments but eutrophic water. E. coli persisted longer than both Bacteroidales and mtDNA markers in the mesocosms regardless of inoculum type. Additionally, 16S rRNA gene amplicon sequencing was used to determine the changes in bacterial communities accompanying the marker decay. Analysis using the SourceTracker software showed that bacterial communities in the mesocosms became more dissimilar to those in the corresponding inoculants over time. Our results indicate that environmental factors are important determinants of genetic markers' persistence, but their impact can vary depending on the genetic markers. The cattle Bacteroidales markers may be more suitable for determining recent fecal contamination than cattle mtDNA.
Collapse
Affiliation(s)
- Wenjing Ren
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
4
|
Jahne MA, Schoen ME, Kaufmann A, Pecson BM, Olivieri A, Sharvelle S, Anderson A, Ashbolt NJ, Garland JL. Enteric pathogen reduction targets for onsite non-potable water systems: A critical evaluation. WATER RESEARCH 2023; 233:119742. [PMID: 36848851 PMCID: PMC10084472 DOI: 10.1016/j.watres.2023.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Onsite non-potable water systems (ONWS) collect and treat local source waters for non-potable end uses such as toilet flushing and irrigation. Quantitative microbial risk assessment (QMRA) has been used to set pathogen log10-reduction targets (LRTs) for ONWS to achieve the risk benchmark of 10-4 infections per person per year (ppy) in a series of two efforts completed in 2017 and 2021. In this work, we compare and synthesize the ONWS LRT efforts to inform the selection of pathogen LRTs. For onsite wastewater, greywater, and stormwater, LRTs for human enteric viruses and parasitic protozoa were within 1.5-log10 units between 2017 and 2021 efforts, despite differences in approaches used to characterize pathogens in these waters. For onsite wastewater and greywater, the 2017 effort used an epidemiology-based model to simulate pathogen concentrations contributed exclusively from onsite waste and selected Norovirus as the viral reference pathogen; the 2021 effort used municipal wastewater pathogen data and cultivable adenoviruses as the reference viral pathogen. Across source waters, the greatest differences occurred for viruses in stormwater, given the newly available municipal wastewater characterizations used for modeling sewage contributions in 2021 and the different selection of reference pathogens (Norovirus vs. adenoviruses). The roof runoff LRTs support the need for protozoa treatment, but these remain difficult to characterize due to the pathogen variability in roof runoff across space and time. The comparison highlights adaptability of the risk-based approach, allowing for updated LRTs as site specific or improved information becomes available. Future research efforts should focus on data collection of onsite water sources.
Collapse
Affiliation(s)
- Michael A Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA.
| | - Mary E Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, CA 94703, USA
| | - Anya Kaufmann
- Trussell Technologies, Inc., 1939 Harrison St., Oakland, CA 94612, USA
| | - Brian M Pecson
- Trussell Technologies, Inc., 1939 Harrison St., Oakland, CA 94612, USA
| | | | - Sybil Sharvelle
- Colorado State University, Department of Civil and Environmental Engineering, 1372 Campus Delivery, Fort Collins, CO 80523, USA
| | - Anita Anderson
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, USA
| | | | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
5
|
Korajkic A, McMinn BR, Harwood VJ. The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens 2023; 12:pathogens12030378. [PMID: 36986300 PMCID: PMC10053992 DOI: 10.3390/pathogens12030378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Fecal indicator bacteria (FIB: Escherichia coli and enterococci) are used to assess recreational water quality. Viral indicators (i.e., somatic and F+ coliphage), could improve the prediction of viral pathogens in recreational waters, however, the impact of environmental factors, including the effect of predatory protozoa source, on their survival in water is poorly understood. We investigated the effect of lakewater or wastewater protozoa, on the decay (decreasing concentrations over time) of culturable FIB and coliphages under sunlight and shaded conditions. FIB decay was generally greater than the coliphages and was more rapid when indicators were exposed to lake vs. wastewater protozoa. F+ coliphage decay was the least affected by experimental variables. Somatic coliphage decayed fastest in the presence of wastewater protozoa and sunlight, though their decay under shaded conditions was-10-fold less than F+ after 14 days. The protozoa source consistently contributed significantly to the decay of FIB, and somatic, though not the F+ coliphage. Sunlight generally accelerated decay, and shade reduced somatic coliphage decay to the lowest level among all the indicators. Differential responses of FIB, somatic, and F+ coliphages to environmental factors support the need for studies that address the relationship between the decay of coliphages and viral pathogens under environmentally relevant conditions.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
- Correspondence: ; Tel.: +1-513-569-7306
| | - Brian R. McMinn
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
6
|
Vucinic L, O’Connell D, Teixeira R, Coxon C, Gill L. Flow Cytometry and Fecal Indicator Bacteria Analyses for Fingerprinting Microbial Pollution in Karst Aquifer Systems. WATER RESOURCES RESEARCH 2022; 58:e2021WR029840. [PMID: 35859924 PMCID: PMC9285701 DOI: 10.1029/2021wr029840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Microbial pollution of aquifers is a persistent water quality problem globally which poses significant risks to public health. Karst aquifer systems are exceptionally vulnerable to pollution from fecal contamination sources as a result of rapid recharge of water from the surface via discrete pathways linked to highly conductive, solutionally enlarged conduits alongside strong aquifer heterogeneity. Consequently, rapid changes in microbial water quality, which are difficult to monitor with expensive and time-consuming conventional microbiological methods, are a major concern in karst environments. This study examined flow cytometric (FCM) fingerprinting of bacterial cells in groundwater together with fecal indicator bacteria (FIB) at nine separate karst springs of varying catchment size over a 14 month period in order to assess whether such a technique can provide faster and more descriptive information about microbial pollution through such karst aquifer systems. Moreover, the data have also been evaluated with respect to the potential of using turbidity as an easy-to-measure proxy indicator of microbial pollution in a novel way. We argue that FCM provides additional data from which enhanced insights into fecal pollution sources and its fate and transport in such karst catchments can be gained. We also present valuable new information on the potential and limitations of turbidity as an indicator of fecal groundwater contamination in karst. FCM has the potential to become a more widely used tool in the field of contaminant hydrogeology.
Collapse
Affiliation(s)
- Luka Vucinic
- Department of Civil, Structural and Environmental EngineeringUniversity of DublinTrinity CollegeDublinIreland
| | - David O’Connell
- Department of Civil, Structural and Environmental EngineeringUniversity of DublinTrinity CollegeDublinIreland
| | - Rui Teixeira
- Department of Civil, Structural and Environmental EngineeringUniversity of DublinTrinity CollegeDublinIreland
| | - Catherine Coxon
- Department of Geology and Trinity Centre for the EnvironmentUniversity of DublinTrinity CollegeDublinIreland
| | - Laurence Gill
- Department of Civil, Structural and Environmental EngineeringUniversity of DublinTrinity CollegeDublinIreland
| |
Collapse
|
7
|
Dean K, Mitchell J. Identifying water quality and environmental factors that influence indicator and pathogen decay in natural surface waters. WATER RESEARCH 2022; 211:118051. [PMID: 35051677 DOI: 10.1016/j.watres.2022.118051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biphasic decay has been observed for indicators and pathogens in bench-scale and in-situ water experiments for decades, however, first-order decay kinetics continue to be applied to persistence data because of their simplicity and ease of application. Model uncertainty introduced by broadly applying first-order decay kinetics to persistence data may lead to erroneous decision making in the fields of water management and protection. As surface waters are exposed to highly variable environmental and water quality factors that influence microbial and viral persistence, it is expected that first-order decay kinetics are not representative of most of the persistence literature for indicators and pathogens in surface water matrices. This review compiled the methods and results of 61 studies that conducted experiments evaluating the persistence of fecal indicator bacteria (FIB), bacteriophages, pathogenic bacteria, viruses, and protozoa in natural surface water matrices. The goals of this review were trifold: (1) collate studies in the literature with data available for future persistence modeling, (2) present the current state of knowledge with regards to the environmental and water quality factors affecting persistence in natural surface waters, and (3) identify recurrent evidence for interactions between the frequently studied factors to inform future factor analyses. Comparing the methods and results across the 61 studies suggest potential interactions between sunlight and water type; sunlight and method of detection; predation and water type; predation and temperature; and water type and method of detection. The majority of the identified literature evaluated FIB or bacteria persistence; future experiments are needed that focus on protozoa, brackish or marine water types, and molecular-based methods of detection.
Collapse
Affiliation(s)
- Kara Dean
- Department of Biosystems and Agricultural Engineering, Michigan State University, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, USA.
| |
Collapse
|
8
|
Goh SG, Liang L, Gin KYH. Assessment of Human Health Risks in Tropical Environmental Waters with Microbial Source Tracking Markers. WATER RESEARCH 2021; 207:117748. [PMID: 34837748 DOI: 10.1016/j.watres.2021.117748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Human specific microbial source tracking (MST) markers which are highly specific to human waste contamination offer the advantage of better association with human pathogens than traditional microbial indicators. However, the performance of these MST markers may vary across different geographical regions. The magnitude of MST markers also plays an important role in interpreting the health risks. This study aims to (i) validate the specificity and sensitivity of human markers for tropical urban catchments; (ii) identify the threshold concentrations of MST markers, i.e. human polyomaviruses (HPyVs), Bacteroides thetaiotaomicron (B. theta) and Methanobrevibacter smithii (M. smithii), that correspond to the acceptable gastrointestinal (GI) illness risks associated with swimming using the QMRA approach; and (iii) validate the threshold concentrations of MST markers using the surveillance data obtained from the tropical urban environment. Among the three MST markers, HPyVs showed the highest specificity (100%) to sewage samples, followed by M. smithii (97%) and B. theta (90%). All MST markers showed 100% sensitivity towards sewage contamination, with B. theta present in highest abundance in sewage, followed by HPyVs and M. smithii. This study demonstrates a risk-based framework to identify the threshold concentrations of MST markers associated with GI illness risks in environmental waters by considering two main influencing factors (i.e. decay and dilution factors). This study successfully validated the B. theta threshold concentration range (581 to 8073 GC/100 mL) with field data (370 to 6500 GC/100 mL) in estimating GI illness risks with an Enterococcus model. Field data showed that the MST markers at threshold concentrations were able to classify the safe level in more than 83% of the samples, according to GI illness risks from Enterococcus and adenovirus. The study also highlighted the lack of associations between MST markers and GI illness risks from norovirus. With comprehensive information on specificity, sensitivity and threshold concentrations of MST markers, increasing confidence can be placed on identifying human source contamination and evaluating the health risks posed in environmental waters in Singapore.
Collapse
Affiliation(s)
- S G Goh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore
| | - L Liang
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore
| | - K Y H Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore.
| |
Collapse
|
9
|
Shubo T, Maranhão A, Ferreira FC, Fumian TM, Pimenta MMA, do Rosário Vaz Morgado C, Toze S, Ahmed W, Sidhu J, Miagostovich MP. Virological Characterization of Roof-Harvested Rainwater of Densely Urbanized Low-Income Region. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:412-420. [PMID: 34185277 DOI: 10.1007/s12560-021-09484-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Roof-harvested rainwater (RHRW) is considered relatively clean water, even though the possible presence of pathogens in the water may pose human health risks. In this study, we investigated the occurrence of enteric viruses in the first flush (10 mm) of RHRW from a densely populated and low-income urbanized region of Rio de Janeiro. One hundred samples (5 L) were collected from 10 rainfall events between April 2015 and March 2017. RNA and DNA viruses were concentrated using the skimmed milk flocculation method and analyzed using the TaqMan® quantitative RT-qPCR and qPCR. Human adenoviruses, noroviruses, rotaviruses A, and avian parvoviruses were detected in 54%, 31%, 12%, and 12% of the positive samples. JC polyomavirus, also targeted, was not detected. Virus concentrations ranged from 1.09 × 101 to 2.58 × 103 genome copies/Liter (GC/L). Partial nucleotide sequence confirmed the presence of HAdV type 41, norovirus genotype GII.4, and avian parvovirus 1. The results suggest that the first flush diversion devices may not adequately remove enteric virus from the rainwater. Additional treatment of RHRW is required to mitigate potential health risks from potable use of captured water.
Collapse
Affiliation(s)
- Tatsuo Shubo
- Sanitation and Environmental Health Department, Sergio Arouca Public Health National School, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Adriana Maranhão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Fernando César Ferreira
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Márcia Maria Araújo Pimenta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Jatinder Sidhu
- CSIRO Oceans and Atmosphere Business Unit, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Zimmer-Faust AG, Steele JA, Xiong X, Staley C, Griffith M, Sadowsky MJ, Diaz M, Griffith JF. A Combined Digital PCR and Next Generation DNA-Sequencing Based Approach for Tracking Nearshore Pollutant Dynamics Along the Southwest United States/Mexico Border. Front Microbiol 2021; 12:674214. [PMID: 34421839 PMCID: PMC8377738 DOI: 10.3389/fmicb.2021.674214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Ocean currents, multiple fecal bacteria input sources, and jurisdictional boundaries can complicate pollution source tracking and associated mitigation and management efforts within the nearshore coastal environment. In this study, multiple microbial source tracking tools were employed to characterize the impact and reach of an ocean wastewater treatment facility discharge in Mexico northward along the coast and across the Southwest United States- Mexico Border. Water samples were evaluated for fecal indicator bacteria (FIB), Enterococcus by culture-based methods, and human-associated genetic marker (HF183) and Enterococcus by droplet digital polymerase chain reaction (ddPCR). In addition, 16S rRNA gene sequence analysis was performed and the SourceTracker algorithm was used to characterize the bacterial community of the wastewater treatment plume and its contribution to beach waters. Sampling dates were chosen based on ocean conditions associated with northern currents. Evidence of a gradient in human fecal pollution that extended north from the wastewater discharge across the United States/Mexico border from the point source was observed using human-associated genetic markers and microbial community analysis. The spatial extent of fecal contamination observed was largely dependent on swell and ocean conditions. These findings demonstrate the utility of a combination of molecular tools for understanding and tracking specific pollutant sources in dynamic coastal water environments.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Xianyi Xiong
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Madison Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Margarita Diaz
- Proyecto Fronterizo de Educación Ambiental, A.C., Tijuana, Mexico
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| |
Collapse
|
11
|
Li D, Van De Werfhorst LC, Steets B, Ervin J, Murray JLS, Devarajan N, Holden PA. Bather Shedding as a Source of Human Fecal Markers to a Recreational Beach. Front Microbiol 2021; 12:673190. [PMID: 34248883 PMCID: PMC8269448 DOI: 10.3389/fmicb.2021.673190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial source tracking (MST) can identify and locate surf zone fecal indicator bacteria (FIB) sources. However, DNA-based fecal marker results may raise new questions, since FIB and DNA marker sources can differ. Here, during 2 years of summertime (dry season) MST for a Goleta, California recreational beach, surf zone FIB were mainly from gulls, yet low level human-associated DNA-based fecal marker (HF183) was detected in 25 and 14% of surf zone water samples, respectively. Watershed sources were hypothesized because dry weather creek waters had elevated FIB, and runoff-generating rain events mobilized human (and dog) fecal markers and Salmonella spp. into creeks, with human marker HF183 detected in 40 and 50% of creek water samples, dog markers detected in 70 and 50% of samples, and Salmonella spp. in 40 and 33.3% of samples, respectively over 2 years. However, the dry weather estuary outlet was bermed in the first study year; simultaneously, creek fecal markers and pathogens were lower or similar to surf zone results. Although the berm breached in the second year, surf zone fecal markers stayed low. Watershed sediments, intertidal beach sands, and nearshore sediments were devoid of HF183 and dog-associated DNA markers. Based on dye tests and groundwater sampling, beach sanitary sewers were not leaking; groundwater was also devoid of HF183. Offshore sources appeared unlikely, since FIB and fecal markers decreased along a spatial gradient from the surf zone toward nearshore and offshore ocean waters. Further, like other regional beaches, surf zone HF183 corresponded significantly to bather counts, especially in the afternoons when there were more swimmers. However, morning detections of surf zone HF183 when there were few swimmers raised the possibility that the wastewater treatment plant (WWTP) offshore outfall discharged HF183 overnight which transported to the surf zone. These findings support that there may be lowest achievable limits of surf zone HF183 owing to several chronic and permanent, perhaps diurnal, low concentration sources.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Laurie C. Van De Werfhorst
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA, United States
| | - Jill L. S. Murray
- Creeks Division, Department of Parks and Recreation, Santa Barbara, CA, United States
| | - Naresh Devarajan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patricia A. Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
12
|
Tiwari A, Oliver DM, Bivins A, Sherchan SP, Pitkänen T. Bathing Water Quality Monitoring Practices in Europe and the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5513. [PMID: 34063910 PMCID: PMC8196636 DOI: 10.3390/ijerph18115513] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
Many countries including EU Member States (EUMS) and the United States (U.S.) regularly monitor the microbial quality of bathing water to protect public health. This study comprehensively evaluates the EU bathing water directive (BWD) and the U.S. recreational water quality criteria (RWQC) as regulatory frameworks for monitoring microbial quality of bathing water. The major differences between these two regulatory frameworks are the provision of bathing water profiles, classification of bathing sites based on the pollution level, variations in the sampling frequency, accepted probable illness risk, epidemiological studies conducted during the development of guideline values, and monitoring methods. There are also similarities between the two approaches given that both enumerate viable fecal indicator bacteria (FIB) as an index of the potential risk to human health in bathing water and accept such risk up to a certain level. However, enumeration of FIB using methods outlined within these current regulatory frameworks does not consider the source of contamination nor variation in inactivation rates of enteric microbes in different ecological contexts, which is dependent on factors such as temperature, solar radiation, and salinity in various climatic regions within their geographical areas. A comprehensive "tool-box approach", i.e., coupling of FIB and viral pathogen indicators with microbial source tracking for regulatory purposes, offers potential for delivering improved understanding to better protect the health of bathers.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
| | - David M. Oliver
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK;
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA;
| | - Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA;
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
13
|
Ahmed W, Toze S, Veal C, Fisher P, Zhang Q, Zhu Z, Staley C, Sadowsky MJ. Comparative decay of culturable faecal indicator bacteria, microbial source tracking marker genes, and enteric pathogens in laboratory microcosms that mimic a sub-tropical environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141475. [PMID: 32890804 DOI: 10.1016/j.scitotenv.2020.141475] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Enteric pathogens can be present in drinking water catchments due to several point and non-point sources of faecal contamination. Pathogen and contaminant signatures will decay due to environmental stresses, such as temperature, Ultra Violet (UV) radiation, salinity, and predation. In this study, we determined the decay of the culturable faecal indicator bacterium (FIB) Escherichia coli (E. coli), two sewage-associated marker genes (Bacteroides HF183 and crAssphage CPQ_056), and enteric pathogens (Campylobacter spp., human adenovirus 40/41, and Cryptosporidium parvum) in two freshwater laboratory microcosms using culture-based, quantitative PCR (qPCR) and vital dye (determine the fraction of viable Cryptosporidium oocysts) assays. Freshwater samples from the Lake Wappa and Lake Wivenhoe (Australia) were seeded with untreated sewage and C. parvum oocysts, and their declining concentrations were measured over a 28-day period. Moreover, 16S rRNA amplicon sequencing was also undertaken to determine the change/shift in sewage-associated bacterial communities using SourceTracker. Overall, culturable E. coli and the HF183 marker gene decayed significantly (p < 0.05) faster than did the qPCR measured enteric pathogens suggesting that the absence of culturable FIB or qPCR HF183 in water samples may not indicate the absence of pathogens. The decay of crAssphage was similar to that of HAdV 40/41 and other pathogens tested, suggesting crAssphage may be a better surrogate for enteric viruses in sub-tropical catchment waters. The decay rates were greater at 25 °C compared to 15 °C, suggesting that FIB and pathogens persist longer in the winter season compared to summer. Overall decay rates of the tested microorganisms in this microcosm study suggest that sub-tropical conditions, especially temperature, have a negative impact on the persistence of tested microorganisms. Sewage-associated bacterial communities also showed similar patterns. Based on the results, which showed differences in simulated summer and winter temperatures for pathogen decay, corresponding management options and treatment need to be adjusted accordingly to minimize human health risks effectively.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, Australia.
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, Australia
| | - Cameron Veal
- Seqwater, 117 Brisbane Street, Ipswich, QLD, Australia
| | - Paul Fisher
- Seqwater, 117 Brisbane Street, Ipswich, QLD, Australia
| | - Qian Zhang
- Department of Soil, Water, and Climate, and the BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhigang Zhu
- Department of Surgery, University of Minnesota, MN 55455, USA
| | | | - Michael J Sadowsky
- Department of Soil, Water, and Climate, and the BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Greaves J, Stone D, Wu Z, Bibby K. Persistence of emerging viral fecal indicators in large-scale freshwater mesocosms. WATER RESEARCH X 2020; 9:100067. [PMID: 32995735 PMCID: PMC7516186 DOI: 10.1016/j.wroa.2020.100067] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 05/18/2023]
Abstract
Fecal indicator bacteria (FIB) are typically used to monitor microbial water quality but are poor representatives of viruses due to different environmental fate. Viral fecal indicators have been proposed as alternatives to FIB; however, data evaluating the persistence of emerging viral fecal indicators under realistic environmental conditions is necessary to evaluate their potential application. In this study, we examined the persistence of five viral fecal indicators, including crAssphage and pepper mild mottle virus (PMMoV), and three bacterial fecal indicators (E. coli, enterococci and HF183/BacR287) in large-scale experimental ponds and freshwater mesocosms. Observed inactivation rate constants were highly variable and ranged from a minimum of -0.09 d-1 for PMMoV to a maximum of -3.5 d-1 for HF183/BacR287 in uncovered mesocosms. Overall, viral fecal indicators had slower inactivation than bacterial fecal indicators and PMMoV was inactivated more slowly than all other targets. These results demonstrate that bacterial fecal indicators inadequately represent viral fate following aging of sewage contaminated water due to differential persistence, and that currently used fecal indicator monitoring targets demonstrate highly variable persistence that should be considered during water quality monitoring and risk assessment.
Collapse
Affiliation(s)
- Justin Greaves
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| | - Daniel Stone
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| | - Zhenyu Wu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| |
Collapse
|
15
|
Myers EM, Juhl AR. Particle association of Enterococcus sp. increases growth rates and simulated persistence in water columns of varying light attenuation and turbulent diffusivity. WATER RESEARCH 2020; 186:116140. [PMID: 33096438 DOI: 10.1016/j.watres.2020.116140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Predicting water quality and the human health risks associated with sewage-derived microbes requires understanding the fate and transport of these contaminants. Sewage-derived pathogen risks are typically assessed and monitored by measuring concentrations of fecal indicating bacteria (FIB), like Enterococcus sp. Previous research demonstrated that a high fraction of FIB is particle-associated, which can alter FIB dynamics within secondary water bodies. In this study, we experimentally quantified the effect of particle association on dark, temperature- and light-dependent growth and sinking rates of enterococci. Particle association significantly increased dark growth rates, light-dependent growth rates (i.e. decreased mortality), and sinking rates, relative to free-living enterococci. Simulations using a novel, 1-dimensional model parameterized by these rates indicate greater persistence (T90) for particle-associated enterococci in water bodies across a wide range of diffuse attenuation coefficients of light (Kd) and turbulent diffusivity (D) values. In addition, persistence of both fractions increased in simulated turbid and turbulent waters, compared to clear and/or quiescent conditions. Simulated persistence of both fractions also increased when enterococci discharges occurred later in a diel cycle (towards sunset, as opposed to sunrise), especially for the free-living population, because later discharges under our model conditions allowed both fractions to mix deeper before inactivation via sunlight. Model sensitivity testing revealed that T90 variability was greatest when dark growth rates were altered, suggesting that future empirical studies should focus on quantifying these rates for free-living and particle-associated sewage-derived microbes. Despite greater sensitivity of T90 to variability in dark growth rates, omitting light-dependent growth rates from simulations dramatically influenced T90 values. Our results demonstrate that particle association can increase enterococci persistence in receiving waters and highlight the importance of incorporating particle association in future water quality models.
Collapse
Affiliation(s)
- Elise M Myers
- Columbia University, 535 W 116th Street, New York, NY, 10027, USA; Lamont Doherty Earth Observatory, 61 Route 9W, Palisades, NY, 10964, USA.
| | - Andrew R Juhl
- Columbia University, 535 W 116th Street, New York, NY, 10027, USA; Lamont Doherty Earth Observatory, 61 Route 9W, Palisades, NY, 10964, USA
| |
Collapse
|
16
|
Pascual-Benito M, Nadal-Sala D, Tobella M, Ballesté E, García-Aljaro C, Sabaté S, Sabater F, Martí E, Gracia CA, Blanch AR, Lucena F. Modelling the seasonal impacts of a wastewater treatment plant on water quality in a Mediterranean stream using microbial indicators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110220. [PMID: 32148290 DOI: 10.1016/j.jenvman.2020.110220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/24/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Faecal pollution modelling is a valuable tool to evaluate and improve water management strategies, especially in a context of water scarcity. The reduction dynamics of five faecal indicator organisms (E. coli, spores of sulphite-reducing clostridia, somatic coliphages, GA17 bacteriophages and a human-specific Bifidobacterium molecular marker) were assessed in an intermittent Mediterranean stream affected by a wastewater treatment plant (WWTP). Using Bayesian inverse modelling, the decay rates of each indicator were correlated with two environmental drivers (temperature and streamflow downstream of the WWTP) and the generated model was used to evaluate the self-depuration distance (SDD) of the stream. A consistent increase of 1-2 log10 in the concentration of all indicators was detected after the discharge of the WWTP effluent. The decay rates showed seasonal variation, reaching a maximum in the dry season, when SDDs were also shorter and the stream had a higher capacity to self-depurate. High seasonality was observed for all faecal indicators except for the spores of sulphite-reducing clostridia. The maximum SDD ranged from 3 km for the spores of sulphite-reducing clostridia during the dry season and 15 km for the human-specific Bifidobacterium molecular marker during the wet season. The SDD provides a single standardized metric that integrates and compares different contamination indicators. It could be extended to other Mediterranean drainage basins and has the potential to integrate changes in land use and catchment water balance, a feature that will be especially useful in the transient climate conditions expected in the coming years.
Collapse
Affiliation(s)
- M Pascual-Benito
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain.
| | - D Nadal-Sala
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; IMK-IFU (Karlsruhe Institute of Meteorology and Climate Research-Atmospheric Environmental Research), Kreuzeckbahnstraße 19, 82467, Garmisch-Partenkirchen, Germany
| | - M Tobella
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - E Ballesté
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - C García-Aljaro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - S Sabaté
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; CREAF (Center for Ecological Research and Forestry Applications), 08193, Cerdanyola del Vallès, Spain
| | - F Sabater
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; CREAF (Center for Ecological Research and Forestry Applications), 08193, Cerdanyola del Vallès, Spain
| | - E Martí
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB-CSIC), 17300, Blanes, Spain
| | - C A Gracia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; CREAF (Center for Ecological Research and Forestry Applications), 08193, Cerdanyola del Vallès, Spain
| | - A R Blanch
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - F Lucena
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| |
Collapse
|
17
|
Ballesté E, Belanche-Muñoz LA, Farnleitner AH, Linke R, Sommer R, Santos R, Monteiro S, Maunula L, Oristo S, Tiehm A A, Stange C, Blanch AR. Improving the identification of the source of faecal pollution in water using a modelling approach: From multi-source to aged and diluted samples. WATER RESEARCH 2020; 171:115392. [PMID: 31865126 DOI: 10.1016/j.watres.2019.115392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 05/20/2023]
Abstract
The last decades have seen the development of several source tracking (ST) markers to determine the source of pollution in water, but none of them show 100% specificity and sensitivity. Thus, a combination of several markers might provide a more accurate classification. In this study Ichnaea® software was improved to generate predictive models, taking into account ST marker decay rates and dilution factors to reflect the complexity of ecosystems. A total of 106 samples from 4 sources were collected in 5 European regions and 30 faecal indicators and ST markers were evaluated, including E. coli, enterococci, clostridia, bifidobacteria, somatic coliphages, host-specific bacteria, human viruses, host mitochondrial DNA, host-specific bacteriophages and artificial sweeteners. Models based on linear discriminant analysis (LDA) able to distinguish between human and non-human faecal pollution and identify faecal pollution of several origins were developed and tested with 36 additional laboratory-made samples. Almost all the ST markers showed the potential to correctly target their host in the 5 areas, although some were equivalent and redundant. The LDA-based models developed with fresh faecal samples were able to differentiate between human and non-human pollution with 98.1% accuracy in leave-one-out cross-validation (LOOCV) when using 2 molecular human ST markers (HF183 and HMBif), whereas 3 variables resulted in 100% correct classification. With 5 variables the model correctly classified all the fresh faecal samples from 4 different sources. Ichnaea® is a machine-learning software developed to improve the classification of the faecal pollution source in water, including in complex samples. In this project the models were developed using samples from a broad geographical area, but they can be tailored to determine the source of faecal pollution for any user.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain.
| | | | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Research Division Water Quality and Health, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| | - Rita Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria
| | - Regina Sommer
- Unit of Water Hygiene, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Ricardo Santos
- Laboratório Analises, Instituto Superior Tecnico. Universidade Lisboa, Lisbon, Portugal
| | - Silvia Monteiro
- Laboratório Analises, Instituto Superior Tecnico. Universidade Lisboa, Lisbon, Portugal
| | - Leena Maunula
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Satu Oristo
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Andreas Tiehm A
- Dept. Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Germany
| | - Claudia Stange
- Dept. Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Germany
| | - Anicet R Blanch
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Wu B, Wang C, Zhang C, Sadowsky MJ, Dzakpasu M, Wang XC. Source-Associated Gastroenteritis Risk from Swimming Exposure to Aging Fecal Pathogens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:921-929. [PMID: 31800232 DOI: 10.1021/acs.est.9b01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human contact with fecally contaminated waters often raises public health concern. The infection potential closely relates to the fecal source type and the aging persistence of waterborne pathogens. In this study, the health risk of contracting gastroenteritis from exposure to aging fecal contamination was predicted using source-associated markers. Microbial decay characteristics in typical summer seawater were incorporated into a pathogen dose estimation model for a constant fecal input. Results show that the median illness probability commensurate with the health benchmark of 36/1000 corresponded to the marker concentrations of ∼7.8, ∼6.6, ∼3.7, and ∼3.5 log10 gene copies/100 mL for seagulls, cattle, raw sewage, and treated effluent, respectively. The error in risk estimates due to neglecting microbial decay was linearly correlated to the decay differences between markers and pathogens. Specifically, the health risk associated with nonhuman sources, which was primarily contributed by bacterial and parasitic pathogens, can be substantially overestimated, while that for virus-dominated human sources was insignificantly affected by the differential decay. Additionally, seagulls dominated the Enterococcus concentration in waters with a mixture of the above-mentioned sources, although they posed limited health risk. This study provides an approach to understanding the influence of fecal aging on health risk estimation.
Collapse
Affiliation(s)
- Baolei Wu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Shaanxi Key Laboratory of Environmental Engineering; and School of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Number 13, Yanta Road , Xi'an , Shaanxi 710055 , P. R. China
| | - Chunwei Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Shaanxi Key Laboratory of Environmental Engineering; and School of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Number 13, Yanta Road , Xi'an , Shaanxi 710055 , P. R. China
| | - Chongmiao Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Shaanxi Key Laboratory of Environmental Engineering; and School of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Number 13, Yanta Road , Xi'an , Shaanxi 710055 , P. R. China
| | - Michael J Sadowsky
- BioTechnology Institute, Department of Soil, Water, & Climate and Department of Plant & Microbial Biology , University of Minnesota , 1479 Gortner Avenue , Saint Paul , Minnesota 55108 , United States
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Shaanxi Key Laboratory of Environmental Engineering; and School of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Number 13, Yanta Road , Xi'an , Shaanxi 710055 , P. R. China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Shaanxi Key Laboratory of Environmental Engineering; and School of Environmental and Municipal Engineering , Xi'an University of Architecture and Technology , Number 13, Yanta Road , Xi'an , Shaanxi 710055 , P. R. China
| |
Collapse
|
19
|
McMinn BR, Rhodes ER, Huff EM, Korajkic A. Decay of infectious adenovirus and coliphages in freshwater habitats is differentially affected by ambient sunlight and the presence of indigenous protozoa communities. Virol J 2020; 17:1. [PMID: 31906972 PMCID: PMC6945520 DOI: 10.1186/s12985-019-1274-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sanitary quality of recreational waters worldwide is assessed using fecal indicator bacteria (FIB), such as Escherichia coli and enterococci. However, fate and transport characteristics of FIB in aquatic habitats can differ from those of viral pathogens which have been identified as main etiologic agents of recreational waterborne illness. Coliphages (bacteriophages infecting E. coli) are an attractive alternative to FIB because of their many morphological and structural similarities to viral pathogens. METHODS In this in situ field study, we used a submersible aquatic mesocosm to compare decay characteristics of somatic and F+ coliphages to those of infectious human adenovirus 2 in a freshwater lake. In addition, we also evaluated the effect of ambient sunlight (and associated UV irradiation) and indigenous protozoan communities on decay of somatic and F+ coliphage, as well as infectious adenovirus. RESULTS Our results show that decay of coliphages and adenovirus was similar (p = 0.0794), indicating that both of these bacteriophage groups are adequate surrogates for decay of human adenoviruses. Overall, after 8 days the greatest log10 reductions were observed when viruses were exposed to a combination of biotic and abiotic factors (2.92 ± 0.39, 4.48 ± 0.38, 3.40 ± 0.19 for somatic coliphages, F+ coliphages and adenovirus, respectively). Both, indigenous protozoa and ambient sunlight, were important contributors to decay of all three viruses, although the magnitude of that effect differed over time and across viral targets. CONCLUSIONS While all viruses studied decayed significantly faster (p < 0.0001) when exposed to ambient sunlight, somatic coliphages were particularly susceptible to sunlight irradiation suggesting a potentially different mechanism of UV damage compared to F+ coliphages and adenoviruses. Presence of indigenous protozoan communities was also a significant contributor (p value range: 0.0016 to < 0.0001) to decay of coliphages and adenovirus suggesting that this rarely studied biotic factor is an important driver of viral reductions in freshwater aquatic habitats.
Collapse
Affiliation(s)
- Brian R McMinn
- United States Environmental Protections Agency, Cincinnati, OH, 45268, USA
| | - Eric R Rhodes
- United States Environmental Protections Agency, Cincinnati, OH, 45268, USA
| | - Emma M Huff
- United States Environmental Protections Agency, Cincinnati, OH, 45268, USA
| | - Asja Korajkic
- United States Environmental Protections Agency, Cincinnati, OH, 45268, USA.
| |
Collapse
|
20
|
Ahmed W, Hamilton K, Toze S, Cook S, Page D. A review on microbial contaminants in stormwater runoff and outfalls: Potential health risks and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1304-1321. [PMID: 31539962 PMCID: PMC7126443 DOI: 10.1016/j.scitotenv.2019.07.055] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 04/14/2023]
Abstract
Demands on global water supplies are increasing in response to the need to provide more food, water, and energy for a rapidly growing population. These water stressors are exacerbated by climate change, as well as the growth and urbanisation of industry and commerce. Consequently, urban water authorities around the globe are exploring alternative water sources to meet ever-increasing demands. These alternative sources are primarily treated sewage, stormwater, and groundwater. Stormwater including roof-harvested rainwater has been considered as an alternative water source for both potable and non-potable uses. One of the most significant issues concerning alternative water reuse is the public health risk associated with chemical and microbial contaminants. Several studies to date have quantified fecal indicators and pathogens in stormwater. Microbial source tracking (MST) approaches have also been used to determine the sources of fecal contamination in stormwater and receiving waters. This review paper summarizes occurrence and concentrations of fecal indicators, pathogens, and MST marker genes in urban stormwater. A section of the review highlights the removal of fecal indicators and pathogens through water sensitive urban design (WSUD) or Best Management Practices (BMPs). We also discuss approaches for assessing and mitigating health risks associated with stormwater, including a summary of existing quantitative microbial risk assessment (QMRA) models for potable and non-potable reuse of stormwater. Finally, the most critical research gaps are identified for formulating risk management strategies.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - Kerry Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Stephen Cook
- CSIRO Land and Water, Research way, Clayton South, VIC 3169, Australia
| | - Declan Page
- CSIRO Land and Water, Waite Laboratories, Waite Rd., Urrbrae, SA 5064, Australia
| |
Collapse
|
21
|
Boehm AB, Silverman AI, Schriewer A, Goodwin K. Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. WATER RESEARCH 2019; 164:114898. [PMID: 31404902 DOI: 10.1016/j.watres.2019.114898] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 05/04/2023]
Abstract
Surface waters are essential natural resources. They are also receiving waters for a variety of anthropogenic waste streams that carry a myriad of pollutants including pathogens. Watershed and fate and transport models can help inform the spatial and temporal extent of microbial pollution from point and non-point sources and thus provide useful information for managing surface waters. Viruses are particularly important water-related pathogens because they often have a low infectious dose, which means that ingestion of even a small volume of water containing a low concentration of virions has the potential to cause disease. We conducted a systematic review of the literature, following best practices, to gather decay rate constants (k) of mammalian waterborne viruses (enteroviruses, adenoviruses, noroviruses, astroviruses, rotaviruses, and hepatitis A viruses) and coliphages in raw surface waters to aid in the parameterization of virus fate and transport models. We identified 562 k values from the literature, with the largest number identified for enteroviruses and coliphages and the smallest for astrovirus, hepatitis A virus, and norovirus. Average k values for each virus varied from 0.07 to 0.9 per day, in order from smallest to largest: Norwalk virus (i.e., noroviruses) < Human astrovirus < Mastadenovirus (i.e., adenoviruses) < Hepatovirus A (i.e., hepatitis A viruses) < Rotavirus A < coliphages < Enterovirus. A meta-analysis investigated how k varied among viruses for experiments conducted with different virus serotypes or species at different temperatures, salinities, and sunlight exposures, and for experiments that enumerated viruses using different methodologies. Virus species or serotype did not affect k among decay experiments. k values were generally larger for experiments conducted at higher temperatures, in sunlight, and in estuarine waters, and enumerated using culture methods. k values were statistically different between virus types with Norwalk virus, Hepatovirus A, and Mastadenovirus having smaller k values than other viruses, controlling for experimental condition and enumeration method. While F+ coliphage k values were similar to those of Enterovirus, Human astrovirus, and Rotavirus A, they were different from those of the other mammalian viruses. This compilation of coliphage and mammalian virus k values provides essential information for researchers and risk assessors who model virus fate and transport in surface waters and identifies avenues for future research to fill knowledge gaps.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA; College of Global Public Health, New York University, New York, NY, 10012, USA
| | - Alexander Schriewer
- Weston Solutions, Inc., 5817 Dryden Place Suite 101, Carlsbad, CA, 92008, USA
| | - Kelly Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration (stationed at NOAA/NMFS/SWFSC, La Jolla, CA), Miami, FL, USA
| |
Collapse
|
22
|
Abstract
Fecal microorganisms can enter water bodies in diverse ways, including runoff, sewage discharge, and direct fecal deposition. Once in water, the microorganisms experience conditions that are very different from intestinal habitats. The transition from host to aquatic environment may lead to rapid inactivation, some degree of persistence, or growth. Microorganisms may remain planktonic, be deposited in sediment, wash up on beaches, or attach to aquatic vegetation. Each of these habitats offers a panoply of different stressors or advantages, including UV light exposure, temperature fluctuations, salinity, nutrient availability, and biotic interactions with the indigenous microbiota (e.g., predation and/or competition). The host sources of fecal microorganisms are likewise numerous, including wildlife, pets, livestock, and humans. Most of these microorganisms are unlikely to affect human health, but certain taxa can cause waterborne disease. Others signal increased probability of pathogen presence, e.g., the fecal indicator bacteria Escherichia coli and enterococci and bacteriophages, or act as fecal source identifiers (microbial source tracking markers). The effects of environmental factors on decay are frequently inconsistent across microbial species, fecal sources, and measurement strategies (e.g., culture versus molecular). Therefore, broad generalizations about the fate of fecal microorganisms in aquatic environments are problematic, compromising efforts to predict microbial decay and health risk from contamination events. This review summarizes the recent literature on decay of fecal microorganisms in aquatic environments, recognizes defensible generalizations, and identifies knowledge gaps that may provide particularly fruitful avenues for obtaining a better understanding of the fates of these organisms in aquatic environments.
Collapse
|
23
|
Sunger N, Hamilton KA, Morgan PM, Haas CN. Comparison of pathogen-derived 'total risk' with indicator-based correlations for recreational (swimming) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30614-30624. [PMID: 29644614 DOI: 10.1007/s11356-018-1881-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
Typical recreational water risk to swimmers is assessed using epidemiologically derived correlations by means of fecal indicator bacteria (FIB). It has been documented that concentrations of FIB do not necessarily correlate well with protozoa and viral pathogens, which pose an actual threat of illness and thus sometimes may not adequately assess the overall microbial risks from water resources. Many of the known pathogens have dose-response relationships; however, measuring water quality for all possible pathogens is impossible. In consideration of a typical freshwater receiving secondarily treated effluent, we investigated the level of consistency between the indicator-derived correlations and the sum of risks from six reference pathogens using a quantitative microbial risk assessment (QMRA) approach. Enterococci and E. coli were selected as the benchmark FIBs, and norovirus, human adenovirus (HAdV), Campylobacter jejuni, Salmonella enterica, Cryptosporidium spp., and Giardia spp. were selected as the reference pathogens. Microbial decay rates in freshwater and uncertainties in exposure relationships were considered in developing our analysis. Based on our exploratory assessment, the total risk was found within the range of risk estimated by the indicator organisms, with viral pathogens as dominant risk agents, followed by protozoan and bacterial pathogens. The risk evaluated in this study captured the likelihood of gastrointestinal illnesses only, and did not address the overall health risk potential of recreational waters with respect to other disease endpoints. Since other highly infectious pathogens like hepatitis A and Legionella spp. were not included in our analysis, these estimates should be interpreted with caution.
Collapse
Affiliation(s)
- Neha Sunger
- Department of Health, West Chester University, 855 South New Street, West Chester, PA, 19383, USA.
| | - Kerry A Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 251 Curtis Hall, 3141 Chestnut St, Philadelphia, PA, 19104, USA
| | - Paula M Morgan
- Department of Health, West Chester University, 855 South New Street, West Chester, PA, 19383, USA
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 251 Curtis Hall, 3141 Chestnut St, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Ahmed W, Payyappat S, Cassidy M, Besley C. Enhanced insights from human and animal host-associated molecular marker genes in a freshwater lake receiving wet weather overflows. Sci Rep 2019; 9:12503. [PMID: 31467317 PMCID: PMC6715810 DOI: 10.1038/s41598-019-48682-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
This study investigated the magnitude of wet weather overflow (WWO)-driven sewage pollution in an urban lake (Lake Parramatta) located in Sydney, New South Wales, Australia. Water samples were collected during a dry weather period and after two storm events, and tested for a range of novel and established sewage- [Bacteroides HF183, crAssphage CPQ_056 and pepper mild mottle virus (PMMoV)] and animal feces-associated (Bacteroides BacCan-UCD, cowM2 and Helicobacter spp. associated GFD) microbial source tracking marker genes along with the enumeration of culturable fecal indicator bacteria (FIB), namely Escherichia coli (E. coli) and Enterococcus spp. The magnitude of general and source-specific fecal pollution was low in water samples collected during dry weather compared to storm events. The levels of HF183, crAssphage and PMMoV in water samples collected during storm events were as high as 6.39, 6.33 and 5.27 log10 GC/L of water, respectively. Moderate to strong positive correlations were observed among the quantitative occurrence of sewage-associated marker genes. The concentrations of HF183 and PMMoV in most storm water samples exceeded the risk benchmark threshold values established in the literature for primary contact recreators. None of the samples tested was positive for the cowM2 (cow) marker gene, while BacCan-UCD (dog) and GFD (avian) animal-associated markers were sporadically detected in water samples collected from both dry weather and storm events. Based on the results, the ongoing advice that swimming should be avoided for several days after storm events appears appropriate. Further research to determine the decay rates of sewage-associated marker genes in relation to each other and enteric viruses would help refine current advice. Microbial source tracking approaches employed in this study provided insights into sources of contamination over currently used FIB.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| |
Collapse
|
25
|
Sagarduy M, Courtois S, Del Campo A, Garmendia JM, Petrau A. Differential decay and prediction of persistence of Enterococcus spp. and Escherichia coli culturable cells and molecular markers in freshwater and seawater environments. Int J Hyg Environ Health 2019; 222:695-704. [PMID: 31097324 DOI: 10.1016/j.ijheh.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
To quantify the impact of fecal pollution on the microbiological bathing water quality, predictive modeling is being increasingly used in which the decay rate of the fecal indicators plays an important role. The decay of sewage-sourced enterococci and Escherichia coli culturable cells and their associated molecular markers (16SrRNA) quantified by Quantitative Reverse transcription PCR were measured in controlled microcosms as well in in situ conditions using different water types, from marine waters to fresh waters with intermediate salinity. All bacterial decays were fitted to a first order decay model. In the laboratory study, the light radiation was the most influent factor affecting E. coli and enterococci survival by culture methods although environmental conditions weakly impacted the decay of molecular markers. The results also indicated differential persistence of genetic markers and culturable organisms of fecal indicator bacteria in different water systems. For each bacteria indicator and analytical method, four equations were obtained to predict the time required to have a 90% reduction (T90) according irradiance, salinity and temperature parameters. The weighted model RMSE (Root Mean Square Error) calculated for all field experiments showed that quantification obtained with the equations defined by laboratory-based study compared reasonably well with in-situ observed quantification (0.4 and 0.2 log by standard culture methods for E. coli and Enterococcus spp. and 0.6 and 0.3 log by RT-qPCR for E. coli and Enterococcus spp. respectively). The modeling tool can be used to predict the presence of fecal pollution in marine and fresh waters in combination with either culture based- or rapid molecular methods.
Collapse
Affiliation(s)
- Maialen Sagarduy
- Rivages Pro Tech, 2, Allée Théodore Monod, 64210, Bidart, France.
| | - Sophie Courtois
- Suez, CIRSEE, 38 rue du président Wilson, 78230, Le Pecq, France
| | - Andrea Del Campo
- AZTI Tecnalia, Herrera Kaia - Portualdea z/g, E-20110, Pasaia, Spain
| | | | - Agnès Petrau
- Rivages Pro Tech, 2, Allée Théodore Monod, 64210, Bidart, France
| |
Collapse
|
26
|
Ahmed W, Payyappat S, Cassidy M, Besley C. A duplex PCR assay for the simultaneous quantification of Bacteroides HF183 and crAssphage CPQ_056 marker genes in untreated sewage and stormwater. ENVIRONMENT INTERNATIONAL 2019; 126:252-259. [PMID: 30822654 DOI: 10.1016/j.envint.2019.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
The HF183 marker gene, derived from the 16S rRNA gene of Bacteroides dorei, has been widely used to identify sewage pollution in environmental waters. CrAssphages are recently discovered DNA bacteriophages that are highly abundant in untreated sewage and have shown promises for tracking sewage contamination in environmental waters. In this paper, we report the development of a duplex quantitative PCR (qPCR) assay for simultaneous quantification of HF183 and crAssphage CPQ_056 marker genes in untreated sewage and sewage impacted stormwater. Same primer and probe sequences were used in the duplex qPCR assay as used in published simplex qPCR assays. The performance characteristics of the duplex qPCR assay were similar to its simplex counterparts. We validated the performance of the duplex assay in a collaborative laboratory study with the aim to evaluate reproducibility, sensitivity and concordance for field study. The concordance values between the simplex vs. duplex qPCR assays for HF183 and crAssphage CPQ_056 marker genes ranged from 96.7 to 100% and the mean concentrations of HF183 and CPQ_056 in environmental water samples were remarkably similar or in some cases slightly greater for the duplex qPCR assay suggesting the reliability of this assay for monitoring HF183 and CPQ_056 simultaneously. The newly developed duplex qPCR assay will be a valuable addition to the MST toolbox for sewage pollution monitoring and would allow rapid and comparative sample analysis.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
27
|
Ballesté E, García-Aljaro C, Blanch AR. Assessment of the decay rates of microbial source tracking molecular markers and faecal indicator bacteria from different sources. J Appl Microbiol 2018; 125:1938-1949. [PMID: 30066371 DOI: 10.1111/jam.14058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 01/18/2023]
Abstract
AIMS Evaluate the T90 and compare the decay of different faecal indicator bacteria (FIB) and molecular microbial source tracking (MST) markers of human and animal sources during summer and winter. METHODS AND RESULTS The persistence of Escherichia coli and enterococci and several MST molecular markers targeting host-specific Bifidobacterium and Bacteroidales species (BifHM, BifCW, BifPL, HF183/BFD, Rum2Bac and Pig2Bac) was assessed at the same time using mesocosms. Dialysis bags filled with diluted wastewater from different sources were kept in an outdoor water tank and monitored regularly to assess the inactivation rates. The T90 values of E. coli by culture methods ranged from 1·52 to 5·69 days in summer and 2·06 to 6·19 days in winter, whereas with qPCR 2·29-4·23 days in summer and 4·17-8·09 days in winter. T90 values for enterocci ranged from 1·15 to 3·10 days in summer and from 3·01 to 5·46 days in winter. Significant differences were observed between faecal sources for both markers. For the MST makers similar T90 values were obtained in summer (1·05-1·91 days), whereas higher variability was observed in winter (2·90-6·12 days). CONCLUSIONS Different decay rates were observed for the FIB from the different sources, especially for E. coli in ruminant samples. A higher variability among T90 values of the different MST markers in winter was observed, whereas similar T90 values were detected in summer highlighting the stronger effect of environmental parameters during this season. SIGNIFICANCE AND IMPACT OF THE STUDY The diverse inactivation rates observed in bacteria from different faecal sources have implications when these rates are used to model faecal pollution in water. The use of FIBT90 of different sources is essential to develop reliable predictive models. Since different inactivation of E. coli regarding the source of pollution has been observed, the source of the pollution has to be considered for modelling approaches.
Collapse
Affiliation(s)
- E Ballesté
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - C García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - A R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Ahmed W, Payyappat S, Cassidy M, Besley C, Power K. Novel crAssphage marker genes ascertain sewage pollution in a recreational lake receiving urban stormwater runoff. WATER RESEARCH 2018; 145:769-778. [PMID: 30223182 DOI: 10.1016/j.watres.2018.08.049] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 05/18/2023]
Abstract
Considerable efforts have been made in recent years in developing novel marker genes for fecal pollution tracking in environmental waters. CrAssphage are recently discovered DNA bacteriophage that are highly abundant in human feces and untreated sewage. In this study, we evaluated the host-sensitivity and -specificity of the newly designed crAssphage qPCR assays (Stachler et al., 2017) CPQ_056 and CPQ_064 (i.e., marker genes) in fecal samples collected from various human and several animal host groups in Australia. We also investigated the utility of these marker genes to detect sewage pollution in an urban recreational lake (i.e., Lake Parramatta) in Sydney, NSW. The mean concentrations of CPQ_056 and CPQ_064 marker genes in untreated sewage were 9.43 ± 0.14 log10 GC/L and 8.91 ± 0.17 log10 GC/L, respectively, 2 to 3 orders of magnitude higher than other sewage-associated viruses used in microbial source tracking studies. Among 177 animal fecal samples tested from 11 species, the host-specificity values for CPQ_056 and CPQ_064 marker genes were 0.95 and 0.93, respectively. Limited cross-reactivity was observed with cat fecal and cattle wastewater samples. Abundance of crAssphage markers were monitored in an urban lake that receives stormwater runoff. The concentrations of both markers were higher (CPQ_056 ranging from 3.40 to 6.04 log10 GC/L and CPQ_064 ranging from 2.90 to 5.47 log10 GC/L) in 20 of 20 (for CPQ_056) and 18 of 20 (for CPQ_064) samples collected after storm events with gauged sewer overflows compared to dry weather event (10 of 10 samples were qPCR negative for the CPQ_056 and 8 of 10 were negative for the CPQ_064 marker genes) suggesting sewage pollution was transported by urban stormwater runoff to Lake Parramatta. The results of the study may provide context for management of sewage pollution from gauged overflow points of the sewerage system in the catchment.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Kaye Power
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| |
Collapse
|
29
|
Boehm AB, Graham KE, Jennings WC. Can We Swim Yet? Systematic Review, Meta-Analysis, and Risk Assessment of Aging Sewage in Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9634-9645. [PMID: 30080397 DOI: 10.1021/acs.est.8b01948] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study investigated the risk of gastrointestinal illness associated with swimming in surface waters with aged sewage contamination. First, a systematic review compiled 333 first order decay rate constants ( k) for human norovirus and its surrogates feline calicivirus and murine norovirus, Salmonella, Campylobacter, Escherichia coli O157:H7, Giardia, and Cryptosporidium, and human-associated indicators in surface water. A meta-analysis investigated effects of sunlight, temperature, and water matrix on k. There was a relatively large number of k for bacterial pathogens and some human-associated indicators ( n > 40), fewer for protozoans ( n = 14-22), and few for human norovirus and its Caliciviridae surrogates ( n = 2-4). Average k ranked: Campylobacter > human-associated markers > Salmonella> E. coli O157:H7 > norovirus and its surrogates > Giardia > Cryptosporidium. Compiled k values were used in a quantitative microbial risk assessment (QMRA) to simulate gastrointestinal illness risk associated with swimming in water with aged sewage contamination. The QMRA used human-associated fecal indicator HF183 as an index for the amount of sewage present and thereby provided insight into how risk relates to HF183 concentrations in surface water. Because exposure to norovirus contributed the majority of risk, and HF183 k is greater than norovirus k, the risk associated with exposure to a fixed HF183 concentration increases with the age of contamination. Swimmer exposure to sewage after it has aged ∼3 days results in median risks less than 30/1000. A risk-based water quality threshold for HF183 in surface waters that takes into account uncertainty in contamination age is derived to be 4100 copies/100 mL.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| | - Katherine E Graham
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| | - Wiley C Jennings
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
30
|
Ahmed W, Hamilton KA, Lobos A, Hughes B, Staley C, Sadowsky MJ, Harwood VJ. Quantitative microbial risk assessment of microbial source tracking markers in recreational water contaminated with fresh untreated and secondary treated sewage. ENVIRONMENT INTERNATIONAL 2018; 117:243-249. [PMID: 29772486 DOI: 10.1016/j.envint.2018.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 05/09/2023]
Abstract
Microbial source tracking (MST) methods have provided the means to identify sewage contamination in recreational waters, but the risk associated with elevated levels of MST targets such as sewage-associated Bacteroides HF183 and other markers is uncertain. Quantitative microbial risk assessment (QMRA) modeling allows interpretation of MST data in the context of the risk of gastrointestinal (GI) illness caused by exposure to pathogens. In this study, five sewage-associated, quantitative PCR (qPCR) MST markers [Bacteroides HF183 (HF183), Methanobrevibacter smithii nifH (nifH), human adenovirus (HAdV), human polyomavirus (HPyV) and pepper mild mottle virus (PMMoV)] were evaluated to determine at what concentration these nucleic acid markers reflected a significant health risk from exposure to fresh untreated or secondary treated sewage in beach water. The QMRA models were evaluated for a target probability of illness of 36 GI illnesses/1000 swimming events (i.e., risk benchmark 0.036) for the reference pathogens norovirus (NoV) and human adenovirus 40/41 (HAdV 40/41). Sewage markers at several dilutions exceeded the risk benchmark for reference pathogens NoV and HAdV 40/41. HF183 concentrations 3.22 × 103 (for both NoV and HAdV 40/41) gene copies (GC)/100 mL of water contaminated with fresh untreated sewage represented risk >0.036. Similarly, HF183 concentrations 3.66 × 103 (for NoV and HAdV 40/41) GC/100 mL of water contaminated with secondary treated sewage represented risk >0.036. HAdV concentration as low as 4.11 × 101 GC/100 mL of water represented risk >0.036 when water was contaminated with secondary treated sewage. Results of this study provide a valuable context for water quality managers to evaluate human health risks associated with contamination from fresh sewage. The approach described here may also be useful in the future for evaluating health risks from contamination with aged or treated sewage or feces from other animal sources as more data are made available.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.
| | - Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Aldo Lobos
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Bridie Hughes
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA; Department of Soil, Water and Climate, 1991 Upper Buford Circle, Room 439, Saint Paul, MN 55108, USA
| | - Valerie J Harwood
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| |
Collapse
|
31
|
Decay of sewage-associated bacterial communities in fresh and marine environmental waters and sediment. Appl Microbiol Biotechnol 2018; 102:7159-7170. [PMID: 29869677 DOI: 10.1007/s00253-018-9112-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
Abstract
Understanding the microbial quality of recreational waters is critical to effectively managing human health risks. In recent years, the development of new molecular methods has provided scientists with alternatives to the use of culture-based fecal indicator methods for investigating sewage contamination in recreational waters. Before these methods can be formalized into guidelines, however, we must investigate their utility, including strengths and weaknesses in different environmental media. In this study, we investigated the decay of sewage-associated bacterial communities in water and sediment from three recreational areas in Southeast Queensland, Australia. Outdoor mesocosms with water and sediment samples from two marine and one freshwater sites were inoculated with untreated sewage and sampled on days 0, 1, 4, 8, 14, 28, and 50. Amplicon sequencing was performed on the DNA extracted from water and sediment samples, and SourceTracker was used to determine the decay of sewage-associated bacterial communities and how they change following a contamination event. No sewage-associated operational taxonomic units (OTUs) were detected in water and sediment samples after day 4; however, the bacterial communities remained changed from their background measures, prior to sewage amendment. Following untreated sewage inoculation, the mesocosm that had the most diverse starting bacterial community recovered to about 60% of its initial community composition, whereas the least diverse bacterial community only recovered to about 30% of its initial community composition. This suggests that a more diverse bacterial community may play an important role in water quality outcomes after sewage contamination events. Further investigation into potential links between bacterial communities and measures of fecal indicators, pathogens, and microbial source tracking (MST) markers is warranted and may provide insight for recreational water decision-makers.
Collapse
|
32
|
Seck EH, Dufour JC, Raoult D, Lagier JC. Halophilic & halotolerant prokaryotes in humans. Future Microbiol 2018; 13:799-812. [PMID: 29726267 DOI: 10.2217/fmb-2017-0237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Halophilic prokaryotes are described as microorganisms living in hypersaline environments. Here, we list the halotolerant and halophilic bacteria which have been isolated in humans. Of the 52 halophilic prokaryotes, 32 (61.54%) were moderately halophilic, 17 (32.69%) were slightly halophilic and three (5.76%) were extremely halophilic prokaryotes. At the phylum level, 29 (54.72%) belong to Firmicutes, 15 (28.84%) to Proteobacteria, four (7.69%) to Actinobacteria, three (5.78%) to Euryarchaeota and one (1.92%) belongs to Bacteroidetes. Halophilic prokaryotes are rarely pathogenic: of these 52 halophilic prokaryotes only two (3.92%) species were classified in Risk Group 2 (Vibrio cholerae, Vibrio parahaemolyticus) and one (1.96%), species in Risk Group 3 (Bacillus anthracis).
Collapse
Affiliation(s)
- El Hadji Seck
- Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Charles Dufour
- SESSTIM (UMR912), Sciences Economiques et Sociales de la Santé et Traitement de l'Information Médicale, Aix Marseille University, INSERM, IRD, Marseille, France.,Service Biostatistique et Technologies de l'Information et de la Communication (BIOSTIC), Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Marseille, France
| | - Didier Raoult
- Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jean-Christophe Lagier
- Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
33
|
Martín-Díaz J, García-Aljaro C, Pascual-Benito M, Galofré B, Blanch AR, Lucena F. Microcosms for evaluating microbial indicator persistence and mobilization in fluvial sediments during rainfall events. WATER RESEARCH 2017; 123:623-631. [PMID: 28709106 DOI: 10.1016/j.watres.2017.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/25/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Mediterranean rivers, which are subject to long, dry periods and heavy rainfall events, could be particularly useful for understanding future climate scenarios. This study generated microcosms that mimicked riverbank sediment resuspension into the water of a typical Mediterranean river as a consequence of heavy rainfall. The mobilization and inactivation of six fecal pollution indicators and microbial source tracking markers were evaluated. The T90 values in the sediments were: 4 days for sorbitol-fermenting Bifidobacterium, 11 days for culturable E. coli, 36 days for bacteriophages infecting Bacteroides thetaiotaomicron strain GA17 and more than 42 days for qPCR-detected E. coli, somatic coliphages and sulfite-reducing clostridia spores. Bacteriophages and bacteria showed different resuspension and sedimentation patterns. The data obtained could be used in predictive models to assess the effects of climate change on surface water quality. Pathogen mobilization into the water column poses a risk for humans, animals and the natural environment, and breaches the One Health approach.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain.
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| | - Míriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| | - Belén Galofré
- Aigües de Barcelona, EMGCIA, C/ General Batet 1-7, 08028 Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| |
Collapse
|
34
|
Gyawali P, Sidhu JPS, Ahmed W, Jagals P, Toze S. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2615-2621. [PMID: 28617281 DOI: 10.2166/wst.2017.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.
Collapse
Affiliation(s)
- P Gyawali
- School of Public Health, The University of Queensland, Herston Road, Herston, Qld 4006, Australia E-mail:
| | - J P S Sidhu
- School of Public Health, The University of Queensland, Herston Road, Herston, Qld 4006, Australia E-mail: ; CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - P Jagals
- School of Public Health, The University of Queensland, Herston Road, Herston, Qld 4006, Australia E-mail:
| | - S Toze
- School of Public Health, The University of Queensland, Herston Road, Herston, Qld 4006, Australia E-mail: ; CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| |
Collapse
|
35
|
Brooks L, Field K. Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers. J Appl Microbiol 2017; 122:1704-1713. [DOI: 10.1111/jam.13454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- L.E. Brooks
- Department of Microbiology Oregon State University Corvallis OR USA
| | - K.G. Field
- Department of Microbiology Oregon State University Corvallis OR USA
| |
Collapse
|
36
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
37
|
Brainard J, Pond K, Hunter PR. Censored Regression Modeling To Predict Virus Inactivation in Wastewaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1795-1801. [PMID: 28051304 DOI: 10.1021/acs.est.6b05190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the many uncertainties presented by poorly studied pathogens is possible transmission via human fecal material or wastewaters. Such worries were a documented concern during the 2013 Ebola outbreak in West Africa. Using published experimental data on virus inactivation rates in wastewater and similar matrices, we extracted data to construct a model predicting the T90 (1 × log10 inactivation measured in seconds) of a virus. Extracted data were as follows: RNA or DNA genome, enveloped or not, primary transmission pathway, temperature, pH, light levels, and matrix. From the primary details, we further determined matrix level of contamination, genus, and taxonomic family. Prior to model construction, three records were separated for verification. A censored normal regression model provided the best fit model, which predicted T90 from DNA or RNA structure, enveloped status, whether primary transmission pathway was fecal-oral, temperature, and whether contamination was low, medium, or high. Model residuals and predicted values were evaluated against observed values. Mean values of model predictions were compared to independent data and considering 95% confidence ranges (which could be quite large). A relatively simple model can predict virus inactivation rates from virus and matrix attributes, providing valuable input when formulating risk management strategies for little studied pathogens.
Collapse
Affiliation(s)
- Julii Brainard
- Norwich Medical School, University of East Anglia , Norwich NR4 7TJ, United Kingdom
| | - Katherine Pond
- Department of Civil and Environmental Engineering, Robens Centre for Public and Environmental Health, University of Surrey , Guildford GU2 7XH, United Kingdom
| | - Paul R Hunter
- Norwich Medical School, University of East Anglia , Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
38
|
L L, S G G, K Y H G. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:165-175. [PMID: 27631197 DOI: 10.1016/j.scitotenv.2016.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/04/2016] [Accepted: 09/04/2016] [Indexed: 05/27/2023]
Abstract
Artificial seawater and freshwater microcosms inoculated with raw sewage were set up to compare the persistence of microbial source tracking (MST) markers (i.e. Bacteroides thetaiotaomicron (B. theta), Methanobrevibacter smithii (M. smithii), human polyomaviruses JC and BK (HPyVs)) and human adenoviruses under different sunlight intensity and salinity. PMA pretreatment successfully eliminated the false-positive detection of dead bacterial cells in the model-development experiment. The results were then validated using real environmental matrices in microcosms inoculated with raw sewage. The genome concentrations of the targets followed a first-order decay pattern with 90% reduction of the initial amounts in <5days for both artificial and natural surface waters. Decay rate constant (k1) were developed microorganisms in artificial water matrices. Due to the different water environment conditions, improved decay rates (k2) incorporated with sunlight, TSS and TOC adjustment coefficients were used for validation of the natural water matrices. Based on the predictive squared correlation coefficient (Q2F) and root-mean-square error (RMSE) validation criteria, the improved k2 were able to provide better prediction on the survival of target microorganisms in environmental surface waters (Q2F>0.6 and RMSE ranged from 0.05 to 1.81). For microbial source tracking purposes, HPyVs are suggested to be better MST markers in freshwater, while B. theta is recommended for seawater based on the decay models developed in this study. The targeted DNA of M. smithii should only be used to indicate recent human faecal pollution in surface waters due to their faster decay than human adenoviruses.
Collapse
Affiliation(s)
- Liang L
- Department of Civil & Environmental Engineering, The National University of Singapore, Block, E1A, #07-03,1 Engineering Drive 2, 117576, Singapore
| | - Goh S G
- Department of Civil & Environmental Engineering, The National University of Singapore, Block, E1A, #07-03,1 Engineering Drive 2, 117576, Singapore
| | - Gin K Y H
- Department of Civil & Environmental Engineering, The National University of Singapore, Block, E1A, #07-03,1 Engineering Drive 2, 117576, Singapore; NERI - NUS Environmental Research Institute, 2nd floor, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
39
|
Mattioli MC, Sassoubre LM, Russell TL, Boehm AB. Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters. WATER RESEARCH 2017; 108:106-114. [PMID: 27855952 DOI: 10.1016/j.watres.2016.10.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 05/20/2023]
Abstract
The decay of sewage-sourced enterococci, Escherichia coli, three human-associated microbial source tracking (MST) markers, Salmonella, Campylobacter, and norovirus GII was measured in situ in coastal, marine waters. Experiments examined the effects of sunlight intensity and season on decay. Seawater was seeded with untreated sewage, placed into permeable dialysis bags, and deployed in the coastal ocean near the water surface, and at 18 cm, and 99 cm depths, to vary solar intensity, during winter and summer seasons. Microbial decay was modeled using a log-linear or shoulder log-linear decay model. Pathogen levels were too low in sewage to obtain kinetic parameters. Human-associated MST markers all decayed with approximately the same rate constant (k ∼ 1.5 d-1) in all experimental treatments, suggesting markers could be detectable up to ∼6 days after a raw sewage spill. E. coli and enterococci (culturable and molecular marker) k significantly varied with season and depth; enterococci decayed faster at shallow depths and during the summer, while E. coli decayed faster at shallow depths and during the winter. Rate constants for MST markers and culturable FIB diverged except at the deepest depth in the water column potentially complicating the use of MST marker concentrations to allocate sources of FIB contamination.
Collapse
Affiliation(s)
- Mia Catharine Mattioli
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States
| | - Lauren M Sassoubre
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States
| | - Todd L Russell
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
40
|
Liu R, Yeung LTC, Ho PH, Lau SCK. Tracking the relative concentration between Bacteroidales DNA markers and culturable Escherichia coli in fecally polluted subtropical seawater: potential use in differentiating fresh and aged pollution. Can J Microbiol 2016; 63:252-259. [PMID: 28177801 DOI: 10.1139/cjm-2016-0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Routine water quality monitoring practices based on the enumeration of culturable Escherichia coli provides no information about the source or age of fecal pollution. An emerging strategy is to use culturable E. coli and the DNA markers of Bacteroidales complementarily for microbial source tracking. In this study, we consistently observed in seawater microcosms of 3 different conditions that culturable E. coli decayed faster (T99 = 1.14 - 4.29 days) than Bacteroidales DNA markers did (T99 = 1.81 - 200.23 days). Concomitantly, the relative concentration between Bacteroidales DNA markers and culturable E. coli increased over time in all treatments. Particularly, the increase during the early stage of the experiments (before T99 of E. coli was reached) was faster than during the later stage (after T99 of E. coli was attained). We propose that the tracking of the relative concentration between Bacteroidales DNA markers and culturable E. coli provides an opportunity to differentiate a pollution that is relatively fresh from one that has aged. This method, upon further investigation and validation, could be useful in episodic pollution events where the surge of E. coli concentration causes noncompliance to the single sample maximum criterion that mandates high frequency follow-up monitoring.
Collapse
Affiliation(s)
- Rulong Liu
- a Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, People's Republic of China.,b Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Leo T C Yeung
- b Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Pui-Hei Ho
- b Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Stanley C K Lau
- c Division of Life Science and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
41
|
Brooks LE, Field KG. Bayesian meta-analysis to synthesize decay rate constant estimates for common fecal indicator bacteria. WATER RESEARCH 2016; 104:262-271. [PMID: 27543910 DOI: 10.1016/j.watres.2016.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
For decades, fecal indicator bacteria have been used as proxies to quantitatively estimate fecal loading into water bodies. Widely used cultured indicators (e.g. Escherichia coli and Enterococcus spp.) and more recently developed genetic markers are well studied, but their decay in the environment is still poorly understood. We used Hierarchical Bayesian Linear Modeling to conduct a series of meta-analyses using published decay rate constant estimates, to synthesize findings into pooled estimates and identify gaps in the data preventing reliable estimates. In addition to the meta-analysis assuming all estimates come from the same population, meta-regressions including covariates believed to contribute to decay were fit and used to provided synthesized estimates for specific combinations of significant variables. Additionally, statements regarding the significance of variables across studies were made using the 95% confidence interval for meta-regression coefficients. These models were used to construct a mean decay rate constant estimate as well as credible intervals for the mean and the distribution of all likely data points. While synthesized estimates for each targeted indicator bacteria were developed, the amount of data available varied widely for each target, as did the predictive power of the models as determined by testing with additional data not included in the modeling. Temperature was found to be significant for all selected indicators, while light was found to be significant only for culturable indicators. Results from the models must be interpreted with caution, as they are based only on the data available, which may not be representative of decay in other scenarios.
Collapse
Affiliation(s)
- Lauren E Brooks
- Oregon State University, Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR, 97331, USA.
| | - Katharine G Field
- Oregon State University, Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
42
|
Human-Associated Bacteroides spp. and Human Polyomaviruses as Microbial Source Tracking Markers in Hawaii. Appl Environ Microbiol 2016; 82:6757-6767. [PMID: 27613686 DOI: 10.1128/aem.01959-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/05/2016] [Indexed: 11/20/2022] Open
Abstract
Identification of sources of fecal contaminants is needed to (i) determine the health risk associated with recreational water use and (ii) implement appropriate management practices to mitigate this risk and protect the environment. This study evaluated human-associated Bacteroides spp. (HF183TaqMan) and human polyomavirus (HPyV) markers for host sensitivity and specificity using human and animal fecal samples collected in Hawaii. The decay rates of those markers and indicator bacteria were identified in marine and freshwater microcosms exposed and not exposed to sunlight, followed by field testing of the usability of the molecular markers. Both markers were strongly associated with sewage, although the cross-reactivity of the HF183TaqMan (also present in 82% of canine [n = 11], 30% of mongoose [n = 10], and 10% of feline [n = 10] samples) needs to be considered. Concentrations of HF183TaqMan in human fecal samples exceeded those in cross-reactive animals at least 1,000-fold. In the absence of sunlight, the decay rates of both markers were comparable to the die-off rates of enterococci in experimental freshwater and marine water microcosms. However, in sunlight, the decay rates of both markers were significantly lower than the decay rate of enterococci. While both markers have their individual limitations in terms of sensitivity and specificity, these limitations can be mitigated by using both markers simultaneously; ergo, this study supports the concurrent use of HF183TaqMan and HPyV markers for the detection of sewage contamination in coastal and inland waters in Hawaii. IMPORTANCE This study represents an in-depth characterization of microbial source tracking (MST) markers in Hawaii. The distribution and concentrations of HF183TaqMan and HPyV markers in human and animal fecal samples and in wastewater, coupled with decay data obtained from sunlight-exposed and unexposed microcosms, support the concurrent application of HF183TaqMan and HPyV markers for sewage contamination detection in Hawaii waters. Both markers are more conservative and more specific markers of sewage than fecal indicator bacteria (enterococci and Escherichia coli). Analysis of HF183TaqMan (or newer derivatives) is recommended for inclusion in future epidemiological studies concerned with beach water quality, while better concentration techniques are needed for HPyV. Such epidemiological studies can be used to develop new recreational water quality criteria, which will provide direct information on the absence or presence of sewage contamination in water samples as well as reliable measurements of the risk of waterborne disease transmission to swimmers.
Collapse
|
43
|
Duan C, Cui Y, Zhao Y, Zhai J, Zhang B, Zhang K, Sun D, Chen H. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:193-200. [PMID: 27353369 DOI: 10.1016/j.jenvman.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
A genetic marker within the 16S rRNA gene of Faecalibacterium was identified for use in a quantitative PCR (qPCR) assay to detect swine faecal contamination in water. A total of 146,038 bacterial sequences were obtained using 454 pyrosequencing. By comparative bioinformatics analysis of Faecalibacterium sequences with those of numerous swine and other animal species, swine-specific Faecalibacterium 16S rRNA gene sequences were identified and Polymerase Chain Okabe (PCR) primer sets designed and tested against faecal DNA samples from swine and non-swine sources. Two PCR primer sets, PFB-1 and PFB-2, showed the highest specificity to swine faecal waste and had no cross-reaction with other animal samples. PFB-1 and PFB-2 amplified 16S rRNA gene sequences from 50 samples of swine with positive ratios of 86 and 90%, respectively. We compared swine-specific Faecalibacterium qPCR assays for the purpose of quantifying the newly identified markers. The quantification limits (LOQs) of PFB-1 and PFB-2 markers in environmental water were 6.5 and 2.9 copies per 100 ml, respectively. Of the swine-associated assays tested, PFB-2 was more sensitive in detecting the swine faecal waste and quantifying the microbial load. Furthermore, the microbial abundance and diversity of the microbiomes of swine and other animal faeces were estimated using operational taxonomic units (OTUs). The species specificity was demonstrated for the microbial populations present in various animal faeces.
Collapse
Affiliation(s)
- Chuanren Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Yamin Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Jun Zhai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, PR China.
| | - Baoyun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Da Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Hang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
44
|
Gyawali P, Ahmed W, Sidhu JPS, Nery SV, Clements AC, Traub R, McCarthy JS, Llewellyn S, Jagals P, Toze S. Quantitative detection of viable helminth ova from raw wastewater, human feces, and environmental soil samples using novel PMA-qPCR methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18639-18648. [PMID: 27306209 DOI: 10.1007/s11356-016-7039-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
In this study, we have evaluated the efficacy of propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) to differentiate between viable and non-viable Ancylostoma caninum ova. The newly developed method was validated using raw wastewater seeded with known numbers of A. caninum ova. Results of this study confirmed that PMA-qPCR has resulted in average of 88 % reduction (P < 0.05) in gene copy numbers for 50 % viable +50 % non-viable when compared with 100 % viable ova. A reduction of 100 % in gene copies was observed for 100 % non-viable ova when compared with 100 % viable ova. Similar reductions (79-80 %) in gene copies were observed for A. caninum ova-seeded raw wastewater samples (n = 18) collected from wastewater treatment plants (WWTPs) A and B. The newly developed PMA-qPCR method was applied to determine the viable ova of different helminths (A. caninum, A. duodenale, Necator americanus and Ascaris lumbricoides) in raw wastewater, human fecal and soil samples. None of the unseeded wastewater samples were positive for the above-mentioned helminths. N. americanus and A. lumbricoides ova were found in unseeded human fecal and soil samples. For the unseeded human fecal samples (1 g), an average gene copy concentration obtained from qPCR and PMA-qPCR was found to be similar (6.8 × 10(5) ± 6.4 × 10(5) and 6.3 × 10(5) ± 4.7 × 10(5)) indicating the presence of viable N. americanus ova. Among the 24 unseeded soil samples tested, only one was positive for A. lumbricoides. The mean gene copy concentration in the positively identified soil sample was 1.0 × 10(5) ± 1.5 × 10(4) (determined by qPCR) compared to 4.9 × 10(4) ± 3.7 × 10(3) (determined by PMA-qPCR). The newly developed PMA-qPCR methods were able to detect viable helminth ova from wastewater and soil samples and could be adapted for health risk assessment.
Collapse
Affiliation(s)
- P Gyawali
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia.
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia.
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia
| | - J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | - S V Nery
- Research School of Population Health, College of Medicine, Biology and Environment, The Australian National University, Linnaeus Way, ACT, 2601, Australia
| | - A C Clements
- Research School of Population Health, College of Medicine, Biology and Environment, The Australian National University, Linnaeus Way, ACT, 2601, Australia
| | - R Traub
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - J S McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - S Llewellyn
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - P Jagals
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | - S Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| |
Collapse
|
45
|
Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. WATER 2016. [DOI: 10.3390/w8060231] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Gyawali P, Ahmed W, Jagals P, Sidhu J, Toze S. Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR. Exp Parasitol 2015; 159:160-7. [DOI: 10.1016/j.exppara.2015.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/05/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|
47
|
Bae S, Wuertz S. Decay of host-associated Bacteroidales cells and DNA in continuous-flow freshwater and seawater microcosms of identical experimental design and temperature as measured by PMA-qPCR and qPCR. WATER RESEARCH 2015; 70:205-213. [PMID: 25540834 DOI: 10.1016/j.watres.2014.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
It is difficult to compare decay kinetics for genetic markers in an environmental context when they have been determined at different ambient temperatures. Therefore, we investigated the persistence of the host-associated genetic markers BacHum, BacCow and BacCan as well as the general Bacteroidales marker BacUni in both intact Bacteroidales cells and as total intracellular and extracellular marker DNA in controlled batch experiments at two temperatures using PMA-qPCR. Fecal Bacteroidales cells and DNA persisted longer at the lower temperature. Using the modified Arrhenius function to calculate decay constants for the same temperature, we then compared the decay of host-associated Bacteroidales cells and their DNA at 14 °C in field-based flow-through microcosms containing human, cow, and dog feces suspended in freshwater or seawater and previously operated with an identical experimental design. The time for a 2-log reduction (T₉₉) was used to characterize host-associated Bacteroidales decay. Host-associated genetic markers as determined by qPCR had similar T₉₉ values in freshwater and seawater at 14 °C when compared under both sunlight and dark conditions. In contrast, intact Bacteroidales cells measured by PMA-qPCR had shorter T₉₉ values in seawater than in freshwater. The decay constants of Bacteroidales cells were a function of physical (temperature) and chemical (salinity) parameters, suggesting that environmental parameters are key input variables for Bacteroidales survival in a predictive water quality model. Molecular markers targeting total Bacteroidales DNA were less susceptible to the variance of temperature, salinity and sunlight, implying that measurement of markers in both intact cells and DNA could enhance the predictive power of identifying fecal pollution across all aquatic environments. Monitoring Bacteroidales by qPCR alone rather than by PMA-qPCR does not always identify the contribution of recent fecal contamination because a signal may be detected that does not reflect a recent fecal event.
Collapse
Affiliation(s)
- Sungwoo Bae
- Department of Civil and Environmental Engineering, 2001 Ghausi Hall, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, 2001 Ghausi Hall, University of California, One Shields Avenue, Davis, CA 95616, USA; Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore.
| |
Collapse
|
48
|
Liu R, Cheng KHF, Wong K, Cheng SCS, Lau SCK. Differential utility of the Bacteroidales DNA and RNA markers in the tiered approach for microbial source tracking in subtropical seawater. Appl Microbiol Biotechnol 2015; 99:5669-81. [PMID: 25652655 DOI: 10.1007/s00253-015-6410-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
Source tracking of fecal pollution is an emerging component in water quality monitoring. It may be implemented in a tiered approach involving Escherichia coli and/or Enterococcus spp. as the standard fecal indicator bacteria (FIB) and the 16S rRNA gene markers of Bacteroidales as source identifiers. The relative population dynamics of the source identifiers and the FIB may strongly influence the implementation of such approach. Currently, the relative performance of DNA and RNA as detection targets of Bacteroidales markers in the tiered approach is not known. We compared the decay of the DNA and RNA of the total (AllBac) and ruminant specific (CF128) Bacteroidales markers with those of the FIB in seawater spiked with cattle feces. Four treatments of light and oxygen availability simulating the subtropical seawater of Hong Kong were tested. All Bacteroidales markers decayed significantly slower than the FIB in all treatments. Nonetheless, the concentrations of the DNA and RNA markers and E. coli correlated significantly in normoxic seawater independent of light availability, and in hypoxic seawater only under light. In hypoxic seawater without light, the concentrations of RNA but not DNA markers correlated with that of E. coli. Generally, the correlations between Enterococcus spp. and Bacteroidales were insignificant. These results suggest that either DNA or RNA markers may complement E. coli in the tiered approach for normoxic or hypoxic seawater under light. When light is absent, either DNA or RNA markers may serve for normoxic seawater, but only the RNA markers are suitable for hypoxic seawater.
Collapse
Affiliation(s)
- Rulong Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
49
|
Evidence for extraintestinal growth of bacteroidales originating from poultry litter. Appl Environ Microbiol 2014; 81:196-202. [PMID: 25326306 DOI: 10.1128/aem.02354-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml(-1) and 2 log gene copies g litter(-1) under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results.
Collapse
|